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Abstract

The possibilities of the use of the coefficient of variation over a high threshold in tail modelling

are discussed. The paper also considers multiple threshold tests for a generalized Pareto distri-

bution, together with a threshold selection algorithm. One of the main contributions is to extend

the methodology based on moments to all distributions, even without finite moments. These tech-

niques are applied to euro/dollar daily exchange rates and to Danish fire insurance losses.
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1. Introduction

Fisher and Tippett (1928) and Gnedenko (1943) show that, under regularity conditions,

the limit distribution for the normalized maximum of a sequence of independent and

identically distributed (iid) random variables (r.v.) is a member of the generalized ex-

treme value (GEV) distribution with a cumulative distribution function

Hξ(x) = exp{−(1+ ξx)−1/ξ}, (1+ ξx)> 0,

where ξ is called extreme value index. This family of continuous distributions contains

the Fréchet distribution (ξ > 0), the Weibull distribution (ξ < 0), and the Gumbell distri-

bution (ξ = 0, as a limit case), see McNeil et al. (2005) and Gomes and Guillou (2015).
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The Pickands–Balkema–DeHaan theorem, see Embrechts et al. (1997) and McNeil

et al. (2005), initiated a new way of studying extreme value theory via distributions

above a threshold, which use more information than the maximum data grouped into

blocks. This theorem is a very widely applicable result that essentially says that the

generalized Pareto distribution (GPD) is the canonical distribution for modelling excess

losses over high thresholds. The cumulative distribution function of GPD(ξ,ψ) is

F(x) = 1− (1+ ξx/ψ)−1/ξ, (1)

where ψ > 0 and ξ are scale and shape parameters. For ξ > 0 the range of x is x > 0,

being in this case the usual Pareto distribution. The limit case ξ = 0 corresponds to

the exponential distribution. For ξ < 0 the range of x is 0 < x < ψ/|ξ| and GPD has

bounded support. The GPD has mean ψ/(1 − ξ) and variance ψ2/[(1− ξ)2(1− 2ξ)]
provided ξ < 1/2.

Let X be a continuous non-negative r.v. with distribution function F(x). For any

threshold, t > 0, the r.v. of the conditional distribution of threshold excesses X − t given

X > t, denoted as Xt = {X − t | X > t}, is called the residual distribution of X over t.

The cumulative distribution function of Xt , Ft(x), is given by

1−Ft(x) = (1−F(x+ t))/(1−F(t)). (2)

The quantity M(t) = E(Xt) is called the residual mean and V (t) = Var(Xt) the resid-

ual variance. The residual coefficient of variation (CV) is given by

CV(t)≡ CV(Xt) =
√

V (t)/M(t), (3)

like the usual CV, the function CV(t) is independent of scale, that is, if λ is a positive

constant then CV(λXt) = CV(Xt).

The residual distribution of a GPD is again GPD and for any threshold t > 0, the

shape parameter ξ is invariant, in fact

GPDt(ξ,ψ) = GPD(ξ,ψ+ ξt). (4)

Note that the residual CV is independent of the threshold and the scale parameter,

since it is given by

CV(t) = cξ =
√

1/(1−2ξ). (5)

Gupta and Kirmani (2000) show that the residual CV characterizes the distribution

in univariate and bivariate cases, provided that a finite second moment exists. In the case

of GPD, the residual CV is constant and it is a one to one transformation of the extreme

value index suggesting its use to estimate this index.
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Castillo et al. (2014) suggest a new tool to identify the tail of a distribution based

on the residual CV, henceforth called CV-plot, as an alternative to the mean excess plot

(ME-plot), a commonly used diagnostic tool in risk analysis to justify fitting a GPD,

see Ghosh and Resnick (2010), Embrechts et al. (1997) and Davison and Smith (1990).

What is important here is the fact that for a GPD distribution with ξ < 1, the residual

mean function t → M(t) is linear with positive, negative or zero slope depending on

whether 0< ξ < 1, ξ < 0 or ξ = 0.

Given a sample {xk} of size n of positive numbers, we denote the ordered sam-

ple {x(k)}, so that x(1) ≤ x(2) ≤ ·· · ≤ x(n). The CV-plot is the function cv(t) of the sample

coefficient of variation of the threshold excesses (x j−t) for the exceedances {x j : x j > t}
given by

t → cv(t) =
sd{x j − t | x j > t}

mean{x j − t | x j > t} , (6)

in practice t = x(k) are the order statistics, where, k (1 ≤ k ≤ n) is the size of the sub-

sample removed. This tool has been applied to financial and environmental datasets, see

Castillo and Serra (2015).

The CV-plot has two advantages over ME-plot: first, ME-plot depends on a scale

parameter and CV-plot does not; second, linear functions are defined by two parameters

and the constants by only one. So the uncertainty is reduced from three to one single

parameter.

A unconscientious use of some measures of variation can lead to wrong conclusions,

see Albrecher et al. (2010). A serious problem with the residual coefficient of variation

is the fact that the proposed method only works when the extreme value index is smaller

than 0.25 (otherwise its variance is not finite). To fix this, some transformations that

relate light-heavy tails are introduced in Section 2.

Section 3 extends some results of Castillo et al. (2014) from the exponential dis-

tribution to all GPD when the extreme value index is below 0.25. Moreover, multiple

threshold tests together with a threshold selection algorithm, designed in a way that

avoids subjectivity, are also achieved. In Section 4, these techniques are applied first

to euro/dollar daily exchange rates and validated with out of sample observations. Sec-

ondly, the approach developed in Section 2, is illustrated using the Danish fire insurance

dataset, a highly heavy-tailed, infinite-variance model.

2. Transformations of heavy-light tails

The transformations introduced to this section make it possible to estimate the extreme

value index using methods based on moments in situations where moments are not finite.

A distribution function F is said to be in the maximum domain of attraction of Hξ ,

written F ∈ D(Hξ), if under appropriate normalization the block maxima of an iid se-
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quence of r.v. with distribution F converge to Hξ. For a r.v. X with distribution function F

is also written X ∈ D(Hξ). A positive function L on (0,∞) slowly varies at ∞ if

lim
x→∞

L(tx)

L(x)
= 1, t > 0.

Regularly varying functions can be represented by power functions multiplied by

slowly varying functions, i.e. h(x) ∈ RVρ if and only if h(x) = xρL(x).
Gnedenko proved, see McNeil et al. (2005, Theorems 7.8 and 7.10), that the max-

imum domain of attraction of a Fréchet distribution, with shape parameter ξ > 0, is

characterized in terms of the tail function, F(x) = 1−F(x), by

F ∈ D(Hξ)⇔ F ∈ RV−1/ξ (ξ > 0).

Similarly the maximum domain of attraction of a Weibull distribution, with shape

parameter ξ < 0, is characterized by

F ∈ D(Hξ)⇔ F(x+−1/x) ∈ RV1/ξ (ξ < 0),

where x+ = sup{x : F(x)< 1}.

The following result of practical importance is embedded in the previous characteri-

zations, and which to our knowledge it has not been pointed out.

Corollary 1 Let X be a continuous r.v. with cumulative distribution function F.

(1) If X ∈ D(Hξ),X > 0, with ξ > 0, then X∗ =−1/X ∈ D(H−ξ).

(2) If X ∈ D(Hξ) with ξ < 0, then X∗ = −1/(X − x+) ∈ D(H−ξ), where

x+ = sup{x : F(x)< 1}.

Proof. (1) The cumulative distribution function of X∗ is F∗(x) = F(−1/x) and x+ =
sup{x : F∗(x) < 1} = 0. By assumption F(x) = x−1/ξL(x) with L slowly varying at ∞,

hence F∗(x+−1/x) = F(x) = x1/(−ξ)L(x) and X∗ ∈ D(H−ξ).
(2) Since the translation of a v.a. does not alter the domain of attraction, we can

assume x+ = 0 without loss of generality. The tail function of X∗ is now F∗(x) =
F(−1/x) = x1/ξL(x). Hence, F∗(x) ∈ RV1/ξ and X∗ ∈ D(H−ξ).

Corollary 1 provides an asymptotic tool and it is related to an exact result in the GEV

model: X has Fréchet distribution if and only if −1/X has Weibull distribution with the

same extreme value index, but with the sign changed. However, the corresponding result

is not true in GPD, as we discuss below.

For a r.v. X , the Pickands–Balkema–DeHaan theorem shows that X ∈ D(Hξ) if and

only if the limiting behaviour of the residual distribution of X over t, Xt , is like a GPD
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with the same parameter ξ, see McNeil et al. (2005, Theorem 7.20). According to the

Pickands–Balkema–DeHaan theorem, Corollary 1 can be interpreted as follows.

Corollary 2 Let X be a continuous positive r.v. such that the limiting behaviour of the

residual distribution of X over a threshold is GPD with parameter ξ> 0 (ξ< 0), then the

limiting behaviour of the residual distribution of −1/X (−1/(X −x+)) over a threshold

is GPD with parameter −ξ.

Corollary 2 enables determination of the extreme value index for heavy tailed dis-

tributions using light tail models and vice versa. For instance ME-plot and CV-plot can

be used to determine the extreme value index in really heavy tailed distributions, see

the example 4.2 in Section 4. These asymptotic results can be improved on GPD for

practical aplications.

The GPD(ξ,ψ) distributions are standardized so that all their observations take pos-

itive values. The supports of the distributions are (0,σ), where σ = ∞ for ξ ≥ 0 and

σ = ψ/|ξ| for ξ < 0. The GPD distributions can be extended to include a location pa-

rameter by Y = X +µ. The behaviour of X near σ is the same as that of Y near σ+µ.

The transformation X∗ = −1/X is also associated with the origin at zero, but can be

generalized to Y = −1/(X + c), provided c ≥ 0, or c ≤ −σ, and the transformations is

monotonous increasing on (0,σ). The following result examines these transformations

on GPD.

Theorem 3 Let X be a r.v. with GPD(ξ,ψ) distribution in (0,σ) and c ≥ 0 or c ≤ −σ,

then Y = −1/(X + c) has distribution GPD with location parameter if and only if c =
ψ/ξ. Then Z =Y +1/c has GPD(−ξ,ξ2/ψ) distribution.

Proof: From (1) the distribution function of Y is

FY (y)=F(x(y))=1−
(

1− ξ

ψ

(

cy+1

y

))−1/ξ

=1−
(

ψy

y(ψ− ξc)− ξ

)1/ξ

, (7)

where −1/c< y<−1/(σ+c). The denominator of the right term of (7) is a constant if

and only if c = ψ/ξ. In this case the distribution function of Z is

FZ(z) = FY (y(z)) = 1− (1−ψz/ξ)1/ξ = 1− (1− ξz/(ξ2/ψ))1/ξ,

where 0< z< σz, σz = ξ/ψ for ξ> 0 and σz =∞ for ξ< 0. Hence, Z has GPD(−ξ,ξ2/ψ)
distribution and Y has GPD distribution with location parameter −1/c.

The following result establishes the essential content of the Theorem 3 avoiding the

location parameter.
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Corollary 4 Let ξ > 0, ψ > 0 and c = ψ/ξ, then a r.v. X has GPD(ξ,ψ) distribution if

and only if Z = X/(c(X+c)) has GPD(ξz,ψz) distribution with ξz =−ξ, ψz = ξ2/ψ and

the support (0,ξ/ψ).

Proof: In one sense, this is proved by Theorem 3, because c> 0 and Z =X/(c(X+c))=

−1/(X + c)+1/c.

The converse is also a consequence of Theorem 3, because the inverse of the above

transformation is

X = c2Z/(1− cZ) = Z/(c2(Z + c2)) =−1/(Z+ c2)+1/c2

where c2 = −1/c = −ξ/ψ. The support of Z is (0,ψz/|ξz|) = (0,ξ/ψ) and Z + c2 < 0

(equivalently c2 ≤−ξ/ψ), then X is a monotonous increasing function of Z and Theo-

rem 3 proves the result.

3. Multiple threshold test

In this Section, the asymptotic distribution of the residual coefficient of variation for

GPD is studied as a random process indexed by the threshold. This provides pointwise

error limits for CV-plot and the multiple thresholds test that really reduce the multiple

testing problem, hence, the p-values are clearly defined. These results generalize and

summarize some of those of Castillo et al. (2014) on the the exponential distribution.

Multiple test are often used on testing extreme value copulas, see Bahraoui et al. (2014).

Theorem 5 Let {X j} be a sample of size n of iid GPD(ξ,ψ) distributed r.v., with ξ<

1/4. Then
√

n(cv(t)− cξ), where cv(t) and cξ were respectively defined in (6) and (5),

converges in finite-dimensional distributions to a Gaussian process with zero mean and

covariance function given by

ρ0(s, t) = exp(min(s, t)/ψ),

for ξ = 0, and

ρξ(s, t) = (((ψ+ ξs)/ψ)1/ξ)(1− ξ)2(6ξ4t2 +12ψξ3t +8ξ3st −9ξ3t2 +6ψ2ξ2

+8ψξ2s−10ψξ2t −2ξ2st +3ξ2t2 −ψ2ξ−2ψξs+4ψξt +ψ2)

/((1−3ξ)(1−2ξ)2(1−4ξ)(ψ+ ξs)2)

for ξ 6= 0 and s ≤ t.

Proof: See Appendix A.
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Pointwise error limits of the CV-plot under GPD follow from the next result.

Corollary 6 Given a sample {X j} of a GPD(ξ,ψ) distribution (ξ < 1/4) and a fixed

threshold t, the asymptotic distribution of the residual CV is

√

n(t)(cv(t)− cξ)
d→ N(0,σ2

ξ). (8)

where cξ is in (5), n(t) =
∑n

j=1 1(X j>t) and

σ2
ξ =

(1− ξ)2(6ξ2 − ξ+1)

(1−2ξ)2(1−3ξ)(1−4ξ)
.

Proof: The proof follows directly from Corollary 2 in Castillo et al. (2014). The asymp-

totic variance is given by σ2
ξ = ρξ(0,0), where the covariance function is in Theorem 5.

The Theorem 5 can be applied to the threshold excesses {X j − t | X > t}, replacing n

with n(t) and cv(0) with cv(t). From (4) the threshold excesses are again GPD with the

same parameter ξ and the CV does not depend on ψ.

From the last result the asymptotic confidence intervals of the CV-plot for expo-

nential distribution are obtained taking c0 = 1 and σ2
0 = 1 and for uniform distribution

taking c−1 = 1/
√

3 and σ2
−1 = 8/45.

Corollary 6 needs a fixed value ξ and a fixed threshold t. However, in order to have a

consistent test in GPD, CV(t) = cξ must be checked for all of threshold t, in accordance

with the characterization by Gupta and Kirmani (2000). For instance, the absolute value

of the Student t4 distribution has CV equal to 1 and can not be distinguished from the

exponential distribution with a direct application of Corollary 6.

3.1. Exact null hypothesis test

In order to test whether a sample {x j} of size n of non-negative numbers, is distributed

as a GPD with parameter ξ, a set of thresholds th = {0 = t0 < t1 < · · · < tm} will be

selected to test the null hypothesis

H0 : CV(tk) = cξ, k = 0,1, . . . ,m.

Hence, if H0 is accepted and m is large enough, say 20 or 50, it will be more reasonable

to assume that the sample comes from a distribution GPD(ξ,ψ) than from applying

Corollary 6 to a single threshold.

Let us denote Dt(ξ)≡
√

n(t)(cv(t)−cξ), from Corollary 6, D2
t (ξ)/σ

2
ξ has asymptotic

distribution χ2
1 under the null hypothesis of GPD (ξ < 0.25). Let us denote

Tth(ξ) =
m
∑

k=0

D2
tk
.
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The distribution of Tth(ξ) is independent from the scale parameter ψ under the null

hypothesis of GPD. Then, its asymptotic expectation is (m+1)σ2
ξ and Tth(ξ)/(m+1) is

an estimator of the asymptotic variance σ2
ξ , when ξ is known or estimated.

Given a sample {x j} of size n of non-negative numbers, Qn(p) denotes the inverse

of the empirical distribution function,

Qn(p) = inf[x : Fn(x)≥ p]. (9)

From a set of probabilities {0 = p0 < p1 < · · ·< pm} let qu = {0 = q0 < q1 < · · ·< qm}
be the corresponding empirical quantiles of the sample, qk = Qn(pk), that will be used

like the previous thresholds. Let us denote

Tqu(ξ) =

m
∑

k=0

D2
qk
.

Tqu(ξ) is a multiple thresholds invariant statistic when the sample is multiplied by

a positive number while maintaining the set of probabilities, since the empirical CV is

invariant. This first condition ensures that the test results do not depend on units used

for the observations.

A second desirable condition is to select the set of probabilities that determine the

statistic Tqu(ξ) so that the corresponding thresholds are approximately equally spaced.

This can be achieved for the exponential distribution by taking 0< p < 1, pk = 1− pk,

(k = 0, . . . ,m) and qk as the corresponding quantiles. Since for a random variable X ,

distributed as an exponential with expected value µ, its quantile function is Q(p) =
µ log(1/p) and Pr{X> (µ log(1/p))k}= pk. Selecting the probabilities this way, qk =

Qn(pk)≈ x(n−npk), n(qk)≈ n pk and Tqu(ξ) becomes

Tm(ξ) = n

m
∑

k=0

pk(cv(qk)− cξ)
2. (10)

In applications, given the number of single tests that will be included in the multi-

variant test, m, we choose the value of p, which determines the distance between the

quantiles, such that n pm ≈ ns, where ns is the sample size such that for smaller sub-

samples CV is not accurate enough. Hence, given m, p = (ns/n)1/m is suggested. In this

paper ns ≈ 8 is used in numerical algorithms. Note that this way Tm(ξ) depends only

on ξ and m and the researcher chose only the number of thresholds used in the analy-

sis, essentially eliminating subjectivity. These multiple thresholds tests generalize those

developed by Castillo et al. (2014) for ξ = 0 and p = 1/2.

The asymptotic distribution of Tm(ξ) is easily calculated from Theorem 5, following

the steps suggested by Castillo et al. (2014), whenever ξ < 0.25. However, taking into
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account the different values of the extreme value index and the diverse small sample

sizes, it is easier in practice to calculate the p-value for Tm(ξ) using simulation methods,

which are especially simple in this case. Assuming GPD for simulations, only the sample

size, the number of thresholds, m, and ξ are needed. Since the distribution does not

depend on scale, parameter ψ = 1 will be used.

3.2. Composite null hypothesis test

In most cases the parameter ξ is unknown and its estimate should be incorporated in the

statistic Tm(ξ) (see the R code in Appendix B). The method for estimating ξ leads to

slight variations in the statistic, leading to essentially equivalent inference whenever we

use the same estimation method in simulations to obtain the p-value. The null hypothesis

is now that the sample comes from a distribution in which all (m+ 1) residual CV are

equal.

H0 : CV(q0) = · · · = CV(qm), k = 0,1, . . . ,m.

The alternative hypothesis is that the residual CV are equal from a threshold qr (0< r ≤
m) to the threshold qm.

The most recommended estimation method is maximum likelihood estimation (MLE),

although in GPD it is only asymptotically efficient provided −0.5< ξ, see Davison and

Smith (1990). For this distribution, the CV is a one-to-one transformation of ξ, see (5),

and the empirical CV of the residual sample, CV(t), provides an alternative method of

estimation. It is asymptotically normal whenever ξ < 0.25, see Corollary 6. The mul-

tiple thresholds tests (10) suggest estimating ξ as the value such that cξ achieves the

minimum Tm(ξ), namely

c̃ξ =
m
∑

k=0

pkcv(qk)/
m
∑

k=0

pk = (1− p)
m
∑

k=0

pkcv(qk)/(1− pm+1), (11)

and reversing (5) provides ξ̃; standard errors of this estimator are readily provided by

simulation. The main advantage of this method is that under the alternative hypothesis it

is a better estimator than CV or MLE, since the sample is only GPD over a threshold qr.

Since the main interest is in samples that are not GPD, but in the tail, and results are often

used in small samples with ξ < 0, the estimation method (11) is included in (10). Hence,

the statistics for composite null hypothesis, that only depends on m, is Tm = Tm(ξ̃) given

by

Tm = n

m
∑

k=0

pk(cv(qk)− c̃ξ)
2. (12)

The R code for Tm used in the algorithms is in Appendix B.



312 Modelling extreme values by the residual coefficient of variation

3.3. Threshold Selection Algorithms

To select the number of extremes used in applying the peaks over a high threshold

method, threshold selection algorithms are developed in this section to estimate the point

above which the GPD distribution can be used to estimate the extreme value index for a

set of extreme events, {x j}, of size n. For this purpose the previous statistical tests will

be adapted.

Note that in the Tm calculation the number of thresholds m is the only parameter that

must be fixed by the researcher. This determines the thresholds (quantiles) where the

CV is calculated, {0 = q0 < q1 < · · · < qm}, which are fixed throughout the procedure.

Then, by simulation of GPD, the associated p-value is calculated (running 104 samples).

After that, we accept or reject the null hypothesis with the estimated shape parameter

using all the thresholds.

If the hypothesis is rejected, the threshold excesses {x j − q1} are calculated for the

sub-sample {x j ≥ q1}. The previous steps are repeated, but removing one threshold, to

accept or reject the null hypothesis that the sample comes from a GPD. At every stage

only statistics associated to thresholds k = r, . . . ,m, where 0 ≤ r ≤ m, are calculated:

T r
m(ξ̃) = n

m
∑

k=r

pk(cv(qk)− c̃ξ)
2. (13)

In summary, the steps of the general algorithm are

(1) Given m find p such that npm ≈ ns, where ns is the smaller sample size used to

calculate CV (here ns = 8 is used, but it can be modified).

(2) Calculate {0 = p0 < p1 < · · ·< pm}, where pk = 1− pk, and {0 = q0 < q1 < · · ·<
qm}, where qk = Qn(1− pk), k = 1, . . . ,m.

(3) Estimate ξ̃ minimizing the value of Tm(ξ) with the specific values in the previous

steps.

(4) Calculate by simulation of GPD the p-value associated to the minimum Tm(ξ̃) and

accept or reject the null hypothesis with the estimated shape parameter using all

the thresholds (starting with q0 = 0).

(5) If the hypothesis is rejected, compute the threshold excesses {x j − q1} for the

sub-sample {x j ≥ q1} and repeat the previous steps with {p1 < · · · < pm} and

{q1 < · · · < qm}, to accept or reject the null hypothesis that the sample comes

from a GPD, but removing a threshold.

(6) Continue the process for the next value in the index of thresholds while the hy-

pothesis is rejected.
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Several authors recommend giving a prominent role to the exponential distribution in the

model GPD, see Castillo and Serra (2015). The usual method for doing this is to consider

the exponential models as the null hypothesis testing against GPD, see Kozubowski et

al. (2009). Alternatively, one can consider the Akaike or Bayesian information criteria

for model selection, see Clauset et al. (2009). The previous algorithm can be adapted to

the case when ξ = 0 (or any known parameter) skipping step-3.

4. Fitting GPD to empirical data

In this Section, the methods developed previously are applied to two classic examples.

The first one, the euro/dollar daily exchange rates between 1999 and 2005, is analyzed in

the literature using distributions with heavy tails, when these models are not appropriate.

Our methodology clearly shows this fact, see Figure 1. In addition, the analysis is val-

idated with out of sample observations between 2005 and 2014, including the financial

crisis of 2007-08.

For the second example, the Danish fire insurance dataset, the fitted model is a highly

heavy-tailed, infinite-variance model. Hence, the methodology developed in Section 2

is needed to avoid unconscientious use of measures of variation that can lead to wrong

connclusions Albrecher et al. (2010).

4.1. EUR/USD daily exchange rates

Gomes and Pestana (2007), introduce a new semi-parametric quantile estimation method

based on an adequate bias-corrected Hill estimator. To illustrate their method it is ap-

plied to the analysis of log-returns of the euro/dollar (EUSD) daily exchange rates, from

January 4, 1999 through November 17, 2005 (1,794 observations). The paper gives the

estimations of the tail index ξ̂ = 0.279 (Hill estimator) and ξ̂ = 0.247 (bias-corrected)

for the positive log returns of EUSD.

It should be mentioned that the Hill method always provide estimators with ξ > 0,

as in this case. Hence, previously, this hypothesis has to be checked. Figure 1 shows

the CV-plots (6) for the positive and negative (with the sign changed) log-returns of

EUSD. In both cases there is empirical evidence that the residual CV is lower than

1. Since in GPD CV < 1 is equivalent to ξ < 0, this suggests light tails where some

researchers assume heavy tails. This qualitative approach can be confirmed with the

multiple thresholds tests.

Applying Tm, where m = 20, to the 900 positive log-returns of EUSD, the estimate

of CV given by (11) is c̃ξ = 0.861, which corresponds to ξ̃ =−0.174 (0.031) assuming

GPD. The statistic is Tm = 6.435 with a p-value of 0.421. Hence, the null hypothesis of

GPD is not rejected for the entire sample and the previous estimation of ξ is validated

(in the first step of the algorithm). The result is similar for the 874 negative log-returns

and m = 20. Here c̃ξ = 0.868 is obtained, which corresponds to ξ̃ = −0.163 (0.032)
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Figure 1: Residual empirical CV for positive and negative tails of EUR/USD daily exchange rates from

January 4, 1999 through November 17, 2005. The dotted lines correspond to the asymptotic confidence

intervals (90%) under exponentially (CV = 1).

assuming GPD. The statistic is Tm = 6.120 with a p-value of 0.449. The null hypothesis

of GPD is not rejected for the entire sample and the previous estimation of ξ is also

validated. The results are fairly coincidental for m = 10, 20, 30 and 50, in both cases.

Despite the evidence of light tails on this previous sample, it is better to follow the

recommendation of testing exponentiality at the tails. This approach is also compatible

with the assumption of heavy tails in a wider sense (ξ ≥ 0) including the exponential as

a boundary point, see Castillo and Serra (2014). Applying Tm to all positive log-returns

of EUSD, with m = 20 and ξ = 0, the null hypothesis of exponentiality is rejected (p-

value 0.01). Taking p = (ns/n)1/m the sample is reduced by (1− p) = 21% in each

step, then for thresholds 0.134, 0.249 and 0.376, the null hypothesis is also rejected (p-

values 0.017,0.026, and 0.057). Finally, exponentiality is not rejected over the threshold

tp = 0.516 with a p-value 0.133. For negative log-returns with m = 20 and ξ = 0, the

exponentiality is rejected in the first three steps and not rejected over tn = 0.411 with a

p-value 0.126.

The main objective of statistics of extremes lies in the estimation of quantities related

to extreme events that may happen in the future. Hence, the real challenge is to compare

the results in out of sample observations. To this end, from the previous analysis, the

value at risk at a level α (VaRα), the quantile so that the chance of exceedance of that

value is equal to α, is estimated by the peak-over-threshold method, using the empirical

sample in the interval (0, t), up to the estimated threshold, and the exponential distribu-

tion over threshold t. For α= 0.05, 0.01 and 0.001, the quantiles of positive log-returns

of EUSD are 1.316, 1.937 and 2.824; for the negative log-returns they are 1.352, 2.010

and 2.950.
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Then, daily exchange rates, from November 18, 2005 through January, 14, 2014

(2,128 observations), including the financial crisis of 2007-08, are used as out of sample

observations to assessing the predictive ability of the estimation of quantiles under the

first dataset.

Using these 2,128 out of sample observations (the second dataset), the number of

empirical exceedances of the last VaRα estimations (under the first dataset, at 5%, 1%,

0.1%) are 42, 13, and 2, for the 1,080 positive log-returns (expected values 54.0, 10.8

and 1.1); and 47, 11 and 0, for the 1023 negative log-returns (expected values 51.2, 10.2

and 1.0). These results are fairly satisfactory and it can be concluded that the EUR /

USD exchange has daily log-returns with exponential tails, including the financial crisis

of 2007-08.

4.2. Danish fire insurance data

An interesting aspect of this article is the combination of the results of sections 2 and

3 when applying the peaks over threshold technique for tails in any maximum domain

of attraction, even without finite moments. This approach is illustrated here using a

classical example analyzed in several books and articles.

The Danish fire insurance data are a well-studied set of losses to illustrate the basic

ideas of extreme value theory. The dataset consists of 2,156 fire insurance losses over

one million Danish kroner from 1980 to 1990 inclusive, see Embrechts et al. (1997,

Example 6.2.9), Resnick (1997) and McNeil et al. (2005, Example 7.23).

In this example the authors agree to assume iid observations and a heavy tailed

model. They also agree to set the threshold at t = 10 million Danish kroner, the ex-

ceedances over the threshold, denoted {x j}, are n10 = 109. Fitting a GPD to {x j} by

MLE, the parameter estimates in McNeil et al. (2005) are ξ̂ = 0.50 and ψ̂ = 7.0 with

standard errors 0.14 and 1.1, respectively. Thus the fitted model is a very heavy-tailed,

infinite-variance model and the methods in Section 3 cannot be applied directly. How-

ever, they can be used through the results shown in Section 2.

First of all, let us suppose we want to use CV to check whether the above data cor-

respond to a GPD distribution with the estimated extreme value index. Applying The-

orem 3 with c = ψ̂/ξ̂ = 14, let z j = −1/(x j + c)+ 1/c be, then the set {z j} has light

tails and the same extreme value index with the sign changed, provided that the esti-

mated parameters are the true parameters. The CV of {z j} is cv = 0.697 which provides

a new estimation of ξ, solving (5) by ξz = (cv2 − 1)/(2cv2) = −0.530, then, according

to Theorem 3, ξ̃ = −ξz = 0.53, not far from the parameter estimation in McNeil et al.

(2005) , 0.50, since his standard error was 0.14. Alternatively, the multiple thresholds

statistic Tm, from (13), can be used to check ξ = 0.5. The corresponding CV under GPD

is cξ = 0.707. Taking m = 20, we get Tm = 4.89 with a p-value 0.421 (by simulation

with 104 samples), not rejecting the null hypothesis.

Now consider the problem of choosing the threshold to estimate the extreme value

index. In this example, most researchers use a visual observation of the ME-plot on
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Figure 2: Residual empirical CV for The Danish fire insurance losses under transformation of the data.

(a): Dataset, transformed by X∗ = −1/X . (b): Dataset, transformed by Z = −1/(X +ψ/ξ). The dotted

lines correspond to the asymptotic confidence intervals (90%) under the estimated parameter, the dashed

line is its CV.

the full Danish dataset. The algorithm in Section 3.3 with the transformations from

Section 2, comes to similar solutions automatically and opens up new perspectives.

Figure 2 shows the CV-plots of the full Danish dataset, transformed according to

the Corollary 2, plot (a), and Theorem 3, plot (b). The first, corresponding to the trans-

formation X∗ = −1/X , shows an increasing CV and the second, corresponding to Z =

−1/(X +c)+1/c, shows a stabilized CV close to a constant, indicating that the original

dataset is close to a GPD, which is also shown by ME-plot.

Applying the algorithm of Section 3.3 with m = 20 after transformation X∗, con-

stant residual CV is rejected in the first 11 steps (each one reduces the sample size by

(1− p) = 24%). Step 12, for the last 106 observations, accepts constant residual CV

(p-value = 0.269) with estimates c̃ξ = 0.673 and ξ̃ = 0.603. The estimated threshold

is approximately the same (t = 10.2 instead of 10), while the extreme value index is

different but within the confidence interval.

The algorithm in Section 3.3, with m = 20 after transformation Z with c =

= 0.932/0.611 = 1.524, rejects constant residual CV in the first three steps. Step 4,

for the last 951 observations, accepts constant residual CV (p-value = 0.167) with es-

timates c̃ξ = 0.675 and ξ̃ = 0.599. The number of observations is much higher, the

extreme value index being very close to that obtained with the transformation X∗ and

within the confidence interval. The p-value remains similar in the following steps up

until the 12th, where it jumps up to 0.474. The number of observations is again 106 and

the estimation ξ̃ = 0.548, close to 0.50.

The conclusions from using the new methodology to analyze this dataset are the

following. First, the results obtained by previous investigators are validated, in particular
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GPD can be accepted with parameter ξ= 0.5, for the 109 larger observations see McNeil

et al. (2005). This also shows the consistency of the presented methodology with other

common techniques.

Moreover, from examining the extreme value index it is now known that for the

951 larger observations GPD can also be accepted, where the MLE parameter estimate is

ξ̂ = 0.680, with standard error 0.055 (ξ̃ = 0.599 obtained by Tm is within the confidence

interval). The estimated extreme value index is now much more accurate because the

sample size is much larger. We also note that the tails are heavier than was assumed,

which means that higher risks should be considered.
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Appendix A: Proof of Theorem 5

The residual CV in (3) can be expressed in terms of the moments of the truncated dis-

tribution. Let X be a continuous non-negative r.v. with distribution function F(x), let

X1(X>t) denote the r.v. which is equal to X if X > t and equal to zero otherwise. Let

µ0(t) = Pr{X > t} and µk(t) = E[X k1(X>t)], k > 0. Throughout this paper we assume

that µ0(t)> 0 for all t. Note that

µk(t) = µ0(t)E(X k | X > t), (14)

hence, in particular, the residual mean and the residual variance are

M(t) = µ1(t)/µ0(t)− t, V (t) = µ2(t)/µ0(t)− (µ1(t)/µ0(t))
2,

and the residual CV

CV(t) =
√

µ2(t)µ0(t)−µ1(t)2/(µ1(t)− tµ0(t)).

Let {X j} be a sample of independent and identically distributed (iid) r.v.s of size n.

Let n(t) =
∑n

j=1 1(X j>t) be the number of exceedances over a threshold, t. By the law

of large numbers, n(t)/n converges to µ0(t). The empirical CV of the conditional ex-

ceedances is given by

cv(t) = cvn(t) =
n(t)

∑n
j=1(X j − t)1(X j>t)

×





∑n
j=1 X2

j 1(X j>t)

n(t)
−
(

∑n
j=1 X j1(X j>t)

n(t)

)2




1/2

, (15)

see (6) for a simpler expression when the r.v. are observed.
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Then cvn(t) is a consistent estimator of CV(t) by the law of large numbers, assuming

F has a finite second moment.

From Theorem 1 in Castillo et al. (2014),

√
n(cvn(t)− cξ) = a′(t)W (t)+Op(1/

√
n)

where

cov(W (s),W(t))≡ M(s, t) = (µi+ j(t)−µi(s)µ j(t))i, j=0,1,2,

and µk(t) are the moments of the truncated distribution (14).

a′(t) = (µ0(µ1 − tµ0),2µ0(tµ1 −µ2),(−2tµ2
1 + tµ0µ2 +µ1µ2))

/(2(µ1− tµ0)
2
√

µ2µ0 −µ2
1),

where for simplicity dependence on t is dropped for µk = µk(t) in the last expression.

Then, the covariance function is

ρξ(s, t) = a(s)′M(s, t) a(t),

using the conditional moments of GPD and some algebra, the result of the theorem

holds.

Appendix B: R code for TmTmTm

The following R code for Tm is used in the algorithms, see R Development Core Team

(2010). See Gilleland et al. (2013) for a review of the currently available software on the

generalized Pareto distribution and estimation of the extremal index.

#Statistic Tm of a sample given the number of thresholds m.

Tm<-function(m,sample){sam<-sample-min(sample);

n<-length(sam);ns<-8;

p<-round(exp(log(ns/n)/m),digits=2);

Ws<-Ps<-Qs<-Cs<-numeric(m+1);

for(k in 1:(m+1)){Ws[k]<-pˆ(k-1)};

Ps<-1-Ws;Qs<-as.vector(quantile(sam,Ps));

for(k in 1:(m+1))

{Cs[k]<-sd(sam[sam>=Qs[k]]-Qs[k])/mean(sam[sam>=Qs[k]]-Qs[k])};

cx<-(1-p)*sum(Ws*Cs)/(1-pˆ(m+1));xi<-(cxˆ2-1)/(2*cxˆ2);

tm<-n*sum(Ws*(Cs-cx)ˆ2);list(CV=cx,Tm=tm,Xi=xi)}




