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Abstract. This article is about the weak 16–th Hilbert problem, i.e. we analyze how
many limit cycles can bifurcate from the periodic orbits of a given polynomial differential
center when it is perturbed inside a class of polynomial differential systems. More precisely,
we consider the uniform isochronous centers

ẋ = −y + x2y(x2 + y2)n, ẏ = x + xy2(x2 + y2)n,

of degree 2n+3 and we perturb them inside the class of all polynomial differential systems
of degree 2n + 3. For n = 0, 1 we provide the maximum number of limit cycles, 3 and 8
respectively, that can bifurcate from the periodic orbits of these centers using averaging
theory of first order, or equivalently Abelian integrals. For n = 2 we show that at least
12 limit cycles can bifurcate from the periodic orbits of the center.

1. Introduction and statement of the main results

The second part of the 16th Hilbert’s problem asks for the maximum number H(n)
of limit cycles that planar polynomial differential systems of degree n can have, see for
instance [7, 8, 11], and the references quoted therein. The problem on the number H(n)
remains open, even for n = 2.

A weaker problem than the 16th Hilbert’s problem, known now as the weak 16th Hilbert’s
problem was proposed by Arnold [2], who asked for the maximum number Z(m,n) of
isolated zeros of Abelian integrals of all polynomial 1–form of degree n over algebraic ovals
of degree m, for more details on the weak 16th Hilbert’s problem see [4, 9, 19], and the
hundreds of references quoted in these articles. Unfortunately the weak 16th Hilbert’s
problem is also extremely hard to study. On the other hand, the weak 16th Hilbert’s
problem is a particular case of the problem of studying the maximum number of limit
cycles that can bifurcate from the periodic orbits of a center of a polynomial differential
system of degree m− 1 when it is perturbed inside the class of all polynomial differential
systems of degree n. Of course Z(m,n) ≤ H(max(n,m− 1)).

In this paper we provide lower bounds for the maximum number of limit cycles that
can bifurcate from the periodic solutions of a polynomial differential uniform isochronous
center of degree 3, 5 and 7 when it its perturbed inside the class of all polynomial differential
systems of the same degree. The main result it is based on the averaging theory of first
order. But here the main work is to study the maximum number of simple zeros of the
obtained averaged functions, because not always the standard study of Extended Chebyshev
systems (ET-systems) can be applied (see Appendix 2). The study is based on some new
results that can be applied when the family of functions that define F is not an ET-system.
Some delicate study using qualitative theory on some differential equations is also needed
to complete the study.
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More precisely, we consider the polynomial differential system

ẋ = −y + x2y(x2 + y2)n,
ẏ = x+ xy2(x2 + y2)n,

(1)

of degree 2n+3 with n ≥ 0, having a uniform isochronous center at the origin of coordinates,
which in polar coordinates (r, θ), where x = r sin θ and y = r cos θ, becomes

ṙ = r2n+3 cos θ sin θ,

θ̇ = 1.

Since θ̇ = 1 the center (1) is a uniform isochronous center, which taking as independent
variable the variable θ writes

dr

dθ
= r′ = r2n+3 cos θ sin θ.

An easy computation shows that the periodic solutions r(θ, r0) surrounding the center
r = 0 such that r(0, r0) = r0 are

r(θ, r0) = r0

(
1− (n+ 1)r

2(n+1)
0 sin2 θ

)− 1
2n+2

, (2)

with 0 < r0 < (n+ 1)−
1

2n+2 . The global phase portraits, in the Poincaré disc, of system (1)
for n = 0, 1, 2 are shown in Figure 1.

Figure 1. Phase portrait of the uniform isochronous center (1) for n = 0,
n = 1, and n = 2, respectively.

Our purpose is to provide a lower bound for the maximum number of limit cycles that can
bifurcate from the periodic solutions r(θ, r0) surrounding the uniform isochronous center
at r = 0 of degree 3, 5, 7 when we perturb it inside the class of all polynomial differential
systems of degree 3, 5, 7, respectively. In other words, we study the number of limit cycles
of the following three polynomial differential systems

ẋ = −y + x2y + ε
3∑

i+j=0

aijx
iyj,

ẏ = x+ xy2 + ε
3∑

i+j=0

bijx
iyj;

(3)

ẋ = −y + x2y(x2 + y2) + ε
5∑

i+j=0

aijx
iyj,

ẏ = x+ xy2(x2 + y2) + ε
5∑

i+j=0

bijx
iyj;

(4)
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and

ẋ = −y + x2y(x2 + y2)2 + ε
7∑

i+j=0

aijx
iyj,

ẏ = x+ xy2(x2 + y2)2 + ε
7∑

i+j=0

bijx
iyj,

(5)

where ε is a small parameter.

Our main result is the following.

Theorem 1.1. For |ε| 6= 0 sufficiently small using averaging theory of first order we obtain
that

(a) system (3) can have 0, 1, 2, 3 limit cycles and no more;
(b) system (4) can have 0, 1, 2, . . . , 8 limit cycles and no more;
(c) system (5) can have 0, 1, 2, . . . , 12 limit cycles.

In fact in the plane R2 the averaging theory of first order, or the generalized Abelian
integrals, or the Melnikov function provide the same information because all these methods
are based on the study of the first term in ε of the Poincaré return map. Some concrete
applications of that theory to planar differential systems of low degree can be seen in [6, 16].
In higher dimension, the averaging theory can be also used, for example, for the study of
the Hopf bifurcation, see [12, 13].

As we will see, by using the averaging theory of first order, the limit cycles of the per-
turbed system, which emerge from the period annulus of the isochronous center of system
(1), correspond to the zeros of a linear combination of the functions f0, f1, . . . , f(n2+7n+6)/2,
n = 0, 1, 2. The proof of Theorem 1.1 for the case n = 0 is easy and it is done in Section
2. But the difficulty arises evidently as n increases. For n = 1, as the collection of func-
tions f0, . . . , f7 is not an ET-system, part of our efforts has been focused on determining
the numbers of simple zeros of Wronskian determinants W6(s) and W7(s), which have the

expressions
∑k

i=0 ai(s)E
i(s)Kk−i(s)(k = 2, 3), where ai is a polynomial of high degree, E

and K are respectively the elliptic integrals of the first kind and second kind:

E(x) =

∫ π/2

0

√
1− x sin2 θ dθ, K(x) =

∫ π/2

0

1√
1− x sin2 θ

dθ.

The proof is done using qualitative analysis and algebraic calculations. It turns out that
all the Wronskian determinants but W6(s) do not vanish and the later has a unique zero
which is simple. So the conditions of the classic Chebyshev criterion are not satisfied.
According to the result of the recent paper [15], the maximum number of zeros of the
linear combination of f0, . . . , f7 is less than or equal to 8. Consequently, another part of
our efforts have been focused on proving that the possible upper bound 8 can be reached.
To show this, we construct a function which has a zero of multiplicity 7 as well as an extra
simple zero. Then, under suitable perturbation this function possesses 8 simple zeros. This
is done in Section 3. For n = 2, the corresponding functions f0, f1, . . . , f12, which contain
several hypergeometric functions, is neither an Extended Complete Chebyshev system, nor
a system satisfying the condition of [15]. We do not know how to find out the maximum
number of zeros of all the possible linear combination of f0, f1, . . . , f12. Instead, we provide
a lower bound for this number or zeros. This is done in Section 4.

2. Proof of statement (a) of Theorem 1.1

This section is devoted to the proof of statement (a) of Theorem 1.1 by using Theorem 4.3
(see Appendix 1).
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First, we make the polar coordinate transformation and change system (3) to

dr

dθ
= R0(θ, r) + εR1(θ, r) +O(ε2), (6)

where R0(θ, r) = r3 cos θ sin θ and

R1(θ) =a00C + b00S + r[a10C
2 + (a01 + b10)CS + b01S

2] + r2[a20C
3

+ (a11 − b00 + b20)C2S + (a00 + a02 + b11)CS2 + b02S
3]

+ r3[a30C
4 + (a21 − b10 + b30)C3S + (a10 + a12 − b01 + b21)C2S2

+ (a01 + a03 + b12)CS3 + b03S
4] + r4[−b20C

4S + (a20 − b11)C3S2

+ (a11 − b02)C2S3 + a02CS
4] + r5[−b30C

5S + (a30 − b21)C4S2

+ (a21 − b12)C3S3 + (a12 − b03)C2S4a03CS
5]

(7)

with C = cos θ and S = sin θ.
Since equation (6)ε=0 has the periodic solutions r(θ, r0) satisfying r0 = r(0, r0) for 0 <

r0 < 1 given in (2), according to the averaging theory described in Appendix 1, we solve
the variational differential equation

dM

dθ
=

∂

∂r
R0(θ, r(θ, r0))M,

with Mr0(0) = 1 and get the fundamental solution

Mr0(θ) = (1− r2
0 sin2 θ)−3/2.

Next we go to study the maximum number of zeros of the function

F(r0) =

∫ 2π

0

M−1
r0

(θ)R1(θ, r(θ, r0)) dθ, with r0 ∈ (0, 1).

Using expression (7), we perform the computation and we obtain

F(r0) =
π

r0

(
(a10 − a12 + 3a30 + b01 + b03 − 3b21)r2

0 + (b21 + b03 − b01)r4
0

+ 2(a12 − a30 − b03 + b21)
(
1−

√
1− r2

0

)
− 2(a30 − b21)r2

0

√
1− r2

0

)
.

Denoting
α0 = π(a10 − a12 + 3a30 + b01 + b03 − 3b21),

α1 = π(b21 + b03 − b01),

α2 = 2π(a12 − a30 − b03 + b21),

α3 = −2π(a30 − b21),

and

f0(s) = 1− s2, f1(s) = (1− s2)2, f2(s) = 1− s, f3(s) = s(1− s2),

where s =
√

1− r2
0 ∈ (0, 1). Then

r0F(r0) = α0f0(s) + α1f1(s) + α2f2(s) + α3f3(s)

= (1− s)(α0 + α1 + α2 + (α0 + α1 + α3)s+ (α3 − α1)s2 − α1s
3).

(8)

It is not hard to check that α0, α1, α2 and α3 are independent constants and hence the
four numbers α0 + α1 + α2, α0 + α1 + α3, α3 − α1 and α1 can be chosen freely. Thus it
follows from (8) that F(r0) can have 0, 1, 2, 3 (and no more) simple zeros in the interval
(0, 1).

Using Theorem 4.3 (see Appendix 1), statement (a) of Theorem 1.1 is proved.
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3. Proof of statement (b) of Theorem 1.1

In this section we will study the number of limit cycles of system (4) by using averaging
theory of first order. We will only prove that this maximum number is 8 because according
to the proof, the reader can easy see that system (4) can have 0, 1, 2, . . . , 8 limit cycles.
First, let us state and prove the following lemma.

Lemma 3.1. The maximum number of limit cycles of system (4) which emerge from the
period annulus around the center of system (4)ε=0, by using averaging theory of first order,
is equal to the maximum number of simple zeros of the function

G(s) = b0f0(s) + b1f1(s) + · · ·+ b7f7(s), s ∈ (0, 1), (9)

where b0, b1, . . . , b7 are independent arbitrary constants and

f0(s) = (1− s)2,

f1(s) = (1− s)(1− s2),

f2(s) = (1− s2)2,

f3(s) = (1− s)(1− s2)2,

f4(s) = (1− s2)3,

f5(s) = (1− s2)5/2g1(s),

f6(s) = (1− s2)1/2(g1(s)− g2(s))− 1

2
(1− s2)g2(s),

f7(s) = (1− s2)3/2(g1(s)− g2(s)),

(10)

with
g1(s) = 2E(1− s2), g2(s) = 2s2K(1− s2). (11)

Proof. Under the polar coordinate transformation system (4) can be changed to

dr

dθ
= R0(θ, r) + εR1(θ, r) +O(ε2), (12)

where R0(θ, r) = r5 cos θ sin θ and

R1(θ) = (a00C + b00S) + r(a10C
2 + (a01 + b10)CS + b01S

2)

+ r2[a20C
3 + (a11 + b20)C2S + (b11 + a02)CS2 + b02)S3] + r3[a30C

4

+ (a21 + b30)C3S + (a12 + b21)C2S2 + (a03 + b12)CS3 + b03S
4]

+ r4[a40C
5 − b00C

2S + (a31 + b40)C4S + a00CS
2 + (a22 + b31)C3S2

+ (a13 + b22)C2S3 + (a04 + b13)CS4 + b04S
5] + r5[a50C

6 − b10C
3S

+ (a41 + b50)C5S + (a10 − b01)C2S2 + (a32 + b41)C4S2 + a01CS
3

+ (a23 + b32)C3S3 + (a14 + b23)C2S4 + (a05 + b14)CS5 + b05S
6]

+ r6[−b20C
4S + (a20 − b11)C3S2 + (a11 − b02)C2S3 + a02CS

4]

+ r7[−b30C
5S + (a30 − b21)C4S2 + (a21 − b12)C3S3 + (a12 − b03)C2S4

+ a03CS
5] + r8[−b40C

6S + (a40 − b31)C5S2 + (a31 − b22)C4S3

+ (a22 − b13)C3S4 + (a13 − b04)C2S5 + a04CS
6]

+ r9[−b50C
7S + (a50 − b41)C6S2 + (a41 − b32)C5S3 + (a32 − b23)C4S4

+ (a23 − b14)C3S5 + (a14 − b05)C2S6 + a05CS
7],

with C = cos θ, S = sin θ.
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Equation (12)ε=0 has the periodic solutions r(θ, r0) = r0(1 − 2r4
0 sin2 θ)−1/4 satisfying

r0 = r(0, r0) for 0 < r0 < 2−1/4. We solve the variational differential equation

dM

dθ
=

∂

∂r
R0(θ, r(θ, r0))M,

with Mr0(0) = 1 and get the fundamental solution

Mr0(θ) = (1− 2r4
0 sin2 θ)−5/4.

Next, a straightforward calculation leads to

F(r0) =

∫ 2π

0

M−1
r0

(θ)R1(θ, r(θ, r0)) dθ

=

∫ 2π

0

r0(1− 2r4
0S

2)(c00 + c02S
2 + c04S

4 + c06S
6 + c40C

4 + c60C
6

+ c22C
2S2 + c42C

4S2 + c62C
6S2 + c24C

2S4 + c44C
4S4 + c26C

2S6 + Υ(C, S)) dθ,
(13)

for r0 ∈ (0, 2−1/4), where Υ(C, S) =
∑
αi,jC

iSj is a polynomial in C, S with i or j being

an odd number, which leads to
∫ 2π

0
r0(1− 2r4

0S
2)Υ(C, S)dθ = 0,

c00 = a10 := e0,

c02 = −a10 + b01 := e1,

c04 = b03r
2(θ, r0) := e2r

2(θ, r0),

c06 = b05r
4(θ, r0) := e3r

4(θ, r0),

c40 = a30r
2(θ, r0) := e4r

2(θ, r0),

c60 = a50r
4(θ, r0) := e5r

4(θ, r0),

c22 = (a12 + b21)r2(θ, r0) + (a10 − b01)r4(θ, r0) := e6r
2(θ, r0)− e1r

4(θ, r0),

c24 = (a14 + b23)r4(θ, r0) + (a12 − b03)r6(θ, r0) := e7r
4(θ, r0) + e8r

6(θ, r0),

c26 = (a14 − b05)r8(θ, r0) := e9r
8(θ, r0),

c42 = (a32 + b41)r4(θ, r0) + (a30 − b21)r6(θ, r0) := e10r
4(θ, r0) + e11r

6(θ, r0),

c44 = (a32 − b23)r8(θ, r0) := e12r
8(θ, r0),

c62 = (a50 − b41)r8(θ, r0) := e13r
8(θ, r0).

It is not hard to check that the constants e0, e1, . . . , e13 are independent. Computing (13)
we get

F(r0) = I1(r0) + I2(r0) + I3(r0) + I4(r0),

where

I1(r0) = α1r0 + α2r
5
0,

I2(r0) =
1

15r5
0

(
(α3 + α4r

4
0 + α5r

8
0)ḡ1(r0)− (α3 + (α3 + α4)r4

0)ḡ2(r0)
)
,

I3(r0) = − π

16r7
0

(
(2α6 + 2α7r

4
0 + α8r

8
0)ḡ3(r0) + (2α6r

4
0 + (α6 + 2α7)r8

0

+ (α6 + α7 + α8)r12
0 )
)
,

I4(r0) = − 1

30r5
0

(
(4α9 + α10r

4
0 − (7α9 + α10)r8

0)ḡ1(r0)−(4α9 + (4α9 + α10)r4
0)ḡ2(r0)

)
,
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with
α1 = π(2e0 + e1),

α2 =
π

8
(−16e0 − 14e1 + 5e3 + 5e5 + e7 + e10),

α3 = −e2 − e4 + e6,

α4 = −3e2 + 7e4 − 2e6,

α5 = 16e2 + 6e4 + 4e6,

α6 = e9 − e12 + e13,

α7 = 2e12 − 4e13,

α8 = e13,

α9 = −e8 + e11,

α10 = 3e8 − 13e11,

ḡ1(r0) = E(2r4
0) +

√
1− 2r4

0 E(1− 1/(1− 2r4
0)),

ḡ2(r0) = (1− 2r4
0)K(2r4

0) +
√

1− 2r4
0 K(1− 1/(1− 2r4

0)),

ḡ3(r0) =
√

1− 2r4
0 − 1.

Using the expression of each αi one can easily check that α1, α2, . . . , α10 are independent
constants.

To simplify the computation, we let s =
√

1− 2r4
0, s ∈ (0, 1). By using the definition of

the elliptic functions, we have

sE(1− 1/s2) + E(1− s2) = 2E(1− s2),

sK(1− 1/s2) + s2K(1− s2) = 2s2K(1− s2).

Hence we obtain

240r7
0F(r0) = G(s) = b0f0(s) + b1f1(s) + · · ·+ b7f7(s), s ∈ (0, 1),

where fi(s), i = 0, 1, . . . , 7, are the functions defined in (10), and the constants b0, b1, . . . , b7

in (9) are independent constants each of which is a linear combination of α1, α2, . . . , α10.
By Theorem 4.3 of Appendix 1, the lemma is proved. �
Next, denoted by Wi(s) the Wronskian determinant for the functions f0, f1, . . . , fi de-

pending on s:

Wi(s) = W (f0, . . . , fi)(s), i = 0, 1, . . . , 7.

In what follows we will show that all the Wronskian determinants have not zeros except
W6.

By direct calculation we obtain

W0(s) =(1− s)2,

W1(s) =(1− s)4,

W2(s) =2(1− s)6,

W3(s) =− 12(1− s)8,

W4(s) =288(1− s)10,

W5(s) =Y5(s)(Z50(s)g2(s)+Z51(s)g1(s)),

W6(s) =Y6(s)(Z60(s)g2
2(s)+Z61(s)g2(s)g1(s)+Z62(s)g2

1(s)),

W7(s) =Y7(s)
(
Z70(s)g3

2(s)+Z71(s)g2
2(s)g1(s)+Z72(s)g2(s)g2

1(s)+Z73(s)g3
1(s)

)
,

(14)
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where

Y5(s) = 288s−3(1− s) 15
2 (1 + s)−

5
2 ,

Z50(s) = 1− 20s− 33s2 − 20s3 + s4,

Z51(s) = −2(1− 5s+ 10s2 + 5s3 + 10s4 − 5s5 + s6),

Y6(s) = 432s−6(1− s)2(1 + s)−8,

Z60(s) =
√

1− s2(−330− 761s+ 3720s2 + 25036s3 + 63490s4 + 100713s5

+102410s6 + 66145s7 + 23800s8 + 3760s9 − 770s10 − 269s11)
−2(210 + 637s− 2490s2 − 22210s3 − 67910s4 − 129477s5 − 160950s6

−135498s7 − 74890s8 − 25715s9 − 2910s10 + 728s11 + 240s12),

Z61(s) =
√

1− s2(660 + 1544s− 2430s2 − 6587s3 + 18350s4 + 65033s5 + 107880s6

+106430s7 + 64350s8 + 11893s9 − 4790s10 − 2177s11 + 1580s12 + 536s13)
+4(210 + 644s− 150s2 − 2133s3 + 1670s4 + 9718s5 + 23630s6 + 29805s7

+27970s8 + 14822s9 + 3430s10 − 2877s11 − 300s12 + 736s13 + 240s14),

Z62(s) = s
√

1− s2(−44− 1410s+ 405s2 + 6880s3 − 6789s4 − 63230s5 − 111946s6

−111330s7 − 57735s8 − 6880s9 + 7555s10 − 270s11 − 1146s12 − 80s13 + 4s14)
−2s(28 + 1590s+ 1873s2 − 8750s3 − 4018s4 + 81350s5 + 209051s6 + 273750s7

+208594s8 + 80650s9 − 4307s10 − 8050s11 + 1712s12 + 1560s13 + 32s14),

Y7(s) = −3888s−9(1− s)− 7
2 (1 + s)−

27
2 ,

Z70(s) =
√

1− s2(12600 + 126840s+ 317850s2 + 52804s3 − 990100s4 − 1480411s5

+1111220s6 + 6912788s7 + 11963620s8 + 12059608s9 + 7333520s10

+1499322s11 − 1510040s12 − 1134068s13 + 73250s14 + 339916s15 + 124820s16

+15361s17 + 60s18)− 8
√

1− s2(1− s2)3s9(1 + s)10(3150 + 31710s+ 95130s2

+77561s3 − 209720s4 − 618425s5 − 351890s6 + 1120612s7 + 3107560s8

+4115235s9 + 3350990s10 + 1407368s11 − 195310s12 − 611035s13 − 252580s14

+65059s15 + 103320s16 + 36240s17 + 3600s18),

Z71(s) = 3
√

1− s2(−8400− 85120s− 232660s2 − 173008s3 + 437450s4 + 811463s5

−2067190s6 − 10578234s7 − 22263600s8 − 30680904s9 − 30782260s10

−22474150s11 − 10890340s12 − 2297236s13 + 798740s14 + 530744s15

−174630s16 − 249833s17 − 82630s18 − 10282s19 − 80s20)− 24(2100 + 21280s
+69900s2 + 98437s3 − 32560s4 − 271689s5 + 257650s6 + 2845680s7

+7627330s8 + 12561491s9 + 14784900s10 + 12847024s11 + 8032670s12

+3146115s13 + 365000s14 − 280461s15 − 58190s16 + 94628s17 + 76050s18

+24320s19 + 2400s20),

Z72(s) = 3s
√

1− s2(1120 + 43540s+ 298396s2 + 428670s3 − 487118s4 − 1615600s5

+1598463s6 + 14431800s7 + 34113716s8 + 48793180s9 + 48574944s10

+34190000s11 + 15087426s12 + 1926380s13 − 1797616s14 − 499770s15

+470882s16 + 285160s17 + 48663s18 − 1040s19 + 84s20 + 80s21)
+24s(280 + 13530s+ 98799s2 + 200770s3 − 31141s4 − 611730s5 + 35248s6

+4717630s7 + 13875311s8 + 23495150s9 + 27804240s10 + 24063400s11

+14574499s12 + 5157020s13 + 149657s14 − 658770s15 − 66644s16

+208280s17 + 108756s18 + 14970s19 + 320s20),

Z73(s) = s2
√

1− s2(480− 10712s− 177820s2 − 762730s3 − 87610s4 + 2806841s5

+909430s6 − 14409046s7 − 40794440s8 − 62886616s9 − 63914340s10

−42197910s11 − 14285100s12 + 1389476s13 + 2447740s14 − 233714s15

−691850s16 − 196931s17 + 7070s18 + 1990s19 − 760s20 − 8s21)
−8s2(270 + 538s+ 49880s2 + 295952s3 + 320270s4 − 754291s5

−1276480s6 + 4132165s7 + 18820380s8 + 36641394s9 + 45116550s10

+37467621s11 + 19916970s12 + 4809620s13 − 1224770s14 − 907079s15

+291730s16 + 324433s17 + 58270s18 + 1472s19 + 180s20).
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Lemma 3.2. Let g1 and g2 be the two functions defined in (11) and let h(s) = g1(s)/g2(s).
Then h(s) > 0, h′(s) < 0, s ∈ (0, 1) and

lim
s→0+

h(s) = +∞, lim
s→1−

h(s) = 1, lim
s→0+

h′(s) = −∞, lim
s→1−

h′(s) = −1. (15)

Proof. It follows directly from the definition of the elliptic integral that gi(s) > 0 (i =
1, 2), s ∈ (0, 1) and hence h(s) > 0, s ∈ (0, 1). A direct computation shows that

g1(s) = 1− 1

2
s2 log s+

1

4
s2(4 log 2− 1) + o(s2),

g2(s) = −s2 log s+ 2s2 log 2 + o(s2),

where s→ 0+. Thus the first and the third equalities of (15) hold.
Similarly, we find that

g1(s) =
π

2

(
1− 1

2
(1− s) +

1

16
(1− s)2 +O((1− s)3)

)
,

g2(s) =
π

2

(
1− 3

2
(1− s) +

5

16
(1− s)2 +O((1− s)3)

) (16)

as s→ 1−. This verifies the second and the fourth equalities of (15).
Next we go to prove that h′(s) < 0, s ∈ (0, 1). By straightforward calculation we find

dh/ds = (1− 2h+ h2s2)/(s− s3). Hence h(s) is a solution of system

ḣ = s2h2 − 2h+ 1, ṡ = s− s3. (17)

System (17) has two invariant straight lines s = 0 and s = 1 as well as two singularities
at S1(0, 1/2) and S2(1, 1), where S1 is a saddle and S2 is a saddle-node of system (17).
Moreover, system (17) has two horizontal isocline curves

h+(s) =
1

1−
√

1− s2
and h−(s) =

1

1 +
√

1− s2
, (18)

satisfying

h′+(s) < 0, h′−(s) > 0, h+(0) = +∞, h−(0) = 1/2, h+(1) = h−(1) = 1.

Obviously,

h′(s) = s2(h(s)− h+(s))(h(s)− h−(s))/(s− s3). (19)

In view of (16) and (18), it follows that

h−(s) < h(s) < h+(s), s→ 1−. (20)

We assert that

h−(s) < h(s) < h+(s), s ∈ (0, 1). (21)

Indeed, if there exists some point s0 ∈ (0, 1) such that h(s0) ≥ h+(s0), then by (19)
we find h′(s0) ≥ 0. By the monotonicity of h+(s) we know that h(s) > h+(s) for all
s0 < s < 1. This contradicts (20). Hence h(s) < h+(s) for s ∈ (0, 1). If there exists
some point s0 ∈ (0, 1) such that h(s0) = h−(s0), then by (19) we know that h′(s0) = 0.
Since h′−(s0) > 0, it follows h(s) < h−(s) for s → s+

0 . Using this fact we find that the
curve h = h(s) cannot go across the curve h = h−(s) at any point s1 > s0 because once
h(s1) = h−(s1), then it must hold that h(s) < h−(s) for s → s+

1 . This also contradicts
(20). Hence h(s) > h−(s), s ∈ (0, 1).

Finally, combining (21) and (19) we conclude that dh/ds < 0, s ∈ (0, 1). �

Lemma 3.3. The function W5(s) does not vanish in the open interval (0, 1).
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Proof. By using Sturm’s Theorem (see [18]) and Z51(0) = −2, we find that Z51(s) < 0 for
all s ∈ (0, 1). Hence we have

W5(s) = Y5(s)Z51(s)g2(s)

(
Z50(s)

Z51(s)
+
g1(s)

g2(s)

)
, s ∈ (0, 1). (22)

A direct computation leads to Z50(s0) = 0, where

s0 = 5 + 3
√

15/2−
√

231 + 60
√

15/2 ≈ 0.0463551.

Again, by Sturm’s Theorem we find that Z50(s) > 0 for s ∈ (0, s0) and Z50(s) < 0 for
s ∈ (s0, 1). Further,

d

ds

(
Z50(s)

Z51(s)

)
=

2 p9(s)

Z2
51(s)

,

where p9(s) = 15 + 86s− 290s2− 364s3− 575s4− 274s5 + 190s6 + 68s7− 65s8 + 2s9. Using
Sturm’s Theorem we get that p9(s) > 0, s ∈ (0, 1/5). This fact, being combined with
Z50(0)/Z51(0) = −1/2, yields that

Z50(s)

Z51(s)
> 0, s ∈ (s0, 1) and

Z50(s)

Z51(s)
∈
(
− 1

2
, 0
)
, s ∈ (0, s0) (23)

Since by Lemma 3.2 we have g1(s)/g2(s) > 1, it follows from (22) and (23) that W5(s) 6= 0
for all s ∈ (0, 1). �

Next, we will determine the sign of the functions W6(s) and W7(s). In order to make the

computation easier we need to make the transformation of variable r =
√

(1− s)/(1 + s)
or equivalently, s = (1− r2)/(1 + r2). We also need the following lemma. Let

h̄(r) =
g1(s)

g2(s)

∣∣∣∣
s=(1−r2)/(1+r2)

, r ∈ (0, 1). (24)

Lemma 3.4. The function h = h̄(r) is the solution of the differential system

ḣ = ((r − 1)2h− r2 − 1)((r + 1)2h− r2 − 1), ṙ = r(r4 − 1), (25)

satisfying h̄′(r) > 0 for r ∈ (0, 1), h̄(0) = 1, and limr→1− h̄(r) = +∞.

Proof. The conclusion follows from the proof of Lemma 3.2 by direct calculation. �

Lemma 3.5. The function W6(s) has a unique zero in (0, 1) and this zero is simple.

Proof. Let s = (1−r2)/(1+r2), for 0 < r < 1. Then it follows from the definition of W6(s)
that

W 6(r) := W6

(
1− r2

1 + r2

)
= Y 6(r)ḡ2

2(r)
(
C60(r) + C61(r)h̄(r) + C62(r)h̄2(r)

)
,
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where h̄(r) is the function defined in (24) and

Y 6(r) =
2Y6(s)

(1 + r2)16

∣∣∣∣
s=(1−r2)/(1+r2)

,

ḡ2(r) = g2(s)
∣∣
s=(1−r2)/(1+r2)

,

C60(r) = −(1 + r2)4(−620235− 386944r + 63082r2 + 4352r3 + 1114260r4

+747808r5 − 136770r6 − 21280r7 + 349425r8 + 201312r9 − 5852r10

+97568r11 + 90000r12 + 59232r13 + 29692r14 − 39392r15 − 39225r16

−6880r17 − 10350r18 + 18912r19 + 24540r20 − 1152r21 − 1242r22

+2304r23 + 2835r24),

C61(r) = 2(1 + r2)2(107415 + 181136r − 33728r2 + 11072r3 − 399945r4 − 731304r5

+149536r6 − 47384r7 + 1468275r8 + 1717984r9 − 340256r10 + 125584r11

+2454435r12 + 1436304r13 − 95680r14 + 188016r15 + 156165r16

−122704r17 + 100096r18 − 61184r19 − 145275r20 − 30376r21 − 23136r22

+33384r23 + 39345r24 − 1632r25 − 2592r26 + 4464r27 + 5985r28),

C62(r) = (1− r2)(−835065− 346016r − 836827r2 − 363808r3 + 3987923r4

+1598928r5 + 4009041r6 + 1699296r7 − 8764869r8 − 3404464r9

−8875247r10 − 3660192r11 + 1910023r12 + 319232r13 + 2054749r14

+561472r15 + 3501349r16 + 1423232r17 + 3542143r18 + 1373728r19

−275927r20 + 31056r21 − 405789r22 − 8224r23 + 15321r24 + 43728r25

+44043r26 + 4512r27 + 2493r28 + 6624r29 + 9135r30).

Define

w̄6(r, h) = C60(r) + C61(r)h+ C62(r)h2. (26)

We will show that on the curve C := {(r, h)|w̄6(r, h) = 0, r ∈ (0, 1)}, there is a unique
point P at which vector field (25) is tangent to C. We call P the contact point with the
vector field (25). In fact, by direct computation we obtain

D(r, h) := (∂w̄6/∂r, ∂w̄6/∂h) · (ṙ, ḣ) = −2
3∑

i=0

di(r)h
i,

where

d0(r) = (1 + r2)4(−107415 + 12336r + 2451586r2 + 1530176r3 − 4561843r4

−2896872r5 − 3880856r6 − 2845432r7 + 4366665r8 + 2321984r9 − 1985574r10

−1627056r11 − 175627r12 − 500432r13 − 524832r14 + 797392r15 + 938867r16

+960688r17 + 476566r18 − 543968r19 − 529425r20 − 119176r21 − 195912r22

+200040r23 + 275163r24 − 24288r25 − 27378r26 + 31248r27 + 39375r28),

d1(r) = −(1 + r2)2(−1049895− 889424r − 726170r2 − 1522240r3 + 7709074r4

+7536696r5 + 1889478r6 + 6432616r7 − 31052618r8 − 28741640r9 − 6577218r10

−16058648r11 − 6172022r12 + 328016r13 − 22042946r14 − 12811872r15

+33763160r16 + 23233568r17 − 4741326r18 + 5413264r19 + 1388182r20

−2485928r21 + 3589522r22 − 1915736r23 − 3612822r24 − 869704r25 − 768726r26

+678984r27 + 822606r28 − 77664r29 − 113814r30 + 122832r31 + 170415r32),
d2(r) = −(1− r4)(1777545 + 1046176r + 3311818r2 + 1457408r3 − 16459052r4

−8289520r5 − 15874018r6 − 7006192r7 + 62475516r8 + 28826544r9 + 35342330r10

+15708784r11 − 49795012r12 − 19466016r13 − 8698050r14 − 3515776r15

−24983266r16 − 12853376r17 − 14258354r18 − 5372832r19 + 31346828r20

+11380816r21 + 2668682r22 + 500624r23 − 4087764r24 − 691664r25 − 471570r26

+404016r27 + 455268r28 − 51264r29 − 120294r30 + 84960r31 + 121905r32),
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d3(r) = −(1− r2)3(−835065− 346016r − 836827r2 − 363808r3 + 3987923r4

+1598928r5 + 4009041r6 + 1699296r7 − 8764869r8 − 3404464r9 − 8875247r10

−3660192r11 + 1910023r12 + 319232r13 + 2054749r14 + 561472r15 + 3501349r16

+1423232r17 + 3542143r18 + 1373728r19 − 275927r20 + 31056r21 − 405789r22

−8224r23 + 15321r24 + 43728r25 + 44043r26 + 4512r27 + 2493r28 + 6624r29

+9135r30).

By using Sturm’s Theorem we find d3(r) > 0, r ∈ (0, 1). Further, the resultant of w̄6(r, h)
and D(r, h) with respect to h is a polynomial in the variable r of degree 166, which can
be proved by applying Sturm’s Theorem, to has a unique simple zero r0 ∈ (0, 1) with
9/10 < r0 < 91/100. Hence there exists a unique h0 such that

w̄6(r0, h0) = D(r0, h0) = 0.

This confirms that on the curve C there is a unique point (r0, h0) at which the vector field
(25) is tangent to C.

By direct computation we have C2
61 − 4C60C62 = 3600(1 + r2)4p56(r), where p56(r) is a

polynomial of degree 56. Again, we can apply Sturm’s Theorem to prove that p56(r) > 0
and C62(r) < 0 in r ∈ (0, 1). Let

C− = {h = h̄−(r) =
−C61 −

√
C2

61 − 4C60C62

2C62

}

and

C+ = {h = h̄+(r) =
−C61 +

√
C2

61 − 4C60C62

2C62

}
be the two branches of the curve C in the (r, h)−plane. A calculation shows that

h̄−(0) = 1, h̄+(0) = −179

241
, h̄(0) = 1, h̄′−(0) =

64

231
, h̄′+(0) =

96160

1916673
, h̄′(0) = 0,

h̄+(1) = 1/2 and when r → 1−,

h̄−(r) =
15

1− r + · · · , h̄(r) =
1

(log 4− log(1− r))(r − 1)2
+ · · · ,

where the dots denote the terms which are infinitesimal being compared to the former one.
It follows that

h̄+(r) < h̄(r) < h̄−(r), as r → 0+, h̄+(r) < h̄−(r) < h̄(r), as r → 1−.

Obviously, the curve Γ = {h = h̄(r)} intersects C− in at least one point (r∗, h∗). By an
observation on the direction of vector field (25) at the two endpoints of the segment of
curve {(r, h)|h = h̄−(r), r ∈ (0, r∗]}, we find that there exists a point P at which the
vector field (25) is tangent to the curve C− (see Figure 2). Since the contact point P is
unique, the curve Γ cannot intersect C− in other point. On the other hand, the curve Γ
has not common point with C+, otherwise a second contact point will emerge. Therefore
the function w̄6(r, h̄(r)) has a unique zero in the interval (0, 1). This yield that W 6(r) has
a unique zero in the interval (0, 1).

Finally, since r0 < 91/100 and h̄(91/100) ≈ 30.54045135 < h−(91/100) ≈ 35.81140037,
it follows that r0 < r∗. This means that (r∗, h∗) is not the contact point of C− with the
vector field. Therefore, the unique zero of W 6(r) is simple and thus the required conclusion
holds. �
Lemma 3.6. The function W7(s) does not vanish in the open interval (0, 1).

Proof. By taking transformation s = (1− r2)/(1 + r2), 0 < r < 1, we obtain from

W7(s) = Y7(s)g3
2(s)

(
Z70(s) + Z71(s)

g1(s)

g2(s)
+ Z72(s)

g2
1(s)

g2
2(s)

+ Z73(s)
g3

1(s)

g3
2(s)

)
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h

r

Γ

P
C−

C+

(
1, 1

2

)

(r∗, h∗)

Figure 2. The curve Γ has a unique common point with C−.

that

W 7(r) := W7(s)
∣∣
s=(1−r2)/(1+r2)

= Y 7(r)ḡ3
2(r)w7(r),

with

w7(r) = C70(r) + C71(r)h̄(r) + C72(r)h̄2(r) + C73(r)h̄3(r),

where h̄(r) is the function defined in (24) and

Y 7(r) =
16rY7(s)

(1 + r2)45

∣∣∣∣
s=(1−r2)/(1+r2)

,

ḡ2(r) = g2(s)
∣∣
s=(1−r2)/(1+r2)

,

C70(r) = 4r(2301810 + 59701740r2 + 727558755r4 − 364073500959r6

+3428595727383r8 − 10544549722741r10 + 3730074158113r12

+49576965802069r14 − 40961684822285r16 − 396767446632771r18

+1609108209115716r20 − 3203874112868486r22 + 4488939441796380r24

−4090928490421940r26 + 3532364976473268r28 − 553179108109916r30

+1013150621056664r32 + 1960313990634764r34 + 589939846153370r36

+1620210743086006r38 + 485382645874034r40 + 531165876327274r42

+41364680501774r44 − 94823180435898r46 − 177772367419966r48

−169241753304026r50 − 122994867094516r52 − 75347197109816r54

−38883154071124r56 − 17219939255972r58 − 6420781546876r60

−1958359101836r62 − 448781050130r64 − 53625628864r66 + 12582124635r68

+10801790529r70 + 4279675055r72 + 1249653091r74 + 292463001r76

+55639117r78 + 8432979r80 + 963045r82 + 73560r84 + 2790r86),
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C71(r) = −3(1 + r2)23(62214075 + 32618040r + 57649725r2 + 31801560r3

−311083290r4 − 161979460r5 − 284045278r6 − 156667936r7

+1118662427r8 + 566796672r9 + 1015532421r10 + 545264968r11

+1483781736r12 + 882038312r13 + 1421172920r14 + 856116840r15

+32362070r16 − 26403192r17 + 175436346r18 + 24968536r19

−2404284r20 − 55354400r21 + 31425964r22 − 122819896r23

−129246866r24 − 82418248r25 − 147649550r26 − 83415400r27

−50931800r28 − 40785832r29 − 66284296r30 − 5366728r31

−2020081r32 − 3163552r33 − 1758167r34 + 617456r35 + 624838r36

+127460r37 + 489090r38 + 19640r39 + 50775r40 + 14760r41 + 40425r42),
C72(r) = 3(−1 + r2)(1 + r2)21(−113149575− 48972840r − 219419550r2

−96894000r3 + 524903715r4 + 226248140r5 + 1216381628r6

+542101276r7 − 1447999469r8 − 628726896r9 − 3888634006r10

−1779992536r11 − 2876628303r12 − 1259091264r13 − 2141852592r14

−754743200r15 + 1112715114r16 + 583398240r17 + 4296755236r18

+1852262832r19 + 2357760878r20 + 907216248r21 + 687064168r22

+234254008r23 + 208154838r24 + 151069392r25 − 302393084r26

−153692000r27 − 210572686r28 − 204720480r29 − 215766192r30

−104223744r31 − 131334803r32 − 41765176r33 − 20357126r34

−11754496r35 − 11547809r36 + 729436r37 + 904508r38 + 33740r39

+444615r40 + 42400r41 + 114450r42 + 18360r43 + 50925r44),
C73(r) = −(−1 + r2)2(1 + r2)20(164085075 + 58271640r + 318975300r2

+115256400r3 − 920074365r4 − 320089980r5 − 2079306888r6

−746616756r7 + 2728744989r8 + 941220096r9 + 7172532884r10

+2616432392r11 + 779348149r12 + 546885328r13 − 4995512160r14

−1385204368r15 − 4685978914r16 − 1569573552r17 − 4525683128r18

−2222726784r19 + 166924638r20 − 650651016r21 + 4249280720r22

+1445886696r23 + 2224407802r24 + 1065394144r25 + 814165128r26

+244092272r27 + 320088074r28 − 95701872r29 − 346329440r30

−166958928r31 − 180571809r32 − 99999912r33 − 42394764r34

−27896336r35 − 30911889r36 + 462756r37 + 365688r38 − 212820r39

+107865r40 + 50400r41 + 137700r42 + 21960r43 + 61425r44).

The number of zeros of W 7(r) in (0, 1) equals the number of intersection points of the
curve C = {C70(r) + C71(r)h + C72(r)h2 + C73(r)h3 = 0} with the curve Γ = {h = h̄(r)}
in the (r, h)-plane. In what follows we will study the relative positions of C and Γ. To
this end, since Γ is not an algebraic curve, we need to establish another auxiliary algebraic
curve which is easier for computation.

First, by using Sturm’s Theorem we find that C73(r) 6= 0, r ∈ (0, 1). This means that for
each fixed r ∈ (0, 1),

w̄7(r, h) := C70(r) + C71(r)h+ C72(r)h2 + C73(r)h3

is a cubic polynomial of h. Let

A = C2
72 − 3C71C73, B = C71C72 − 9C70C73, C = C2

71 − 3C70C72,

and let ∆ = B2 − 4AC. It is not hard to see that ∆ has exactly two zeros r1, r2 in (0, 1)
with 39/50 < r1 < 79/100, 91/100 < r2 < 23/25 and if r ∈ (0, r1) ∪ (r2, 1) then ∆ > 0; if
r ∈ (r1, r2) then ∆ < 0. Therefore, the curve C has three branches C1 (the lower branch),
C2 (the middle branch) and C3 (the upper branch) with the property that C2 and C3 have
the same endpoints E1(r1, h1) and E2(r2, h2). See Figure 3.
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C1

C2

C3

E2

E1 Γ

Υ

h = 1

r1 r2

(1, 1)(0, 1)

r

h

Figure 3. The relative positions of the curve Γ and C.

Second, we claim that C2 ∪ C3 lies over the curve Γ. To show this we introduce an
auxiliary algebraic curve Υ = {h = Φ(r)} where

Φ(r) =
1

2
(5 + 4r2 + 6r4 + 8r6 + 10r8 + 12r10 + 13r12 + 15r14 + 16r16

+ 18r18 + 20r20 + 21r22 + 22r24 + 38r26 + 25r28 + 26r30 + 28r32 + 30r34

+ 30r36 + 32r38 + 34r40 + 34r42 + 36r44 + 38r46 + 38r48 + 40r50),

where r ∈ (0, 1). By direct computations as well as by applying Sturm’s Theorem we
obtain w̄7(r,Φ(r)) = p238(r) < 0, where p238(r) is a polynomial of degree 238. Thus
the curve C does not intersect Υ. Moreover, in view of that the straight line r = 9/10
intersects the curve C and Υ respectively at the points (9/10, c∗1), (9/10, c∗2), (9/10, c∗3) ∈ C
and (9/10, φ∗1) ∈ Υ, where

c∗1 ≈ 0.1592878, c∗2 ≈ 30.7373179, c∗3 ≈ 40.3056908, φ∗1 ≈ 26.9337561,

we conclude that C2∪C3 lies over the curve Υ, and C1 lies below the curve Υ. See Figure 3.
On the other hand, using (25) we obtain by computation that

(ḣ− Φ′(r)ṙ)
∣∣
h=Φ(r)

=
1

4
(−9 + 42r2 + 3r4 − 4r8 − 8r10 + 18r12 − 2r14 + 14r16

− 6r18 − 36r20 + 10r22 + 43r24 − 826r26 + 280r28 + 748r30 − 23r32 − 82r34

+ 70r36 + 62r38 − 132r40 + 102r42 + 9r44 − 124r46 + 103r48 + 42r50 + 4248r52

+ 4446r54 − 81r56 + 82r58 + 115r60 + 184r62 − 20r64 + 124r66 + 108r68 + 72r70

+ 128r72 + 116r74 + 1308r78 − 1056r80 + 64r82 + 136r84 + 152r86 − 12r88

+ 144r90 + 156r92 − 8r94 + 152r96 + 160r98 − 4r100 + 160r102 − 1600r104),

which has a unique zero in the interval r0 ∈ (0, 1) with 0 < r0 < 1/2. Therefore, there
exists a unique contact point on the curve Υ with the vector field (25). Taking this into
account and noting the fact that

Φ(0)− h̄(0) > 0, Φ(1/2)− h̄(1/2) > 1 > 0, Φ(23/25)− h̄(23/25) > 2/5 > 0,

it is clear that the curve Υ|r∈(0,23/25) lies over Γ|r∈(0,23/25), otherwise there will exist at least
two contact points on Υ|r∈(0,23/25) with the vector field (25), which leads to a contradiction.
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In summary, according to the relative positions of Υ and Γ as well as the relative positions
of Υ and C2 ∪ C3, we find that the claim is true.

Third, we claim that C1 lies below the curve Γ. This claim is easy to confirm due to the
following facts

(1) Γ lies over the straight line h = 1 (by Lemma 3.4);
(2) C1 does not intersect the line h(r) = 1 because C70(r) + C71(r) + C72(r) + C73(r) 6=

0, r ∈ (0, 1) (by applying Sturm’s Theorem);
(3) C1 is a continuous curve passing through the point (0, 0) (because C70(0)+C71(0)h+

C72(0)h2 + C73(0)h3 = 0 implies h = 0).
Finally, taking into account the above results, we conclude that the curve C has no

common points with the curve Γ. Thus W 7(r) 6= 0, i.e., W7(s) 6= 0. �

Proof of statement (b) of Theorem 1.1. It follows from equation (14), Lemma 3.3, Lemma 3.5
and Lemma 3.6 that wi(s) 6= 0, i = 0, 1, 2, 3, 4, 5, 7 and w6(s) has a simple zero in (0, 1).
Very recently, in [15] it is proved that if the analytical functions f0, f1, . . . , fn : I → R sat-
isfy: (1) all the Wronskian determinant Wi(s) = W (f0, . . . , fi)(s) but Wn−1 has not zero
in the interval I, and (2) Wn−1 has a unique simple zero in I, then any linear combination
of f0, f1, . . . , fn can possess at most n+ 1 zeros in I, counting with multiplicities. But the
authors of [15] do not prove that the upper bound can be reached in the general cases.

In what follows we will show that the upper bound 8 can be reached in our system.
Let s0 = 200/10001, E0 = E(1− s2

0), K0 = K(1− s2
0) and

k = 4224932006353520086857838671137556(AE2
0 +BE0K0 + CK2

0),

where

A = 162632756824646343526934358039550191813769181219039360950399,

B = −26652192151547736499563618692313149392412558977363562257000,

C = 5303055781903243156556160927943006794119698485540000000.

Consider the function

G(s) = a0f0(s) + a1f1(s) + · · ·+ a6f6(s) + kf7(s), s ∈ (0, 1). (27)

By direct calculation we get the power series of G around the point s0:

G(s) = e0 + e1(s− s0) + · · ·+ e6(s− s0)6 + e7(s− s0)7 + · · · ,
where ei is the linear combination of a0, a1, . . . , a6. We solve the equations

e0 = 0, e1 = 0, . . . , e6 = 0,

and find the values of a0, a1, . . . , a6 which have the form

ai =
3∑

j=0

qijE
j
0K

3−j
0 , i = 0, 1, . . . , 6,

where each qij is an integer which occupies many digits. We will not write down here the
explicit expression of ai for the sake of brevity. By the way, we would like to point out
that our purpose of choosing such a k in (27) is to make the expression of ai to be relative
simple. It turns out that

G(s) = e7(s− s0)7 +O((s− s0)8), s→ s0, (28)

where

e7 =− 1000600150020001500060001

264828047171937480000
(A0E

3
0 − A1E

2
0K0 + A2E0K

2
0 − A3K

3
0),
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with
A0 =9434365215900096702757086133640555232723441933485420521056595192874214200423786458280868229,

A1 =1732705885903853693884640417850773768026603157714652167368522666300981344222008726672767200,

A2 =155016549380589651097830255703697459402307866677949892054356184189754798606490809063800000,

A3 =30929409946148872377165751603166763557011086585236345727947020937984340166396000000000,

and

e7 ≈ −8.7875569× 1097.

On the other hand, at the endpoint s = 1 we have

G(s) = B(1− s) + o((1− s)), (29)

where

B =12800263824853240746592933248429440000532π

· (5792157212337693345948517518844704378216313299609167E2
0

− 1020168724968577415929102393676106281813032946881000E0K0

+ 203589533638142582450403592018967753470820000000K2
0)

≈1.6008470× 1091.

The (28) and (29) means that (i) G has a zero at s0 with multiplicity 7, (ii) there exists
an ε0 with s0 < ε0 < 1 such that G(s) is negative in (s0, ε0], and (iii) G(s) is positive near
the endpoint s = 1.

Fixed the numbers a0, a1, . . . , a6 and k, we consider the function

Gε(s) = G(s) +
7∑

i=0

εifi(s), s ∈ (0, 1). (30)

Noting that fi can be extended analytically to (0, 1], there exists an M > 0 such that

Gε(ε0) <
1

2
G(ε0) < 0, Gε(s) >

1

2
B(1− s), when s→ 1−,

for all |εi| < M, i = 0, 1, . . . , 7. Moreover, near s0 we find

7∑

i=0

εifi(s) = µ0 + µ1(s− s0) + · · ·+ µ7(s− s0)7 + · · · ,

where µi = µi(ε0, ε1, . . . , ε7) is linear combination of ε0, ε1, . . . , ε7. One can directly check
that the matrix of the coefficients of µ0, µ1, . . . , µ7 with respect to ε0, ε1, . . . , ε7 has rank 8,
and hence µ0, µ1, . . . , µ7 are independent.

Consequently, since fi is analytic at s0 and G has a zero at s0 with multiplicity 7, it
follows that there exists some small |εi| �M (i = 0, 1, . . . , 7) (and hence µi is small) such
that Gε has exact 7 simple zeros in a neighborhood of s0. In view of (30) G has an extra
zero in (ε0, 1). According to the result of [15], this zero is simple. That is to say, Gε has 8
simple zeros.

Finally, by Lemma 3.1, using averaging theory of first order systems (4) have at most 8
limit cycles, and the upper bound can be reached. The proof is finished. �

4. Proof of statement (c) of Theorem 1.1

The goal of this section is to investigate the number of limit cycles of system (5) which
bifurcate from the period annulus of the isochronous center. Before the statement of our
result, we should first recall the concept of hypergeometric function.
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Let H(a, b, c, z) be the ordinary hypergeometric function which is defined for |z| < 1 by
the power series

H(a, b, c, z) =
∞∑

k=0

(a)k(b)k
(c)k

zk

k!
, (31)

where

(a)k =

{
1, k = 0,
a(a+ 1) · · · (a+ k − 1), k > 0.

It is undefined (or infinite) if c equals a non-positive integer. Many of the common mathe-
matical functions can be expressed in terms of the hypergeometric function. For example,
(1− z)−a = H(a, 1, 1, z) and

H

(
1

2
,
1

2
, 1,m

)
=

2K(m)

π
, H

(
−1

2
,
1

2
, 1,m

)
=

2E(m)

π
.

For more information on hypergeometric functions, the reader is refereed to chapter 15 of
[1].

Lemma 4.1. The maximum number of limit cycles of system (5) which emerge from the
period annulus of center of system (5)ε=9, by using averaging theory of first order, is equal
to the maximum number of the simple zeros of the function

G(s) = c0g0(s) + c1g1(s) + · · ·+ c12g12(s), (32)

where
g0(s) = s,
g1(s) = s2,
g2(s) = s

√
1− s,

g3(s) = sH(1, 1/2, 2, s),
g4(s) = sH(1, 5/2, 4, s),
g5(s) = sH(1, 3/2, 3, s),
g6(s) = s4/3H(−2/3, 1/2, 1, s),
g7(s) = s5/3H(−1/3, 1/2, 1, s),
g8(s) = s5/3H(−1/3, 3/2, 2, s),
g9(s) = s5/3H(−1/3, 5/2, 3, s),
g10(s) = s4/3H(−2/3, 3/2, 2, s),
g11(s) = s4/3

(
− (1− s)H(1

3
, 5

2
, 3, s)− 2 H(−2

3
, 5

2
, 3, s)

)
,

g12(s) = s2/3
(
(4− 9s)H(2

3
, 3

2
, 3, s)− (1− s)(4 + 33s)H(2

3
, 5

2
, 3, s)

)
,

and c0, c1, . . . , c12 are independent arbitrary constants.

Proof. As usual we take the polar coordinate transformation to change system (5) to

dr

dθ
= R0(θ, r) + εR1(θ, r) +O(ε2), (33)

where R0(θ, r) = r7 cos θ sin θ and R1(θ, r) = R11(θ, r) +R12(θ, r) with

R11(θ, r) = r(a10C
2 + b01S

2) + r3[a30C
4 + (a12 + b21)C2S2 + b03S

4]

+ r5[a50C
6 + (a32 + b41)C4S2 + (a14 + b23)C2S4 + b05S

6]

+ r7[a70c
8 + (a10 − b01)C2S2 + (a52 + b61)C6S2 + (a34 + b43)C4S4

+ (a16 + b25)C2S6 + b07S
8] + r9[(a30 − b21)C4s2 + (a12 − b03)C2S4]

+ r11[(a50 − b41)C6S2 + (a32 − b23)C4S4 + (a14 − b05)C2S6]

+ r13[(a70 − b61)C8S2 + (a52 − b43)C6S4 + (a34 − b25)C4S6 + (a16 − b07)C2S8],
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and R12(θ, r) is a polynomial of degree 13 in r of the form
∑

i,j,k di,j,kC
iSjrk where i or j

are odd numbers. As before, here C = cos θ, S = sin θ. We do not write down the explicit
expression of R12(θ, r) because it is too long and, as we will see, it does not play any role
in further calculation.

The equation (33)ε=0 has the periodic solutions r(θ, r0) = r0(1−3r6
0 sin2 θ)−1/6 satisfying

r0 = r(0, r0) for 0 < r0 < 3−1/6. The corresponding variational differential equation

dM

dθ
=

∂

∂r
R0(θ, r(θ, r0))M,

with Mr0(0) = 1 has the fundamental solution

Mr0(θ) = (1− 3r6
0 sin2 θ)−7/6.

Next we go to study the maximum number of zeros of the function

F(r0) =

∫ 2π

0

M−1
r0

(θ)R1(θ, r(θ, r0)) dθ = r7
0

∫ 2π

0

r−7(θ, r0)R1(θ, r(θ, r0)) dθ,

when r0 ∈
(
0, 3−1/6

)
.

One can check directly that
∫ 2π

0

r−7(θ, r0)R12(θ, r(θ, r0)) dθ = 0,

it turns out that

F(r0) = r7
0

∫ 2π

0

r−7(θ, r0)R11(θ, r(θ, r0)) dθ, r0 ∈
(
0, 3−1/6

)
.

Further, taking the transformation r0 = (s/3)1/6, we have

F(s) := F(r0) =

∫ 2π

0

(1− s sin2 θ)7/6R11(θ, r̄(θ, s)) dθ, s ∈ (0, 1),

where r̄(θ, s) = 3−1/6
(
s/(1− s sin2 θ)

)1/6
.

By using an algebraic manipulator, we obtain after a long calculation that

F(s) =
c̄0f̄0(s) + c̄1f̄1(s) + · · ·+ c̄15f̄15(s)

s17/6(1− s)2/3
(34)

where
f̄0(s) = s3(1− s)2/3,

f̄1(s) = s4(1− s)2/3,

f̄2(s) = s3(1− s)7/6,

f̄3(s) = s2
(
(1− s)7/6 − (1− s)2/3

)
,

f̄4(s) = 8(1− s)7/6 + (1− s)2/3(s2 + 4s− 8),

f̄5(s) = 2s(1− s)7/6 − (1− s)2/3(2s− s2),

f̄6(s) = s10/3(1− s)2/3H(−2
3
, 1

2
, 1, s),

f̄7(s) = s11/3(1− s)2/3H(−1
3
, 1

2
, 1, s),

f̄8(s) = s11/3(1− s)2/3H(−1
3
, 3

2
, 2, s),

f̄9(s) = s11/3(1− s)2/3H(−1
3
, 5

2
, 3, s),

f̄10(s) = s14/3
(
(1− s)2/3H(2

3
, 3

2
, 3, s) +H(2

3
, 3

2
, 3, s

s−1
)
)
,
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f̄11(s) = s13/3
(
(1− s)2/3H(1

3
, 3

2
, 3, s) + (1− s)1/3H(1

3
, 3

2
, 3, s

s−1
)
)
,

f̄12(s) = s14/3
(
2 H(2

3
, 3

2
, 3, s

s−1
) + (1− s)2/3H(2

3
, 5

2
, 4, s)−H(2

3
, 5

2
, 4, s

s−1
)
)
,

f̄13(s) = s10/3(1− s)2/3
(
9Γ(−2

3
)Γ(7

6
) H(−2

3
, 3

2
,−1

6
, 1− s)

−10
√

3π3/2H(−2
3
, 3

2
, 2, s) + 18(1− s)7/6Γ(−7

6
)Γ(8

3
) H(1

2
, 8

3
, 13

6
, 1− s)

)
,

f̄14(s) = s10/3(1− s)1/3
(
243(1− s)1/3Γ(−2

3
)Γ(7

6
)H(−2

3
, 5

2
,−1

6
, 1− s)

−360
√

3π3/2(1− s)1/3H(−2
3
, 5

2
, 3, s) + 40

√
3π3/2s H(1

3
, 3

2
, 3, s

s−1
)

+20
√

3π3/2s
(
(1− s)1/3H(1

3
, 5

2
, 4, s)−H(1

3
, 5

2
, 4, s

s−1
)
)

+324(1− s)3/2Γ(−7
6
)Γ(11

3
)H(1

2
, 11

3
, 13

6
, 1− s)

)
,

f̄15(s) = s11/3
(
− 240(1− s)2/3H(−1

3
, 7

2
, 4, s) + s(16 H(2

3
, 3

2
, 3, s

s−1
)

−16 H(2
3
, 5

2
, 4, s

s−1
) + 5(1− s)2/3H(2

3
, 7

2
, 5, s) + 5 H(2

3
, 7

2
, 5, s

s−1
))
)
.

Here Γ(z) is the Gamma function defined by Γ(z) =
∫∞

0
tz−1 e−t dt and c̄i, for i =

0, 1, 2, . . . , 15, is the linear combination of aij and bij. We do not give the explicit ex-
pressions of c̄i (i = 0, 1, 2, . . . , 15) because they are too long. We can check by direct
calculation that c̄1, c̄2, . . . , c̄15 are independent.

From (31) we have

f̄3(s) = s3(1− s)2/3

√
1− s− 1

s
= −1

2
s3(1− s)2/3H(1,

1

2
, 2, s),

f̄4(s) = −1

2
s3(1− s)2/3 8

√
1− s+ s2 + 4s− 8

−s3/2
− 1

2
s3(1− s)2/3H(1,

5

2
, 4, s),

f̄5(s) = −1

4
s3(1− s)2/3 s− 2 + 2

√
1− s

−s2/4
= −1

4
s3(1− s)2/3H(1,

3

2
, 3, s).

Using Pfaff transformation (see chapter 15 of [1])

(1− z)aH(a, b, c, z) = H(a, c− b, c, z/(z − 1)),

as well as Gauss’ contiguous relation

abz

c
H(a+ 1, b+ 1, c+ 1, z) = a(H(a+ 1, b, c, z)−H(a, b, c, z))

= b(H(a+ 1, b, c, z)−H(a, b, c, z))

= (c− 1)(H(a, b, c− 1, z)−H(a, b, c, z))

= (c−a) H(a−1,b,c,z)+(a−c+bz) H(a,b,c,z)
1−z

= (c−b) H(a,b−1,c,z)+(b−c+az) H(a,b,c,z)
1−z

= z (c−a)(c−b) H(a,b,c+1,z)+c(a+b−c) H(a,b,c,z)
c(1−z) ,

(35)

and we obtain that

f̄10(s) = 2s14/3(1− s)2/3H(2
3
, 3

2
, 3, s),

f̄11(s) = 2s13/3(1− s)2/3H(1
3
, 3

2
, 3, s),

f̄12(s) = 2s14/3(1− s)2/3H(2
3
, 5

2
, 4, s),

f̄14(s) = 3s10/3(1− s)2/3

(
81Γ(−2

3
)Γ(7

6
) H(−2

3
, 5

2
,−1

6
, 1− s)

+40
√

3π3/2(−H(−2
3
, 5

2
, 3, s)− 2(1− s) H(1

3
, 5

2
, 3, s)

)

+108(1− s)7/6Γ(−7
6
)Γ(11

3
) H(1

2
, 11

3
, 13

6
, 1− s)

)
,

f̄15(s) = 216
35
s8/3(1− s)2/3

(
(4− 9s) H(2

3
, 3

2
, 3, s)− (1− s)(4 + 33s) H(2

3
, 5

2
, 3, s)

)
.
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Further, applying the formula

H(a, b, c, z) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)H(a, b, a+ b− c+ 1, 1− z)

+ (1− z)c−a−b
Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
H(c− a, c− b, c− a− b+ 1, 1− z),

for |arg(1− z)| < π, we obtain that

f̄13(s) = s10/3(1− s)2/3
(
9Γ(−2

3
)Γ(8

3
)Γ(1

2
)− 10

√
3π3/2

)
H(−2

3
, 3

2
, 2, s)

=
√
πs10/3(1− s)2/3

(
9Γ(−2

3
)Γ(8

3
)− 10

√
3π
)
H(−2

3
, 3

2
, 2, s)

= −20
√

3π3/2s10/3(1− s)2/3H(−2
3
, 3

2
, 2, s),

f̄14(s) = 3
2
s10/3(1− s)2/3

(
(81Γ(−2

3
)Γ(11

3
)Γ(1

2
)− 80

√
3π3/2)H(−2

3
, 5

2
, 3, s)

−160
√

3π3/2(1− s)H(1
3
, 5

2
, 3, s)

)

= 3
√
π

2
s10/3(1− s)2/3

(
(81Γ(−2

3
)Γ(11

3
)− 80

√
3π)H(−2

3
, 5

2
, 3, s)

+160
√

3π(s− 1)H(1
3
, 5

2
, 3, s)

)

= −240
√

3π3/2s10/3(1− s)2/3
(
(1− s)H(1

3
, 5

2
, 3, s) + 2 H(−2

3
, 5

2
, 3, s)

)
.

By the above equalities, we obtain from (34) that

F(s) = s−5/6(c̃0f0(s) + c̃1f1(s) + · · ·+ c̃15f15(s)), (36)

where the functions fi’s modulo a nonzero constant are f̄i/(s
2(1− s)2/3):

f0(s) = s,

f1(s) = s2,

f2(s) = s
√

1− s,
f3(s) = sH(1, 1

2
, 2, s),

f4(s) = sH(1, 5
2
, 4, s),

f5(s) = sH(1, 3
2
, 3, s),

f6(s) = s4/3H(−2
3
, 1

2
, 1, s),

f7(s) = s5/3H(−1
3
, 1

2
, 1, s),

f8(s) = s5/3H(−1
3
, 3

2
, 2, s),

f9(s) = s5/3H(−1
3
, 5

2
, 3, s)

f10(s) = s8/3H(2
3
, 3

2
, 3, s),

f11(s) = s7/3H(1
3
, 3

2
, 3, s),

f12(s) = s8/3H(2
3
, 5

2
, 4, s),

f13(s) = s4/3H(−2
3
, 3

2
, 2, s),

f14(s) = −s4/3
(
(1− s)H(1

3
, 5

2
, 3, s) + 2 H(−2

3
, 5

2
, 3, s)

)

f15(s) = s2/3
(
(4− 9s)H(2

3
, 3

2
, 3, s)− (1− s)(4 + 33s)H(2

3
, 5

2
, 3, s)

)
,

It is also not hard to see that in (36), c̃0, c̃1, . . . , c̃15 are independent constants.
Further, applying repeatedly Gauss’ contiguous relation (35), we find that

f10 = 12f7 − 12f8, f11 = 6f6 − 6f13, f12 = 36f8 − 36f9. (37)

It follows from (36) and (37) that

F(r0) = F(s) = s−5/6

12∑

i=0

cigi(s) = s−5/6G(s),

where
g0 = f0, g1 = f1, . . . , g9 = f9, g10 = f13, g11 = f14, g12 = f15,
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and c0, c1, . . . , c12 are independent constants.
Finally, by Theorem 4.3 of Appendix 1, we obtain the required conclusion. �

Proof of statement (c) of Theorem 1.1. First, we claim that the functions g0, g1, . . . , g12 in
Lemma 4.1 are linear independent. To show this, we write

G(u) = d0g0(u3) + d1g1(u3) + · · ·+ d12g12(u3), u > 0.

Then, near the point u = 0 we have

8957952G(u)

u3
= 8957952(d0 + d2 + d3 + d4 + d5) + 8957952(d10 − 3d11 + d6)u

−(348364800d12 − 8957952(d7 + d8 + d9))u2

+1119744(8d1 − 4d2 + 2d3 + 5d4 + 4d5)u3

−1492992(3d10 − 11d11 + 2d6))u4 + 82944(1400d12

−3(6d7 + 9d8 + 10d9))u5 − 559872(2d2 − 2d3 − 7d4 − 5d5)u6

−124416(5d10 − 20d11 + 3d6)u7

+6912(5390d12 − 3(18d7 + 30d8 + 35d9))u8

−139968(4d2 − 5d3 − 7(3d4 + 2d5))u9 − 6912(35d10 − 147d11

+20d6)u10 + 2880(6860d12 − 3(20d7 + 35d8 + 42d9))u11

−69984(5d2 − 7d3 − 33d4 − 21d5)u12 − 14112(9d10 − 39d11

+5d6)u13 + 6720(1870d12 − 3(5d7 + 9d8 + 11d9))u14

−4374(56d2 − 3(28d3 + 143d4 + 88d5))u15 − 1008(77d10

−341d11 + 42d6)u16 + 176(50050d12 − 378d7 − 693d8

−858d9)u17 − 2187(84d2 − 11(12d3 + 65d4 + 39d5))u18 +O(u19)

:= α0 + α1u+ · · ·+ α18u
18 +O(u19).

If G(u) ≡ 0, then we have α0 = α1 = · · · = α18 = 0, which turn out to be, by direct
calculation, that d0 = d1 = · · · = d12 = 0. By the way, it is remarkable that we cannot get
from α0 = α1 = · · · = α12 = 0 that d0 = · · · = d12 = 0. This shows that our claim holds.

Since gi is an analytic function on (0, 1) for i = 0, 1, . . . , 12, by applying the result of
Lemma 4.5 of [5], we know that by suitable choice of c0, c1, . . . , c12, c0g0(s)+ c1g1(s)+ · · ·+
c12g12(s) can have 0, 1, 2, . . . , 12 simple zeros in (0, 1).

Consequently, according to Theorem 4.3, there exist some coefficients aij, bij(i + j =
0, 1, . . . , 7) such that system (5) has 0, 1, 2, . . . , 12 limit cycles. This completes the proof.

�
Remark 4.2. It seems very hard to find the smallest upper bound of the number of limit
cycles of system (5) which emerge from the period annulus of the isochronous center for
the case n = 2. In fact, the expressions of the Wronskian determinants Wk for k ≥ 9 are
too complicated to determine the number of simple zeros of them. On the other hand, by
using the same method as the one in the proof of case n = 1, we can find some coefficients
c0, c1, . . . , c12 such that c0g0(s) + c1g1(s) + · · · + c12g12(s) has 12 simple zeros in a small
interval (s0−ε, s0 +ε) and has extra zero in (0, s0−ε) with s0 = 7/10. However, we cannot
prove that the extra zero is simple.

Appendix 1: The averaging theory of first order

In this appendix we present the basic results from the averaging theory that we shall
need for proving the main results of this paper.

We consider the problem of the bifurcation of T–periodic solutions from differential
systems of the form

x′ = F0(t,x) + εF1(t,x) + ε2F2(t,x, ε), (38)
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with ε = 0 to ε 6= 0 sufficiently small. Here the functions F0, F1 : R × Ω → Rn and
F2 : R×Ω× (−ε0, ε0)→ Rn are C2 functions, T–periodic in the first variable, and Ω is an
open subset of Rn. The main assumption is that the unperturbed system

x′ = F0(t,x), (39)

has a submanifold of dimension n of periodic solutions. A solution of this problem is given
using the averaging theory.

Let x(t, z, ε) be the solution of the system (39) such that x(0, z, ε) = z. We write the
linearization of the unperturbed system along the periodic solution x(t, z, 0) as

y′ = DxF0(t,x(t, z, 0))y. (40)

In what follows we denote by Mz(t) some fundamental matrix of the linear differential
system (40).

We assume that there exists an open set V with Cl(V ) ⊂ Ω such that for each z ∈ Cl(V ),
x(t, z, 0) is T–periodic. The set Cl(V ) is isochronous for the system (38); i.e. it is a set
formed only by periodic orbits, all of them having the same period. Then, an answer to
the problem of the bifurcation of T–periodic solutions from the periodic solutions x(t, z, 0)
contained in Cl(V ) is given in the following result.

Theorem 4.3 (Perturbations of an isochronous set). We assume that there exists an open
and bounded set V with Cl(V ) ⊂ Ω such that for each z ∈ Cl(V ), the solution x(t, z, 0) is
T–periodic, then we consider the function F : Cl(V )→ Rn

F(z) =

∫ T

0

M−1
z (t)F1(t,x(t, z, 0)) dt.

If there exists α ∈ V with F(α) = 0 and det ((dF/dz) (α)) 6= 0, then there exists a T–
periodic solution x(t, ε) of system (38) such that x(0, ε)→ α as ε→ 0.

Theorem 4.3 goes back to Malkin [14] and Roseau [17], for a shorter proof see [3].

Appendix 2: Extended Complete Chebyshev system

We say that the functions (f0, . . . , fn) defined on the interval I form an Extended Cheby-
shev system or ET-system on I, if and only if, any nontrivial linear combination of these
functions has at most n zeros counting their multiplicities and this number is reached. The
functions (f0, . . . , fn) are an Extended Complete Chebyshev system or an ECT-system on
I if and only if for any k ∈ {0, 1, . . . , n}, (f0, . . . , fk) form an ET-system.

Theorem 4.4. Let f0, . . . , fn be analytic functions defined on an open interval I ⊂ R.
Then (f0, . . . , fn) is an ECT-system on I if and only if for each k ∈ {0, 1, . . . , n} and all
y ∈ I the Wronskian

W (f0, . . . , fk)(y) =

∣∣∣∣∣∣∣∣∣

f0(y) f1(y) · · · fk(y)
f ′0(y) f ′1(y) · · · f ′k(y)

...
...

. . .
...

f
(k)
0 (y) f

(k)
1 (y) · · · f

(k)
k (y)

∣∣∣∣∣∣∣∣∣

is different from zero.

For a proof of Theorem 4.4 see [10].
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