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ON THE PERIODIC SOLUTIONS OF PERTURBED

4D NON–RESONANT SYSTEMS

JAUME LLIBRE1, DOUGLAS D. NOVAES2 AND MARCO ANTONIO TEIXEIRA2

Abstract. We provide sufficient conditions for the existence of periodic solutions of a 4D

non–resonant system perturbed by smooth or non–smooth functions. We apply these results

to study the small amplitude periodic solutions of the non–linear planar double pendulum

perturbed by smooth or non–smooth function.

1. Introduction

A major problem in general perturbation theory is to detect how persistent are some given
properties. In other words we want to translate some dynamical properties from the unper-
turbed system to the perturbed one. Often the unperturbed system is linear and the objects to
be continued to the perturbed system are equilibrium points, periodic orbits or invariant torus.
In this direction, the aim of this paper, is to deal with the periodic solutions of the following
kind of differential systems

(1)

x′(t) = ω1 y + εP1(t, x, y, z, w) + ε2R1(t, x, y, z, w, ε),

y′(t) = −ω1 x+ εP2(t, x, y, z, w) + ε2R2(t, x, y, z, w, ε),

z′(t) = ω2 w + εP3(t, x, y, z, w) + ε2R3(t, x, y, z, w, ε),

w′(t) = −ω2 z + εP4(t, x, y, z, w) + ε2R4(t, x, y, z, w, ε),

where

Pi(t, x, y, z, w) = P 1
i (t, x, y, z, w) + sign(hi(t, x, y, z, w))P

2
i (t, x, y, z, w), and

Ri(t, x, y, z, w, ε) = R1
i (t, x, y, z, w, ε) + sign(hi(t, x, y, z, w))R

2
i (t, x, y, z, w, ε).

Here P j
i : R × D → R, Rj

i : R × D × (−ε0, ε0) → R for i = 1, 2, 3, 4 and j = 1, 2 are smooth
functions T–periodic in the variable t being T the period of some periodic solution of (1) when
ε = 0, and D an open subset of R4. The functions hi for i = 1, 2, 3, 4 are smooth having 0
as a regular value. The prime in (1) denotes derivative with respect to time t. We denote by
Σ = {(t, x, y, z, w) ∈ R ×D : (h1h2h3h4)(t, x, y, z) = 0} the set of discontinuity. Furthermore
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we assume that h1 = h2 and h3 = h4. The function sgn(z) denotes the sign function, i.e.

sgn(z) =





−1 if z < 0,

0 if z = 0,

1 if z > 0.

Observe that system (1) with ε = 0 is simply the unperturbed system. Otherwise we have the
perturbed system.

Our goal is to provide an algorithm, via tools in advanced averaging theory, for detecting
the periodic orbits of the perturbed system which emerge from the set of periodic orbits of the
unperturbed system. It is to be noted that a very similar scenario holds for a model of the
double pendulum in which our main results will be applied.

1.1. Background and historical facts. The first serious proofs in the averaging theory for
differential systems can be traced back to the works of Fatou [6] in 1928, Krylov and Bogoliubov
[4] in the 1930s and Bogoliubov [3] in 1945. For a modern point of view on this theory see the
book of Sanders and Verhulst [13].

The method of averaging plays an important role in the study of nonlinear systems related
to complex behavior patterns such as bifurcation and stability of the periodic solutions of such
systems. Here we need to deal with systems in the normal form of the averaging theory given
by

(2) ẋ(t) = G0(t,x) + εG1(t,x) + ε2G2(t,x, ε),

see the basic results on this theory in section 3. One of the basic problems for applying the
averaging theory is to write the system under study in the normal form (23).

Another tool used in this paper is the regularization process for discontinuous differential
systems introduced by Sotomayor and Teixeira in [14]. In this process a discontinuous vector
field Z(t, x) is approximated by an one–parameter family of continuous vector fields Zδ(t, x).

As far as we know, the two methods cited above has been firstly used together in [10] by
Llibre and Teixeixa where it was studied the stable limit cycle of a weight–driven pendulum
clock. In this paper we use the ideas presented in [10] to study the periodic solutions of (1).

1.2. Setting the problem. The objective of this paper is to provide a system of equations
whose simple zeros provide periodic solutions of (1). In order to present our results we need
some preliminary definitions and notations.

The unperturbed system (1) has the origin as its unique singular point with eigenvalues
±ω1 i,±ω2 i. If the non–resonant condition ω1/ω2 ∈ R\Q is satisfied then this system has, in
the phase space (x, y, z, w), two planes filled with periodic solutions except the origin. The
periods of such periodic orbits are

T1 =
2π

ω1
or T2 =

2π

ω2
.

These periodic orbits live into the planes associated to the eigenvectors with eigenvalues ±ω1 i
or ±ω2 i, respectively. We shall study which of these periodic solutions persist for the perturbed
system (1) when the parameter ε is sufficiently small and the functions of perturbation are either
T1 or T2 periodic.

Let ϕ1(t, u, v) be the periodic function

(3) ϕ1(t, u, v) =
(
u cos(ω1t) + v sin(ω1t), v cos(ω1t)− u sin(ω1t), 0, 0

)
.
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Define F1(x, y):

(4)

∫ T1

0

(
cos(ω1t)P

1
1 (t, ϕ1(t, x, y))− sin(ω1t)P

1
2 (t, ϕ1(t, x, y))

)
dt

+

∫ T1

0

(
cos(ω1t)P

2
1 (t, ϕ1(t, x, y))− sin(ω1t)P

2
2 (t, ϕ1(t, x, y))

)
sign(h1(t, ϕ1(t, x, y)))dt,

and F2(x, y):

(5)

∫ T1

0

(
cos(ω1t)P

1
2 (t, ϕ1(t, x, y)) + sin(ω1t)P

1
1 (t, ϕ1(t, x, y))

)
dt

+

∫ T1

0

(
cos(ω1t)P

2
2 (t, ϕ1(t, x, y))− sin(ω1t)P

2
1 (t, ϕ1(t, x, y))

)
sign(h1(t, ϕ1(t, x, y)))dt.

Now let ϕ2(t, u, v) be the periodic function

(6) ϕ2(t, u, v) =
(
0, 0, u cos(ω2t) + v sin(ω2t), v cos(ω2t)− u sin(ω2t)

)
.

Define F1(z, w):

(7)

∫ T2

0

(
cos(ω2t)P

1
3 (t, ϕ2(t, x, y))− sin(ω2t)P

1
4 (t, ϕ1(t, x, y))

)
dt

+

∫ T2

0

(
cos(ω2t)P

2
3 (t, ϕ2(t, x, y))− sin(ω2t)P

2
4 (t, ϕ1(t, x, y))

)
sign(h3(t, ϕ2(t, x, y)))dt,

and F2(z, w):

(8)

∫ T2

0

(
cos(ω2t)P

1
4 (t, ϕ2(t, x, y)) + sin(ω2t)P

1
3 (t, ϕ2(t, x, y))

)
dt

+

∫ T2

0

(
cos(ω2t)P

2
4 (t, ϕ2(t, x, y))− sin(ω2t)P

2
3 (t, ϕ2(t, x, y))

)
sign(h3(t, ϕ2(t, x, y)))dt.

A zero (x∗, y∗) of the system of functions

(9) F1(x, y) = 0, F2(x, y) = 0,

such that

det

(
∂(F1,F2)

∂(x, y)

∣∣∣∣
(x,y)=(x∗,y∗)

)
6= 0,

is called a simple zero of (9). Similarly, we define a simple zero of the system of functions

(10) F1(z, w) = 0, F2(z, w) = 0.

Remark 1. For p ∈ D, let ϕ(t, p) be the solution of (1) such that ϕ(0, p) = p. We say that
the Crossing Hypothesis is satisfied if there exists a compact set V ⊂ D such that the curve
t 7→ (t, ϕ(t, p)) reaches the set Σ at points of crossing regions (see Appendix) for every p ∈ V
and t ∈ [0, T ].

1.3. Statement of results. Our main result on the periodic solutions of the perturbed system
(1) which bifurcate from the periodic solutions of the unperturbed system with period T1 is the
following.

Theorem A. Assume that the functions P j
i and Rj

i of (1) are T1–periodic in the variable t.
Also assume that the Crossing Hypothesis (see Remark 1) is satisfied for ε ∈ (0, ε0) with ε0 > 0
and (x, y, z, w) ∈ V . Then for ε > 0 sufficiently small and for every simple zero (x∗, y∗) of (9)
such that (x∗, y∗, 0, 0) ∈ V , the perturbed system (1) has a T1–periodic solution ϕ(t, ε) such that
ϕ(0, ε) → (x∗, y∗, 0, 0) when ε → 0.
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For ε > 0 sufficiently small the solution ϕ(t, ε) of Theorem A is close to the plane defined by
the eigenvectors of the eigenvalues ±iω1.

With a change of variables we can also state a result on the periodic solutions of perturbed
system (1) which bifurcate from the periodic solutions of the unperturbed system with period
T2.

Corollary 1. Assume that the functions P j
i and Rj

i of (1) are T2–periodic in the variable t.
Also assume that the Crossing Hypothesis (see Remark 1) is satisfied for ε ∈ (0, ε0) with ε0 > 0.
and (x, y, z, w) ∈ V . Then for ε > 0 sufficiently small and for every simple zero (z∗, w∗) of
(10) such that (0, 0, z∗, w∗) ∈ V , the perturbed system (1) has a T2–periodic solution ϕ(t, ε)
such that ϕ(0, ε) → (0, 0, z∗, w∗) when ε → 0.

Again, for ε > 0 sufficiently small the solution ϕ(t, ε) of Corollary 1 is close to the plane
defined by the eigenvectors of the eigenvalues ±iω2.

Theorem A and Corollary 1 are proved in Section 4. Its proof is based in the averaging
theory for computing periodic solutions, see Section 3.

Remark 2. The theory could be developed for a more general system by considering the smooth
functions P j

i and Rj
i , TP j

i
–periodic and TRj

i
–periodic in the variable t and respectively in reso-

nance pP j
i
:qP j

i
and pRj

i
:qRj

i
with some of the periodic solutions of the unperturbed system (1),

being p and q relatively prime positive integers for p = pP j
i
, pRj

i
, q = qP j

i
, qRj

i
, i = 1, 2, 3, 4 and

j = 1, 2. However, in this case we may assume that the functions P j
i and Rj

i for i = 1, 2, 3, 4
and j = 1, 2 are kT–periodic being T the period of the periodic solution of the unperturbed
system (1) for which the functions are resonant. Indeed, if we take k the least common multiple
among pP j

i
and pRj

i
for i = 1, 2, 3, 4 and j = 1, 2, then there exists integers nP j

i
and nRj

i
such

that k = nP j
i
pP j

i
= nRj

i
pRj

i
. Hence

kT = nP j
i
qP j

i

pP j
i

qP j
i

T = nRj
i
qRj

i

pRj
i

qRj
i

T,

for i = 1, 2, 3, 4, and j = 1, 2. Here to make the notation simpler we assume that all functions
have the same period.

2. Application: Double pendulum model

The planar double pendulum model consists in a system of two point masses m1 and m2

moving in a fixed plane, in which the distance between a point P (called pivot) and m1 and
the distance between m1 and m2 are fixed, and equal to l1 and l2 respectively. We assume the
masses do not interact. We allow gravity to act on the masses m1 and m2.

The position of the double pendulum is determined by the two angles φ1 and φ2 shown in
Figure 1. The corresponding Lagrange equations of motion are

(11)

(m1 +m2)l1φ̈1 +m2l2φ̈2 cos(φ1 − φ2) + (m1 +m2)g sin(φ1)

+m2l2φ̇
2
2 sin(φ1 − φ2) = 0,

m2l1φ̈1 cos(φ1 − φ2) +m2l2φ̈2 +m2g sin(φ2) +m2l1φ̇
2
1 sin(φ1 − φ2) = 0,

where g is the acceleration of the gravity. For more details on these equations of motion see [8].
Here the dot denotes derivative with respect to the time τ .

The authors in [9] have studied, in the vicinity of the equilibrium φ1 = φ2 = 0, the persistence
of periodic solutions of system (11) perturbed smoothly in the particular case when m1 = m2

and l1 = l2. In this paper stronger generalizations are considered.
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P

l1

φ1

φ2

l2

m1

m2

g

Figure 1. The planar double pendulum.

Denote the expressions for φ̈1 and φ̈2 in (11) respectively by H1(φ1, φ̇1, φ2, φ̇2) and H2(φ1, φ̇1,

φ2, φ̇2). In this section we consider the following perturbed problem:

(12)

φ̈1(τ) = H1(φ1, φ̇1, φ2, φ̇2) + ε
(
F1(τ, φ1, φ̇1, φ2, φ̇2) + sgn(φ1)F2(τ, φ1, φ̇1, φ2, φ̇2)

)

+ε2
(
G1(τ, φ1, φ̇1, φ2, φ̇2) + sgn(φ1)G2(τ, φ1, φ̇1, φ2, φ̇2)

)
+O(ε3),

φ̈2(τ) = H2(φ1, φ̇1, φ2, φ̇2) + ε
(
F3(τ, φ1, φ̇1, φ2, φ̇2) + sgn(φ2)F4(τ, φ1, φ̇1, φ2, φ̇2)

)

+ε2
(
G3(τ, φ1, φ̇1, φ2, φ̇2) + sgn(φ2)G4(τ, φ1, φ̇1, φ2, φ̇2)

)
+O(ε3).

The smooth functions Fi and Gi for i = 1, 2, 3, 4 define the perturbation. These functions are
respectively T–periodic in the variable τ , being T the period of some periodic solution of (12)
when ε = 0, if there exists. We also assume that Fi(τ, 0, 0, 0, 0) = 0 for i = 1, 2, 3, 4.

Roughly speaking, the functions Fi and Gi for i = 1, 2, 3, 4, can be taken in a certain way
arbitrary. It makes us able to provide, in a physical context, the real meaning of these functions.
In our case, since we are working with discontinuities in the variables φ1 and φ2, the functions
F1, F2, G1 and G2 could model the escapement for the particle m1, and the functions F3, F4,
G3 and G4 could model the escapement for the particle m2. If discontinuities in the variables φ̇1

and φ̇2 are considered instead discontinuities in the variables φ1 and φ2, the respective functions
could model the Coulomb Friction. We can also work by composing these two phenomena. For
more details on physical systems with discontinuous models see, for instance, [1] and [2].

The objective of this section is to provide a system of equations whose simple zeros provide
periodic solutions (see Figure 2) of the perturbed planar double pendulum (12). In order to
present our results we need some preliminary definitions and notations.

In what follows we define the real parameters

(13) γ =

√
l1 m1

g m2
, a =

m1 +m2

m2
> 1, and b =

l1(m1 +m2)

l2m2
> 0,

the frequencies

(14) ω1 =

√
a+ b−

√
∆√

2
and ω2 =

√
a+ b+

√
∆√

2
,
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φ̇1

φ1

(φ2, φ̇2)

Figure 2. Periodic solution of the perturbed system (12) converging to the origin
when ε → 0.

with ∆ = (a− b)2 + 4b > 0, and the periods

(15) T1 =
2π

ω1
and T2 =

2π

ω2
.

We shall study the persistence of periodic solutions for the perturbed system (12) when the
parameter ε is sufficiently small and the functions Fi and Gi for i = 1, 2, 3, 4 have period either
γT1, or γT2.

Now let

(16) F̃i(t, u1, u2, u3, u4) = d1i (t)u1 + d2i (t)u2 + d3i (t)u3 + d4i (t)u4,

with

d1i (t) = γ2 ∂Fi

∂φ1
(γt, 0, 0, 0, 0), d2i (t) = γ

∂Fi

∂φ̇1

(γt, 0, 0, 0, 0),

d3i (t) = γ2 ∂Fi

∂φ2
(γt, 0, 0, 0, 0), d4i (t) = γ

∂Fi

∂φ̇2

(γt, 0, 0, 0, 0),

and let

(17) G̃i(t) = γ2Gi(γt, 0, 0, 0, 0).
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We define the functions:

(18)

F1(x, y) =

∫ T1

0

sin (ω1 t)
(
2b(F 1 + G̃1(t)) + (F 3 + G̃3(t))

(
a− b+

√
∆
))

dt

+

∫ T1

0

sin (ω1 t)
(
2b(F 2 + G̃2(t))

+(F 4 + G̃4(t))
(
a− b+

√
∆
))

sgn(π1 ◦ ϕ1(t, x, y)) dt,

F2(x, y) =

∫ T1

0

cos (ω1 t)
(
2b(F 1 + G̃1(t)) + (F 3 + G̃3(t))

(
a− b+

√
∆
))

dt

+

∫ T1

0

cos (ω1 t)
(
2b(F 2 + G̃2(t))

+(F 4 + G̃4(t))
(
a− b+

√
∆
))

sgn(π1 ◦ ϕ1(t, x, y)) dt

where

(19) F i = F̃i(t, A1, B1, C1, D1)

for i = 1, 2, 3, 4 with

A1 =

(
−a+ b+

√
∆
)

2 b ω1
(x cos (ω1 t) + y sin (ω1 t)) ,

B1 =

(
−a+ b+

√
∆
)

2b
(y cos (ω1 t)− x sin (ω1 t)) ,

C1 =
1

ω1
(x cos (ω1 t) + y sin (ω1 t)) ,

D1 = y cos (ω1 t)− x sin (ω1 t) ,

and π1 is the projection onto the first coordinate.

We also define the functions:

(20)

F1(z, w) =

∫ T2

0

sin (ω2 t)
(
−2b(F 1 + G̃1(t)) + (F 3 + G̃3(t))

(
−a+ b+

√
∆
))

dt

+

∫ T2

0

sin (ω2 t)
(
2b(F 2 + G̃2(t))

+(F 4 + G̃4(t))
(
−a+ b+

√
∆
))

sgn(π3 ◦ ϕ2(t, z, w)) dt,

F2(z, w) =

∫ T2

0

cos (ω2 t)
(
−2b(F 1 + G̃1(t)) + (F 3 + G̃3(t))

(
a− b+

√
∆
))

dt

+

∫ T2

0

cos (ω2 t)
(
2b(F 2 + G̃2(t))

+(F 4 + G̃4(t))
(
a− b+

√
∆
))

sgn(π3 ◦ ϕ2(t, z, w)) dt.

where

F i = F̃i(t, A2, B2, C2, D2)
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for i = 1, 2, 3, 4 with

A2 = −

(
a− b+

√
∆
)

2 b ω2
(z cos (ω2 t) + w sin (ω2 t)) ,

B2 = −

(
a− b+

√
∆
)

2b
(w cos (ω2 t)− z sin (ω2 t)) ,

C2 =
1

ω2
(z cos (ω2 t) + w sin (ω2 t)) ,

D2 = w cos (ω2 t)− z sin (ω2 t) ,

and π3 is the projection onto the third coordinate.

Consider the systems

(21) F1(x, y) = 0, F2(x, y) = 0,

and

(22) F1(z, w) = 0, F2(z, w) = 0.

In the next proposition we state a result on the existence of periodic solutions of the non-
smooth perturbed double pendulum (12).

Proposition 2. Assume that Fi and Gi of (12) are γT1–periodic in the variable t. Also assume
that the crossing hypothesis is satisfied for ε ∈ (0, ε0) with ε0 > 0 and (x, y, z, w) ∈ V . Then for
ε > 0 sufficiently small and for every simple zero (x∗, y∗, 0, 0) ∈ V of the non-smooth system
(21) such that the orbits pass by D, the non-smooth perturbed double pendulum (12) has a
γT1–periodic solution ϕ(t, ε) such that ϕ(0, ε) → (0, 0, 0, 0) when ε → 0.

In a similar way we can also state a result on the periodic solutions of the non–smooth
perturbed double pendulum (12) which bifurcate from the periodic solutions of the unperturbed
one with period T2.

Proposition 3. Assume that Fi and Gi of (12) are γT2–periodic in the variable t. Also assume
that the crossing hypothesis is satisfied for ε ∈ (0, ε0) with ε0 > 0 and (x, y, z, w) ∈ V . Then
for ε > 0 sufficiently small and for every simple zero (0, 0, z∗, w∗) ∈ V of the non-smooth
system (22) such that the orbits pass by D, the non-smooth perturbed double pendulum (12) has
a γT2–periodic solution ϕ(t, ε) such that ϕ(0, ε) → (0, 0, 0, 0) when ε → 0.

We provide now an application of Propositions 2 and 3.

Corollary 4. Suppose that F1 = (k1/γ
2)z + f1, F3 = (k3/γ

2)x + f3, G2 = 1/γ2 + g2, and
G4 = 1/γ2 + g4, where

k1 =
−ω2

1

2bπ
, and k3 =

−4bω2
1

π ((a− b)2 −∆)
,

with f1, f3, g2, g4, F2, F4, G1, and G3 being γTi–periodic functions in the variable τ having no
linear terms and no constant terms in relation with the spatial variables. Then the differential
system (12) for |ε| > 0 sufficiently small has two γTi–periodic solution bifurcating from the
origin. Here i = 1, 2.

Propositions 2 and 3, and Corollary 4 are proved in section 5.
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3. Basic results on averaging theory

For proving the main results of this paper we present the basic result from the averaging
theory that we need here.

Consider the differential systems of the form

(23) ẋ(t) = G0(t,x) + εG1(t,x) + ε2G2(t,x, ε),

with |ε| > 0 sufficiently small, where the functions G0, G1 : R × Λ → Rn and G2 : R × Λ ×
(−ε0, ε0) → Rn are C2 functions, T–periodic in the variable t, and Λ is an open subset of Rn.
Assume that the T–periodic solutions of the unperturbed system

(24) ẋ(t) = G0(t,x),

form a submanifold Z of dimension k in Rn. In the study of the periodic solutions the objective
of the averaging theory is to detect which periodic solutions of the unperturbed system (24)
persist as periodic solutions in the perturbed differential system (23) for |ε| > 0 sufficiently
small.

We denote by x(t, z, ε) the solution of system (24) such that x(0, z, ε) = z. The first varia-
tional equation of system (24) on the periodic solution x(t, z, 0) is

(25) ẏ = DxG0(t,x(t, z, 0))y,

where y is a n × n matrix. From now on let Mz(t) be the fundamental matrix of system (25)
such tat Mz(0) =Id. Let ξ : Rk × Rn−k → Rk be the projection ξ(x1, . . . , xn) = (x1, . . . , xk).

The T–periodic solutions of the perturbed system (24) coming from the unperturbed system
(23) for |ε| > 0 sufficiently small can be computed using the following result.

Theorem 5. We denote by V an open and bounded subset of Rk containing the submanifold Z,
and we denote by β : Cl(V ) → Rn−k a C2 function such that Z = {zα = (α, β(α)) , α ∈ Cl(V )} ⊂
Λ, where for every zα ∈ Z the solution x(t, zα) of (24) is T–periodic. Let Mzα

(t) be fundamen-
tal matrix of (25) associated to the solution x(t, zα). Assume that the matrix M−1

zα
(0)−M−1

zα
(T )

has in the lower right corner a (n− k)× (n− k) matrix Aα with det(Aα) 6= 0, and in the upper
right corner the k × (n− k) zero matrix. Let G : Cl(V ) → Rk be the function defined by

(26) G(α) = ξ

(
1

T

∫ T

0

M−1
zα

(t)G1(t,x(t, zα))dt

)
.

If there is a ∈ V such that G(a) = 0 and det ((dG/dα) (a)) 6= 0, therefore there exists a T–
periodic solution ϕ(t, ε) of system (23) satisfying ϕ(0, ε) → za as ε → 0.

Theorem 5 was proved by Malkin [11] and Roseau [12], for a shorter and new proof see [5].

4. Proofs of Theorem A and Corollary 1

The averaging theory we shall use here (see Appendix) deals with smooth system. So, first
of all, instead of working with the discontinuous differential system (1) we shall work with the
smooth differential system

(27)

x′(t) = ω1 y + εP1δ(t, x, y, z, w) + ε2R1δ(t, x, y, z, w, ε),

y′(t) = −ω1 x+ εP2δ(t, x, y, z, w) + ε2R2δ(t, x, y, z, w, ε),

z′(t) = ω2 w + εP3δ(t, x, y, z, w) + ε2R3δ(t, x, y, z, w, ε),

w′(t) = −ω2 z + εP4δ(t, x, y, z, w) + ε2R4δ(t, x, y, z, w, ε),
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where

Piδ(t, x, y, z, w) = P 1
i (t, x, y, z, w) + sδ(hi(t, x, y, z, w))P

2
i (t, x, y, z, w),

Riδ(t, x, y, z, w, ε) = F 1
i (t, x, y, z, w, ε) + sδ(hi(t, x, y, z, w))F

2
i (t, x, y, z, w, ε).

where sδ(x) is the smooth function defined in Figure 5, such that

lim
δ→0

sδ(x) = sgn(x).

−1−1

11

δ

−δ

sign(x) sδ(x)

xx

Figure 3. The functions sign(x) and sδ(x).

Lemma 6. The functions (3) and (6) are periodic solutions of the unperturbed system (27)
respectively with periods T1 and T2.

Proof. Since system (27) with ε = 0 is a linear differential system, the proof follows easily. �

Proof of Theorem A. It is well known that a Poincaré map defined in a smooth differential
system is smooth. So the Poincaré maps associated to the periodic orbits of the differential
system (27) are smooth.

The Poincaré maps, restricted at V , associated to the periodic solutions of the non-smooth
differential system (1), which are perturbations of the periodic solutions (3) are also smooth,
indeed, since the orbits starting in V reach the discontinuity set only at points of crossing region
(see Appendix), such Poincaré maps are compositions of smooth Poincaré maps. In a similar
way it follows that the Poincaré maps, restricted at V , associated to the periodic solutions of
the non-smooth differential system (1), which are perturbations of the periodic solutions (6)
are also smooth.

We can use Theorem 5 (see Section 3) for computing some periodic solutions of the smooth
systems. The periodic solutions are zeros of the displacement function, which is the Poincaré
map associated to periodic solutions minus the identity. In fact, the non-linear function (26)
whose zeros can provide periodic solutions, is the first term of order ε of the displacement
function. See for more details the proof of Theorem 5 in [5].

Since the Poincaré maps associated to periodic solutions of system (1), coming from the
perturbed periodic solutions (3) or (6), are smooth and these Poincaré maps are the limit of
the Poincaré maps associated to the smooth system (27), for which we can use Theorem 5, it
follows that we also can use Theorem 5 for computing some of the periodic solutions of the
non-smooth system (1). In other words, we can apply Theorem 5 to the smooth systems (27)
and then pass to the limit, when δ → 0, the function (26) for obtaining a function whose zeros
can give periodic solutions of the non-smooth system (1).
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We note that system (27) can be written as system (23) taking

x =




x

y

z

w




, t = τ, G0(t,x) =




ω1 y

−ω1 x

ω2 w

−ω2 z




, G1(t,x) =




P1δ(t,x)

P2δ(t,x)

P3δ(t,x)

P4δ(t,x)




and G2(t,x, ε) =




R1δ(t,x, ε)

R2δ(t,x, ε)

R3δ(t,x, ε)

R4δ(t,x, ε)




.

We shall describe the different elements which appear in the statement of Theorem 5 in the
particular case of the differential system (27). Thus we have that Λ = R4, k = 2 and n = 4. Let
r1 > 0 be arbitrarily small and let r2 > 0 be arbitrarily large. We take the open and bounded
subset V of the plane z = w = 0 as

V = {(x, y, 0, 0) ∈ R4 : r1 <
√
x2 + y2 < r2}.

As usual Cl(V ) denotes the closure of V . If α = (x, y), then we can identify V with the set

{α ∈ R2 : r1 < ||α|| < r2},

here || · || denotes the Euclidean norm of R2. The function β : Cl(V ) → R2 is β(α) = (0, 0).
Therefore, in our case the set

Z = {zα = (α, β(α)) , α ∈ Cl(V )} = {(x, y, 0, 0) ∈ R4 : r1 ≤
√

x2 + y2 ≤ r2}.

Clearly for each zα ∈ Z we can consider the periodic solution x(t, zα) = ϕ1(t, x, y) given by (3)
with period T1.

Computing the fundamental matrix Mzα
(τ) of the linear differential system (27) with ε = 0

associated to the T–periodic solution zα = (x, y, 0, 0) such that Mzα
(0) be the identity of R4,

we get that M(τ) = Mzα
(τ) is equal to




cos (ω1 t) sin (ω1 t) 0 0

− sin (ω1 t) cos (ω1 t) 0 0

0 0 cos (ω2 t) sin (ω2 t)

0 0 − sin (ω2 t) cos (ω2 t)




.
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Note that the matrix Mzα
(τ) does not depend on the particular periodic solution x(τ, zα).

Since the matrix

M−1(0)−M−1(pT1) =




0 0 0 0

0 0 0 0

0 0 2 sin2
(
pπ ω2

ω1

)
sin

(
2pπ ω2

ω1

)

0 0 − sin

(
2pπ ω2

ω1

)
2 sin2

(
pπ ω2

ω1

)




,

satisfies the assumptions of statement (ii) of Theorem 5. Indeed
∣∣∣∣∣∣∣∣

2 sin2
(
pπ ω2

ω1

)
sin

(
2pπ ω2

ω1

)

− sin

(
2pπ ω2

ω1

)
2 sin2

(
pπ ω2

ω1

)

∣∣∣∣∣∣∣∣
= 4 sin2

(
pπ ω2

ω1

)
6= 0.

because pω2/ω1 /∈ Z. So we can apply Theorem 5 to system (27).

Now ξ : R4 → R2 is ξ(x, y, z, w) = (x, y). We calculate, when δ → 0, the function

G(x, y) = G(α) = ξ

(
1

T1

∫ T1

0

M−1
zα

(t)G1(t,x(t, zα))dt

)
,

and we obtain the function G1(x, y)
(28)

1

T1

∫ T1

0

(
cos(ω1t)P

1
1 (t, ϕ1(t, x, y))− sin(ω1t)P

1
2 (t, ϕ1(t, x, y))

)
dt

+
1

T1

∫ T1

0

(
cos(ω1t)P

2
1 (t, ϕ1(t, x, y))− sin(ω1t)P

2
2 (t, ϕ1(t, x, y))

)
sign(h1(t, ϕ1(t, x, y)))dt,

and the function G2(x, y)
(29)

1

T1

∫ T1

0

(
cos(ω1t)P

1
2 (t, ϕ1(t, x, y)) + sin(ω1t)P

1
1 (t, ϕ1(t, x, y))

)
dt

+
1

T1

∫ T1

0

(
cos(ω1t)P

2
2 (t, ϕ1(t, x, y))− sin(ω1t)P

2
1 (t, ϕ1(t, x, y))

)
sign(h1(t, ϕ1(t, x, y)))dt.

Then, by Theorem 5 we have that for every simple zero (x∗, y∗) ∈ V of the system

(30) G1(x, y) = 0 , G2(x, y) = 0,

we have a periodic solution ϕ(t, ε) of system (27) such that

ϕ(0, ε) → (x∗, y∗, 0, 0) as ε → 0.

Note that system (30) is equivalent to system (9), because both equations only differs in a
non–zero multiplicative constant. Hence Theorem A is proved. �

Proof of Corollary 1. This proof follows immediately from Theorem A. �
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5. Proofs of Propositions 2 and 3, and Corollary 4

5.1. Proofs of Propositions. In order to apply Theorem A to system (12) we have to write
this system in the standard form (1). For this purpose firstly we follow the steps:

(i) proceed with the change of variable φ1 = εθ1 and φ2 = εθ2;

θ̈1(τ) =
1

ε
H1(εθ1, εθ̇1, εθ2, εθ̇2) + F1(τ, εθ1, εθ̇1, εθ2, εθ̇2) + sgn(θ1)F2(τ, εθ1, εθ̇1, εθ2, εθ̇2)

+ε
(
G1(τ, εθ1, εθ̇1, εθ2, εθ̇2) + sgn(θ1)G2(τ, εθ1, εθ̇1, εθ2, εθ̇2)

)
+O(ε3),

θ̈2(τ) =
1

ε
H2(εθ1, εθ̇1, εθ2, εθ̇2) + F3(τ, εθ1, εθ̇1, εθ2, εθ̇2) + sgn(θ2)F4(τ, εθ1, εθ̇1, εθ2, εθ̇2)

+ε
(
G1(τ, εθ1, εθ̇1, εθ2, εθ̇2) + sgn(θ2)G2(τ, εθ1, εθ̇1, εθ2, εθ̇2)

)
+O(ε3).

(ii) expand in Taylor series, for ε = 0, the expressions of θ̈1 and θ̈2;

(iii) take a new time t given by the rescaling τ = γ t, with γ =
√

l1 m1/(g m2);
(iv) and finally, denote

a =
m1 +m2

m2
> 1 and b =

l1(m1 +m2)

l2m2
> 0.

Hence, we obtain the following equations of motion for the double pendulum

(31)

θ′′1 (t) = −aθ1 + θ2 + ε
(
F̃1(t, θ1, θ

′
1, θ2, θ

′
2) + G̃1(t)

)

+εsgn(θ1)
(
F̃2(t, θ1, θ

′
1, θ2, θ

′
2) + G̃2(t)

)
+O(ε2),

θ′′2 (t) = bθ1 − bθ2 + ε
(
F̃3(t, θ1, θ

′
1, θ2, θ

′
2) + G̃3(t)

)

+εsgn(θ2)
(
F̃4(t, θ1, θ

′
1, θ2, θ

′
2) + G̃4(t)

)
+O(ε2),

where now the prime denotes derivative with respect to the new time t. Here the functions F̃i,
and G̃i for i = 1, 2, 3, 4 are given in (16) and (17). It is worth to say that the parameters γ, a
and b defined above are the same defined in (13).

Introducing the variables (X,Y, Z,W ) = (θ1, θ
′
1, θ2, θ

′
2) we write the differential system of

the non-smooth perturbed double pendulum (31) as a first–order differential system defined in
R4. Thus we have the differential system

(32)

X ′(t) = Y,

Y ′(t) = −aX + Z + ε
(
F̃1(t,X, Y, Z,W ) + G̃1(t)

)

+εsign(X)
(
F̃2(t,X, Y, Z,W ) + G̃2(t)

)
+O(ε2),

Z ′(t) = W,

W ′(t) = bX − bZ + ε
(
F̃3(t,X, Y, Z,W ) + G̃3(t)

)

+εsign(Z)
(
F̃4(t,X, Y, Z,W ) + G̃4(t)

)
+O(ε2).

Finally, we write system (32) in such a way that the linear part at the origin of the un-
perturbed system will be in its real normal Jordan form. Then, doing the change of variables
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(t,X, Y, Z,W ) → (t, x, y, z, w) given by

(33)




x

y

z

w




=




bω1√
∆

0
ω1

(
a− b+

√
∆
)

2
√
∆

0

0
b√
∆

0
a− b+

√
∆

2
√
∆

− bω2√
∆

0
ω2

(
−a+ b+

√
∆
)

2
√
∆

0

0 − b√
∆

0
−a+ b+

√
∆

2
√
∆







X

Y

Z

W




,

the differential system (32) becomes

(34)

x′ = ω1y,

y′ = −ω1x+ ε
1

2
√
∆

(
2b
(
F̌1 + G̃1(t) +

(
F̌2 + G̃2(t)

)
sign(A)

))

+ε
1

2
√
∆

((
a− b+

√
∆
)(

F̌3 + G̃3(t) +
(
F̌4 + G̃4(t)

)
sign(C)

))
+O(ε2),

z′ = ω2w,

w′ = −ω2z + ε
1

2
√
∆

(
−2b

(
F̌1 + G̃1(t) +

(
F̌2 + G̃2(t)

)
sign(A)

))

+ε
1

2
√
∆

((
−a+ b+

√
∆
)(

F̌3 + G̃3(t) +
(
F̌4 + G̃4(t)

)
sign(C)

))
+O(ε2),

where F̌i(t, x, y, z, w) = F̃i(t,A,B, C,D) for i = 1, 2, 3, 4 with

A =

(
−a+ b+

√
∆
)

2 b ω1
x−

(
a− b+

√
∆
)

2 b ω2
z,

B =

(
−a+ b+

√
∆
)

2b
y −

(
a− b+

√
∆
)

2b
w,

C =
1

ω1
x+

1

ω2
z,

D = y + w.

Proof of Proposition 2. Computing the functions (4) and (5) for the differential system (34) we
obtain the functions given in (18). Consequently, the system of functions (9) is equivalent to
the system of functions (21). Then, by Theorem A we have that for every simple zero (x∗, y∗)
of the system (21) there exists a periodic solution (x, y, z, w)(t, ε) of (34) such that

(x, y, z, w)(0, ε) → (x∗, y∗, 0, 0) as ε → 0.
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Going back through the change of coordinates (33) we get a periodic solution (X,Y, Z,W )(t, ε)
of system (32) such that




X(t, ε)

Y (t, ε)

Z(t, ε)

W (t, ε)




→




−a+ b+
√
∆

2 b ω1
(x∗ cos (ω1 t) + y∗ sin (ω1 t))

−a+ b+
√
∆

2b
(y∗ cos (ω1 t)− x∗ sin (ω1 t))

1

ω1
(x∗ cos (ω1 t) + y∗ sin (ω1 t))

y∗ cos (ω1 t)− x∗ sin (ω1 t)




as ε → 0. Consequently we obtain a periodic solution ϕ(τ, ε) of system (12) such that

ϕ(τ, ε) =

(
εX

(
τ

γ
, ε

)
,
ε

γ
Y

(
τ

γ
, ε

)
, εZ

(
τ

γ
, ε

)
,
ε

γ
W

(
τ

γ
, ε

))
,

which is clearly γT1–periodic. Moreover ϕ(0, ε) → (0, 0, 0, 0) when ε → 0. Hence Theorem A is
proved. �

Proof of Proposition 3. Computing the functions (7) and (8) to the differential system (34) we
obtain the functions given in (20). Consequently, the system of functions (10) is equivalent to
the system of functions (22). Then, by Corollary 1 we have that for every simple zero (z∗, w∗)
of the system of functions (22) there exists a periodic solution (x, y, z, w)(t, ε) of (34) such that

(x, y, z, w)(0, ε) → (0, 0, z∗, w∗) as ε → 0.

From here, the proof follows analogously to the proof of Proposition 2. �

5.2. Proof of Corollary. To obtain the expression of the functions given in (18) and (20)
we have to study the changes of sign of the functions π1 ◦ ϕ1(t, x, y) (defined in (3)) and
π3 ◦ ϕ2(t, z, w) (defined in (6)) respectively for t ∈ [0, T1] and t ∈ [0, T2].

Note that π1 ◦ ϕ1(t, x, y) = 0 only for

tn =
1

ω1

(
πn− arctan

(
x

y

))
.

So, if xy < 0, then tn ∈ [0, T1] only for n = 0, 1; and if xy > 0, then tn ∈ [0, T1] only for n = 1, 2.
We know that for all t ∈ [tn, tn+1] the function π1 ◦ ϕ1(t, x, y) has the same sign and different
sign of any t ∈ [tn−1, tn], thus the integral can be computed using the partitions {0, t0, t1, T1}
when xy < 0 and {0, t1, t2, T1} when xy > 0 as the limits of integration.

The study of changes of the sign of the function π3 ◦ ϕ2(t, z, w) for t ∈ [0, T2] and zw 6= 0 is
completely analogous.

Proof of Corollary 4. Firstly, we have to check the crossing hypothesis for the system (12) or
equivalently for the system (32). Note that we have four different vector fields defined in four
different regions (see Figure 4).

In the region R1 = {X > 0 and Z > 0} we have

X1 =




Y

−aX + Z + ε(1 + k1 Z)

W

bX − bZ + ε(1 + k3 Z),




.
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In the region R2 = {X < 0 and Z > 0} we have

X2 =




Y

−aX + Z − ε(1− k1 Z)

W

bX − bZ + ε(1 + k3 Z),




.

In the region R3 = {X < 0 and Z < 0} we have

X3 =




Y

−aX + Z − ε(1− k1 Z)

W

bX − bZ − ε(1− k3 Z),




.

Finally, in the region R4 = {X > 0 and Z < 0} we have

X4 =




Y

−aX + Z + ε(1 + k1 Z)

W

bX − bZ − ε(1− k3 Z),




.

Z = 0

X = 0

X1X2

X3 X4

π−1
3 (0)

π−1
1 (0)

Figure 4. Four different vector fields.

To study the types of the sets Mij (see Appendix), we have to compute Lie derivative of the
functions π1 and π3 with respect to the vector fields Xi for i = 1, 2, 3, 4, i.e.

(LXi
)(πj)(X,Y, Z,W ) = 〈∇πj ,Xi〉(X,Y, Z,W ),

where πj is the projection onto the jth coordinate.
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Proceeding with these calculations we have

(LX1
)(π1)(X,Y, Z,W ) = (LX2

)(π1)(X,Y, Z,W ) = Y,

(LX2
)(π2)(X,Y, Z,W ) = (LX3

)(π2)(X,Y, Z,W ) = W,

(LX3
)(π1)(X,Y, Z,W ) = (LX4

)(π1)(X,Y, Z,W ) = Y,

(LX1
)(π2)(X,Y, Z,W ) = (LX4

)(π2)(X,Y, Z,W ) = W.

Hence we can conclude that in the set

T = {(X,Y, 0, 0)}
⋃

{(0, 0, Z,W )},

the flow is tangent to the discontinuous set, and in any other point the flow cross the set of
discontinuity.

In the coordinates defined in (33), we have that

T =

{(
x, y,−ω2

ω1
x,−y

)}⋃{(
x, y, β

ω2

ω1
x, βy

)}
,

where

β = −a− b−
√
∆

a− b+
√
∆
.

Observe that the periodic orbits given by Lemma 6 filling the planes {(x, y, 0, 0)} and {(0, 0, z, w)},
except the origin, do not reach the set T . Thus, for |ε| > 0 sufficiently small, there exists a neigh-
borhood of {(x, y, 0, 0)}\(0, 0, 0, 0) and {(0, 0, z, w)}\(0, 0, 0, 0) such that the orbits cross the set
of discontinuity. In other words, the crossing hypothesis is satisfied for every ε ∈ (−ε0, ε0) for
some ε0 > 0.

Now assume that the function are γT1–periodic in the variable τ . By studying the changes
of the sign of the function π1 ◦ϕ1(t, x, y) for t ∈ [0, T1] we conclude that the functions (18) and
(20) are given by

F1(x, y) =





y +
4(a+ b+

√
∆)

ω1

√
1 +

x2

y2

if y > 0,

y − 4(a+ b+
√
∆)

ω1

√
1 +

x2

y2

if y < 0,

F2(x, y) =





x+
4x(a+ b+

√
∆)

ω1y

√
1 +

x2

y2

if y > 0,

x− 4x(a+ b+
√
∆)

ω1y

√
1 +

x2

y2

if y < 0,

So the system F1(x, y) = 0 and F2(x, y) = 0 has the following simple solutions:

(x∗
1, y

∗
1) =

(
0 , 4

a+ b+
√
∆

ω1

)
,
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and

(x∗
2, y

∗
2) =

(
0 , −4

a+ b+
√
∆

ω1

)
.

Hence, by Theorem A we have two γT1–periodic solution of the non-smooth perturbed dou-
ble pendulum. The argument in the case when the functions are γT2–periodic is completely
analogous. So we have conclude the proof of corollary. �

Appendix: Basic concepts on Filippov systems

We say that a vector field X : D ⊂ Rn → Rn is piecewise continuous if its domain of
definition D can be partitioned in a finite collection of connected, open and disjoint sets Di,
i = 1, · · · , k, such that ∪Di = D, and the vector field X

∣∣
Di

is continuous for i = 1, · · · , k.
We denote by SX ⊂ ∂D1∪· · ·∪∂Dk the set of points where the vector fieldX is discontinuous.

By assumptions, the set SX has measure zero.

If Σ ⊂ SX is a manifold of codimension one, then Σ can be decomposed as the union of the
closure of the following three kind of regions (see Figure 5):

Σc = {x ∈ Σ : (Xh)(Y h)(x) > 0} ;
Σe = {x ∈ Σ : (Xh)(x) > 0 e (Y h)(x) < 0} ;
Σs = {x ∈ Σ : (Xh)(x) < 0 e (Y h)(x) > 0} .

Σc ΣsΣe

Figure 5. Crossing region (Σc), escaping region (Σe) and sliding region (Σs).

For p ∈ Σe ∪ Σs we define the Sliding Vector Field as

(35) Zs(p) =
1

(Y h)(p)− (Xh)(p)
((Y h)(Xh)(p)− (Xh)(Y h)(p)) .

Consider the following equation

(36) ẋ = X(x),

where X : D ⊂ Rn → Rn is a piecewise continuous vector field. The local solution of the
equation (36) passing through a point p ∈ Σ is given by the Filippov convention:

(i) for p ∈ Σc such that (Xh)(p), (Y h)(p) > 0 and taking the origin of time at p, the
trajectory is defined as ϕZ(t, p) = ϕY (t, p) for t ∈ Ip ∩ {t < 0} and ϕZ(t, p) = ϕX(t, p)
for t ∈ Ip ∩ {t > 0}. For the case (Xh)(p), (Y h)(p) < 0 the definition is the same
reversing time;
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(i) for p ∈ Σe ∪ Σs such that Zs(p) 6= 0, ϕZ(t, p) = ϕZs
(t, p) for t ∈ Ip ⊂ R.

Here ϕW denotes the flow of a vector field W .

For more details about discontinuous differential equation see Filippov’s book [7].
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