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ON THE POLYNOMIAL INTEGRABILITY OF A SYSTEM
MOTIVATED BY THE RIEMANN ELLIPSOID PROBLEM

JAUME LLIBRE1 AND CLÀUDIA VALLS2

Abstract. We consider differential systems obtained by coupling two Euler–Poinsot
systems. The motivation to consider such systems can be traced back to the Rie-
mann ellipsoid problem. We provide new cases for which these systems are com-
pletely integrable. We also prove that these systems either are completely integrable
or have at most four functionally independent polynomial first integrals.

1. Introduction and statement of the main results

Consider the following system of differential equations

dx

dt
= ∇xG(x, y) ∧ x,

dy

dt
= ∇yG(x, y) ∧ y,

(1)

where (x, y) ∈ R3 × R3 and G is the quadratic form

G =
1

2

3∑

i=1

(ai(x
2
i + y2

i ) + 2bixiyi).

The ai, bi, i = 1, 2, 3 are real constants. To avoid the trivial cases, at least one of
the coupling constants bi’s is assumed to be different from zero. Of course, x =
0 (or y = 0) is an invariant subspace and here system (1) reduces to the Euler–
Poinsot equations. The motivation to consider such systems can be traced back to
the Riemann ellipsoid problem, see for more details [3, 5, 6].

Expanding the notation, system (1) writes as

ẋ1 = (a2 − a3)x2x3 + b2x3y2 − b3x2y3 = P1(x1, x2, x3, y1, y2, y3),

ẋ2 = (a3 − a1)x1x3 + b3x1y3 − b1x3y1 = P2(x1, x2, x3, y1, y2, y3),

ẋ3 = (a1 − a2)x1x2 + b1x2y1 − b2x1y2 = P3(x1, x2, x3, y1, y2, y3),

ẏ1 = b2x2y3 − b3x3y2 + (a2 − a3)y2y3 = P4(x1, x2, x3, y1, y2, y3),

ẏ2 = b3x3y1 − b1x1y3 + (a3 − a1)y1y3 = P5(x1, x2, x3, y1, y2, y3),

ẏ3 = b1x1y2 − b2x2y1 + (a1 − a2)y1y2 = P6(x1, x2, x3, y1, y2, y3),

(2)
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where (x1, x2, x3, y1, y2, y3) ∈ R6 and ai, bi ∈ R for i = 1, 2, 3 such that at least one bi

is assumed to be different from zero.

It is immediate to verify that system (2) has the following polynomial three first
integrals

H1 =
3∑

i=1

x2
i , H2 =

3∑

i=1

y2
i , H3 =

3∑

i=1

[ai(x
2
i + y2

i ) + 2bixiyi].

which are functionally independent. We recall that given U an open set of R6

such that R6 \ U has zero Lebesgue measure, we say that a real function H =
H(x1, x2, x3, y1, y2, y3) : U ⊂ R6 → R is a first integral if H is constant for all values
of a solution (x1(t), x2(t), x3(t), y1(t), y2(t), y3(t)) of system (2) contained in U , i.e. H
is a first integral in U if and only if

3∑

i=1

(∂H

∂xi

Pi(x1, x2, x3, y1, y2, y3) +
∂H

∂yi

Pi+3(x1, x2, x3, y1, y2, y3)
)

= 0

on the points of U . Moreover, the first integrals H1, . . . , Hr are functionally indepen-
dent if the r × 6 matrix




∂H1/∂x1 · · · ∂H1/∂y3
... · · · ...

∂Hr/∂x1 · · · ∂Hr/∂y3


 (x1, x2, x3, y1, y2, y3)

has rank r at all points (x1, x2, x3, y1, y2, y3) ∈ R6 where they are defined except
perhaps in a zero Lebesgue measure set.

We are interested in finding additional polynomial first integrals which are func-
tionally independent with H1, H2 and H3.

We know that since system (2) has zero divergence it follows from Theorem 2.7 of
[2] that if it has 4 functionally independent analytic first integrals then the system
is completely integrable, i.e. it has 5 first integrals functionally independent first
integrals.

We note that system (2) is invariant under the diffeomorphism

τ(x1, x2, x3, y1, y2, y3, a1, a2, a3, b1, b2, b3) → (x2, x3, x1, y2, y3, y1, a2, a3, a1, b2, b3, b1)

First we obtain some polynomial first integrals.

Theorem 1. The differential systems (2) have a fourth polynomial first integral H4

functionally independent with H1, H2 and H3 if

(a) b1 = ±b2 and a1 = a2, then H4 = ±x3 + y3;
(b) b1 = ±b3 and a1 = a3, then H4 = ±x2 + y2;
(c) b2 = ±b3 and a2 = a3, then H4 = ±x1 + y1;
(d) b1 = a2 − a1 + b2, b3 = a3 − a2 − b2, a1 ̸= a2 and a3 ̸= a2, then H4 =

(x1 + y1)
2 + (x2 + y2)

2 + (x3 − y3)
2;

(e) b1 = a1 − a2 + b2, b3 = a3 − a2 + b2, a1 ̸= a2 and a3 ̸= a2, then H4 =
(x1 − y1)

2 + (x2 − y2)
2 + (x3 − y3)

2;
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(f) b1 = a2 − a1 − b2, b3 = a2 − a3 − b2, a1 ̸= a2 and a3 ̸= a2, then H4 =
(x1 + y1)

2 + (x2 − y2)
2 + (x3 + y3)

2;
(g) b1 = a1 − a2 − b2, b3 = a2 − a3 + b2, a1 ̸= a2 and a2 ̸= a3, then H4 =

(x1 − y1)
2 + (x2 + y2)

2 + (x3 + y3)
2;

(h) b1 = a1 − a2 + b2, b3 = a2 − a3 − b2, a1 ̸= a2 and a3 ̸= a2, then H4 =
a2 − a3 − b3

a2 − a3

(x1 − y1)
2 +

a1 − a3 − b3

a1 − a3

(x2 − y2)
2 + (x3 − y3)

2;

(i) b1 = a2 − a1 − b2, b3 = a3 − a2 + b2, a1 ̸= a2 and a3 ̸= a2, then H4 =

−a1 − a2 + b1

a2 − a3

(x1 + y1)
2 − b1

a1 − a3

(x2 − y2)
2 + (x3 + y3)

2;

(j) b1 = a2 − a1 + b2, b3 = a2 − a3 + b2, a1 ̸= a2 and a2 ̸= a3, then H4 =

− b2

a2 − a3

(x1 + y1)
2 +

a1 − a2 − b2

a1 − a3

(x2 + y2)
2 + (x3 − y3)

2;

(k) b1 = a1 − a2 − b2, b3 = a3 − a2 − b2, a1 ̸= a2 and a2 ̸= a3, then H4 =

− b2

a2 − a3

(x1 − y1)
2 +

a1 − a2 − b2

a1 − a3

(x2 + y2)
2 + (x3 + y3)

2.

The cases of integrability of Theorem 1 were already known by Negrini (see The-
orems 2 and 3 of [6]), but he did not know that the fourth functionally independent
first integral of systems (2) of the statements (a), (b) and (c) of Theorem 1 can be
polynomial.

Theorem 1 can be checked easily by direct computations.

Corollary 2. The differential systems (2) satisfying the conditions of Theorem 1 are
completely integrable.

Corollary 2 is proved in section 2, but it was also known by Negrini in [6].

Theorem 3. The differential systems (2) either satisfy the conditions of Theorem 1,
or have at most four functionally independent polynomial first integrals.

Theorem 3 is proved in section 3.

In [6] the author also gaves conditions for the existence or nonexistence of mero-
morphic first integrals for system (2).

2. Proof of Corollary 2

The following result is due to Jacobi. For a proof in a more general setting see
Theorem 2.7 of [2].

Theorem 4. Consider an analytic differential system in Rn of the form

(3)
dx

dt
= ẋ = P (x), x = (x1, . . . , xn) ∈ Rn

with P (x) = (P1(x), . . . , Pn(x)). Assume that

n∑

i=1

∂Pi

∂xi

= 0 (i.e. it has zero divergence)
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and that it admits n − 2 first integrals, Ii(x) = ci with i = 1, . . . , n − 2 functionally
independent. These integrals define, up to a relabeling of the variables, an invertible
transformation mapping from (x1, . . . , xn) to (c1, . . . , cn−2, xn−1, xn) given by

yi = Ii(x), i = 1, . . . , n − 2, yn−1 = xn−1, yn = xn.

Let ∆ be the Jacobian of the transformation

∆ = det




∂x1I1 ∂x2I1 · · · ∂xn−2I1

∂x1I2 ∂x2I2 · · · ∂xn−2I2
...

...
. . .

...
∂x1In−2 ∂x2In−2 · · · ∂xn−2In−2


 .

Then system (3) admits an extra first integral given by

In−1 =

∫
1

∆̃

(
P̃n dxn−1 − P̃n−1 dxn),

where the tilde denotes the quantities expressed in the variables (c1, . . . , cn−2, xn−1, xn).
Moreover this first integral is functionally independent with the previous n − 2 first
integrals, that is, the system is completely integrable.

Proof of Theorem 2. It is immediate to verify that the differential systems (2) in R6

have zero divergence because every Pi does not depend on xi for i = 1, 2, 3, and Pi

does not depend on yi−3 for i = 4, 5, 6. In the case of the conditions given in Theorem
1 the differential systems (2) have 4 = 6 − 2 first integrals functionally independent.
So in this case they satisfy the assumptions of Theorem 4. Therefore this case is
completely integrable. �

3. Proof of Theorem 3

We denote by Z+ the set of non–negative integers. The following result, due to
Zhang [7], will be used in a strong way in the proof of Theorem 3.

Theorem 5. For an analytic vector field X defined in a neighborhood of the origin
in Rn associated to system (3) with P (0) = 0, let λ1, . . . , λn be the eigenvalues of
DP (0). Set

G =

{
(k1, . . . , kn) ∈ (Z+)n :

n∑

i=1

kiλi = 0,
n∑

i=1

ki > 0

}
.

Assume that system (3) has r < n functionally independent analytic first integrals
Φ1(x), . . . , Φr(x) in a neighborhood of the origin. If the Z-linear space generated
by G has dimension r, then any nontrivial analytic first integral of system (3) in a
neighborhood of the origin is an analytic function of Φ1(x), . . . , Φr(x).

Extensions of Theorem 5 can be found in [1, 4].
We call each element (k1, . . . , kn) ∈ G a resonant lattice of the eigenvalues λ1, . . . , λn.

Direct calculations show that the differential systems (2) have seven planes of
singularities, but we only use for proving our result two of these planes of singularities.
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At the singularity S1 = (0, x2, 0, 0, y2, 0), the 6-tuple of eigenvalues λ = (λ1, . . . , λ6)
of the linear part of the differential systems (2) are

(4) λ =

(
0, 0,−

√
A1 − √

B1

2
,

√
A1 − √

B1

2
,−

√
A1 +

√
B1

2
,

√
A1 +

√
B1

2

)
,

where

A1 = ((a1 − a2)(a2 − a3) − b2
2)(x

2
2 + y2

2) + 2((a1 − 2a2 + a3)b2 − b1b3)x2y2,

B1 = A2
1 − 4∆1,

with

∆1 =((a2 − a1)b2(x
2
2 + y2

2) + ((a1 − a2)
2 + b2

2 − b2
1)x2y2)

((a2 − a3)b2(x
2
2 + y2

2) + ((a2 − a3)
2 + b2

2 − b2
3)x2y2).

From Theorem 5 we know that the number of functionally independent analytic first
integrals of the differential systems (2) in a neighborhood of the singularities S is at
most the number of linearly independent elements of the set

G1 =

{
(k1, . . . , k6) ∈ (Z+)6 :

6∑

i=1

kiλi = 0,
6∑

i=1

ki > 0

}
.

According to the eigenvalues (4) the resonant lattices satisfy

(5)

√
A1 −

√
B1(k4 − k3) +

√
A1 +

√
B1(k6 − k5) = 0.

This last equation has the following linearly independent non–negative solutions
(k1, . . . , k6):

(1, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0), (0, 0, 1, 1, 0, 0) and (0, 0, 0, 0, 1, 1).

In order that equation (5) has an additional linearly independent non–negative integer
solutions different from the above list, we must have

(i) either (A1 − √
B1)(A1 +

√
B1) = 0;

(ii) or (A1 − √
B1)(A1 +

√
B1) ̸= 0 and

√
A1 − √

B1/
√

A1 +
√

B1 is a rational

number. Then ∆1 ̸= 0 and A1 ̸= 0 (otherwise
√

−√
B1/

√√
B1 cannot be a

rational number). Set
√

A1 − √
B1√

A1 +
√

B1

=
m

n
, m, n ∈ Z \ {0} coprime.

This last equality can be written in an equivalent way as

∆1

A2
1

=
m2n2

(m2 + n2)2
,

where we have used the fact that B1 = A2
1 − 4∆1.
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In case (i) we obtain the following independent conditions:

b1 = ±b2, a1 = a2;

b2 = ±b3, a2 = a3;

b1 = ±(a1 − a2), b2 = 0;

b3 = ±(a2 − a3), b2 = 0.

(6)

In the first four cases we are inside the conditions of Theorem 1. Now we shall
consider the last four cases. We denote them by

s1,2 =
{
b1 = ±(a1 − a2), b2 = 0

}
, s3,4 =

{
b3 = ±(a2 − a3), b2 = 0

}
.

Lemma 6. The differential systems (2) under one of the conditions s1, s2, s3 or
s4, either satisfy the conditions of Theorem 1, or the eigenvalues of the singularity
S2 = (x1, 0, 0, y1, 0, 0) do not have a fifth linearly independent resonant lattice.

Proof. At the singularity S2 = (x1, 0, 0, y1, 0, 0), the 6-tuple of eigenvalues of the
linear part of the differential systems (2) are given by

(7) λ =

(
0, 0,−

√
A2 − √

B2

2
,

√
A2 − √

B2

2
,−

√
A2 +

√
B2

2
,

√
A2 +

√
B2

2

)
,

where

A2 = −((a1 − a2)(a1 − a3) + b2
1)(x

2
1 + y2

1) + 2((a2 − 2a1 + a3)b1 − b2b3)x1y1,

B2 = A2
2 − 4∆2,

with

∆2 =((a1 − a2)b1(x
2
1 + y2

1) + ((a1 − a2)
2 + b2

1 − b2
2)x1y1)

((a1 − a3)b1(x
2
1 + y2

1)((a1 − a3)
2 + b2

1 − b2
3)x1y1).

Now direct calculations show that under one of the conditions s1, s2, s3, s4, the equa-
tion ∆2 = 0 yields that either b1 = ±b3, a1 = a3 and b2 = 0; or b2 = b1 = 0 and
a1 = a2; or b1 = b2 = 0 and b3 = ±(a2 − a3) = ±(a1 − a3). This last condition in fact
splits into four different conditions. In all the cases we are under the conditions of
Theorem 1. Then, under one of the conditions s1, s2, s3 or s4, either ∆2 = 0 and then
we are under the conditions of Theorem 1, or ∆2 ̸= 0. Now, working in a similar way
as we did for the singularities S1 for studying if there is a fifth linearly independent

resonant lattice at S1, we need to check if
√

A2 − √
B2/

√
A2 +

√
B2 ̸= 0 is a rational

number. For S2 under one of the conditions s1, s2, s3 or s4 we write
√

A2 − √
B2√

A2 +
√

B2

=
m2

n2

, m2, n2 ∈ Z \ {0} coprime.

This last equation can be written as

(8)
∆2

A2
2

=
m2

2n
2
2

(n2 + m2)2
.
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Clearly we have that A2 ̸= 0, otherwise
√

A2 − √
B2/

√
A2 +

√
B2 is not a rational

number. ∆2 should be a square of (a1 − a2)b1(x
2
1 + y2

1) + ((a1 − a2)
2 + b2

1 − b2
2)x1y1 or

of (a1 − a3)b1(x
2
1 + y2

1) + ((a1 − a3)
2 + b2

1 − b2
3)x1y1. Without loss of generality we can

write it as

(a1 − a2)b1(x
2
1 + y2

1) + ((a1 − a2)
2 + b2

1 − b2
2)x1y1

= L2
2((a1 − a3)b1(x

2
1 + y2

1) + ((a1 − a3)
2 + b2

1 − b2
3)x1y1),

(9)

and it is easy to check that A2/((a1 − a3)b1(x
2
1 + y2

1) + ((a1 − a3)
2 + b2

1 − b2
3)x1y1) is

a constant. Set

(10) A2 = K2((a1 − a3)b1(x
2
1 + y2

1) + ((a1 − a3)
2 + b2

1 − b2
3)x1y1).

Then, from (9) and (10) equating to zero the coefficients of the monomials in the
variables x1 and y1 we have

−b1(−a1 + a2 + L2
2(a1 − a3)) = 0,

(a1 − a2)
2 + b2

1 − b2
2 − L2

2((a1 − a3)
2 + b2

1 − b2
3) = 0,

(a1 − a3)(a2 − a1) − b2
1 + b1K2(a3 − a1) = 0,

2b1(a2 + a3 − 2a1) − 2b2b3 − K2((a1 − a3)
2 + b2

1 − b2
3) = 0,

(11)

where L2/K2 = m2n2/(n
2
2 + m2

2) ̸= 0. For the conditions s1 and s2 we have that the
solutions of (11) are

b3 = ±(a1 − a3), a1 = a2;

b3 = ±L2
2 − 1

L2
2

(a1 − a2), K = ±(1 + L2
2), a3 = a1 +

a2 − a1

L2
2

,

where the last condition corresponds in fact to four conditions. In all cases we are
under the assumptions of Theorem 1 (note that in the last four cases we have in fact
that b3 = ±(a2 −a3)). Finally, for the conditions s3 and s4 we have that the solutions
of (11) are

a2 = a1, b1 = 0;

b1 = ±(a1 − a2) = ±(a1 − a3), K2
2 = 4, L2

2 = 1;

b1 = ±(a1 − a2), K2 = ∓(1 + L2
2), a3 = a1 ∓ b1

L2
2

,

where every one of the two last conditions correspond in fact to two conditions. In
all cases we are under the assumptions of Theorem 1 (note that in the last four cases
we also have that b3 = ±(a2 − a3)). This ends the proof of the lemma. �

From Theorem 5 and Lemma 6 we have proved that in the case (i) the differ-
ential systems (2) either satisfy the conditions of Theorem 1, or have at most four
functionally independent polynomial first integrals. Next we consider the case (ii).

In case (ii) ∆1/A
2
1 has the form m2

1n
2
1/(n1 + m1)

2 with m,n ∈ Z \ {0} coprime.
So it follows from the expressions of ∆1 and A1 that ∆1 should be a square of
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(a2 − a1)b2(x
2
2 + y2

2) + ((a1 − a2)
2 + b2

2 − b2
1)x2y2 or of (a2 − a3)b2(x

2
2 + y2

2) + ((a2 −
a3)

2 + b2
2 − b2

3)x2y2. Without loss of generality we can write it as

(a2 − a1)b2(x
2
2 + y2

2) + ((a1 − a2)
2 + b2

2 − b2
1)x2y2

= L2
1((a2 − a3)b2(x

2
2 + y2

2) + ((a2 − a3)
2 + b2

2 − b2
3)x2y2),

(12)

and it is easy to check that A1/((a2 − a3)b2(x
2
2 + y2

2) + ((a2 − a3)
2 + b2

2 − b2
3)x2y2) is

a constant. Set

(13) A1 = K1((a2 − a3)b2(x
2
2 + y2

2) + ((a2 − a3)
2 + b2

2 − b2
3)x2y2).

Then, from (12) and (13) equating to zero the coefficients of the monomials in the
variables x2 and y2 we have

−b2(a1 − a2 + L2
1(a2 − a3)) = 0,

(a1 − a2)
2 − b2

1 + b2
2 − L2

1((a2 − a3)
2 + b2

2 − b2
3) = 0,

(a1 − a2)(a3 − a2) + b2
2 + b2K1(a2 − a3) = 0,

−2b2(a1 + a3 − 2a2) + 2b1b3 + K1((a2 − a3)
2 + b2

2 − b2
3) = 0,

(14)

where L1/K1 = m1n1/(n
2
1 + m2

1) ̸= 0.

Subcase (ii.1): If K2
1 = 4L2

1, solving (14), using that (b1, b2, b3) ̸= (0, 0, 0) and bi, ai ∈
R for i = 1, 2, 3 we obtain

b1 = ±(a2 − a1), b3 = 0, b2 = 0, a2 = a3;

b1 = 0, b2 = 0, a1 = a2, b3 = ±(a3 − a2),

b1 = b3L1, a1 = a2 + b2L1, a3 = a2 +
b2

L1

.

Note that the first four conditions are inside the conditions of Theorem 1. Now we
consider the last condition.

Lemma 7. The differential systems (2) under condition

s5 =
{
b1 = b3L1, a1 = a2 + b2L1, a3 = a2 +

b2

L1

}

either satisfy the conditions of Theorem 1, or the eigenvalues of the singularity S2 do
not have a fifth linearly independent resonant lattice.

Proof. At the singularities S2, the 6-tuple of eigenvalues of the linear part of the
differential systems (2) are given in (7). Direct calculations show that under the
condition s5, the equation ∆2 = 0 yields that either b2 = b3 = 0, which is not possible
since otherwise bi = 0 for i = 1, 2, 3, or L2

1 = 1 and then b1 = b3, b2 = a1−a2 = a3−a2.
Hence a1 = a3. Thus, we are under the assumptions of Theorem 1. Then, under
condition s5 either ∆2 = 0 and we are under the assumptions of Theorem 1, or
∆2 ̸= 0. Now, working in a similar way as we did for the singularities S1 for studying
if there is a fifth linearly independent resonant lattice at S1, we need to check if
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√
A2 − √

B2/
√

A2 +
√

B2 ̸= 0 is a rational number. For S2 under the condition s5

we have that

∆2

A2
2

=
(L2

1 − 1)(b2
3L

2
1x1y1 + b2

2(L
2
1 − 1)x1y1 + b2b3L

2
1(x

2
1 + y2

1))
2

L2
1(4b2b3L2

1x1y1 + b2
3L

2
1(x

2
1 + y2

1) + b2
2(L

2
1 − 1)(x2

1 + y2
1))

2
.

Since L1 ̸= 0 this shows that there always exist infinitely many singularities S2 which
cannot satisfy condition (8). At these singularities S2 the eigenvalues do not have a
fifth linearly independent resonant lattice. �

From Theorem 5 and Lemma 7 we have proved that in the case (ii.1), the differ-
ential systems (2) either satisfy the conditions in Theorem 1 or have at most four
functionally independent polynomial first integrals.

Subcase (ii.2): If K2
1 ̸= 4L2

1, solving (14), using that (b1, b2, b3) ̸= (0, 0, 0) and bi, ai ∈
R for i = 1, 2, 3 we obtain (note that K2

1 −4L2
1 = K2

1(m1−n1)
2(m1+n1)

2/(m2
1+n2

1)
2 >

0),

b1 =
b2

2
(2σ1 + K1σ2 + σ3

√
K2

1 − 4L2
1), a1 = a2 +

b2

2
(K1 + σ4

√
K2

1 − 4L2
1),

b3 =
b2

2L2
1

(σ5K1 + 2σ6L
2
1 + σ7

√
K2

1 − 4L2
1), a3 = a2 +

b2

2L2
1

(K1 + σ8

√
K2

1 − 4L2
1);

b1 = ∓ 2L2
1√

K2
1 − 4L2

1

(a2 − a3), a1 = a2, b3 = ∓ K1√
K2

1 − 4L2
1

(a2 − a3), b2 = 0;

b1 =
b3K1

2
, a1 = a2 ∓ b3

2

√
K2

1 − 4L2
1, a3 = a2, b2 = 0;

with (σ1, σ2, σ3, σ4, σ5, σ6, σ7, σ8) equal to

(1, −1, 1,−1, 1,−1, −1,−1), (1, 1, −1,−1, 1, 1,−1, −1),

(1, 1, 1, 1, 1, 1, 1, 1), (−1,−1,−1, 1,−1, −1,−1, 1),

(−1, 1, 1, 1, −1, 1,−1, 1), (−1,−1, 1,−1, −1,−1, 1, −1),

(1, −1,−1, 1, 1,−1, 1, 1), (−1, 1, −1,−1, −1, 1, 1, −1).

We remark that the second case is in fact four cases. We note that the first eight
cases can be written, in particular, as one of the following four conditions

b1 = a2 − a1 + b2 and b3 = a3 − a2 − b2,

b1 = a1 − a2 + b2 and b3 = a3 − a2 + b2,

b1 = a2 − a1 − b2 and b3 = a2 − a3 − b2,

b1 = a1 − a2 − b2 and b3 = a2 − a3 + b2.
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These cases are all inside the conditions of Theorem 1. Now we consider the six last
conditions and we set

s6,7 =
{
b1 = ∓2L2

1(a2 − a3)√
K2

1 − 4L2
1

, a1 = a2, b3 = −K1(a2 − a3)√
K2

1 − 4L2
1

, b2 = 0
}
,

s8,9 =
{
b1 = ∓2L2

1(a2 − a3)√
K2

1 − 4L2
1

, a1 = a2, b3 =
K1(a2 − a3)√

K2
1 − 4L2

1

, b2 = 0
}
,

s10,11 =
{
b1 =

b3K1

2
, a1 = a2 ∓ b3

2

√
K2

1 − 4L2
1, a3 = a2, b2 = 0

}
.

(15)

Lemma 8. The differential systems (2) under one of the conditions s6, . . . , s9 or s10,
s11, either satisfy the conditions of Theorem 1, or the eigenvalues of the singularity
S2 do not have a fifth linearly independent resonant lattice.

Proof. At the singularities S2, the 6-tuple of eigenvalues of the linear part of the
differential systems (2) are given in (7). Now direct calculations show that under one
of the conditions s6, . . . , s9, the equation ∆2 = 0 yields a2 = a3, which is not possible
since otherwise bi = 0 for i = 1, 2, 3. Then, under one of the conditions s6, . . . , s9,
we have ∆2 ̸= 0. Now working in a similar way as we did for the singularities S1

for studying if there is a fifth linearly independent resonant lattice at S2, we need to

check if
√

A2 − √
B2/

√
A2 +

√
B2 ̸= 0 is a rational number. Since on either s6, . . . , s9

we have
∣∣∣∣
∆2

A2
2

∣∣∣∣ =
L2

1(K
2
1 − 4L2

1)
(√

K2
1 − 4L2

1(x
2
1 + y2

1) + 2(L2
1 − 1)x1y1

)

2
(

− K2
1x1y1 + L2

1(
√

K2
1 − 4L2

1(x
2
1 + y2

1) + 4x1y1)
)2 x1y1,

and since L2
1(K

2
1 − 4L2

1) ̸= 0 this shows that there always exist infinitely many singu-
larities S2 which cannot satisfy condition (8). At these singularities S2 the eigenvalues
do not have a fifth linearly independent resonant lattice.

Now direct calculations show that under one of the conditions s10, s11 using that
K2

1 ̸= 4L2
1, the equation ∆2 = 0 yields b3 = 0 which is not possible since otherwise

bi = 0 for i = 1, 2, 3. Then, under one the conditions s10, s11 we have ∆2 ̸= 0. Now
working in a similar way as we did for the cases s6, . . . , s9, we must have that under one
of the conditions s10, s11, condition (8) must hold. However, since ∆2/A

2
2 = N1N2/D1

with

N1 = K1

√
K2

1 − 4L2
1(x

2
1 + y2

1) + 2(K2
1 − 2L2

1)x1y1,

N2 = K1

√
K2

1 − 4L2
1(x

2
1 + y2

1) + 2(K2
1 − 2L2

1 − 2)x1y1,

D1 = 4
(
(K2

1 − 2L2
1)(x

2
1 + y2

1) + 2K1

√
K2

1 − 4L2
1x1y1

)2
,

and since L1K1(K
2
1 − 4L2

1) ̸= 0 this shows again that there always exist infinitely
many singularities S2 which cannot satisfy condition (8). At these singularities S2

the eigenvalues do not have a fifth linearly independent resonant lattice. �
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From Theorem 5 and Lemma 8 we have proved that in the case (ii.2), the differ-
ential systems (2) either satisfy the conditions in Theorem 1 or have at most four
functionally independent polynomial first integrals.

In short, if cases (i) or (ii) hold then the conditions given in Theorem 1 are satisfied
and by Corollary 2 the differential systems (2) are completely integrable. If cases (i)
and (ii) do not hold then by Theorem 5 the differential systems (2) can have at
most four analytic integrals in a neighborhood of a point of S. Consequently the
differential systems (2) have at most four functionally independent polynomial first
integrals. This completes the proof of Theorem 3
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