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LIOUVILLIAN FIRST INTEGRALS FOR QUADRATIC
SYSTEMS WITH AN INTEGRABLE SADDLE

YUDY BOLAÑOS1, JAUME LLIBRE1 AND CLAUDIA VALLS2

Abstract. We provide explicit expressions for the Liouvillian
first integrals of the quadratic polynomial differential systems hav-
ing an integrable saddle.

1. Introduction

Let R[x, y] be the ring of all polynomials in the variables x and y
and coefficients in R.

A quadratic polynomial differential system or simply a quadratic sys-
tem is a polynomial differential system in R2 of the form

(1) ẋ = P (x, y), ẏ = Q(x, y),

where P,Q ∈ R[x, y] and the maximum of the degrees of P and Q is 2.
Quadratic differential systems have been widely studied in the last

one hundred years and more than one thousand papers have been pub-
lished about them (see for instance [13, 16, 17]). These systems are
considered as one of the easiest, but not trivial, families of nonlinear
differential systems, although the problem of classifying all quadratic
vector fields (even integrable ones) still remains open. For more infor-
mation on the integrable differential vector fields in dimension 2, see
for instance [4]).

The classification of the centers for the quadratic systems has a long
history which started with the works of Dulac [6], Kapteyn [10, 11],
Bautin [2], Zoladek [18], etc. Schlomiuk, Guckenheimer and Rand in
[15] described a brief history of the problem of the center in general,
and it includes a list of 30 papers covering the topic and the turbulent
history of the center for the quadratic case (see pages 3, 4 and 13).

The weak focus and the quadratic centers are classified using the
Lyapunov constants V1, V2 and V3. Dulac [6] was the first to detect
that the weak focus and the quadratic centers can pass to weak saddles
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and integrable saddles through a complex change of variables, see for
details [9]. Recently such kind of saddles have been studied by several
authors Cai Sulin [3], Joyal and Rousseau [9], and Artés, Llibre and
Vulpe [1]. These last authors characterized the phase portraits of all
quadratic systems having an integrable saddle, but they did not provide
their first integrals. This will be the main objective of this paper.

A weak saddle is a hyperbolic saddle such that the trace of its linear
part is zero. More precisely, from [1, 3, 6, 9] if a quadratic system
possesses a weak saddle via an affine transformation this system can
be written as

ẋ = x + ax2 + bxy + cy2, ẏ = −y − kx2 − lxy − my2,

with the weak saddle at the origin. Moreover, we say that the origin is
an integrable saddle if

L1 = lm − ab = 0,

L2 = kb(2m − b)(m + 2b) − cl(2a − l)(a + 2l) = 0,

L3 = (ck − lb)[acl(2a − l) − bkm(2m − b)] = 0.

Taking into account these conditions it is obtained in [1] that the
quadratic systems with an integrable saddle can be reduced to the
following five families of quadratic systems

ẋ =x − 2ckx2 + xy + cy2, ẏ = − y − kx2 − ckxy + 2y2,(2)

ẋ =x + mx2 + xy + cy2, ẏ = − y − cx2 − xy − my2,(3)

ẋ =x + lmx2 + xy + cy2, ẏ = − y − cl3x2 − lxy − my2,(4)

ẋ =x + ax2 + cy2, ẏ = − y − kx2 − my2,(5)

ẋ =x + ax2 + 2mxy + cy2, ẏ = − y − kx2 − 2axy − my2.(6)

The polynomial differential system (1) is integrable on an open and
dense subset U of R2 if there exists a non–constant C1 function H :
U → R, called a first integral of the system on U , which is con-
stant on all solution curves (x(t), y(t)) of system (1) contained in U ;
i.e. H(x(t), y(t)) = constant for all values of t for which the solution
(x(t), y(t)) is defined and contained in U , or in other words

P
∂H

∂x
+ Q

∂H

∂y
= 0,

for the points of U .
Let W be a simple connected open and dense subset of R2. A non–

zero C1 function V : W → R is an inverse integrating factor of system



QUADRATIC SYSTEMS WITH AN INTEGRABLE SADDLE 3

(1) on W if it is a solution of linear partial differential equation

(7) P
∂V

∂x
+ Q

∂V

∂y
= div(P,Q)V,

where div(P, Q) = ∂P/∂x + ∂Q/∂y denotes the divergence of vector
field X = (P, Q) associated to system (1).

It is known that all quadratic systems with an integrable saddle
possess a Liouvillian first integral, see for instance [1], or the appendix
where we explain how it is known that all integrable saddles have a
Liouvillian first integral. We recall that a Liouvillian first integral is
a first integral that can be expressed by quadratures of elementary
functions, see for more details [14]. This is the reason for calling the
weak saddles satisfying L1 = L2 = L3 = 0, integrable saddles. The
objective of this paper is to provide the explicit expressions of these
first integrals for each of the families (2)–(6).

2. Statement of the main results

We need to remember that a polynomial differential system (1) with
an inverse integrating factor V = V (x, y) : W → R possess a first
integral given by

(8) H(x, y) =

∫
P (x, y)

V (x, y)
dy + g(x),

where g is chosen satisfying that
∂H

∂x
= −Q

V
.

Theorem 1. The quadratic systems (2)–(6) possess a polynomial in-
verse integrating factor V = V (x, y).

(a) For system (2) V = V11V12 with

V11 =kx2 − 2ckxy + c2ky2 + 2ckx + 2y − 1,

V12 =(1 − c2k)(kx3 − 3ckx2y + 3c2kxy2 − c3ky3 + 3ckx2+

3(1 − c2k)xy − 3cy2) + 6c(ckx + y) − 2c.

(b) For system (3) V = V21V22 with

V21 =(c − m)(x + y) − 1,

V22 =(2c − 1)(c + m − 1)(cx2 − (c − m − 1)xy + cy2)+

2c((c + m − 1)(x + y) + 1).
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(c) For system (4) V = V31V32 with

V31 =1 − (cl − m)(lx + y),

V32 =2c − (2cl − 1)((cl − 1)2 − m2)xy + 2c(cl + m − 1)

(lx + y) + c(2cl − 1)(cl + m − 1)(l2x2 + y2).

(d) For system (5)

V =(ck − am)(kx3 + 3xy + ax2y + mxy2 + cy3)−
(a2 + km)x2 − (ac + m2)y2 − 2ax − 2my − 1.

(e) For system (6) V = 1. So, system (6) is Hamiltonian.

In 1992 Singer [14] proved that a polynomial differential system has
a Liouvillian first integral if and only if it has an inverse integrating
factor of the form

(9) exp

(∫
U1(x, y)dx +

∫
U2(x, y)dy

)
,

where U1 and U2 are rational functions which verify ∂U1/∂y = ∂U2/∂x.
In 1999 Christopher [5] improved the results of Singer showing that the
inverse integrating factor (9) can be written into the form

(10) exp(g/h)
k∏

i=1

fλi
i ,

where g, h and fi are polynomials and λi ∈ C.
Since all inverse integrating factors of Theorem 1 are polynomial,

they are of the form (10). Consequently, by the results of Singer and
Christopher we have given a new proof that all the first integrals of sys-
tems (2)–(6) are Liouvillian. Now we shall give the explicit expressions
of these first integrals.

Theorem 2. The following statements hold.

(a) A first integral of system (2) is

V 3
11

V 2
12

if 1 + c2k ̸= 0,

4cx + 6x2 + c2(1 − 4y + 6y2)

V 2
11

if 1 + c2k = 0.

(b) A first integral of system (3) is
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V c+m−1
21 V c−m

22 if m ̸= c, 1 − c, 3c − 1, c ̸= 1/2,

(2c − 1)(x + y) − log |V22| if m = c ̸= 1/2,

(2c − 1)(c(2c − 1)(x2 + y2) + (−4c2 + 6c − 2)xy + 2c(x + y))+

2c log |V21| if m = 1 − c ̸= 1/2,

1

V 2
21

(2(2c − 1)(2c + (1 − 2c)2x)y + c(3 + 4(2c − 1)x)) + 2c log |V21|

if m = 3c − 1 ̸= 1/2,

1

V22

(4V22 − 8 + (2m − 1)2(x2 + (2m + 1)xy + y2) − 8V22 log |2V22|)
if c = 1/2, m ̸= 1/2,

moreover if m = c = 1/2, system (3) coincides with system (6) with
a = k = 1/2.

(c) A first integral of system (4) is

V m−cl
32

V m+cl−1
31

if m ̸= cl, 1 − cl, 3cl − 1, 2cl ̸= 1,

1

V32

(4c(2V32 − 8c) + (2m − 1)2(x2 + 2c(2m + 1)xy + 4c2y2)−

16cV32 log |2V32|) if 2cl = 1, m ̸= 1/2,

(2cl − 1)(lx + y) − log |V32| if m = cl, 2cl ̸= 1,

(2cl − 1)((−2 + 2cl(3 − 2cl))xy + 2c(lx + y) + c(2cl − 1)(l2x2 + y2))+

2c log |V31| if m = 1 − cl, 2cl ̸= 1,

1

V 2
31

[−16c3l4x2 + 2x(lx − 1) + 8c2l2x(3lx − 1 + c(−12l2x2 + 8lx − 1))] +

2

V31

(x + 4c2l2x + c(2 − 4lx)) + 2c log |V31| if m = 3cl − 1, 2cl ̸= 1,

moreover if m = 1/2 and 2cl = 1, system (4) coincides with system (6)
with a = 1/(4c) and k = 1/(8c2).

(d) A first integral of system (5) is
3∑

i=1

(x + ax2 + cr2
i ) log |y − ri|

f(ri)
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where f(r) = 3c(am − ck)r2 + 2(ac + m2 − ckmx + am2x)r + a(am −
ck)x2 + 3(am − ck)x + 2m and r1, r2 and r3 are the three roots of the
following polynomial in the variable r

(−c2k + acm)r3 + (ac + m2 − ckmx + am2x)r2 + (2m − 3ckx + 3amx−
ackx2 + a2mx2)r + (2ax + a2x2 + kmx2 − ck2x3 + akmx3 + 1).

(e) A first integral of Hamiltonian system (6) is

kx3 + 3ax2y + 3mxy2 + cy3 + 3xy.

3. Proof of Theorems 1 and 2

Proof of Theorem 1. For each of the statements of the theorem, the
proof is obtained looking for a polynomial solution of the linear partial
differential equation (7).

For quadratic system (2) the equation (7) is

(11) (x − 2ckx2 + xy + cy2)
∂V

∂x
+ (−y − kx2 − ckxy + 2y2)

∂V

∂y
−

(5(y − ckx))V = 0.

Once we look for a polynomial solution of (11) given by V = V (x, y)
of degree 5 we get

V = − 1

5c4k2(c2k − 1)
(kx2 − 2ckxy + c2ky2 + 2ckx + 2y − 1)

[(1 − c2k)(kx3 − 3ckx2y + 3c2kxy2 − c3ky3 + 3ckx2+

3(1 − c2k)xy − 3cy2) + 6c(ckx + y) − 2c].

So this V is an inverse integrating factor of system (2). Therefore, this
proves statement (a) of the theorem.

Proceeding in a similar way we obtain the inverse polynomial in-
tegrating factors of the quadratic systems (3)–(5). For the quadratic
system (6) we have div(P, Q) = 0 and therefore, the system is Hamil-
tonian and its inverse integrating factor is 1. �

Proof of Theorem 2. Since system (2) has a polynomial inverse inte-
grating factor V given by Theorem 1(a), the first integral associated to
V , see equation (8), is

H(x, y) =

∫
x − 2ckx2 + xy + cy2

V (x, y)
dy + g(x),
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satisfying
∂H

∂x
= −−y − kx2 − ckxy + 2y2

V
. Hence we obtain g(x) = 0,

and

H =
1

6(1 + c2k)2
(3 log | − 1 + kx2 + 2y + c2ky2 + x(2ck − 2cky)|

− 2 log |(1 − c2k)(kx3 − 3ckx2y + 3c2kxy2 − c3ky3 + 3ckx2+

3(1 − c2k)xy − 3cy2) + 6c(ckx + y) − 2c|)
if 1 + c2k ̸= 0. Ignoring the constant appearing in H we can write the
first integral of the form

3 log |V11| − 2 log |V12| = log

∣∣∣∣
V 3

11

V 2
12

∣∣∣∣ ,

where V11 and V12 are the functions defined in Theorem 1(a). Finally,
applying the exponential function to the above expression we get the
rational first integral of the quadratic system (2), so statement (a) if
1 + c2k ̸= 0 is proved.

If 1 + c2k = 0, quadratic system (2) becomes

ẋ = x +
2x2

c
+ xy + cy2, ẏ = −y +

1

c2
x2 +

1

c
xy + 2y2.

Again by Theorem 1(a), V11 = −(c + x − cy)2/c2 and V12 = −2(c +
x − cy)3/c2. We calculate the first integral associated to V = V11V12

computing (8) for this system, which is

c2(4cx + 6x2 + c2(1 − 4y + 6y2))

24(c + x − cy)4
=

4cx + 6x2 + c2(1 − 4y + 6y2)

24c2V 2
11

,

removing the constant in the denominator we prove the rest of state-
ment (a) of the theorem.

Furthermore, by Theorem 1(b) we have the inverse polynomial inte-
gration factor V of system (3), and a first integral associated a V for
this system is obtained computing (8). Thus we have the first integral

H =
1

(2c − 1)(c − m)(3c − m − 1)(c + m − 1)
[(c + m − 1)

log |(c − m)(x + y) − 1| + (c − m) log |(2c − 1)(c + m − 1)

(cx2 − (c − m − 1)xy + cy2) + 2c((c + m − 1)(x + y) + 1)|] ,
whenever m ̸= c, 1 − c, 3c − 1 and c ̸= 1/2. Removing the constant
which appears in the denominator, we write the remaining expression
as

(c + m − 1) log |V21| + (c − m) log |V22| = log |V c+m−1
21 V c−m

22 |,
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where V21 and V22 are the functions defined in Theorem 1(b), and hence
we obtain the first integral of statement (b) of the theorem for all
m ̸= c, 1 − c, 3c − 1 and c ̸= 1/2.

Calculating the first integral associated to the inverse integrating
factor provided by Theorem 1(b), for each of the remaining cases, we
find that if m = c, V21 = −1 and V22 = (2c − 1)2(cx2 + xy + cy2) +
2c((2c − 1)(x + y) + 1) and a first integral of the system is

−(2c − 1)(x + y) − log |V22|
(2c − 1)3

,

for all c ̸= 1/2. Although we can ignore the constant that appears
in the denominator, is easy to verify that the remaining expression is
constant at c = 1/2, therefore it would not be a first integral of the
system for this value of c. So the function obtained is a first integral
whenever m = c ̸= 1/2 as stated in statement (b) of theorem.

Now, if m = 1 − c we have V21 = (2c − 1)(x + y) − 1 and V22 = 2c
and a first integral is

1

4c(2c − 1)3
((2c − 1)(c(2c − 1)(x2 + y2) + (−4c2 + 6c − 2)xy+

2c(x + y)) + 2c log |V21|).
We observe that this function is not defined at c = 0, 1/2, however eli-
mining the multiplicative constant the first integral obtained is defined
and it is not constant at c = 0, but it is a complex constant if c = 1/2.
So, this last function is a first integral of the system if m = 1−c ̸= 1/2,
thus statement (b) for this case is proved.

Considering m = 3c − 1, we have V21 = (1 − 2c)(x + y) − 1, V22 =
2c(1 + (2c − 1)(x + y))2, and the first integral is

1

4c(2c − 1)3

[
c(3 + 4(2c − 1)x) + 2(2c − 1)(2c + (2c − 1)2x)y

V 2
21

+ 2c log |V21|
]

with c ̸= 0, 1/2. Here also we remark that the function obtained remov-
ing the multiplicative constant in the previous expression is defined and
it is not constant at c = 0, whereas in c = 1/2 it is constant, therefore
this function is the first integral of the system given in statement (b)
of Theorem in the case m = 3c − 1 ̸= 1/2.

If c = 1/2, then V22 = (m − 1/2)(x + y) + 1 = −V21 and the first
integral is

−(4V22 + (2m − 1)2(x2 + (2m + 1)xy + y2) − 8V22 log |2V22| − 8)

(2m − 1)3V22

for all m ̸= 1/2. Is easy verify that elimining the constant that appears
in the denominator, the resulting function is constant if m = 1/2. So,
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it is a first integral whenever c = 1/2 and m ̸= 1/2 and so we have
proved statement (b) of the theorem for this case.

If m = c = 1/2, the system is

ẋ = x + x2/2 + xy + y2/2, ẏ = −x2/2 − y − xy − y2/2,

with inverse integrating factor V = 1, so system (3) in this case is
Hamiltonian and it belongs to family (6) with a = c = m = k = 1/2.
Thus, we have completed the proof of statement (b) of the theorem.

For the quadratic system (4) the first integral associated to its poly-
nomial inverse integrating factor provided by Theorem 1(c), is

1

(2cl − 1)(cl − m)(3cl − m − 1)(cl + m − 1)
[(m − cl) log |2c−

(2cl − 1)((cl − 1)2 − m2)xy + 2c(cl + m − 1)(lx + y) + c(2cl − 1)

(cl + m − 1)(l2x2 + y2)| − (cl + m − 1) log |1 − (cl − m)(lx + y)|]
for all 2cl ̸= 1 and m ̸= cl, 1 − cl, 3cl − 1, which becomes

(m − cl) log |V32| − (cl + m − 1) log |V31|,

or equivalently
V m−cl

32

V m+cl−1
31

being V31 and V32 the functions defined in

Theorem 1(c).
If 2cl = 1, then V31 = (4c + (2m − 1)(x + 2cy))/(4c), V32 = (m −

1/2)x + c(2 + (2m − 1)y) and the first integral of the system is

1

2c(2m − 1)3V32

[(2m − 1)2(x2 + 2c(1 + 2m)xy + 4c2y2)+

4c(2V32 − 8c) − 16cV32 log |2V32|]
whenever c ̸= 0 and m ̸= 1/2. However, without taking into account
the constant in the denominator of the previous expression, it is defined
at c = 0 and it not is constant, but it is constant if m = 1/2. So, we
obtain the first integral of statement (c) of theorem if 2cl = 1 and
m ̸= 1/2.

Now we consider cl = m, in this case V31 = 1, V32 = 2c + (2cl −
1)(2cy +x(2cl+(2cl−1)y)+ c(2cl−1)(l2x2 +y2)) and the first integral
is

1

(2cl − 1)3
((2cl − 1)(lx + y) − log |V32|)

with 2cl ̸= 1. Here also we comprove that elimining the constant of
the above expression the remaining function is constant if 2cl = 1,
therefore the first integral is defined whenever cl = m and 2cl ̸= 1 as
appears in statement (c) of theorem in this case.
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If m = 1 − cl, we have V31 = 1 − (2cl − 1)(lx + y), V32 = 2c and the
first integral is

−1

4c(2cl − 1)3
[(2cl − 1)((−2 − 2cl(−3 + 2cl))xy + 2c(lx + y)+

c(2cl − 1)(l2x2 + y2)) + 2c log |V31| ]

for all c ̸= 0 and 2cl ̸= 1. From this previous function we obtain the
first integral of statement (c) of theorem in the case m = 1 − cl and
2cl ̸= 1. If c = 0 the first integral is defined and it is not constant.

If m = 3cl−1, then V31 = 1− (1−2cl)(lx+y), V32 = 2c(l(x−2clx−
2cy) + y − 1)2 and the first integral is

1

4c(2cl − 1)3[
2c(c(3 + 4l(2cl − 1)x) + 2(2cl − 1)(2c + (1 − 2cl)2x)y)

V32

+ 2c log |V31|
]

whenever c ̸= 0 and 2cl ̸= 1. The first integral obtained excluding
the constant factor is defined and it is not constant at c = 0 but it is
constant if 2cl ̸= 1, so we get the first integral of statement (c) of the
theorem in the case m = 3cl − 1 and 2cl ̸= 1.

Finally, if m = 1/2 and 2cl = 1, the system (4) becomes

ẋ = x +
x2

4c
+ xy + cy2, ẏ = −y − x2

8c2
− xy

2c
− y2

2

which is a Hamiltonian system and it coincides with system (6) with
a = 1/(4c) and k = 1/(8c2). In consequence we have proved statement
(c) of the theorem.

For system (5), we find the first integral associated with its integrat-
ing factor V , given in Theorem 1(d), through the equation (8) obtaining

∫
x + ax2 + cy2

V
dy,

and hence result the first integral of statement (d) of the theorem.
By Theorem 1(e) we know that the quadratic system (6) is Hamil-

tonian, and so its inverse integrating factor is 1. So, from equation (8)
a first integral for this system is

∫
(ax2 + 2mxy + cy2 + x) dy +

kx3

3
,

which is provided in statement (e) of the theorem. �
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Appendix: On the existence of Liouvillian first integrals
for the integrable saddles

Doing a linear change of coordinates and a rescaling of the indepen-
dent variable, any real polynomial differencial system having a weak
saddle at the origin can be written as

(12) ẋ = y + p(x, y), ẏ = x + q(x, y),

where p and q are real polynomials without constant and linear terms.
Doing the change of variables

(13) x = (w + w)/2, y = (w − w)i/2,

and of the independent variable T = it the differential system (12)
becomes the complex differential system

(14) ẇ = w + P (w, w), ẇ = −w + Q(w, w),

where P and Q are complex polynomials. Then the focus quantities Vj

of system (14) coincide with the saddle quantities Lj of system (12).
Due to this duality between focus quantities and saddle quantities it
follows that an integrable saddle has an analytic first integral defined
in a neighborhood of it. This is the reason to call such a saddle an
integrable saddle. The complex change (13) is introduced just to show
the duality of weak focus and weak saddles. We must mention that
the complex system (14) has a local complex analytic first integral in
a neighborhood of the origin, see for more details [12, 7] or the section
12 of the book [8]; and going back through the changes of variables we
get a local complex analytic first integral in a neighborhood of the real
integrable saddle. Consequently the real and imaginary parts of this
complex analytic first integral are local analytic first integrals of the
integrable saddle.
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