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INTRODUCTION







The HER family (also called ErbB or epidermal growth factor receptor (EGFR)

family) comprises four transmembrane receptor tyrosine kinases, EGFR (or
HER1), HER2, HER3, and HER4 (Figure 1). These receptors signal through
homo- and heterodimerization and promote cell proliferation, motility, and
invasion (Holbro, 2003). Dysregulated expression and activity of HER family
members is frequent in breast cancer (BC). Overexpression of EGFR1, HER2
and HER3 is generally associated with poor prognosis whereas high
expression of HER4 is associated with a better outcome (Naidu 1998,
Pawlowski 2000, Suo 2001 and 2002, Tovey 2004, Witton, 2003). Gene
amplification or protein overexpression of the human epidermal growth factor
receptor type 2 (HER2) has been reported in 25% to 30% of invasive BC and is
usually associated with a worse prognosis (Slamon 1989, Dendukuri 2007,

Slaghmon 2001, Yu 2000, Ross 2009).
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Figure 1. The epidermal growth factor receptor family of proteins.

Monoclonal antibodies (i.e. trastuzumab, pertuzumab, T-DM1) and small
molecules kinase inhibitors (i.e. lapatinib, neratinib and afatinib) are the main
strategies to target HER2 in BC (Figure 2). Trastuzumab (Herceptin®), a

humanized monoclonal antibody, was the first drug developed to target HER2
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amplified BC. The addition of trastuzumab to cytotoxic chemotherapy

significantly improved disease-free and overall survival in metastatic HER2-
positive (HER2+) BC, resulting in FDA first approval of the drug in 1998
(Cobleigh 1999). In 2006, approval was extended to use of the drug in
combination with chemotherapy in the adjuvant setting in early stage HER2+
BC (Piccart-Gebhart 2005, Romond 2005). The addition of trastuzumab to
chemotherapy in neoadjuvant setting has also been tested in several phase II
studies, with pathologic complete response (pCR) rates ranging from 18% to
47% (Burstein 2003, Coudert 2006, Van Pelt 2003, Hurley 2006, Limentani
2007). Lapatinib, given in combination with capecitabine, has shown clinical
activity in HER2+ BC patients that became refractory to trastuzumab-based
therapy (Geyer 2006). Moreover, measurable clinical benefit is observed also
when lapatinib is administered as single agent or in combination with
paclitaxel as first-line treatment (Gomez 2008; Di Leo 2008). Recently, the
antitumor activity of dual HER2 blockade (trastuzumab in combination with
either lapatinib or pertuzumab) was proven to be significantly superior to

single agents in a neoadjuvant setting (Baselga 2012; Gianni 2012).
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Figure 2. Approved monoclonal antibodies and small molecules kinase

inhibitors targeting HER2 in breast cancer.
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Despite the remarkable success of trastuzumab, however, HER2+ BC

frequently display primary resistance and even in patients initially sensitive,
acquired resistance almost inevitably emerges over time. In the preclinical
setting, numerous potential mechanisms of resistance to anti-HER2 agents
have been proposed (increased HER2-ectodomain shedding, epitope masking
or inaccessibility, activation of compensatory signalling pathways, resistance
to apoptosis, co-amplification of genes such as Cyclin E and Myc, dimerization
with other tyrosine kinase receptors (RTKs) such as ¢c-MET or IGF1iR, and
escape from antibody-dependent cell cytotoxicity (ADCC)).

EGFR has been showed to be highly expressed in triple-negative breast cancer
(TNBC), both in cell lines and in patients (Nielsen 2004). Moreover,
preclinical studies have demonstrated that the inhibition of EGFR affects
growth in TNBC cells lines (Hoadley 2007). These findings provided the
rationale to test the efficacy of anti-EGFR agents, such as the antibodies
cetuximab and panitumumab, in TNBC patients. In metastatic setting,
cetuximab in combination with chemotherapy showed some promising
activity (Baselga 2013; Carey 2012; O’Shaughnessy 2007). Nevertheless, no
substantial improvements in either PFS or OS were achieved in these patients.
A better scenario seems to be the neoadjuvant setting, where a pathological
complete response rate of 46.8% was observed in TNBC patients enrolled in a
pilot clinical trial testing the efficacy of panitumumab in combination with

standard chemotherapy (Nabholtz 2014).

There are several unanswered questions about which patients with BC are
most likely to benefit from one or another form of anti-HER targeted therapy

and which type of determination methodology is most appropriate.

A biomarker to identify those patients who are not likely to benefit from
trastuzumab would be clinically useful- especially in the adjuvant setting
where one cannot measure tumor response to assess the effectiveness of a
therapy - allowing patients to move in other therapeutic directions. Similarly,
a marker that pegged tumors as exquisitely sensitive to anti-HER2 drugs
might spare the addition of chemotherapy or define patients most suited for
novel targeted or immunological approaches centering on HER2 expression.

Retrospective studies conducted in tumor samples from the major adjuvant
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studies of trastuzumab have failed to demonstrate a single biomarker or

biomarker signature predictive of resistance to trastuzumab (Perez 2010,
Gianni 2011). Even the most obvious candidate biomarker for a predictor of
trastuzumab benefit, HER2 itself, has proven to be surprisingly ambiguous.
Neither levels of gene amplification nor soluble HER2 levels predicts benefit
of adjuvant trastuzumab (Dowsett 2009, Perez 2010, Moreno-Aspitia 2013).
Most surprisingly, NSABP B-31 and NCCTG N9831 finding of a group of
patients turned out to be HER2- after central confirmation derived as much
benefit from trastuzumab as those whose tumors confirmed to be HER2+
(Perez 2010, Paik 2008) raise the provocative notion that overexpression of
HER2 might not be essential to realizing benefit from adjuvant trastuzumab.
To date, exploitation of the overexpression of HER2 is part of the
management of a BC patient whereas EGFR, HER3, and HER4
determinations are still exploratory and not used in clinical practice. As a
matter of fact, to be eligible for an anti-HER therapy such as trastuzumab,
specimens have to be HER2+ as determined by immunohistochemistry (IHC)
analysis or harbor HER2 gene amplification by DNA in situ hybridization
(ISH) (Figure 3).

Normal Breast Cell Abnormal Breast Cancer Cell
~yu ;
&
Signal u\‘ .}'
Nucleus ! \
Normal amount of HER2 receptors Overproduction of HER2 receptors
tells cells to grow and divide tells cells to grow and divide to

quickly eventually least to cancer.

Figure 3. A cartoon illustrating HER2 abundance in a breast cancer cell
as compared to normal cell (left). HER2 positive tumor by standard
immunohistochemistry (top right) and in situ hybridization (bottom
right).
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Although these tests have become the benchmarks for defining tumors as

HER2+, considerable controversy still exists regarding the accuracy,
reliability, and inter-observer variability of these assay methods. It is
estimated that approximately 20% of HER2 testing performed in the field may
be inaccurate when validated against central or “expert” laboratories (Paik
2002, Roche 2002). In an effort to improve the accuracy and consistency of
HER2 testing, a joint task force of the American Society of Clinical
Oncologists (ASCO) and the College of American Pathologists (CAP) proposed
guideline recommendations for HER2 testing using either an THC or FISH
(Wolff 2007). The assessment of HER2 expression by immunohistochemical
analysis is inherently subjective and semiquantitative (scored as o, 1+, 2+, and
3+), whereas the FISH test, in which the HER2 gene copy number is counted,
is considered to be more quantitative analytically. However, neither test is a
perfect predictor of response to trastuzumab, and both tests are affected by

interlaboratory variability.

Algorithms for evaluation of HER2 protein expression by IHC assay and gene
amplification by ISH of the invasive component of a BC specimen are

illustrated below (Wolff 2013) (Figure 4-6).

HER2 testing (invasive component) by validated IHC assay

Batch controls and on-slide controls show appropriate staining

Circumferential Circumferential Incomplete No staining is observed*
membrane staining membrane staining membrane staining or
that is complete, that is incomplete and/or that is faint/barely Membrane staining that
intense, and within weak/moderate and within perceptible and is incomplete and is
> 10% of tumor cells* > 10% of tumor cells* within > 10% of faint/barely perceptible
or tumor cells* and within < 10% of
Complete and tumor cells
circumferential membrane
staining that is intense
and within < 10%
of tumor cells*
|
IHC 3+ IHC 2+ IHC 1+ IHC 0
positive equivocal negative negative

|
Must order reflex test (same specimen using ISH) or order a new test
(new specimen if available, using IHC or ISH)

Figure 4. Algorithm for evaluation of human epidermal growth factor
receptor 2 (HER2) protein expression by immunohistochemistry (IHC)

assay.
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HER2 testing (invasive component) by validated single-probe ISH assay

Batch controls and on-slide controls show appropriate hybridization

Average HER2 copy number Average HER2 copy number Average HER2 copy number
> 6.0 signals/cell* > 4.0 and < 6.0 signals/cell* < 4.0 signals/cell
| | |
ISH ISH ISH
positive equivocal negative

|
Must order a reflex test (same specimen using dual-probe ISH or using IHC) or order a new test
(new specimen if available, using ISH or IHC)

Figure 5. Algorithm for evaluation of human epidermal growth factor
receptor 2 (HER2) gene amplification by in situ hybridization (ISH)
using a single-signal (HER2 gene) assay (single-probe ISH).

HER2 testing (invasive component) by validated dual-probe ISH assay

Batch controls and on-slide controls show appropriate hybridization

HER2/CEP17 HER2ICEP17

ratio > 2.0* ratio < 2.0
[ [ |
Average HER2 Average HER2 Average HER2
copy number > 6.0 copy number > 4.0 copy number
signals/cell* and < 6.0 < 4.0 signals/cell
Average HER2 Average HER2 signals/cell*
copy number >4.0  copy number < 4.0
signals/cell* signals/cell*
| |
ISH ISH ISH ISH ISH
positive positivet positive equivocal negative

|
Must order a reflex test (same specimen using IHC), test with alternative ISH
chromosome 17 probe, or order a new test (new specimen if available, ISH or IHC)

Figure 6. Algorithm for evaluation of human epidermal growth factor
receptor 2 (HER2) gene amplification by in situ hybridization (ISH)
assay using a dual-signal (HER2 gene) assay (dual-probe ISH).

Among HER2+ tumors (defined by consensus criteria), there is a wide range
of variability in terms of HER2 gene amplification and protein expression
measured by conventional semi-quantitative methods such as the
HercepTest®. The possibility that a quantitative analysis of HER-family
protein expression could improve the prediction of HER-targeting drugs has

led to the evaluation of alternative and more quantitative tests.
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The VeraTag™ proximity-based assay (HERmark® Breast Cancer Assay;

Monogram Biosciences, Inc., South San Francisco, CA) has been shown to
enable precise quantitative measurements of total HER1 and HER2 proteins
and their respective homodimers in formalin-fixed, paraffin-embedded tissue
specimens (Shi 2009). Higher HER2 expression, as determined using this
assay, was associated with a longer survival time after trastuzumab treatment
in HER2+ advanced BC patients (Lipton 2010, Toi 2010). Most recently,
measurement of HER2 protein using AQUA technology - a quantitative
fluorescence immunohistochemistry-based method - was able to predict
which HER2+ patients was more or less likely to achieve a pCR after
trastuzumab containing neoadjuvant treatment regime (Cheng, 2014). These
quantitative antibody-based protein assays may overcome some of the
limitation of IHC (subjective, qualitative, lack of reproducibility...), but still
suffers from numerous drawbacks including antibody specificity/sensitivity,
lack of multiplexing capabilities, sensitivity to preanalytical factors and
limited dynamic range. As such, a protein assay technology platform for
application to formalin fixed patient tissue that overcomes these limitations is
warranted. Advances in mass spectrometry have resulted in development of
strategies for large-scale protein analysis of complex cellular protein lysates.
In contrast to gene expression, mass spec protein analysis directly addresses
the products of gene expression present in a given cell state by characterizing
protein expression levels and post translational modifications. It is now
possible to identify thousands of expressed proteins from a single sample
(Washburn, 2001; Gavin, 2002; Ho, 2002). In addition, it is possible to
precisely quantitate proteins and analyze post translation modifications of
specific peptides directly in protein samples (Aebersold and Goodlett, 2001;
Gerber et al, 2003). Selected reaction monitoring (SRM-MS) is a mass
spectrometry-based method that can provide for protein assays with high
sensitivity, absolute specificity, objective quantitation, and multiplex
capabilities (Aebersold 2003, Ong 2005, Addona 2009, Nilsson 2010,
Rudnick 2010) thus overcoming the many limitations of IHC. The reliability of
this approach for analysis of proteins in any biological sample including FFPE
patient tumor tissue has been demonstrated (Prieto 2005, Hood 2005,

Hembrough 2012, Bateman 2011 Desouza 2010, Huang 2009, Jain 2008,
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Cheung 2008, Patel 2008). However, the clinical utility of this assay for

patient stratification, choice of therapy, and drug resistance prediction have

not yet been shown.

Other groups have used mRNA measurements to either predict pCR or
survival in HER2+ tumors treated with trastuzumab in both neoadjuvant and
adjuvant setting. Denkert and colleagues found that quantitative assessment
of mRNA for ESR1 and HER2 can predict pCR (Denkert 2013). Similarly,
Pogue-Geile et al (Pogue-Geile 2013) developed a gene expression-based
predictive model for degree of benefit from trastuzumab with a total of eight
genes associated with expression of either the ER (ESR1, NAT1, GATA3, CA12,
IGF1R) or the HER2 (ERBB2, ci7orf37, GRB7) amplicon. The eight-gene
model stratified tumors into 3 subsets with different clinical outcomes. A
distinct subset (called Group 3 by the investigators) of approximately 45% of
the patients with tumors characterized by high-level HER2 expression and
low- or absent levels of ER which was associated with an extraordinary benefit
from trastuzumab. By contrast, 10% of cases (classified as Group 1), showed
no apparent benefit from trastuzumab. Interestingly, this subset had tumors
characterized by intermediate-level but clear HER2 expression and very high-
level ESR1 expression. In between were the Group 2 patients, which contained
tumors with low/no HER2 expression and with variable degrees of ESR1
expression who still derived moderate benefit from trastuzumab, thus

providing justification for testing trastuzumab in HER2- patients (NSABP B-
47).

The development of these new quantitative diagnostic methods is a
substantial technical achievement. Despite that, the 2013 ASCO/CAP Update
Committee concluded that there was insufficient evidence to warrant
inclusion of these new assays to determine HER2 status in unselected patients
due to lack of a consistent body of evidence on their analytical validity, clinical

validity, and clinical utility (Wolff 2013).
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HYPOTHESIS







Despite the remarkable success of trastuzumab, HER2+ BC frequently display
primary resistance and even in patients initially sensitive, acquired resistance

almost inevitably emerges over time.

Biomarkers to assess the effectiveness of anti-HER therapies with
identification of exquisitely sensitive or resistant patients would be clinically

useful.

Expression levels of HER2 and related family proteins (HER1 and HER3) may
dictate response to HER-targeting drugs.

Considerable controversy exists regarding the accuracy, reliability, and
interobserver variability of current methods for the determination of HER2
status which are not quantitative and do not predict response to anti-HER

treatments.

Based on the above, we hypothesize that multiplex quantitative expression
analysis of HER family proteins using mass spectrometry could overcome

current limitations and improve cancer patient treatment decision.
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OBJECTIVES







1) To provide analytical validation of SRM-MS technology as applied to the

clinical quantitative measurement of HER2 expression in BC FFPE samples.

2) To compare HER2 quantitative expression levels determined by SRM-MS

with reference assays routinely used for HER2 testing such as IHC and FISH.

3) To demonstrate that quantitative analysis of HER2 (and related family
proteins HER1 and HER3) may improve current prediction of response or

resistance to HER-targeting agents.
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PUBLICATIONS:
METHODS AND RESULTS







Publications

1.- STUDY METHODOLOGY:

The study design, the study population, and the methodology used are
described in the “Material and methods” section of the published articles that

constitute this doctoral thesis.

These articles are included in the following pages as they have been published

in the scientific literature.
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2.- PUBLICATIONS:

2.1.- Study 1:

“Quantification of HER family receptors in breast cancer”.

Paolo Nuciforo, Nina Radosevic-Robin, Tony Ng, and Maurizio Scaltriti.

Breast Cancer Research 2015 Apr 9, 17:53: 1-12.

In this review article, we evaluated the current methodologies used for HER
family status determination and discussed the clinical implications of HER

family quantification on response to anti-HER treatment.
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Abstract

The clinical success of trastuzumab in breast cancer
taught us that appropriate tumor evaluation is
mandatory for the correct identification of patients
eligible for targeted therapies. Although HER2 protein
expression by immunohistochemistry (IHC) and gene
amplification by fluorescence in situ hybridization
(FISH) assays are routinely used to select patients to
receive trastuzumab, both assays only partially predict
response to the drug. In the case of epidermal growth
factor receptor (EGFR), the link between the presence
of the receptor or its amplification and response to
anti-EGFR therapies could not be demonstrated. Even
less is known for HER3 and HER4, mainly due to lack
of robust and validated assays detecting these proteins.
It is becoming evident that, besides FISH and IHC,
we need better assays to quantify HER receptors and
categorize the patients for individualized treatments.
Here, we present the current available methodologies
to measure HER family receptors and discuss the
clinical implications of target quantification.

Introduction

The HER family (also called ErbB or epidermal growth
factor receptor (EGFR) family) comprises four trans-
membrane receptor tyrosine kinases, EGFR (or HER1),
HER2, HER3, and HER4. These receptors signal through
homo- and heterodimerization and promote cell prolif-
eration, motility, and invasion [1]. Dysregulated expres-
sion and activity of HER family members is frequent in
breast cancer. Overexpression of EGFR1, HER2 and
HER3 is generally associated with poor prognosis
whereas high expression of HER4 is associated with a
better outcome [2-7]. Up to 25% of breast carcinomas

* Correspondence: scaltrim@mskcc.org

8Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan
Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065,
USA

Full list of author information is available at the end of the article

( ) BiolMed Central

and Maurizio Scaltriti®”

overexpress HER2. High levels of this oncogene, almost
invariably as a consequence of genomic amplification of
a region of chromosome 17 (17q21) including the HER2
locus, drives aggressive disease and is an important
therapeutic target.

Monoclonal antibodies (that is, trastuzumab, pertuzu-
mab, T-DM1) and small molecule kinase inhibitors (that
is, lapatinib, neratinib and afatinib) are the main strat-
egies to target HER2 in breast cancer. Trastuzumab, in
combination with chemotherapy, has significantly in-
creased both progression-free survival (PFS) and overall
survival in patients with advanced disease [8,9] as well
as in the early (adjuvant) setting [10,11]. Lapatinib, given
in combination with capecitabine, has shown clinical
activity in HER2-positive breast cancer patients that
became refractory to trastuzumab-based therapy [12].
Moreover, measurable clinical benefit is observed also
when lapatinib is administered as a single agent or
in combination with paclitaxel as first-line treatment
[13,14]. Recently, the antitumor activity of dual HER2
blockade (trastuzumab in combination with either lapa-
tinib or pertuzumab) was proven to be significantly su-
perior to single agents in a neoadjuvant setting [15-17].

EGER has been shown to be highly expressed in triple-
negative breast cancer (TNBC), both in cell lines and in
patients [18]. Moreover, preclinical studies have demon-
strated that the inhibition of EGFR affects growth in
TNBC cell lines [19]. These findings provided the ra-
tionale to test the efficacy of anti-EGFR agents, such as
the antibodies cetuximab and panitumumab, in TNBC
patients. In the metastatic setting, cetuximab in combin-
ation with chemotherapy showed some promising activ-
ity [20-22]. Nevertheless, no substantial improvements
in either PFS or overall survival were achieved in these
patients. A small pilot study testing the efficacy of pani-
tumumab in combination with standard chemotherapy
in TNBC patients in the neoadjuvant setting showed a
pathological complete response rate of 46.8% [23]. How-
ever, the relevance of these findings will be assessed only
when PFS and/or overall survival data are available.

© 2015 Nuciforo et al; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain

Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article,

unless otherwise stated.
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There are several unanswered questions about which
patients with breast cancer are most likely to benefit
from one or another form of anti-HER targeted therapy
and which type of determination methodology is most
appropriate.

DNA-based, RNA-based, and protein-based assays
have been developed to determine the HER status of
breast tumors. To date, exploitation of the overexpres-
sion of HER2 is part of the management of a breast
cancer patient whereas EGFR, HER3, and HER4 deter-
minations are still exploratory and not used in clinical
practice. As a matter of fact, to be eligible for anti-HER
therapy such as trastuzumab, specimens have to be
HER2-positive as determined by immunohistochemistry
(IHC) analysis or harbor HER2/neu gene amplification
by fluorescence in situ hybridization (FISH). Although
these tests have become the benchmarks for defining
tumors as HER2-positive, considerable controversy still
exists regarding the accuracy, reliability, and inter-
observer variability of these assay methods. It is esti-
mated that up to 20% of HER2 testing performed in the
field may be inaccurate when validated against central or
‘expert' laboratories [24,25]. A recent round-robin study
conducted to evaluate current HER2 testing methods
and their potential impact on clinical outcomes showed
that interpretation issues (especially when dealing with
IHC or FISH equivocal results as defined by the Ameri-
can Society of Clinical Oncologists (ASCO)/College of
American Pathologists (CAP) guidelines) and/or HER2
tumor heterogeneity may play a significant role in dis-
cordant results [26].

In an effort to improve the accuracy and consistency
of HER2 testing, a joint task force of ASCO and CAP
proposed guideline recommendations for HER2 testing
using either IHC or FISH [27]. Among ‘HER2-positive’
tumors (defined by consensus criteria), there is a wide
range of variability in terms of HER2-gene amplification
and protein expression measured by conventional semi-
quantitative methods such as the HercepTest”. The
possibility that a quantitative analysis of HER family pro-
tein expression could improve the prediction of HER-
targeting drugs has led to the evaluation of alternative
and more quantitative tests. Despite that, the 2013
ASCO/CAP Update Committee concluded that there
was insufficient evidence to warrant inclusion of these
new assays to determine HER2 status in unselected
patients due to lack of a consistent body of evidence
on their analytical validity, clinical validity, and clinical
utility [27].

In this review we address these issues by evaluating
the current methodologies used for HER family status
determination and discussing the clinical implications of
HER family quantification on response to anti-HER
treatment. In Additional file 1 we list the Food and

Page 2 of 12

Drug Administration (FDA) approved/Clinical Laboratory
Improvement Amendments certified diagnostic tests avail-
able to measure HER receptors in the clinic.

Methodologies

HER status assessment at the protein level
Immunohistochemistry

IHC is the primary technique used to determine protein
expression status in a patient sample. It is a simple, fast,
easy to implement and relatively inexpensive method
for protein detection. Slides are incubated with an anti-
body directed against the HER receptor protein, labeled,
and finally made visible with a chromogen, resulting
in a staining localized in the cellular compartment
where the protein target is expressed (membrane,
cytosol, nucleus). The more the protein is present, the
stronger the staining will be. Traditionally, assessment
of protein expression is done by visual estimation of
staining intensity and is reported as binary (positive
versus negative), four-tiered (0, 1+, 2+, and 3+), or
semiquantitative continuous variable as for the H score
((% at 0) x 0+ (% at 1+) x 1 + (% at 2+) x 2 + (% at 3+) x 3;
range = 0 to 300) results [28].

For companion diagnostic tests, guidelines are gener-
ally issued to guide pathologists in the interpretation
and scoring of the staining. The HER2 scoring guidelines
recommended by ASCO/CAP classified HER2 expres-
sion as 0 (no staining or faint incomplete membrane
staining observed in <10% of tumor cells), 1+ (faint/
barely perceptible incomplete membrane staining in >10%
of tumor cells), 2+ (circumferential membrane staining
that is incomplete and/or weak/moderate and within >10%
of tumor cells or complete and circumferential membrane
staining that is intense and within <10% of tumor cells) or
3+ (circumferential membrane staining that is complete,
intense, and within >10% of tumor cells). Tumors with
scores 0 and 1+ were considered negative; 2+ was consid-
ered equivocal and required FISH reflex testing; 3+ was
considered positive and eligible for trastuzumab [29].

Despite the effort to standardize HER2 status deter-
mination, current guidelines do not restrict the type
and characteristics of IHC assay to be used for HER2
protein expression. The use of FDA approved tests
such as HercepTest® (DAKO, Carpinteria, CA, USA),
PATHWAY anti-HER-2/neu (Ventana Medical systems,
Roche, Tuscon, AZ, USA), InSite™ Her-2/neu (Biogenex,
Freemont, CA, USA) as well as fully automated
staining systems such as Ventana Benchmark (Ventana
Medical systems, Roche, Tuscon, AZ, USA) and Leica
Microsystems Bondmax (Leica, Newcastle, UK) may
certainly minimize process variability and improve assay
repeatability and reproducibility. Nevertheless, many la-
boratories developed tests with different antibodies di-
rected against other HER2 epitopes (intracellular versus
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extracellular), which may show non-overlapping spec-
ificities and be differently influenced by preanalytical
factors [30-32].

Interpretation of membrane staining can be optimized
using quantitative image analysis such as the automated
quantitative analysis (AQUA) system [33]. AQUA is a
fluorescence IHC-based method that provides objective
and continuous protein expression scores for tissues by
using automated fluorescence microscopy and advanced
image analysis algorithms. It is important to note, how-
ever, that there are as yet no clinical data related to
AQUA’s predictive ability.

Other software applications include Aperio Scanscope
(Aperio Technologies; Vista, CA, USA), Definiens
(Carlsbad, CA, USA) and Vysis AutoVysion (Abbott
Molecular, Des Plaines, IL, USA) among others. These
applications can reduce the subjectivity of a traditional
scoring system and provide a more reproducible protein
expression score [34,35].

Enzyme-linked immunosorbent assay

HER?2 receptor protein extracellular domain (ECD, p105)
is released into the circulation after cleavage by matrix
metalloproteinases and its levels can be measured in the
serum using an enzyme-linked immunosorbent assay
approved by the FDA (Siemens Healthcare, Erlangen,
Germany). Elevated levels of serum HER2 ECD have been
shown to be both prognostic and predictive of response to
trastuzumab in HER2-positive tumors [36,37]. Serum
ECD values have been suggested, therefore, as an alterna-
tive technique for determining HER2 status, although
available results are controversial. First, not all patients
with HER2-positive tumors appear to have elevated serum
ECD values and patients with HER2-negative tumors can
also have elevated ECD values. Second, the reported data
come from studies including a limited number of patients,
thus making current evidences still insufficient to consider
basing treatment decisions on ECD levels in routine
clinical practice. A large meta-analysis study [38] has
combined the data of four trastuzumab trials in meta-
static breast cancer and showed that, from the com-
bined dataset (N = 322 patients), there was no correlation
between baseline ECD value and tumor response. ECD
values decreased upon initiation of combination therapy
irrespective of treatment and tumor response. Further-
more, disease progression was not reliably predicted by an
increase in ECD levels. Therefore, the use of ECD values
in treatment decision making was not recommended.

VeraTag™ proximity-based assay

The VeraTag™ proximity-based assay (HERmark® Breast
Cancer Assay; Monogram Biosciences, Inc., South San
Francisco, CA, USA) enables precise quantitative
measurements of total HER-2 expression and HER2
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homodimers in formalin-fixed, paraffin-embedded (FFPE)
tissue specimens [39,40]. The HERmark assay was devel-
oped based on a proprietary proximity-based technology
platform that enables accurate quantification of proteins
and protein-protein complexes through the release of a
fluorescent tag (VeraTag reporter, Monogram Biosciences)
conjugated to a pair of monoclonal antibodies directed to
unique epitopes on the HER2 receptor in molecular prox-
imity [40]. The continuous total HER-2 expression results
are grouped as HERmark negative, HERmark equivocal,
and HERmark positive. The threshold for a positive
HERmark test is based on the comparison with HER2
tests performed in 1,090 breast tumor reference samples
(central IHC and central in situ hybridization) from three
different study cohorts. The HERmark assay can detect
HER2 at amounts of 2,500 up to more than 1 million re-
ceptors per cell, and is thus said to be 7 to 10 times more
sensitive than IHC. The assay has been validated ac-
cording to the specifications prescribed by the Clinical
Laboratory Improvement Amendments and is performed
only in the CAP-certified clinical reference laboratory at
Monogram Biosciences (US). VeraTag™ proximity-based
assays have been developed also to measure total EGFR,
EGFR-EGFR homodimers and EGFR-HER2 heterodimers
[40-42], p95 [43], total HER3, HER3-HER3 homodimers
and HER3-phosphoinositide 3-kinase (PI3K) complex het-
erodimers [44] and the phosphorylated forms of EGFR,
HER2, and HER3.

Protein interaction measurements
Clinical application of protein-protein interactions has
uncovered many potential targets for novel drug devel-
opment or drug resistance mechanisms [45], with the
MDM2-p53 interaction [46,47] and B-Raf inhibition be-
ing examples of recent successes [48]. More recently,
incorporation of protein interaction data was shown to
also improve the predictive performance of prognostic
gene expression signatures [49,50]. Despite the import-
ance of adjunct information supplied by the protein
interactome configuration to improve the existing prog-
nostic signatures for predicting patient outcome [50],
this protein interaction information has rarely been
incorporated in diagnostic/prognostic assays.
Fluorescence lifetime imaging microscopy (FLIM) is
based on quantifying the non-radiative transfer of energy
between the donor and acceptor fluorophores and can
only occur when the two molecules are no further apart
than 10 nm, consistent with being in molecular contact
[51-53]. Various automated imaging platforms, including
ours, measure Forster resonance energy transfer (FRET) -
the decrease in donor lifetime, the gold standard for FRET
measurements (reviewed recently in [54]) - to directly
monitor validated protein-protein interactions [55-61] and
post-translational modifications, including conformational

45




Nuciforo et al. Breast Cancer Research (2015) 17:53

changes, in cultured cells [58,62-66]. A two antibody
FRET/FLIM approach was originally applied, by ourselves
and others, to human cancer tissues to detect the nano-
proximity between a donor fluorophore-conjugated anti-
protein kinase C or anti-EGFR antibody, and an acceptor
fluorophore-labeled phospho-specific antibody, providing
highly specific quantification of phosphorylation [67,68].
Detailed methodology for sample preparation and instru-
mentation can be found elsewhere [69,70]. We have now
extended this method to measure endogenous protein-
protein interactions in archived pathological material [71].
The presence of autofluorescence in stromal and epithelial
components may cause difficulties in accurately determin-
ing the fluorescence lifetime of fluorophores in FFPE tissue
samples [72]. By circumventing the autofluorescence issue
using a new analysis algorithm [73], we have recently
described the first clinical utilization of this refined FLIM
assay (using Alexa546 and Cy5 as donor and acceptor
fluorophores, respectively) to quantify the level of HER1-
HER3 dimer formation in FFPE tissues from basal-like
breast cancer patients who were treated with a neoadjuvant
anti-EGFR treatment (cetuximab or panitumumab) [74].
Moreover, we have demonstrated the existence of EGFR-
HER4 dimers in breast cancer cells and how these dimers
are important for cell motility [75].

Liquid chromatography-tandem mass spectrometry-
based proteomics has emerged as the most effective
method to study complex proteomes. In this approach,
the proteins representing a proteome are analyzed after
enzymatic digestion by liquid chromatography coupled
to mass spectrometry (MS). Although this approach is a
powerful tool to identify proteins in complex biological
samples [76,77], it is not optimal for systematic quantifi-
cation of these proteins because of the stochastic nature
and the limited sensitivity of the approach. During the
past few years, targeted proteomics has been shown to
be complementary to the more widely used discovery
proteomic methods. In targeted proteomics, only pre-
determined peptide ions are selected for detection and
quantification in a sample. The main MS approach sup-
porting targeted proteomics is selected reaction moni-
toring (SRM), where specific MS assays are generated a
priori and used to selectively detect and quantify pro-
teins of interest in a sample. This approach can provide
objective quantification and multiplex capabilities with
high sensitivity and in an antibody-free setting [78-80].
SRM methods have long been used to quantify low-
abundance protein targets in plasma [81] but application
of these techniques to FFPE tissue samples has, until
recently, been hindered by incomplete solubilization of
samples [82,83]. The Liquid Tissue-(SRM) diagnostic
technology platform is a newly developed proteomic
method that overcomes this limitation, allowing for pre-
cise protein quantification in FFPE tissues. Microdissected
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FFPE tumor tissues are subjected to Liquid Tissue pro-
cessing to reverse formalin crosslinks. This is followed by
trypsinization to completely solubilize all of the protein in
the sample. This tryptic peptide mixture is then subjected
to SRM analysis using stable isotope-labeled control pep-
tides for accurate quantification [83-85]. Multiple reports
have demonstrated that comparable results may be ob-
tained between formalin fixed and matching frozen tissue
[84,86]. The reliability of this approach for analysis of pro-
teins in any biological sample including FFPE patient
tumor tissue has been demonstrated [87-91], thus widen-
ing the application of MS to patient-derived tissue with a
consequent profound impact on patient stratification and
targeted cancer therapeutics.

Reverse phase protein array (RPPA) and collaborative
enzyme enhanced reactive-immunoassay (CEER) are
nano-scaled dot blot platforms allowing the detection of
multiple proteins (both total and phosphorylated) in
many samples simultaneously. They do not require large
amounts of sample but are not suitable for FFPE tissue.
For RPPA protein lysates are immobilized onto microar-
rays and then probed with the primary antibodies of
choice. Detection is performed by quantification of the
labels (fluorescent, colorimetric or other kinds) bound to
either the primary or, more often, the secondary anti-
body added to amplify the signal. RPPA allows testing
hundreds of samples at the same time and multiplexing
is performed by analyzing multiple arrays spotted with
the same protein lysates with different antibodies [92].

CEER takes advantage of the immunocomplexes
formed between antibodies printed on a nitrocellulose
microarray surface with the target molecules in cell
lysates. Once the complexes are formed, two detector
antibodies (one conjugated to glucose oxidase and an-
other conjugated to horse radish peroxidase (HRP)) are
added. Target detection (expressed as computational
units (CU)) requires the presence of both detector
antibodies, and the enzyme channeling event between
glucose oxidase and HRP will not occur unless both
antibodies are in close proximity [93]. The main differ-
ence with RPPA is that, instead of protein lysate, anti-
bodies are immobilized in cellulose arrays. This means
that, contrary to RPPA, CEER is capable of measuring
the expression of dozens of targets simultaneously in the
same sample.

Further studies are needed to prove the clinical rele-
vance of the above described methods.

HER status assessment at the DNA level

In situ hybridization

FISH is considered the gold standard method for gene
amplification status determination. FISH uses fluores-
cently labeled probes (usually red) that are complemen-
tary to a part of the target gene. After hybridization to
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the complementary DNA on the slide, the probes can be
visualized with a fluorescence microscope. A second
probe labeled with a different fluorochrome (usually
green) directed against the centromeric region of the
chromosome containing the target gene is generally used
as control for polysomy. The number of copies of the
target gene and centromere probe can be estimated and
the ratio determined.

CISH (chromogenic in situ hybridization) is an alter-
native for FISH. It uses an immunoperoxidase reaction
to visualize the target gene probe, which allows scoring
with a conventional light microscope. CISH has several
advantages over FISH: signal does not fade and the slides
can be kept permanently and allows better preservation
of morphology. One of the main limitations of CISH is
that most of the available assays are still monoprobe
assays, meaning that there is no correction with a
centromere control probe and only the absolute gene
copy number is scored.

Similar to CISH, silver in situ hybridization (SISH)
technology uses a non-fluorescent method where the
HRP bound to the probe catalyses the reduction of silver
acetate to produce a black signal. Several studies showed
a good correlation between FISH, CISH, SISH, and IHC
for HER2 status determination [94-100].

Recently released ASCO/CAP guidelines recommended
that HER2 must be considered in situ hybridization (ISH)-
positive based on a single-probe average HER2 copy
number >6.0 signals/cell or dual-probe HER2/CEP17
ratio 2.0 or dual-probe HER2/CEP17 ratio <2.0 with
an average HER2 copy number >6.0 signals/cell [27].
Whether the centromere control probes for polysomy 17
are really necessary is a matter of debate given that it has
been proven by several studies that true polysomy 17 is
very rare in breast carcinomas [101]. Concurrent evalu-
ation of several chromosome 17 genes using multiple-
probe FISH or multiplex ligation-dependent probe
amplification showed that focal amplifications encompass-
ing the centromere - and not true polysomy - are the most
common explanation for increases in CEP17 signals
[102,103]. These results suggest that CEP17 copy number
assessment by standard ISH is not a useful surrogate for
polysomy 17. Compared with IHC, ISH assays, in which
the target gene copy number is counted, are considered to
be more quantitative analytically. However, ISH is not a
direct measurement of the protein and just because a
change in gene copy number is observed does not neces-
sarily mean that it is expressed. In addition, the procedure
is time consuming and new 'fast' FISH assays are under
development to reduce the turnaround time [104].

PCR-based techniques
PCR-based techniques such as multiplex ligation-
dependent probe amplification [105] have several
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advantages over ISH-based assays. First, they are more
quantitative and results are easier to interpret. Second,
they require only small amounts of DNA and are not
affected by DNA degradation, thus performing well with
FFPE samples. Third, they can be multiplexed, allowing
simultaneous interrogation of multiple genes or different
parts of genes, representing an ideal and low cost prescre-
ening tool. Head-to-head comparisons between IHC,
FISH, and CISH have shown good correlation among
technologies [106-109]. The main weaknesses of PCR-
based assays are that they do not preserve tissue morph-
ology, may require sample macro- or microdissection to
enrich for tumor content, heterogeneity can be missed
and contamination with normal or ductal carcinoma in
situ may lead to both false-negative and false-positive
results.

HER status assessment at the RNA level

Due to multiplexing capability, RNA-based tests are usu-
ally used to generate global gene expression signatures
rather than single gene measurements. All these signa-
tures work using proprietary algorithms that generate a
score based on the expression levels of the genes
measured that can determine risk factors, incidence,
prognoses and responses to systemic therapies. Clinically
validated gene expression tests that include one or more
HER family members in their gene lists are discussed
below.

The Oncotype DX assay (Genomic Health, Redwood
City, CA, USA) uses RT-PCR as a primary technique
and work on RNA extracted from FFPE samples. The
assay measures the expression of a panel of 21 genes
(only HER?2 is included among the HER family genes)
and the results are provided as a recurrence score.
Although the assay was approved as a prognostic test
predictive of breast cancer recurrence in women with
newly diagnosed, early stage breast cancer, it also as-
sesses the benefit from certain types of chemotherapy
[110]. Recently, Genomic Health started reporting estro-
gen receptor (ER), progesterone receptor (PR), and
HER2 results separately in addition to the recurrence
score. Although high overall concordance (greater than
91%) between HER2 by IHC or FISH assay and quantita-
tive RT-PCR using the Oncotype DX test has been
reported [111,112], an independent study showed a
false-negative rate for Oncotype DX RT-PCR for HER2
of >50% [113].

TargetPrint™ (Agendia, Irvine, CA, USA/Amsterdam,
The Netherlands) is a microarray-based gene expression
test that allows quantitative assessment of ER, PR and
HER?2 at the RNA level in breast cancer. Compared with
IHC results, HER2 gene expression levels provided by
TargetPrint™ have been shown to be more reproducible
and truly quantitative. Results were validated against
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IHC and showed an overall concordance greater that
95% [114-116]. Its use is currently proposed in case of
equivocal or unreliable IHC results, discordance between
two separate tests, discordance of test results and clini-
copathologic features or technical failure of IHC/FISH/
CISH.

The NanoString Prosigna™ (NanoString Technologies,
Seattle, WA, USA) assay measures the expression levels
of 50 target genes (including HER2) plus eight constitu-
tively expressed normalization genes (PAM50) to classify
a tumor as one of four intrinsic subtypes (luminal A,
luminal B, HER2-enriched, and basal-like), which have
been shown to be prognostic [117,118]. In addition to
identifying a tumor’s intrinsic subtype, the PAM50 signa-
ture generates an individualized score estimating a pa-
tient’s probability of disease recurrence by weighting the
molecular subtype correlations, a subset of proliferation
genes, and pathologic tumor size [118,119]. Based on
these data, the FDA-cleared and CE-marked Prosigna™
assay, based on the PAM50 gene expression signature,
has recently been shown to predict the risk of distant re-
currence in women with hormone receptor-positive
early stage breast cancer treated with 5 years of endo-
crine therapy [120-122]. The Nanostring nCounter sys-
tem uses color-coded probes that bind directly to the
RNA transcript without reverse transcription and PCR
amplification [123] and work in frozen or FFPE tissues
with equivalent ease and efficiency [124]. Assay controls
are included to ensure that test samples and the test
process meet pre-defined quality thresholds.

The PAM50 gene signature may be run also by classic
quantitative PCR and can also provide quantitative and
qualitative gene expression scores for the standard bio-
markers usually measured semi-quantitatively by ITHC -
ER, PR and HER?2. Using the quantitative PCR cutoff for
ERBB2 expression, a study found high specificity (609/
624 samples that were low ERBB2 were also HER2-
negative by IHC/CISH), while 53% (109/190) of tumors
with intermediate-high ERBB2 expression were HER2-
positive [125]. This same study and the MA.5 trial [126]
found that only about two-thirds of clinically HER2-
positive tumors are classified as HER2-enriched. Thus,
only a subset of the IHC-defined groups overlap with
PAMB50 subtype classification.

Although some literature shows an overall high con-
cordance between standard techniques such as IHC and
FISH assays and quantitative RT-PCR [111,127-129],
there are several practical issues that should be consid-
ered when conducting RNA-based analyses. First, the
presence of normal tissue within the tumor sample is a
major source of subtype misclassification [130]. There-
fore, identification of the region of viable invasive breast
carcinoma by a pathologist is critical before any RNA
extraction is performed. Second, RNA shows greater
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instability compared with DNA and proteins and thus
the selection of technologies that may prevent/overcome
RNA degradation is important.

Clinical implications

The fundamental principle of targeted therapy is to
specifically harm tumor cells that depend on a definite
target for proliferation and survival, sparing non-tumor
cells from damage. In many cases, the target is a protein
with activating mutations that is present only in tumor
cells, facilitating the specificity of the therapy (for
example, Braf-mutant melanomas, EGFR-mutant lung
cancer), allowing profound inhibition of the target before
the emergence of side effects. In the case of HER recep-
tors in breast cancer the target is a protein that, al-
though not carrying any activating alterations, is present
in much higher amounts in tumor cells compared with
normal cells. In these cases one would guess that the
higher is the difference in target expression between
normal and tumor cells, the wider is the therapeutic
window. However, only the presence of the target or its
semiquantitative expression (and not the absolute levels)
is currently taken into consideration in clinical practice.

There is an increasing body of evidence indicating that
the levels of HER2 in HER2-positive tumors can influ-
ence the response to HER2-targeted therapy, converging
to the common conclusion that 'more HER2, more
response’ [131-137]. Quantitative HER2 expression or
homodimer levels determined by the HERmark assay
correlated with clinical outcome of trastuzumab therapy
better than IHC or central FISH studies in patients with
metastatic breast cancer. Interestingly, patients with
HER2 gene amplification by FISH but low HER2 pro-
tein expression or homodimer levels as measured by
HERmark responded poorly to trastuzumab-containing
therapy, suggesting that not all gene-amplified tumors
overexpress the target of trastuzumab [135]. Similarly, ab-
solute HER2 quantification in an homogeneous group of
HER2-positive breast cancer (IHC 3+) using triple quadru-
pole MS was predictive of a better response to trastuzumab
in both adjuvant and metastatic settings [136].

But perhaps this is valid until a certain limit. First, the
link between the level of HER2 amplification and out-
come in patients treated with trastuzumab has been
proven only in the neoadjuvant setting [138], whereas
other studies failed to demonstrate this association
[139,140]. Second, although the clinical benefit from
HER2 blockade increases with the level of the target,
there may be tumors with extraordinarily high levels of
HER2 that are actually more resistant to the therapeutic
pressure [141-144]. It is unclear whether this is due to
insufficient engagement of the receptor by the targeted
agents. In any case, validation of these findings in a lar-
ger cohort of patients is necessary. Third, the intriguing
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observation from B-31 and N9831 studies that tumors
that failed to be confirmed as HER2-positive after
central laboratory testing may still derive benefit from
trastuzumab [145,146] and the complex relationship
between HER2, ER, and trastuzumab sensitivity outlined
by the study suggest that quantitative HER2 measure
alone may not be sufficient, and combination with
other markers may be more predictive of trastuzumab
response [147].

Since dual HER2 blockade (trastuzumab combined
with either pertuzumab or lapatinib) is proving to be
more effective than single agent treatment, it will be
interesting to investigate whether HER2 absolute levels
predict response in this setting as well. In the neoadju-
vant setting, this seems to be the case. HER2 levels were
measured by HERmark in the primary tumors of
patients enrolled in the NeoALTTO trial, testing the
activity of trastuzumab in combination with lapatinib
compared with single agent treatments, and a positive
correlation was found between constitutive HER2 ex-
pression and benefit from dual blockade [148].

One of the mechanisms proposed for the synergy
observed when combining lapatinib and trastuzumab (at
least in preclinical models) is the stabilization and mem-
brane accumulation of HER2 as a consequence of recep-
tor kinase inhibition [149]. One may wonder, therefore,
whether lapatinib could sensitize tumors with relatively
low levels of HER2 to the antitumor activity of trastuzu-
mab. Testing this possibility, however, is not as easy as it
sounds. First, a threshold above which tumors benefit
from anti-HER2 therapy (but are still considered 'low
expressing tumors') needs to be defined by quantitative
methodology. Then, other therapeutic options should be
considered to exclude the possibility that these patients
can achieve better response from other agents. Genomic
analysis of the tumors would be very helpful in these
cases as the identification of actionable genetic alter-
ations may guide the choice of therapy. Finally, HER-
targeted therapeutic agents such as lapatinib have been
shown to stabilize/enhance the HER2-HER3 dimer in
preclinical cell models [149]. The quantification of this
dimer (as described above), which is believed to be the
most potent of all HER dimers with regard to driving
cellular proliferation [150,151], will provide important
and non-redundant information to that provided by
HER protein expression to help clinicians to understand
and/or predict the heterogeneity in clinical response.

The quantification of HER3 in response to lapatinib-
containing therapies may also be of relevance. In fact,
compensatory upregulation of HER3 upon lapatinib
treatment has been described both in preclinical models
and in patients with HER2-positive breast cancer [152].
The addition of compounds blocking HER3 or the
downstream PI3K/AKT pathway significantly potentiates
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the antitumor effects of lapatinib, underscoring the im-
portance of this occurrence. Because of the mechanistic
relationship between EGFR and HER2, EGFR measure-
ment may provide a method for personalizing treatment
in breast cancer, beyond the single assay for HER2. Pa-
tients with high EGFR using the EGFR antibody D38B1
did not appear to benefit from concurrent trastuzumab
in the N9831 trial using the fluorescence-based AQUA
quantitative platform [153]. Based on these results, it
may be hypothesized that the subset of tumors with high
EGEFR expression may better respond to lapatinib or dual
HER blockade compared with trastuzumab alone.

The absolute levels of EGFR may be predictive for re-
sponse to anti-EGFR therapy in TNBC patients. We re-
cently showed that patients with tumors expressing high
levels of EGFR were more likely to achieve pathological
complete response following panitumumab-based ther-
apy [74]. Furthermore, we found that EGFR levels
tended to decrease in the residual tumors collected at
surgery compared with the primary tumor before the
commencement of therapy, indicating that the levels of
EGFR may be influenced by the therapeutic pressure. It
remains to be defined whether this is a global downregu-
lation of EGFR in all tumor cells or is a positive selection
of cells with lower EGFR expression.

As a matter of fact, the acquired loss of expression of
HER receptors may be an obvious mechanism of resist-
ance to targeted therapy according to the simple para-
digm 'no target, no response'. This has also been
described in HER2-positive breast cancer patients upon
treatment with trastuzumab-based therapy [154]. There-
fore, measuring the levels of HER receptors at the time
of progression to targeted therapy should be encouraged
to avoid persevering with similar targeted approaches.

Conclusion and perspectives
It is becoming evident that the 'simple detection' of the
HER receptors in breast cancer is not sufficient to pre-
dict the benefit that patients will achieve from anti-HER
therapy. The example of HER2 is archetypal. We know
that HER2-positive patients benefit from anti-HER2
therapy, but now we also know that 15 to 20% of these
patients express levels of the receptors that are almost
comparable with HER2-negative tumors. And, more im-
portantly, these patients do not achieve the same benefit
from anti-HER2 therapy as do patients with high HER2
expression. This is especially true in the neoadjuvant set-
ting in patients undergoing dual HER2 blockade [148].
Let’s make an example of how relevant these findings
can be. The disease-free survival data from the ALTTO
adjuvant trial (comparing patients that received lapati-
nib, trastuzumab or the combination of the two agents)
were recently released [155]. The take home message
was that the combination was not significantly superior
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to trastuzumab single agent in preventing relapses to
therapy. These findings were somehow surprising since
the NeoALTTO trial clearly demonstrated that dual
HER?2 blockade is more effective than monotherapy in
the neoadjuvant setting. But if we dissect the data we
realize that many variables could have influenced this
outcome. First, the number of PFS events taken into
consideration was lower than the one needed for the
planned statistical analysis. Second, a significant per-
centage of patients enrolled in the combination arm
were not treated with a full dose of lapatinib (for
toxicity reasons). In a study where the 'control arm'
(trastuzumab-based therapy) is known to cure more
than 80% of patients, these factors may have diluted the
possible improvement in PFS. Thus, it is not so surpris-
ing that the difference observed in the ALTTO trial was
not significant. It would be interesting to quantify the
levels of HER2 in these samples and correlate them with
clinical response. Perhaps we will identify a subset of pa-
tients with high HER2 expression that is more sensitive
to dual HER2 blockade and shows significant clinical
benefit in the long term. Fortunately, these samples are
available for future biomarker analyses, including HER2
quantification.

For EGFR things are far behind. The basis for test-
ing anti-EGFR therapy in TNBC was the knowledge
that overexpression of EGFR occurs in up to 50% of
cases [156]. But a real stratification based on how
much EGFR these tumors express has never been
made. Now we have evidence that, the higher the
levels of EGFR, the higher the probability to achieve
pathological complete response from cetuximab- or
panitumumab-based therapy in the neoadjuvant set-
ting [74]. Again, one would wonder whether the re-
ported activity of anti-EGFR therapy in TNBC (or even in
head and neck and colon cancers) would be different if
stratification based on the EGFR levels had been done in
these clinical trials.

Conclusion

In conclusion, HER receptor quantification may be more
tedious than FISH or IHC but it can help in stratifying
and selecting patients for anti-HER therapy. Measuring
the levels of the targets in patients undergoing 'targeted'
therapy sounds like a good idea.

Additional file

Additional file 1: A table listing laboratory diagnostic tests cleared
by the Food and Drug Administration or offered by central
laboratories under Clinical Laboratory Improvement Amendments
measuring HER receptors in the clinic. *Epidermal growth factor
(EGFR), HER2 and HER3. ”Approved for colorectal cancer. LDT, laboratory
developed test; Q, quantitative; QL, qualitative; SQ, semiquantitative.
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Using selected reaction monitoring mass spectrometry (SRM-MS), we
quantified the levels of HER2 protein in FFPE tissue samples that had been
previosly classified as HER2- or HER2+ by standard THC and FISH. We
demonstrated that accurate HER2 status determination may be achieved in
FFPE diagnostic samples by SRM-MS. Cases which could not be properly
classified (SRM-MS-negative/ISH-positive) showed a characteristic
amplification pattern known as double minutes. More importantly, HER2
levels >2200 amol/ug were significantly associated with better survival in
patients treated with anti-HER2 therapies in both adjuvant metastatic
settings. This study demonstrated, for the first time, the successful application

of a mass spectrometry-based method to precision oncology.
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predictive of HER2 status (by standard IHC or in situ hybridization [ISH]) and of survival
benefit after anti-HER2 therapy.

Results: Absolute HER2 amol/ug levels were significantly correlated with both HER2 IHC and
amplification status by ISH (p < 0.0001). A HER2 threshold of 740 amol/ug showed an agree-
ment rate of 94% with IHC and ISH standard HER2 testing (p < 0.0001). Discordant cases
(SRM-MS-negative/ISH-positive) showed a characteristic amplification pattern known as
double minutes. HER2 levels >2200 amol/ug were significantly associated with longer
disease-free survival (DFS) and overall survival (OS) in an adjuvant setting and with

longer OS in a metastatic setting.
Conclusion: Quantitative HER2 measurement by SRM-MS is superior to IHC and ISH in pre-
dicting outcome after treatment with anti-HER2 therapy.
© 2015 The Authors. Published by Elsevier B.V. on behalf of Federation of European
Biochemical Societies. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

Gene amplification or protein overexpression of the human
epidermal growth factor receptor type 2 (HER2) has been re-
ported in ~20% of invasive breast cancer (BC) and is usually
associated with worse prognosis (Slamon et al., 1987, 1989).
The monoclonal antibody trastuzumab has dramatically
increased survival in patients with HER2-overexpressing met-
astatic disease (Hudis, 2007; Slamon et al., 2001) and has often
proved curative when used in combination with chemo-
therapy in the adjuvant setting (Joensuu et al., 2006; Piccart-
Gebhart et al., 2005; Romond et al., 2005; Smith et al., 2007).

The benchmarks for defining tumors as HER2-positive
(HER2+) is the presence of protein overexpression (3+) by
immunohistochemistry (IHC) or gene amplification by in situ
hybridization (ISH), according to current clinical guidelines
(Wolff et al., 2013). However, considerable controversy still ex-
ists regarding the accuracy, reliability, and inter-observer
variability of these methods. Studies in patients treated with
trastuzumab indicate that neither test is a perfect predictor
of response to trastuzumab (Dowsett et al., 2009; Perez et al.,
2010). It is estimated that up to 20% of tumors initially classi-
fied as HER2+ by IHC are actually false-positives (Paik et al,,
2002; Perez et al., 2006; Roche et al., 2002), and an estimated
1.1%—-11.5% of HER2-negative (HER2-) patients by IHC that
never received anti-HER2 therapy harbor HER2 gene amplifi-
cation by ISH (Hanna et al., 2014). False positives HER2 results
increase treatment costs (trastuzumab costs $50,000/person/
year in the US) and expose patients to a likely ineffective ther-
apy; false negative results deny patients the potential benefits
of anti-HER2 therapy.

It is widely accepted that the levels of HER2 are not homo-
geneous among the HER2+ population defined by conven-
tional semi-quantitative methods such as IHC. Tests capable
of absolute quantitation of HER-family protein expression
have demonstrated that HER2 protein expression can vary
up to 100 fold and that tumors with high HER2 expression
are more likely to benefit from anti-HER2 therapy in the neo-
adjuvant (Cheng et al., 2014; Denkert et al., 2013), adjuvant
(Pogue-Geile et al., 2013), and metastatic (Montemurro et al,,
2014) settings.

We have recently developed a mass spectrometry (MS)-
based proteomic BC panel to measure the absolute abundance

of targeted proteins in patient-derived formalin fixed, paraffin
embedded (FFPE) tissue for use in clinical decision-making.
The reliability of this assay for protein analysis has been
demonstrated (Hembrough et al., 2012), however, its clinical
utility for patient stratification, choice of therapy, and drug
resistance prediction is still being evaluated. In this work,
we tested this methodology’s ability to predict HER2 status
as determined by standard IHC/ISH in a panel of breast tu-
mors. We also assessed the value HER2 quantitation by MS
for predicting disease-free survival (DFS) or overall survival
(OS) of patients with HER2-positive BC after treatment with
anti-HER?2 therapy.

2. Material and methods

2.1. Patients and tissue samples

Samples of histologically confirmed invasive BC diagnosed at
Vall d’Hebron University Hospital (Barcelona, Spain) were
retrospectively identified by one study pathologist (CA) be-
tween 1997 and 2013. Samples were selected to ensure a repre-
sentative number of HER2- and HER2+ samples and to include
cases treated with trastuzumab to enable survival analyses in
a subset of patients. Sample selection criteria were: known
HER?2 status tested in the setting of the routine surgical pathol-
ogy laboratory and available FFPE tumor sample for SRM-MS
analysis. For survival analyses, samples with available data
on type of anti-HER2 treatment and outcome were included.
The study was approved by the hospital ethical committee,
including a waiver of consent for the use of archival material
for research.

2.2. HER2 standard testing (combined IHC/ISH)

HER?2 status was retrieved from hospital Vall d’Hebron pathol-
ogy laboratory reports (HER2 local). The diagnostic algorithm
for HER? testing used was IHC on all cases and ISH assays
done on all IHC2+ equivocal cases (per ASCO/CAP guidelines).
Protein expression was determined in paraffin-embedded sec-
tions using the 4B5 (Ventana Medical Systems, Tucson, AZ)
antibody. HER2 amplification was determined using silver-
enhanced ISH (SISH) and carried out with an INFORM HER2
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Dual ISH DNA Probe Assay (Ventana). Testing was performed
and scored according to both the 2007 ASCO/CAP guidelines
and the 2013 update of these guidelines.

For the purpose of this study, and to exclude any possibility
of heterogeneity in the tumor with respect to HER2 expres-
sion, IHC and ISH were repeated on all HER2 3+ patients
with available tissue samples and on discordant cases on
the same tissue block of the resection specimen sent for
SRM-MS testing (HER2 central). Central testing was performed
using IHC (HercepTest) and FISH (HER2 FISH pharmDx™ Kit) or
SISH (INFORM HER?2 Dual ISH DNA Probe Assay, Ventana) ac-
cording to ISO15189 standards and interpreted following the
most recent ASCO/CAP guidelines. HER2 gene status was
assessed by two pathologists (CA and VP) blindly scoring 30
nuclei for the number of HER2 and centromere 17 (CEP17) sig-
nals in each cell. The HER2/CEP17 probe signal ratio was deter-
mined and the patterns of HER2 amplification were analyzed
in those cases with HER2/CEP17 ratio >2. Samples with >70%
of the cells with double minutes (DM, small dispersed dots
distributed through the nucleus) or homogeneously staining
regions (HSR, tightly clustered dots in discrete regions of the
nucleus) patterns were classified accordingly. Cases with
both HSR and DM patterns in the same sample were classified
as mixed (MIX).

2.3. HER2 quantification by SRM-MS

HER2 protein was quantitated by SRM-MS as previously
described (Hembrough et al.,, 2013). Briefly, tissue sections

(10 uM) were cut from FFPE blocks, placed onto DIRECTOR®
microdissection slides, deparaffinized and stained with he-
matoxylin. Tumor areas were marked by a board-certified
pathologist and a cumulative area of a 12 mm? (from multiple
sections of a single tumor if necessary) containing approxi-
mately 45,000 malignant cells was microdissected from each
tumor and then solubilized to tryptic peptides using Liquid
Tissue® technology. This tryptic peptide mixture was then
subjected to SRM-MS analysis using stable isotope-labeled in-
ternal standard for accurate quantitation of analytical targets.
The peptide that was chosen for HER2 was ELVSEFSR (located
in the intracellular region of HER2, aa 971—-978). This peptide is
unique to HER2 and has been reported to be the best sequence
for SRM in FFPE tissue (Schoenherr et al., 2012; Steiner et al.,
2015). On-column injection resulted in 1 ug (~4000 cells) of
solubilized tissue and 5 fmol of internal standard measured
by microBCA (ThermoFisher Scientific, San Jose, CA). Instru-
mental analyses were performed on TSQ series (Vantage or
Quantiva) triple quadrupole mass spectrometer (Thermo Sci-
entific, San Jose, CA). The MS and chromatography conditions
have been previously described (Catenacci et al., 2014).

2.4.  Statistical methods

To select a SRM-MS threshold for stratifying tumors into
HER2+ and HER2-, receiver operating characteristic (ROC)
curves were constructed by computing the sensitivity and
specificity of increasing quantities of HER2 (by SRM-MS) in
predicting HER2 positivity (by combined IHC/ISH). Differences
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in continuous HER2 measurements among various IHC and
ISH subgroups were analyzed by using Kruskal-Wallis tests.
The Spearman rank correlation coefficient (Spearman p) was
used to describe the relationship between the HER2 protein
levels by SRM-MS, HER2 gene copy number (GCN) and HER2/
CEP17 ratio by central ISH. Among patients who had received
anti-HER2 therapy, ROC analysis was used to establish an
optimal cutoff for HER2 levels (by SRM-MS, HER2/CEP17 ratio
and HER2 GCN) that would predict disease-free, progression-
free, and overall survival in the adjuvant and metastatic set-
tings. Chi-square test and Fisher’s exact test were used to
determine the nature of the associations between optimal cut-
off points and clinicopathological parameters. Survival was
modeled using the Kaplan—Meier curves, and the significance
of differences between these curves was determined using
hazard ratio (HR) and its confidence interval of 95%, and the
p-value obtained by the log-rank test. Multivariate survival
analysis was performed using the Cox proportional hazards
model adjusted for hormone receptor status, tumor stage,
lymph node status and HER2 SRM levels. Results were consid-
ered significant when p-values ( p) were less than 0.05. Statis-
tical analyses were conducted using R software, version 3.0.3.

3. Results
3.1. Patients and tissue samples

We identified 326 samples, of which 277 (85%) were suitable
for SRM-MS analysis. Forty-nine samples were discarded for
lack of sufficient tumor tissue for SRM-MS. Of the 277 study
samples, 270 were FFPE breast cancer samples and 7 were
cell lines (Figure 1, Table 1 and Supplementary Table 1). Pa-
tient specimens were obtained mainly from surgical resection
(n = 255), and a small part from diagnostic core biopsies (n = 6)
or sampling of recurrent disease (n = 9). The study series
included 41 HER2 0+, 49 HER2 1+, 51 HER2 2+, and 136 HER2
3+ assessed by IHC. Of the 142 samples classified as HER2+
by combined IHC/ISH approach, 95 were included in the sur-
vival analysis (Supplementary Table 2). Forty-seven were
excluded due to the following: twenty-five were replicated
samples from the same patients; seven were lost to follow
up; five were still under treatment at the time of the analysis;
three received trastuzumab after 12 months from diagnosis
(atypical adjuvant); three were cell lines; two had a bilateral
invasive breast carcinoma; and two had received trastuzumab
as neoadjuvant treatment. Sixty-eight patients received adju-
vant chemotherapy in combination with trastuzumab alone
(76%, n = 52) or combined with another anti-HER2 agent
(24%, lapatinib, n = 6 and pertuzumab, n = 10). Twenty-
seven received anti-HER2 therapy in the metastatic setting.
Trastuzumab alone was the preferred anti-HER2 treatment
(70%, n = 19), followed by trastuzumab combined with
another anti-HER2 (22%, pertuzumab, n = 5; lapatinib, n = 1),
T-DM1 (4%, n = 1), and T-DM1 plus pertuzumab (4%, n = 1).

3.2 SRM-MS versus standard IHC/ISH

The average HER2 protein level in the analyzed dataset
(n = 277) as measured by SRM-MS was 2217.9 amol/ug

Table 1 — Characteristics of 270 clinical samples used in the study.

Characteristics N° %

Patient specimen

Surgical resection 255 95

Diagnostic core biopsy 6 2

Recurrent disease 9 3
Histological grade

Gl 16 6

G2 112 41

G3 134 50

Unknown 8 3
Pathological stage T

Tx—T1 143 53

T2-T4 123 46

Unknown 4 1
Pathological stage N

Nx—NO 147 54

N1-N3 119 44

Unknown 4 1
Hormone receptor status (HR)

Negative 47 17

Positive 223 83
HER2 overexpression by IHC

0 39 14

1 49 18

2 49 18

3 133 49

(median: 643.5; sd: 3299.4; range: 0 to 17,446.7). Absolute
HER2 amol/ug levels increased with increasing IHC scores
with averages values of 189.1, 259.9, 406.7 and 4214.1 in
HER2 IHC 0+, 1+, 2+, and 3+, respectively (p < 0.001, Krus-
kal-Wallis rank sum test) (Supplementary Table 3). Samples
scored as HER2 IHC3+ expressed the widest dynamic range
of HER2 protein levels as quantified by SRM-MS (range:
163.7—17,446.7 amol/pg). When correlated with amplification
status, HER2 protein levels were also substantially higher in
ISH-amplified (mean: 4151.2 amol/ug; sd: 3682.1; range:
272.8—17,446.7) than non-amplified samples (mean:
383.8 amol/pg; sd: 339.1; range: 0—1748.0; p < 0.001, Wilcoxon
test, Supplementary Table 4). In our study we analyzed sam-
ples collected from 1997 to 2013. Although the SRM-MS is an
epitope-independent technology and its robustness has been
proven (Catenacci et al., 2014), we addressed the stability of

Table 2 — Concordance between SRM-MS and local and central
combined IHC/ISH.

HER2 Status n SRM-MS Agreement,
(THC/ISH) n (%)
Local Negative 135 130 (96%)
Positive 142 125 (88%)
Central Negative 144 137 (95%)
Positive 133 123 (92%)

Local, local HER? testing result; Central, central HER2 re-testing re-
sults; SRM-MS, selected reaction monitoring mass spectrometry.
IHC, Immunohistochemistry; ISH, in situ hybridization.
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HER?2 as detected by SRM-MS over time. The average SRM-MS
values did not differ significantly with age of the tissue blocks
thus supporting the validity of results generated using sam-
ples collected over a period of many years (Supplementary
Table 5).

Per ROC analysis, the SRM-MS threshold that best corre-
lated with HER2 status by combined local IHC/ISH was
740 amol/pg (area under the ROC curve: 0.963). When strati-
fied according to this threshold, 130 samples (47%) were clas-
sified as overexpressors and 147 (53%) as
overexpressors. The overall percent agreement between
SRM-MS and combined local IHC/ISH was 92% (255 of 277).
The percent positive agreement was 88% (125 of 142), and
the percent negative agreement was 96% (130 of 135) (Table
2). HER2 status by SRM-MS for 277 breast cancer samples
that had been previously scored by local IHC testing and sub-
sequently evaluated by ISH reflex central testing are shown
in Figure 2. In the HER2 IHC negative group (0+ and 1+,
n = 90), 86 samples (96%) were correctly classified as negative
and 4 (4%) as positive by SRM-MS. After central retest, none
of these 4 positive samples showed HER2 amplification. In
the HER2 IHC equivocal group (2+, n = 51), 47 (92%) and 4
(8%) samples were classified as negative and positive by
SRM-MS, respectively. Three of these 4 SRM-MS-positive
samples were HER2 amplified (the non-amplified discordant
sample was the ZR75-1 cell line). Three out of 47 samples
(6%) classified as negative by SRM-MS showed HER2 gene
amplification.

In the HER2 IHC positive group (3+, n = 136), 122 samples
(90%) were correctly classified as positive whereas 14 samples
(10%) as negative by SRM-MS. HER2 gene amplification was
centrally confirmed in 111 (98%) of the 113 evaluable IHC3+/
SRM-MS-positive samples (not amplified, n = 2; data not avail-
able, n = 9). Among IHC3+/SRM-MS-negative (n = 14), seven
harbored HER2 gene amplification. Overall agreement after
central retest was 94% (260 of 277), the percent positive agree-
ment was 92% (123 of 133), and the percent negative agree-
ment was 95% (137 of 144) (Table 2). Details of the discordant
samples between SRM-MS and combined IHC/ISH are shown
in Supplementary Table 6.

non-

3.3.  Relationship between HER2 gene amplification
pattern and HER2 protein levels

After central retest, 6% (17/277) of samples remained discor-
dant. The 7 SRM-MS-positive/ISH-negative samples showed
absolute HER2 protein levels below the average dataset value
(2217.9 amol/pg) and very close to the 740 amol/pg threshold
distinguishing overexpressors from non-overexpressors. The
remaining 10 samples showed low protein levels
(<740 amol/ug) despite HER2 gene amplification. When strati-
fied by HER2 amplification pattern, 8 of 10 samples had pat-
terns involving extrachromosomal circles of DNA known as
DM and the remaining 2 showed a mixed amplification
pattern. No significant differences in HER2/CEP17 ratios were
evident (data not shown).

We therefore investigated whether, in the presence of
HER2 gene amplification, the levels of HER2 protein in the tu-
mor tissue may be influenced by its amplification pattern
rather than the levels of gene amplification itself. To test
this hypothesis, we correlated HER2 expression by SRM-MS
with HER2 GCN, HER2/CEP17 ratio and pattern of amplification
(HSR, DM, MIX) in HER2 IHC 2+ (n = 6) and IHC3+ (n = 117)
cases amplified by central ISH. The mean HER2 protein SRM-
MS level was 4047.1 amol/ug (sd: 3508.9; range:
272.8—17,446.7). Mean HER2 GCN was 14.0 (sd: 4.2; range:
5.2-22.2). Mean HER2/CEP17 ratio was 7.2 (sd: 2.5; range:
2.1-15.0) (Supplementary Table 7). HER2 SRM-MS levels
showed weak positive correlations with HER2 GCN (Spearman
p = 0.44; p < 0.001) and HER2/CEP17 ratio (Spearman p = 0.31;
p < 0.001) (Figure 3). Forty-one percent of samples (n = 50) had
HSR patterns, 37% (n = 46) had DM patterns and 22% (n = 27)
were mixed. Average HER2 protein levels were significantly
higher in tumors amplified with HSR (mean: 5462.9; sd:
3368.4; range: 1099.3—17,446.7) compared to those with DM
(mean: 2176.4; sd: 1908.1; range: 272.8—8070.0)
(Supplementary Table 8).

DM amplification patterns were present in 80% (8/10) of
samples with low HER2 protein levels; only 34% (38/113) of
samples with high HER2 protein levels had DM patterns
(Supplementary Table 9).

| IHC NEG (0+, 1+), n=90| [ IHC EQUIV (2+], n=51 | [ IHC POS (3+), n=136 l
SRM-MS SRM-MS SRM-MS
3] (+) ) (+) ) (+)
86 (96%) 4 (4%) 47 (92%) 4 (8%) 14 (10%) | 122 (90%)
- na 4 (100%) 44 (94%) | 1(25%) 7 (50%) 2 (2%)
Central ISH|  (+) na 0 3(6%) | 3(75%) 7(50%) | 111 (91%)
(na) na 0 0 o 0 9 (7%)
Figure 2 — HER2 selected reaction g-mass spectrometry (SRM-MS) results for 277 breast cancers previously classified as IHC negative

(0+, 1+), equivocal (2+) or positive (3+) with subsequent ISH central retesting results. SRM-MS-positive = HER2 protein > 740 amol/pg.
Discordant cases are highlighted. —, negative; +, positive; na, not assessed.
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3.4.  Survival analyses

ROC analysis of patients treated with anti-HER2 therapy
(n = 95) resulted in cutoff values of 2200 amol/ug for HER2
SRM-MS, 6.4 for HER2/CEP17 ratio and 12.5 for HER2 GCN
(Supplementary Table 10). The 2200 amol/ug HER2 SRM-MS
cutoff outperformed the 740 cutoff in predicting DFS and OS
(Supplementary Table 11) and was used for survival analyses.

The correlations between the optimal HER2 SRM-MS, HER2/
CEP17 ratio and HER2 GCN cutoffs for survival and clin-
ic—pathological parameters are shown in Supplementary
Table 12 and 13. Patients showing HER2 levels by SRM-MS
above the threshold of 2200 amol/pg (n = 58, 61%) were defined
as super-expressors. In the adjuvant setting (n = 68), super-
expressors had a statistically significantly better outcome
than non-super-expressors (Figure 4). The number of
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Figure 3 — Correlation between the HER2 protein expression by SRM-MS and HER2/CEP17 ratio (A), and HER2 GCN (B). Dotted gray line
indicates HER2 SRM-MS 740 amol/pg threshold. Spearman rank correlation coefficient was used to describe the relationship between SRM-MS
and HER2 GCN (p, 0.44; p < 0.001) and SRM-MS and HER2/CEP17 (p, 0.31; p < 0.001). Pattern of amplification by in situ hybridization is
shown. Red circle, homogeneously staining regions (HSR); blue circle, double minutes (DM); orange circle, Mixed pattern. ¢, Representative
images of protein expression by IHC and amplification patterns by ISH are shown together with SRM-MS protein levels.
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Figure 4 — Kaplan—Meier curves for disease-free survival (A—C) and overall survival (D—F) according to HER2 protein expression by SRM-MS
(A,D), HER2/CEP17 ratio (B,E) and HER2 gene copy number (GCN) (C,F) in patients treated with anti-HER2 in the adjuvant setting. Optimal
cutoff values were determined by receiver operating characteristic (ROC) analysis. Disease-free survival and overall survival were superior for the

group of patients with high HER protein levels (>2200). HR, hazard ratio; HER2 Ratio, HER2/CEP17 ratio; CI, confidence interval.

observed DFS events were 3 in the super-expressors compared
to 9 events observed in tumors with HER2 levels below
2200 amol/ug (HR = 0.22, 95% CI 0.06—0.81, log rank
p = 0.013). Differences in DFS were even greater between re-
fractory patients (relapse within 24 months) and patients
without relapse or recurrent disease within 24 months
(OR = 23, 95% CI, 1.26—434.86, p 0.003).

Similar results were observed for OS. None of the super-
expressors died of the disease compared to 7 patients whose
tumors were below 2200 amol/pg (HR = na, p 0.001). Neither
HER2/CEP17 ratio nor HER2 GCN was predictive of longer DFS
or OS in the adjuvant setting (Figure 4).

In the first-line metastatic setting (n = 27), 18 (67%) patients
were classified as super-expressors. Median OS was signifi-
cantly longer in super-expressors (7.84; 95% CI: 5.23 to NA)
as compared to non-super-expressors (2.91; 95% CI: 1.61 to
NA), (HR = 0.20; 95% CL 0.07 to 0.57; p < 0.001), (Figure 5). In
this setting, HER2 GCN (HR = 0.15; p = 0.001) and, to a lesser
extent, HER2/CEP17 ratio (HR = 0.32; p = 0.050) were also pre-
dictive of a better OS. No significant correlations were found
between HER2 protein levels or gene status and PFS, likely
due to the fact that all but two patients relapsed during follow
up. When looking at relapse within 24 months, nine of 18

(50%) super-expressors were refractory to anti-HER2 therapy
compared to all (n = 9) patients with HER2 lower than 2200.
No correlation was found between HER2 pattern of amplifica-
tion and survival in both adjuvant and metastatic series
(Supplemental Table 14).

In the multivariate model which includes hormone recep-
tor status, tumor size (T) and presence of lymph-node metas-
tases (N), HER2 levels by SRM-MS independently predicted DFS
in the adjuvant setting (HR = 0.25; 95% CI: 0.06 to 0.96;
p = 0.044) (Table 3). The model could not be run for OS due
to lack of events in the HER2 super-expressor group.

4. Discussion

This report demonstrates the application of a MS-based
method to objectively quantify HER2 protein in FFPE clinical
tissue samples from BC patients. We showed that within
IHC-positive (3+) ISH-amplified tumors, a wide dynamic range
of HER2 protein expression is found and the subgroup of tu-
mors with the highest levels benefitted most from HER2 inhi-
bition. Our findings suggest that quantitative HER2
measurement is superior to gene amplification levels in
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Figure 5 — Kaplan—Meier curves for progression-free survival (A—C) and overall survival (D—F) according to HER2 protein expression by SRM-
MS (A,D), HER2/CEP17 ratio (B,E) and HER2 gene copy number (GCN) (C,F) in patients treated with anti-HER2 in the metastatic setting.
HR, hazard ratio; HER2 Ratio, HER2/CEP17 ratio; CI, confidence interval.

determining which patient will benefit from trastuzumab
treatment in both adjuvant and metastatic settings.

The ASCO/CAP guidelines (Wolff et al., 2013) recommend
initial HER2 screening of all BC, followed by ISH for samples
with equivocal staining; the results of these tests determine
a patient’s eligibility for trastuzumab. However, lack of
concordance between IHC and ISH (IHC-negative/ISH-posi-
tive) occurs in up to 11.5% of cases (Hanna et al.,, 2014). Our
findings suggest that these conflicting results may be only
marginally due to pre-analytic (fixation affects antibody sensi-
tivity), analytic (limited dynamic range of chromogenic IHC,
different antibodies used), or post-analytic (subjectivity in

Table 3 — Multivariate analyses of disease-free survival (DFS) in the

68 patients included in the adjuvant series.

DFS HR CI95%(HR) p-value
Hazard(Hormone receptor positive, 0.19 0.05—-0.70 0.012
Hazard(Hormone receptor negative)

Hazard(TX-T1 |

T (('rz:m)) 0.20 0.05-0.73 0.015
Hazard(NX-NO) 1.19 0.36—3.94 0.777
Hazard(N1-N3)

Hazard(HER2:2200) 0.24 0.06—0.96 0.044

Hazard(HER2<2200)

interpretation of the results) factors (Camp et al, 2002;
Rimm, 2006). In fact, despite the high correlation observed
with IHC score or gene amplification detected by ISH, we
found that approximately 10% of HER2-amplified breast tu-
mors expressed very low amounts of HER2 protein; all of these
discordant cases were associated with a gene amplification
pattern known as DM.

Evidence indicates that the amplification of genes in DM
may result in a dynamic regulation of gene expression and
resistance to EGFR TKIs for EGFRulll-positive glioblastomas
(Nathanson et al., 2014). Conversely, data from our group did
not find any significant correlation between amplification of
HER2 in DM content and sensitivity to anti-HER2 therapy
(Vicario et al., 2015). Quantitative HER2 protein analysis, how-
ever, may identify a subset of HER2 tumors amplified in DM
with low HER2 expression that are less sensitive to anti-
HER2 treatment.

Based on our analysis, patients expressing greater than
740 amol/ug of HER2 should receive anti-HER2 treatment, as
this was the optimal threshold that correlated with standard
IHC/ISH. However, the most meaningful endpoint of HER2
testing is not prediction of HER2 status by IHC or ISH, but
outcome after HER2-targeted therapies. Using quantitative
HER2 measurement, we found that patients whose tumors
expressed HER2 protein level >2200 amol/ug) benefitted
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more from anti-HER2 therapy than patients with lower HER2
expression levels. Strikingly, relapse within 24 months was
observed in 21% of patients with HER2 expression levels below
2200 amol/pg and none of the super-expressors progressed to
therapy in this period of time. One possible explanation is that
tumors with high levels of HER2 are enriched with “true”
HER2-dependent disease and therefore potentially more sus-
ceptible to HER2 blockade (Montemurro et al., 2014). Another
explanation is that the more HER2 receptors are present in
the membrane of tumor cells, the more molecules of trastuzu-
mab (or other anti-HER2 antibodies) can bind and prime
antibody-dependent cell cytotoxicity (ADCC). A direct correla-
tion between HER2 levels and ADCC has been reported in pre-
clinical models (Scaltriti et al., 2009).

Our findings should be considered in light of certain limita-
tions. The number of patients included in this proof-of-
concept study is small and the cutoff point of 2200 amol/ng
was based on the survival outcomes in patients whose tissues
were selected for the analysis. This cutoff needs to be vali-
dated in a larger, independent set of patients. Also, survival
analyses included only individuals who had received anti-
HER2 treatment. Prospective trials will be needed to address
the question of whether varying levels of HER2 positivity are
truly predictive of response in all BC patients. Studies are un-
derway to validate the cut-off in an expanded BC cohort.

5. Conclusions

HER2 protein quantitation by SRM-MS in FFPE tissues is pre-
dictive of response to anti-HER2 therapy and survival in
HER2-positive (by standard IHC/FISH) BC patients. Moreover,
this methodology may allow the identification of FISH positive
cases that express low amounts of HER2 and respond poorly to
anti-HER2 therapy.
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Supplementary Table 1. Breast cancer cell lines used in study.

Cell Line Study Sample ID HER2 IHC HER2FISH Her2
amol/ng
MDA231 ctrl 1 +0 no ampl 0.0
MCF7 ctrl 2 +0 no ampl 0.0
T47D ctrl 3 +2 no ampl 697.0
ZR75-1 ctrl 4 +2 no ampl 988.0
SKBR3 ctrl 5 +3 ampl 7717.0
HCC1954 ctrl 6 +3 ampl 10020.0
ZR 75-30 ctrl 7 +3 ampl 16964.0
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Supplementary Table 2. Clinicopathological characteristics of patients
included in the survival analysis.

‘ Characteristics N° %

Histological grade

G1-G2 33 35

G3 62 65
Pathological stage T

Tx-T1 50 53

T2-T4 42 44

Unknown 3 3
Pathological stage N

Nx-NO 40 42

NI1-N3 52 55

Unknown 3 3
Hormone receptor status (HR)

Negative 27 28

Positive 68 72
HER?2 amplification by central ISH

No amplification 6 6

Amplification 87 92

Not determined 2 2
HER2/CEP17 ratio by central ISH

<2 6 6

2-6.3 32 34

>6.4 55 58

Not determined 2 2
Pattern of amplification

Double Minutes 32 34

Homogeneous stained regions 37 39

Mixed 18 19

Not determined 8 8
Anti-HER?2 treatment

Trastuzumab (single agent) 71 75

Trastuzumab + lapatinib 7 7

Trastuzumab + pertuzumab 15 16

T-DMI1 2 2
Anti-HER?2 treatment setting

Adjuvant 68 72

Metastatic 27 28
Disease/Progression-free survival, years

Adjuvant, Mean (95% CI) 3.2 (2.8-3.6)

Metastatic, Mean (95% CI) 5.2 (3.5-6.8)
Overall survival, years

Adjuvant, Mean (95% CI) 3.1(2.7-3.4)

Metastatic, Mean (95% CI) 4.4 (3.3-5.3)
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Supplementary Table 3. HER2 expression as measured by SRM-MS

according to the different immunohistochemistry (IHC) scores.

SD, standard deviation. *Kruskal-Wallis rank sum test.

Her2 (amol/pg)

Mean SD Min Max N total P-value
+0 189.1 324.2 0.0 1348.7 41 <0.001
HER2 IHC +1 259.9 357.2 0.0 1748.0 49
+2 406.7 481.9 0.0 2731.5 51
+3 4214.1 3768.0 163.7 17446.7 136
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Supplementary Table 4. HER2 expression as measured by SRM-MS
according to the HER2 gene amplification status by in situ hybridization

(ISH).

No ampl, absence of amplification; Ampl, presence of amplification; SD,
standard deviation; ‘Wilcoxon test.

Her2 (amol/pg)

Mean SD Min Max N total P-value
HER2 No 383.8 339.1 0.0 1748.0 60 <0.001
ISH ampl
Ampl 4151.2 3682.1 272.8 17446.7 124
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Supplementary Table 5. Average HER2 levels as detected by SRM-MS
according to sample collection year by IHC category (cat)

SD, Standard deviation; P value calculated with ANOVA.

Her2 (amol/png)

IHC cat Average SD P value
<2008 2 365,25 516,54
I 2008 5 232,76 323,61
2009 15 131,21 226,17 22
2010 11 353,70 457,82
2011 6 ,00 ,00
<2008 3 174,00 301,38
2008 3 424,68 391,54
+1 2009 9 375,90 289,88 17
2010 23 310,03 42525
2011 11 38,63 128,11
2008 4 534,75 392,33
2009 16 245,58 181,15
2010 18 555,78 713,87 31
+2
2011 5 194,01 265,66
2012-13 6 336,28 177,04
<2008 25 3820,55 3366,02
2008 21 4570,58 3071,53
2009 25 5155,53 4751,08
40
+3 2010 19 2879,73 252323
2011 15 3932,04 3646,72
2012-13 28 3726,41 3520,68
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Supplementary Table 6. Details of discordant cases between SRM-MS and
IHC/ISH after central ISH retest.

SRM-MS cat: Negative, <740 amolug; Positive, >740 amolug. HER2 status
local: Positive, IHC positive (3+) or ISH amplified (IHC equivocal). HER2
status central: Positive, ISH amplified; Negative, ISH non amplified. In bold
discordant cases between SRM-MS and ISH after central re-test. DM, double
minutes; MIX, mixed pattern. SR, surgical resection; RD, recurrent disease.
IDC, invasive ductal carcinoma; HR, Hormone receptors. POS, positive; NEG,
negative. results based on literature data.

Oncoplex HER2 SRM- HER2 HER2 HER2 Amplification Specimen  Diagnosis  Grade
ID amolpg MS cat IHC status status pattern
Local Local Central

D0606 349.8 Negative ~ Equivocal Positive Positive DM TINO SR IDC 3 POS
D0595 4353 Negative  Equivocal Positive Positive DM T2N1 SR IDC 2 POS
D0596 478.0 Negative ~ Equivocal Positive Positive DM TINO SR IDC 3 NEG
C0593 163.8 Negative Positive Positive Negative - T4NX SR IDC 2 NEG
D0188 272.8 Negative Positive Positive Positive DM T2NI SR IDC 3 POS
C0568 283.3 Negative Positive Positive Negative - T2N1 SR IDC 3 POS
DO0152 287.8 Negative Positive Positive Positive MIX TINO SR IDC 3 NEG
D0156 3824 Negative Positive Positive Positive DM TINO SR IDC 1 POS
D0665 4249 Negative Positive Positive Negative - TIN1 SR TC 1 POS
D0656 443.6 Negative Positive Positive Positive DM T2NO SR IDC 2 POS
A0090 500.0 Negative Positive Positive Negative - TIN1 SR IDC 3 POS
C0594 522.8 Negative Positive Positive Negative - TXN2 RD IDC 3 NEG
DO0165 5353 Negative Positive Positive Positive DM T3N3 RD IDC 3 NEG
D0177 542.8 Negative Positive Positive Positive DM TINO SR IDC 2 POS
A0097 550.0 Negative Positive Positive Negative - T2N1 SR IDC 3 POS
A0091 580.0 Negative Positive Positive Negative - TIN2 SR IDC 2 POS
D0187 639.8 Negative Positive Positive Positive MIX T2NO SR IDC 3 POS
D0574 1348.7 Positive Negative Negative Negative - TXNO SR IDC XX POS
D0503 771.3 Positive Negative Negative Negative - TINO SR IDC 2 POS
D0547 834.5 Positive Negative Negative Negative - T2N1 SR IDC 3 POS
D0569 1748.0 Positive Negative Negative Negative - TINO SR PC 3 POS
Ctrl_4 988.0 Positive ~ Equivocal ~ Negative'  Negative' - XX XX XX XX XX

D0664 764.3 Positive Positive Positive Negative - T4N2 SR IDC 3 POS
DO0173 959.8 Positive Positive Positive Negative - TINO SR IDC 2 POS
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Supplementary Table 7. HER2 expression levels by SRM, HER2 gene copy
number (GCN) and HER2/CEP17 ratio in ISH-positive breast cancer.

SD, standard deviation. ZR 75-30 cell line was not included in the analysis as
central ISH re-test was not available.

‘ N Mean SD Min Max
Her2 amol/pg 123 4047.1 3508.9 272.8 17446.7
HER2 GCN 123 14.0 4.2 5.2 22.2
HER2/CEP17 Ratio 123 7.2 25 2.1 15.0
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Supplementary Table 8. HER2 expression levels by SRM-MS according to
amplification pattern.

DM, double minutes; HSR, homogeneously stained regions; MIX, mixed
pattern. SD, standard deviation. :Kruskal-Wallis rank sum test.

Her2 (amol/pg)
SD Min Max N total P-value

Mean
DM 21764 19081 2728 80700 46 <0.001
Pattern of
amplification  —prep 54620 33684 10993 174467 50
MIX 46121 44396 2878 163033 27
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Supplementary Table 9. Distribution for pattern of HER2 amplification in
SRM-MS negative (<740) and positive (>740) tumors.

DM, double minutes; HSR, homogeneously stained regions; MIX, mixed

pattern.

| DM MIX HSR
HER2 <740 8 2 0
(amol/ng) >740 38 25 50
Total 46 27 50 123
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Supplementary Table 10. ROC analysis.

The optimal cutoff for HER2 levels by SRM-MS, HER2/CEP17 ratio and
HER2 GCN discriminating between a positive or negative result, in terms of
response to treatment and prolonged survival, was determined using ROC
analysis. Patients were dichotomized into good responders (absence of disease
progression at last follow up) or poor responders (presence of disease
progression at last follow up) and into good survival (alive at last follow up)
versus poor survival (dead at last follow up) groups. The cutoff values of
HER2 amol/pg of 2200, HER2/CEP17 ratio of 6.4 and HER2 GCN of 12.50
were chosen as the optimal cutoff values for survival analyses. The HER SRM
of 2200 amol/ug threshold represents an intermediate value between optimal
thresholds distinguishing good versus poor survival (2110.25 amol/ug) and
good versus poor responders (2302.25 amol/ug) in the adjuvant population.
The sensitivity and specificity of this threshold in predicting survival was
100% and 65.57% in the adjuvant setting, and 56.25% and 100% in the
metastatic setting. AUC: Area under ROC curve.

Threshold Sensitivity Specificity AUC

All cohort, n=95 Good vs poor survival 2110.25 69.6% 73.6% 0.698

Anti HER2 adjuvant, Good vs poor survival 2110.25 100% 68.9% 0.690

HER2 by SRM o8 Good vs poor responder 2302.25 75% 66.1% 0.688
Anti HER2, metastatic, Good vs poor survival 2758.75 62.5% 90.9% 0.727

n=27 Good vs poor responder 6286.65 80% 50% 0.580

All cohort, n=93 Good vs poor survival 11.80 56.5% 71.4% 0.658

Anti HER2 adjuvant, Good vs poor survival 12.45 57.1% 56.9% 0.548

HER2 by GCN n=66 Good vs poor responder 13.45 50% 63% 0.513
Anti HER2, metastatic, Good vs poor survival 12.62 68.8% 81.8% 0.810

n=27 Good vs poor responder 15.10 72% 100% 0.800

All cohort, n=93 Good vs poor survival 6.41 69.6% 65.7% 0.737

Anti HER2 adjuvant, Good vs poor survival 6.27 57.1% 71.2% 0.630

HER2/Chr17 Ratio n=66 Good vs poor responder 6.27 50% 72.2% 0.514
Anti HER2, metastatic, Good vs poor survival 5.31 56.2% 90.9% 0.741

n=27 Good vs poor responder 10.20 100% 50% 0.740
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Supplementary Table 11. DFS and OS HRs comparison using two different
cut points (740 and 2200).

NA, Not assessable; HR, hazard ratio; CI, confidence interval.

Adjuvant (n=68) HR Clyso, p-value
DFS 740 0.705 0.09-5.514 0.738
2200 0.219 0.059 - 0.811 0.0125
oS 740 0.274 0.031-2.375 0.209
2200 NA NA - NA 0.0014
Metastatic (n=27) HR Clyse, p-value
DFS 740 0.331 0.104-1.056 0.05
2200 0.561 0.243-1.294 0.169
oS 740 0.183 0.054-0.623 0.002
2200 0.198 0.069 - 0.566 0.0008
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Supplementary Table 12. Correlation between HER2 status by SRM and
ISH and clinicopathological characteristics in the adjuvant series.

1Chi square test; 2Fisher exact test; 3Wilcoxon test.

HER2 Ratio HER2 GCN
HER2 (amol/ug)
<2200 <6.4 >=6.4 <125 >=12.5
- >=2200 p- _ _ p- _ _ p-
(n=28, _ o (n=22, (n=44, (n=30, (n=36,
41.2%) (0=40,58.8%)  value 333003 667%) M€ ssav)  s46%) Ve
7 10 8 o
Negative 7 (10.3%) 10 (14.7%) (10.6%)  (15.2%) (12.1%))  (13.6%)
! ! !
HR 0.968 5 £ 0.619 > 57 0.898
Positive 21 (30.89%) 30 (44.1%) 22.7%)  (51.5%) (33.3%) (40.9%)
Gl 1(1.5%) 0 (0%) (1.;%) 0 (0%) 1(1.5%) 0 (0%)
10 15 12 13
Grade G2 15 (22.1%) 11 (16.2%) 0.023 (227%)  (16.7%)  0.208°  (18.2%) (19.7%)  0.695°
11 29 17 23
G3-G4 12 (17.7%) 29 (42.7%) (182%)  (43.9%) (25.8%) (34.9%)
14 26 (39.4) 17 23
TX-TI 14 (20.6%) 28 (41.2%) (21.2) (25.8%) (34.9%)
Pahological 1 1 1
T 0.157 g B 0.929 3 73 0.730
T2-4 14 (20.6%) 12 (17.7%) (12.1%)  (27.3%) (19.7%) (19.7%)
12 22 20 14
NX-NO  15(22.1%) 20 (29.4%) (18.2%)  (33.3%) (30.3%) (21.2%)
Pathological 1 1 1
N 0.965 70 ) 0.931 T ) 0.045
N1-N3 13 (19.1%) 20 (29.4%) (15.2%)  (33.3%) (15.2%) (33.3%)
Follow up, Years 3 3 3
Mean (sd) 3.5(1.5) 3.4(1.5) 0.699° 35(14) 33(1.5) 0414 33(1.5)  34(1.4) 0918
16 18 24 30
0,
Disease No 19 (27.9%) 37 (54.4%) 042%)  (57.6%) (36.4%) (45.5%) /
H 2 !
progression 0.021 3 3 0.310 60.1%) 60.1%) 0.977
Yes 9 (13.2%) 3 (4.4%) (9.1%)  (9.01%)
4 3 (4.6%) 4(6.1%) 3 (4.6%)
Dead 7(10.3%) 0 (0%) (6.1%)
Vital status 5 5 2
0.001 B a0 0.210 36 3 G0%) 0.693
Alive 21 (30.9%) 40 (58.8%) (27.3%)  (62.1%) (39.4%)
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Supplementary Table 13. Correlation between HER2 status by SRM and
ISH and clinicopathological characteristics in metastatic series.

1Chi square test; 2Fisher exact test; 3Wilcoxon test.

HER?2 Ratio HER2 GCN
HER2 (amol/ug)
<2200 <64 >=6.4 <125 >=12.5
- >=2200 p- _ _ p- _ _ p-
(=9, _ ., (n=16, (=11, (=13, (n=14,
333%) (718,06.7%)  value  gga000 40700y Ve g0y 51.99)  Value
Follow up, Mean
Years ) 6.0 (4.7) 8.5 (5.5) 02327  62(43) 98(6.0) 0056 5842  94(57) 0105
137%)  1(3.7%)
No 0 (0%) 2 (7.4%) 000%)  2(7.4%)
Disease
progression 0.539° 5 T 0.987 3 B 0.482
9 (55.6%)  (31.0%) (48.1%)  (44.4%)
Yes ( ) 16 (59.3%)
33.3% :
11 5 11 5
9 (40.7%)  (18.5%) (40.7%)  (18.5%)
Dead ) 7(25.9%)
33.3% :
ital stat
Vital status 0.003° 5 3 0.264 — T 5 0.018°
(18.5%)  (22.2%) (33.3%)
Alive 0 (0%) 11 (40.7%)
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Supplementary Table 14. Disease free survival and overall survival hazard
ratios according to HER2 pattern of amplification. DM, doble minutes, HSR,
homogeneously stained regions; MIX, mixed; HR, hazard ratio; CI, confidence
interval.

‘ Adjuvant (n=63) HR Clys p-value
DM/HSR 1.59 0.35-7.14 0.546
DFS DM/MIX 0.83 0.18-3.70 0.804
HSR/MIX 0.52 0.10-2.60 0.427
DM/HSR 2.62 0.23-29.80 0.438
0s DM/MIX 0.96 0.10-8.93 0.973
HSR/MIX 0.37 0.03-4.44 0.431

‘ Metastatic (n=24) HR Clys p-value
DM/HSR 0.50 0.13-1.85 0.297
DFS DM/MIX 1.13 0.21-6.01 0.883
HSR/MIX 2.28 0.39-13.42 0.362
DM/HSR 4.14 0.89-8.41 0.067
0s DM/MIX 5.63 0.71-44.45 0.101
HSR/MIX 1.36 0.12-15.56 0.804




DISCUSSION







The fundamental principle of targeted therapy is to specifically harm tumor

cells that depend on a definite target for proliferation and survival, sparing
non-tumor cells from damage. In many cases, the target is a protein with
activating mutations that is present only in tumor cells, facilitating the
specificity of the therapy (for example, Braf~-mutant melanomas, EGFR-
mutant lung cancer), allowing profound inhibition of the target before the
emergence of side effects. In the case of HER receptors in BC the target is a
protein that, although not carrying any activating alterations, is present in
much higher amounts in tumor cells compared with normal cells. In these
cases one would guess that the higher is the difference in target expression
between normal and tumor cells, the wider is the therapeutic window.
However, only the presence of the target or its semiquantitative expression
(and not the absolute levels) is currently taken into consideration in clinical

practice.

The ASCO/CAP guidelines (Wolff 2013) recommend initial HER2 screening of
all BC, followed by ISH for samples with equivocal staining; the results of
these tests determine a patient’s eligibility for trastuzumab. However, lack of
concordance between IHC and ISH (IHC-negative/ISH-positive) occurs in up
to 11.5% of cases (Hanna 2014). Our findings suggest that these conflicting
results may be only marginally due to pre-analytic (fixation affects antibody
sensitivity), analytic (limited dynamic range of chromogenic THC, different
antibodies used), or post-analytic (subjectivity in interpretation of the results)
factors (Camp 2002, Rimm 2006). In fact, despite the high correlation
observed with THC score or gene amplification detected by ISH, we found that
approximately 10% of HER2-amplified breast tumors expressed very low
amounts of HER2 protein; all of these discordant cases were associated with a
gene amplification pattern known as double minutes (DM). Evidence
indicates that the amplification of genes in DM may result in a dynamic
regulation of gene expression and resistance to EGFR TKIs for EGFRvIII-
positive glioblastomas (Nathanson 2014). Conversely, data from our group did
not find any significant correlation between amplification of HER2 in DM
content and sensitivity to anti-HER2 therapy (Vicario 2015). Quantitative

HER2 protein analysis, however, may identify a subset of HER2+ tumors
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amplified in DM with low HER2 expression that are less sensitive to anti-

HER2 treatment.

There is an increasing body of evidence indicating that the levels of HER2 in
HER2+ tumors can influence the response to HER2-targeted therapy,
converging to the common conclusion that ‘more HER2, more response’ (Toi
2010, Cheng 2014, Montemurro 2014, Duchnowska 2012, Lipton 2010,
Nuciforo 2014, Christiansen 2012). Quantitative HER2 expression or
homodimer levels determined by the HERmark® assay correlated with clinical
outcome of trastuzumab therapy better than THC or central FISH studies in
patients with metastatic BC. Interestingly, patients with HER2 gene
amplification by FISH but low HER2 protein expression or homodimer levels
as measured by HERmark® responded poorly to trastuzumab-containing
therapy, suggesting that not all gene-amplified tumors overexpress the target

of trastuzumab (Lipton 2010).

Based on our analysis, patients expressing greater than 740 amol/ug of HER2
should receive anti-HER2 treatment, as this was the optimal threshold that
correlated with standard IHC/ISH. However, the most meaningful endpoint
of HER2 testing is not prediction of HER2 status by IHC or ISH, but outcome
after HER2-targeted therapies. Using quantitative HER2 measurement, we
found that patients whose tumors expressed HER2 protein level > 2200
amol/pg) benefitted more from anti-HER2 therapy than patients with lower
HERZ2 expression levels. Strikingly, relapse within 24 months was observed in
21% of patients with HER expression levels below 2200 amol/ug and none of
the super-expressors progressed to therapy in this period of time. One
possible explanation is that tumors with high levels of HER2 are enriched
with “true” HER2-dependent disease and therefore potentially more
susceptible to HER2 blockade (Montemurro 2014). Another explanation is
that the more HER2 receptors are present in the membrane of tumor cells, the
more molecules of trastuzumab (or other anti-HER2 antibodies) can bind and
prime ADCC. A direct correlation between HER2 levels and ADCC has been

reported in preclinical models (Scaltriti 2009).
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Our findings should be considered in light of certain limitations. The number

of patients included in this proof-of-concept study is small and the cutoff
point of 2200 amol/ug was based on the survival outcomes in patients whose
tissues were selected for the analysis. This cutoff needs to be validated in a
larger, independent set of patients. Also, survival analyses included only
individuals who had received trastuzumab as single anti-HER2 treatment.
Since dual HER2 blockade (trastuzumab combined with either pertuzumab or
lapatinib) is proving to be more effective than single agent treatment, it will be
interesting to investigate whether HER2 absolute levels predict response in
this setting as well. In the neoadjuvant setting, this seems to be the case.
HER2 levels were measured by HERmark® in the primary tumors of patients
enrolled in the NeoALTTO trial, testing the activity of trastuzumab in
combination with lapatinib compared with single agent treatments, and a
positive correlation was found between constitutive HER2 expression and

benefit from dual blockade (Scaltriti 2015) .

Because of the mechanistic relationship among HER family proteins, EGFR
and HER3 measurements may provide a method for personalizing treatment
in BC, beyond the single assay for HER2. HER-targeted therapeutic agents
such as lapatinib have been shown to stabilize/enhance the HER2-HER3
dimer in preclinical cell models (Scaltriti 2009). The quantification of this
dimer (as described above), which is believed to be the most potent of all HER
dimers with regard to driving cellular proliferation, will provide important
and non-redundant information to that provided by HER protein expression
to help clinicians to understand and/or predict the heterogeneity in clinical
response. Similarly, it may be hypothesized that the subset of tumors with
high EGFR expression may better respond to lapatinib or dual HER blockade
compared with trastuzumab alone. Also, the absolute levels of EGFR may be
predictive for response to anti-EGFR therapy in TNBC patients. Patients with
tumors expressing high levels of EGFR were more likely to achieve pCR
following panitumumab-based therapy (Tao 2014). Furthermore, EGFR levels
tended to decrease in the residual tumors collected at surgery compared with
the primary tumor before the commencement of therapy, indicating that the

levels of EGFR may be influenced by the therapeutic pressure. Overall, these
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data, although still exploratory, suggest that quantitative measurement of

EGFR and HER3, may provide additional important information.

Our results demonstrate the application of a mass spectrometry-based
method to objectively quantify HER2 protein in FFPE clinical tissue samples
from BC patients. We showed that within IHC-positive (3+) ISH-amplified
tumors, a wide dynamic range of HER2 protein expression is found and the
subgroup of tumors with the highest levels benefitted most from HER2
inhibition. Our findings suggest that quantitative HER2 measurement is
superior to gene amplification levels in determining which patient will benefit
from trastuzumab treatment in both adjuvant and metastatic settings.
Moreover, this methodology may allow the identification of FISH positive
cases that express low amount of HER2 and respond poorly to anti-HER2
therapy. Prospective trials will be needed to address the question of whether
varying levels of HER2 positivity are truly predictive of response in all BC

patients.
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CONCLUSIONS







1)

3)

4)

5)

6)

7)

8)

9)

Unlike gene mutations, the simple presence/absence of HER2 protein
may not be sufficient to predict the benefit that a patient will achieve

from a targeted therapy.

In current clinical practice, only the presence of HER2 or its qualitative
or semiquantitative expression (and not the absolute levels) is taken

into consideration.

In our study, we demonstrated that accurate HER2 protein
quantification can be achieved using SRM-MS and can be conducted in

FFPE clinical tissue samples from BC patients.

Quantitative HER2 protein determination is objective and reproducible
as compared to qualitative or semiquantitative methods such as THC
and it is not affected by the stability of the protein over time being an

epitope-independent technology.

Within IHC-positive (3+), a wide dynamic range of HER2 protein
expression (from 163.7 to 17,446.7 amol/ug) is present, thus
highlighting the limited resolution of diagnostic THC.

Not all ISH-positive tumors show high HER2 protein expression
despite being THC 3+.

The levels of HER2 proteins are influenced by the pattern of HER2
gene amplification. Tumors amplified in DM show significantly lower

HERZ2 protein levels compared to those with HSR pattern.

Mass spectrometry-based HER2 quantification may identify the
subgroup of tumors with the highest benefit from HER2 inhibition.

Patients whose tumors express HER2 protein level >2200 amol/mg
benefit more from anti-HER2 therapy than patients with lower HER2

expression levels.
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Conclusions

10) Prospective trials will be needed to address the question of whether

varying levels of HER2 positivity are truly predictive of response in all

BC patients.
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