
NEW FAMILIES OF PERIODIC ORBITS
FOR A GALACTIC POTENTIAL

MARÍA T. DE BUSTOS1, JUAN L.G. GUIRAO2, JAUME LLIBRE3 AND JUAN A. VERA4

Abstract. The Hamiltonian system associated to the Hamiltonian
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where ε and a are parameters and ε is small, describes the local motion in the
central area of a galaxy. Its dynamics have been study by many authors. Here
we find analytically new families of periodic orbits of this Hamiltonian system.

1. Introduction and statement of the main results

In this paper we study the families of periodic orbits of a 3–dimensional (or simply
3D) isotropic harmonic oscillator perturbed by a polynomial potential

(1) H =
1

2

(
P 2
1 + P 2

2 + P 2
3

)
+

1

2

(
Q2

1 +Q2
2 +Q2

3

)
+ εP (Q1, Q2, Q3) ,

where ε is a small parameter. The polynomial potential is

(2) P(Q1, Q2, Q3) = Q4
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,

where a ∈ R is a parameter.
The potential here studied
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is a galactic potential which describes the local motion in the central area of a galaxy.
This potential has been studied by many authors, see for instance Deprit and Elipe [4],
Caranicolas [3], Elipe and Deprit [5], Elipe [6], Arribas et al. [2], Zotos [10, 11, 12, 13],
Zotos and Caranicolas [14], Zotos and Carpintero [15], ...

In the paper of [9] the authors studied analytically the families of periodic orbits of
the Hamiltonian (1) with (2) using the averaging theory, and they find several families
of periodic orbits. Here we improve the results of [9] finding new families of periodic
orbits, also using a result based in the averaging theory. The key point for obtaining
these new families of periodic orbits is to work with the Lissajous variables instead of
working directly with the cartesian variables (Q1, Q2, Q3, P1, P2, P3) as in [9].

The 3D Lissajous variables (L, l,G, g,N, n) are defined through the transformation

L : (Q1, Q2, Q3, P1, P2, P3) 7→ (L,G,N, l, g, n) : R6 → Ω× γ
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given by

Q1 =
√
G+N sin(l + g + n), P1 =

√
G+N cos(l + g + n),

Q2 =
√
L−G sin(l − g + n), P2 =

√
L−G cos(l − g + n),

Q3 =
√
L−N sin(l + g − n), P3 =

√
L−N cos(l + g − n),

where
Ω =

{
(L,G,N) ∈ R3 : L > 0, |G| < L, |N | < L

}

and γ is the torus {
(l, g, n) ∈ R3 / (l, g, n) ∈ [0, 2π)3

}
.

The 3D Lissajous transformation is a canonical transformation, i.e. the symplectic
structure remains the standard one. In the new coordinates the Hamiltonian (1)
becomes

(3) H = L+ εP1(L, l,G, g,N, n).

where P1(L, l,G, g,N, n) is the pullback of the 3D Lissajous transformation with the
perturbed polynomial P.
Theorem 1. For ε 6= 0 sufficiently small in the invariant set H = h > 0, the
Hamiltonian system defined by the Hamiltonian (3) with the perturbation given by (2)
has the following new families of 2π−periodic solutions in the variable l.

If a ∈ (−6, 6) \ {0, 2} we have the families
I): γIε (l) = (L(l, ε), G(l, ε), g(l, ε), N(l, ε), n(l, ε)) such that

lim
ε→0

γIε (0) =

(
h,

(a+ 6)h

18− a ,
kπ

2
,

3(2− a)h

18− a ,
π

4
+
mπ

2

)

for k,m = 0, 1, 2, 3. See Figure 1.
II): γIIε (l) = (L(l, ε), G(l, ε), g(l, ε), N(l, ε), n(l, ε)) such that

lim
ε→0

γIIε (0) =

(
h,

3(2− a)h

18− a ,
π

4
+
kπ

2
,

(a+ 6)h

18− a ,
mπ

2

)

for k,m = 0, 1, 2, 3. See Figure 2.
III): γIIIε (l) = (L(l, ε), G(l, ε), g(l, ε), N(l, ε), n(l, ε)) such that

lim
ε→0

γIIIε (0) =

(
h,

(a+ 6)h

18− a ,
π

4
+
kπ

2
,

(a+ 6)h

18− a ,
π

4
+
mπ

2

)

for k,m = 0, 1, 2, 3. See Figure 3.
If a ∈ R \ {0, 2} we have the families

IV): γIε (l) = (L(l, ε), G(l, ε), g(l, ε), N(l, ε), n(l, ε)) such that

lim
ε→0

γIε (0) =

(
h,

h

3
,
kπ

2
,
h

3
,
mπ

2

)

for k,m = 0, 1, 2, 3. See Figure 4.

Theorem 1 is proved in section 2.
If we write the periodic orbits described in Theorem 1 in Lissajous coordinates

(L, l,G, g,N, n) in cartesian coordinates (Q1, Q2, Q3, P1, P2, P3) we obtain Table 1.
From Table 1 is easily to obtain the implicit equations of two of the periodic orbits

of the family I for ε = 0, which are given by the intersection of the elliptic cylinder
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Q1(t, ε)
−Γ1 sin

(
t− π

4

)
+O(ε)

Γ1 sin
(
t+ π

4

)
+O(ε)

I Q2(t, ε)
∓Γ1 sin

(
t− π

4

)
+O(ε)

∓Γ1 sin
(
t+ π

4

)
+O(ε)

Q3(t, ε)
∓Γ2 sin

(
t+ π

4

)
+O(ε)

∓Γ2 sin
(
t− π

4

)
+O(ε)

Q1(t, ε)
−Γ1 sin

(
t− π

4

)
+O(ε)

−Γ1 sin
(
t+ π

4

)
+O(ε)

Families II Q2(t, ε)
∓Γ2 sin

(
t+ π

4

)
+O(ε)

∓Γ2 sin
(
t− π

4

)
+O(ε)

Q3(t, ε)
∓Γ1 sin

(
t− π

4

)
+O(ε)

∓Γ1 sin
(
t+ π

4

)
+O(ε)

Q1(t, ε)
−Γ2 cos t+O(ε)
−Γ2 sin t+O(ε)

III Q2(t, ε)
∓Γ1 sin t+O(ε)
∓Γ1 cos t+O(ε)

Q3(t, ε)
∓Γ1 sin t+O(ε)
∓Γ1 cos t+O(ε)

Q1(t, ε)
−Γ cos t+O(ε)
−Γ sin t+O(ε)

IV Q2(t, ε)
±Γ cos t+O(ε)
∓Γ sin t+O(ε)

Q3(t, ε)
±Γ cos t+O(ε)
∓Γ sin t+O(ε)

Table 1. The orbits of Theorem 1 in cartesian coordinates where

Γ =

√
2h

3
, Γ1 =

√
2(a− 6)h

a− 18
and Γ2 =

√
2(a+ 6)h

18− a .

Q2
1

Γ2
1

+
Q2

3

Γ2
2

= 1 with the planes Q1 = ±Q2. Similarly for the other periodic orbits of

the family I, see Figure 1.
Again from Table 1 it follows that the family II comes from the intersection of the

elliptic cylinder
Q2

1

Γ2
1

+
Q2

2

Γ2
2

= 1 with the planes Q1 = ±Q3. Similarly for the other

periodic orbits of the family I, see Figure 2.
The implicit equations of two periodic orbits of the family III are given by the

intersection of the elliptic cylinder
Q2

1

Γ2
2

+
Q2

2

Γ2
1

= 1 with the elliptic cylinder
Q2

1

Γ2
2

+
Q2

3

Γ2
1

=

1. Similarly for the other periodic orbits of this family, see Figure 3.
The implicit equation for the orbits of the family IV are Q1 = ±Q2 = ±Q3, see

Figure 4.
We must mention that in the paper [9] three more additional families of periodic

orbits of the Hamiltonian system defined by the Hamiltonian (3) with the perturbation
given by (2) were found in our notation they are:

If a ∈ R \ {0, 2} we have the families
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V): γIIε (l) = (L(l, ε), G(l, ε), g(l, ε), N(l, ε), n(l, ε)) such that

lim
ε→0

γIIε (0) =

(
h,

h

3
,
π

6
+
kπ

2
,
h

3
,
π

3
+
mπ

2

)

for k,m = 0, 1, 2, 3.

VI): γIIIε (l) = (L(l, ε), G(l, ε), g(l, ε), N(l, ε), n(l, ε)) such that

lim
ε→0

γIIIε (0) =

(
h,

h

3
,
π

3
+
kπ

2
,
h

3
,
π

3
+
mπ

2

)

for k,m = 0, 1, 2, 3.

If a ∈ (−∞,−6] ∪ [3,+∞) we have the families
VII): γV II,±ε (l) = (L(l, ε), G(l, ε), g(l, ε), N(l, ε), n±(l, ε)) such that

lim
ε→0

γV II,±ε (0) =

(
h, 0,

kπ

2
, h, ± 1

2
arctan

(√
2(a−3)
a+6

))

for k = 0, 1, 2, 3.

We remark that the periodic orbits corresponding to the families V, VI and VII
found in [9] are rectilinear or circular.

In short, from Theorem 1 and the mentioned results of [9] it follows the next result.

Corollary 2. For ε 6= 0 sufficiently small in the invariant set H = h > 0, the
Hamiltonian system defined by the Hamiltonian (3) with the perturbation given by (2)
has the following periodic orbits

• IV, V, V I, V II if a ∈ (−∞,−6),
• IV, V, V I if a = −6,
• I, II, III, IV, V, V I if a ∈ (−6, 3) \ {0, 2},
• I, II, III, IV, V, V I, V II if a ∈ [3, 6),
• IV, V, V I, V II if a ∈ [6,∞).

The linear stability or instability of the families of periodic solutions described in
Corollary 2 are given in the next result.

Theorem 3. The stability or instability of the families of periodic orbits γIε (l) with
I ∈ {I, II, III, IV, V, V I, V II} is described in what follows.

(1) The families γIε (l), γIIε (l) and γIIIε (l) are unstable if a ∈ (−6, 6) \ {0, 2}.
(2) The family γIVε (l) is linearly stable if a ∈ (−∞, 0) ∪ (2,+∞) and unstable if

a ∈ (0, 2).
(3) The families γVε (l) and γV Iε (l) are linearly stable if a ∈ (0, 2) ∪ (2, 4) and

unstable if a ∈ (−∞, 0) ∪ (4,+∞).
(4) The family γV IIε (l) is unstable.

Theorem 3 is proved in section 3.

Proposition 4. For a = 0 and a = 2 the Hamiltonian system associated to the
Hamiltonian (1) with potential (2) is separable in cartesian and symplectic spherical
coordinates.

The proof of Proposition 4 is given in section 2.
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Figure 1. Elliptic periodic orbits of the families I.
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Figure 2. Elliptic periodic orbits of the families II.
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Figure 3. Elliptic periodic orbits of the families III.

2. Proof of Main Result

First we shall prove Proposition 4.

Proof of Proposition 4. Clearly if a = 0 the Hamiltonian system associated to the
Hamiltonian (1) with potential (2) splits into three separated differential systems in
the coordinates (Qi, Pi) for i = 1, 2, 3.

For a = 2 the Hamiltonian H becomes

H =
1

2

(
P 2
1 + P 2

2 + P 2
3

)
+

1

2

(
Q2

1 +Q2
2 +Q2

3

)
+ ε(Q2

1 +Q2
2 +Q2

3)2
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Figure 4. Rectilinear periodic orbits of the families IV.

and using symplectic spherical coordinates it writes

H =
1

2

(
p2r +

p2θ
r2

+
p2φ

r2 sin2 θ

)
+

1

2
r2 + εr4.

Note that H, pθ and pφ are integrals in involution and consequently the Hamiltonian
system associated to the Hamiltonian H with a = 2 is completely integrable. �

We define the averaged function of P with respect to the angle l, i.e.

〈P〉 =
1

2π

∫ 2π

0

P(L, l,G, g,N, n)dl

and the functions

f1(G, g,N, n) = −∂ 〈P〉
∂g

, f3(G, g,N, n) = −∂ 〈P〉
∂n

,

f2(G, g,N, n) =
∂ 〈P〉
∂G

, f4(G, g,N, n) =
∂ 〈P〉
∂N

.

We denote by p0 = (G0, g0, N0, n0) a solution of the system

(4) fi(G, g,N, n) = 0 for i = 1, 2, 3, 4,

satisfying that

(5) ∆ = det

(
∂(f1, f2, f3, f4)

∂(G, g,N, n)

∣∣∣∣
p=p0

)
6= 0.

The next result follows directly from Theorem 1 of [7].

Theorem 5. For ε 6= 0 sufficiently small and for each solution (G0, g0, N0, n0) of
system (4) satisfying (5), the Hamiltonian system defined by the Hamiltonian (3) in
the invariant set H = h > 0, has a 2π−periodic solution

γε(l) = (L(l, ε), G(l, ε), g(l, ε), N(l, ε), n(l, ε))

in the variable l such that

lim
ε→0

γε(0) = (h,G0, g0, N0, n0) .

Moreover, the linear stability or instability of the Poincaré map associated to the
periodic solution γε(l) is given by the stability or instability of the equilibrium point
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(G0, g0, N0, n0) of the differential system

(6)

dG

dl
= −εf1(G, g,N, n),

dN

dl
= −εf3(G, g,N, n),

dg

dl
= εf2(G, g,N, n),

dn

dl
= εf4(G, g,N, n).

The condition that the determinant ∆ 6= 0 in Theorem 5 implies that the averaging
theory only can detect periodic orbits which are isolated in the set of all periodic orbits
of the differential system. This is the reason that we restrict our study of the periodic
orbits of the Hamiltonian system associated to the Hamiltonian (1) with (2) to each
level H = h > 0. We recall that generically the periodic orbits of a non completely
integrable Hamiltonian system form cylinders parameterized by h, this is the reason
that we can find periodic orbits in the levels H = h > 0 of our Hamiltonian system
using the averaging theory, when the Hamiltonian system is not completely integrable,
because in this situation the periodic orbits in each level H = h are isolated in the
set of all periodic orbits of contained in that level. On the other hand, the fact that
we cannot find periodic orbits when a ∈ {0, 2} using the averaging theory indicates
that for these values of the parameter a the Hamiltonian system can be completely
integrable, and consequently their periodic solutions are not isolated in the set of all
periodic solutions by the Liouville-Arnold Theorem, and this is the case as it is proved
in Proposition 4. For more details on the results stated in these paragraph see the
books [1] and [8], the first for the results on Hamiltonian systems and the second for
the results on averaging theory.

Solving H = h with respect to the variable L, where H is given in (3) and (2), we
get L = h+O(ε). Since we shall study the periodic orbits of the Hamiltonian system,
associated to the Hamiltonian (3) with (2), in the level H = h we substitute in what
follows L by h+O(ε).

Applying the 3D–Lissajous transformation to the function P(Q1, Q2, Q3) given in
(2), it becomes P = P(l, G, g,N, n) equal to

P = −a(G− h)(G+N) sin2(g − l − n) sin2(g + l + n) + (h−N) sin2(g + l − n)
+a(G+N)(h−N) sin2(g + l − n) sin2(g + l + n) + (G− h)2 sin4(g − l − n)
+(G+N)2 sin4(g + l + n) + (h−N)2 sin4(g + l − n).

Therefore the averaged function 〈P〉 = 〈P〉 (G, g,N, n), is

〈P〉 =
1

8
(a((h−G)(h−N)(cos(4(g − n)) + 2)(cos(4g) + 2)(h−G)(G+N)

+(G+N)(h−N)(cos(4n) + 2)) + 3(G− h)2 + 3(G+N)2 + 3(h−N)2.

The functions fi = fi(G, g,N, n) for i = 1, 2, 3, 4 of the differential system (6) are

f1 = −1

2
a(G− h)[(G+N) sin(4g) + (h−N) sin(4(g − n))],

f2 =
1

8
[(h− 2G−N)(2a− 6 + a cos(4g)) + 2a(h−N) sin(2g) sin(2g − 4n)],

f3 =
1

2
a(h−N)[(G− h) sin(4(g − n)) + (G+N) sin(4n)],

f4 =
1

8
[(h−G− 2N)(2a− 6 + a cos(4n)) + 2a(G− h) sin(2n) sin(4g − 2n)].

We need the following technical proposition for proving Theorem 1.
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Proposition 6. Assume that h > 0. Then we have the following solutions (G0, g0, N0, n0)
of the system fi(G, g,N, n) = 0 for i = 1, 2, 3, 4 satisfying that ∆ 6= 0.

If a ∈ (−6, 6) \ {0, 2} we have the solutions:

G0 g0 N0 n0 ∆

I (a+6)h
18−a

kπ
2

3(2−a)h
18−a

π
4 + mπ

2
a2(a−2)2(a2−36)(a+6)h4

(18−a)3

II 3(2−a)h
18−a

π
4 + kπ

2
(a+6)h
18−a

mπ
2

a2(a−2)2(a2−36)(a+6)h4

(18−a)3

III (a+6)h
18−a

π
4 + kπ

2
(a+6)h
18−a

π
4 + mπ

2
a2(a−2)2(a2−36)(a+6)h4

(18−a)3

If a ∈ R \ {0, 2} we have the solutions

G0 N0 g0 n0 ∆

IV h
3

h
3

kπ
2

mπ
2

a2(a−2)2h4

4

where k and m vary in the set {0, 1, 2, 3}.
Proof. If we do at the equations (7) the change of variables α = G + N, β = L −N
and γ = L−G, we can rewrite these equations as a quasi–linear system of equations
for the unknowns α, β, γ, i.e.

(7)

f1 = α sin(4g) + β sin(4g − 4n) = 0,
f2 = α(6− 2a− a cos(4g)) + 2aβ sin(2g) sin(2g − 4n)

+γ(−6 + 2a+ a cos(4g)) = 0,
f3 = β(α sin(4n)− γ sin(4g − 4n)) = 0,
f4 = α(6− 2a− a cos(4n)) + β(−6 + 2a+ a cos(4n))

−2aγ sin(2n) sin(4g − 2n) = 0.

The only equation that it is nonlinear is the third. But it vanishes if and only if either
β = 0 or α sin(4n) − γ sin(4g − 4n) = 0. In the first case, we obtain a linear system
fi = 0, i = 1, 2, 4. In the second, dividing f3 by β, we have another linear system,
always in the variables α, β, γ. So, the problem of finding the solutions of the system
fi(G, g,N, n) = 0 for i = 1, 2, 3, 4 has turned on the problem of finding the solutions
of two different linear systems. Now we study the solutions of these two systems.

If β = 0, the linear system writes



sin(4g) 0
6− 2a− a cos(4g) −6 + 2a+ a cos(4g)
6− 2a− a cos(4g) −2a sin(2n) sin(4g − 2n)





α

γ


 =




0
0
0


 .

This system has nontrivial solutions when all the minors of second order vanish, that
is

(cos(4g)a+ 2a− 6)(a cos(4n) + 2(sin(4g − 2n) sin(2n)a+ a− 3)) = 0,

sin(4g)(cos(4g)a+ 2a− 6) = 0,

sin(2n) sin(4g − 2n) = 0.

Only four of the eight real solutions of this system satisfy fi(G, g,N, n) = 0 for
i = 1, 2, 3, 4, namely

(G0, g0, N0, n0) =

(
0,

kπ

2
, L, ± 1

2
arctan

(√
2(a− 3)

a+ 6

))
, k = 0, 1, 2, 3,

when a /∈ [−6, 3). These solution corresponds to the solutions (VII) already found in
[9].
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We assume now that β 6= 0. If we interchange the functions f2 y f3, we obtain the
homogeneous linear system

A




α

β

γ


 =




0
0
0
0


 ,

where A is the matrix


sin(4g) sin(4g − 4n) 0
sin(4n) 0 − sin(4g − 4n)

6− 2a− a cos(4g) −a(cos(4n)− cos(4g − 4n)) −6 + 2a+ a cos(4g)
6− 2a+ a cos(4n) −6 + 2a+ a cos(4n) a(cos(4g)− cos(4g − 4n))


 .

This system has nontrivial solution when all the minors of third order vanish. In this
case, we obtain the following solutions (G0, g0, N0, n0) satisfying (7)

G0 N0 g0 n0

I (a+6)L
18−a

kπ
2

3(2−a)L
18−a

π
4 + mπ

2

II 3(2−a)L
18−a

π
4 + kπ

2
(a+6)L
18−a

mπ
2

III (a+6)L
18−a

π
4 + kπ

2
(a+6)L
18−a

π
4 + mπ

2

.

For I, II and III the value of the Jacobian ∆ is
a2(a− 2)2(a2 − 36)L4

(18− a)3
and is not zero

for a 6= −6 and 6.
For β 6= 0 there are also the solutions (V) and (VI) already studied in [9]. �

The restrictions on the parameter a in the statement of Proposition 6 are clear
when we compute the periodic orbits associated to the solutions of system (7) using
Theorem 5, see the caption of Table 1.

Finally the proof of Theorem 1 follows directly from Proposition 6 and Theorem
5.

3. Proof of Theorem 3

By Theorem 5 the stability or instability of the periodic solution γIε (l) with I
∈ {I, II, III, IV, V, V I, V II} is given by the stability or instability of the correspond-
ing equilibrium point p0 = (G0, g0, N0, n0) of system (6) which provides the initial
condition of the periodic solution.

The matrixMγI
ε (l) =

(
∂(f1,f2,f3,f4)
∂(G,g,N,n)

∣∣∣
p=p0

)
is given by

MγI
ε (l)

=




0 16a2(a−6)h2

(a−18)2 0 − 8a(a2−36)h2

(a−18)2

− 3(a−2)
4 0 − 3(a−2)

8 0

0 − 8a(a2−36)h2

(a−18)2 0 16a(a2−36)h2

(a−18)2

− 3(a−2)
8 0 6−a

4 0



,

MγII
ε (l) =




0 16a(a2−36)h2

(a−18)2 0 − 8a(a2−36)h2

(a−18)2
6−a
4 0 − 3(a−2)

8 0

0 − 8a(a2−36)h2

(a−18)2 0 16a2(a−6)h2

(a−18)2

− 3(a−2)
8 0 − 3(a−2)

4 0



,
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MγIII
ε (l) =




0 16a2(a−6)h2

(a−18)2 0 − 8a(a−6)2h2

(a−18)2
6−a
4 0 a+6

8 0

0 − 8a(a−6)2h2

(a−18)2 0 16a2(a−6)h2

(a−18)2
a+6
8 0 6−a

4 0


 ,

MγIV
ε (l) =




0 16ah2

9 0 − 8ah2

9

− 3(a−2)
4 0 − 3(a−2)

8 0

0 − 8ah2

9 0 16ah2

9

− 3(a−2)
8 0 − 3(a−2)

4 0


 ,

MγV
ε (l) =




ah
2
√
3

− 8ah2

9
ah√
3

4ah2

9

− 3(a−4)
8 − ah

2
√
3
− 3(a−4)

16
ah√
3

− ah√
3

4ah2

9 − ah
2
√
3

− 8ah2

9

− 3(a−4)
16 − ah√

3
− 3(a−4)

8
ah
2
√
3



,

MγV I
ε (l) =




− ah
2
√
3

− 8ah2

9 − ah√
3

4ah2

9

− 3(a−4)
8

ah
2
√
3

− 3(a−4)
16 − ah√

3
ah√
3

4ah2

9
ah
2
√
3

− 8ah2

9

− 3(a−4)
16

ah√
3

− 3(a−4)
8 − ah

2
√
3



,

MγV II
ε (l) =




0 2ah2 −
√

3(a−2)(a+6)L

4 0

− 3(a−2)
4 0 − 3(a−2)

8 0

0 0

√
3(a−2)(a+6)h

2 0

− 3(a−2)
8

√
3(a−2)(a+6)h

4 − 3(a−2)
8 −

√
3(a−2)(a+6)h

2



.

The characteristic polynomial PγI
ε (l)(X) of the matrix MγI

ε (l) is a biquadratic
polynomial of the form

(8) PγI
ε (l)(X) = X4 + CI(a)X2 +DI(a).

If the polynomial (8) has purely imaginary roots the equilibrium point p0 is linearly
stable. A necessary and sufficient condition for the existence of roots iω1,−iω1, iω2,
−iω2 with ω1, ω2 > 0 and ω1 6= ω2, is that the following inequalities are verified

(9) CI(a) > 0, DI(a) > 0, CI(a)2 − 4DI(a) > 0.

If ω1 = ω2 (i.e. when CI(a)2 − 4DI(a) = 0) then p0 is linearly stable if the matrix
MγI

ε (l) is diagonalizable. In the table below, we present the expressions involved

Family I CI(a) DI(a) CI(a)2 − 4DI(a)

I, II, III
2h2a(5a+ 6)(a− 6)2

(a− 18)2
9h4(a− 6)a2(a− 2)2(a2 − 36)

(a− 18)3
64h4a2(a− 6)2((a2 − 3a+ 18)2L4

(a− 18)4

IV 2h2a (a− 2) h4a2 (a− 2)2 0

V , V I 2h2a
h4a2 (a− 2)2

4
h4a3(4− a)

V II
3h2(a− 6)(a− 2)

4
−9h4a(a+ 6)(a− 2)2

8

81h4
(
a2 − 4

)2

16

For γIVε (l) the roots of PγI
ε (l)

(X) are ±iω = ±i
√
a(a− 2)h with multiplicity two,

and the matrixMγIV
ε (l) is diagonalizable.
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The remaining statements of Theorem 3 are obtained by studying the inequalities
(9). This completes the proof of Theorem 3.
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