
ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús
establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184

ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso
establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/

WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set
by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en

Departament de Microelectrònica i Sistemes Electrònics

Algorithmic and Architectural
Optimization Techniques in Particle
Filtering for FPGA-Based Navigation

Applications

Biruk Getachew Sileshi
PhD Advisor: Dr. Joan Oliver Malagelada

A Thesis Submitted for the Degree of
PhD in Microelectronics and Electronic Systems

Bellaterra (Barcelona), June 3, 2016

UNIVERSITAT AUTÒNOMA DE BARCELONA
Departament de Microelectrònica i Sistemes Electrònics

DECLARATION

I declare that I am the sole author of this thesis entitled “Algorithmic and
Architectural Optimization Techniques in Particle Filtering for FPGA-
Based Navigation Applications” and that the work contained therein is original,
where explicitly stated otherwise in the text.

Biruk Getachew Sileshi

Bellaterra (Barcelona), June 3, 2016

UNIVERSITAT AUTÒNOMA DE BARCELONA
Departament de Microelectrònica i Sistemes Electrònics

ALGORITHMIC AND
ARCHITECTURAL OPTIMIZATION

TECHNIQUES IN PARTICLE
FILTERING FOR FPGA-BASED
NAVIGATION APPLICATIONS

Thesis presented to obtain the PhD in Microelectronics and Electronic Systems

Author: BIRUK GETACHEW SILESHI

PhD Advisor: DR. JOAN OLIVER MALAGELADA

Dr. Joan Oliver Malagelada, professor of the Universitat Autònoma de Barcelona

CERTIFY:

that the dissertation “Algorithmic and Architectural Optimization Tech-
niques in Particle Filtering for FPGA-Based Navigation Applications”
presented by Mr. Biruk Getachew Sileshi to obtain the PhD in Microelectronics
and Electronic Systems, has been done under their direction at the Universitat
Autònoma de Barcelona.

Dr. Joan Oliver Malagelada

Bellaterra (Barcelona), June 3, 2016

To My Family

Acknowledgements

The work presented in this PhD thesis could not have been done without the
supports of many people to whom i would like to express my sincere gratitude.

First and for most i would like to express my deepest gratitude to my supervisor
Dr. Joan Oliver for introducing me to this field of research, for all his continuous
support and guidance during my PhD study. I would also like to thank Prof. Carles
Ferrer for the opportunity to join the Integrated Circuits and Systems Design group
and for his financial supports. I am also deeply thankful to Dr. Ricardo Toledo
in assisting me with conducting some of the experiments with robots and for the
finical support with the publication of some of my work. I am also thankful to
all members of the examination committee of the Micro-electronics and Electronic
Systems department of UAB for all their useful and helpful comments during my
annual PhD evaluations. I would also like to thank the UAB university for the
Personal Investigador en Formación (PIF) pre-doctoral grant financial support
to conduct this research work.

My sincere thanks also goes to Dr. Jose Gonçalves for all his guidance and
support during my stay at the Polytechnic Institute of Bragança (IPB). I would
also like to thank all my work colleagues and friends at IPB for all their friendship
and good times.

On a personal note, i would like to thank all my work colleagues, friends and
the secretarial staffs in the Micro-electronics and Electronic Systems department of
UAB. It is my great pleasure to get to know you all: Adriana, Andres, Alex, David,
Lu Wang, Natalie, Marc, Raul, Roger and Sadiel. I would like to give my special
thanks to Jordi Carrabina for all his technical supports he provided to me.

Finally my special words goes to all my family, specially to my mom, sister
and brother for all their unconditional support and encouragement throughout
my PhD study.

Abstract

Particle filters (PFs) are a class of Bayesian estimation techniques based on Monte
Carlo simulations that are among the estimation frameworks that offer superior
performance and flexibility on addressing non-linear and non Gaussian estimation
problems. However, such superior performance and flexibility of PFs comes at the
cost of higher computational complexity that has so far limited their applications
in real time problems.

Most real time applications, in particular in the field of mobile robotics, such
as tracking, simultaneous localization and mapping (SLAM) and navigation, have
constraints on performance, area, cost, flexibility and power consumption. Software
implementation of the PFs on sequential platforms for such applications is often
prohibitive for real time applications. Thus to make PFs more feasible to such real-
time applications, the acceleration of PFs computations using hardware circuitry
is essential. As most of the operations in PFs can be performed independently,
pipelining and parallel processing can be effectively exploited by use of an appropriate
hardware platform, like field programmable gate arrays (FPGAs), which offer the
flexibility to introduce parallelization and lead to a wide range of applications of
PFs in real time systems. Thus the focus of this PhD thesis is to address the
challenge to deal with the computational complexity of PFs introducing FPGA
hardware acceleration for improving their real time performance and make their
use feasible in these applications.

For a high throughput hardware realization of the PFs, some of the issues
addressed in this thesis include: the identification in the computational bottlenecks
of the PFs and the proposal and design of PF hardware acceleration techniques.
Based on the PF hardware acceleration techniques, the design and implementation
of a PF HW/SW architecture is presented. In addition, a new approach for full
parallelization of the PFs is presented which leads to a distributed particle filtering
implementation with simplified parallel architecture. Finally, the design of a fully
hardware PF processor is provided where the whole particle filtering steps applied
to the SLAM problem are proposed for an implementation on FPGA. As part of the
PF processor design, important problems for PF in SLAM are also solved. Also, the
design and implementation of a parallel laser scanner as a PF co-processor using a
Bresenham line drawing algorithm is realized. The proposed hardware architecture
has led to the development of the first fully hardware (FPGA) prototype for the
PF applied to the SLAM problem.

Resum

Els filtres de partícules (FPs) són una tipologia de tècniques d’estimació bayesiana
basades en simulacions Monte Carlo que es troben entre els sistemes d’estimació
que ofereixen millors rendiments i major flexibilitat en la resolució de problemes
d’estimació no lineals i no gaussians. No obstant això, aquest millor rendiment i
major flexibilitat es contraposa amb la major complexitat computacional del sistema,
motiu pel que fins ara la seva aplicació a problemes de temps real ha estat limitada.

La majoria de les aplicacions en temps real, en particular en el camp de la
robòtica mòbil, com ara el seguiment, la localització i mapatge simultani (SLAM)
i la navegació, tenen limitacions en el rendiment, l’àrea, el cost, la flexibilitat i el
consum d’energia. La implementació software de FPs en plataformes d’execució
seqüencial en aquestes aplicacions és sovint prohibitiu per l’elevat cost computacional.
Per tant per aproximar els FPs a aplicacions en temps real és necessària l’acceleració
de les operacions de còmput utilitzant plataformes hardware. Donat que la major
part de les operacions es poden realitzar de forma independent, el pipeline i el
processament en paral·lel poden ser explotats de manera efectiva mitjançant l’ús de
hardware apropiat, com ara utilitzant Field Programmable Gate Arrays (FPGAs).
La flexibilitat que tenen per introduir la paral·lelització fa que puguin ser emprades
en aplicacions de temps real. Amb aquest enfocament, aquesta tesis doctoral
s’endinsa en el difícil repte d’atacar la complexitat computacional dels filtres de
partícules introduint tècniques d’acceleració hardware i implementació sobre FPGAs,
amb l’objectiu d’incrementar el seu rendiment en aplicacions de temps real.

Per tal d’implementar filtres de partícules d’alt rendiment en hardware,aquesta
tesis ataca la identificació dels colls d’ampolla computacionals en FPs i proposa,
dissenya i implementa tècniques d’acceleració hardware per a FPs. Emprant
tècniques d’acceleració hardware per a filtres de partícules primer es dissenya
i implementa una arquitectura HW/SW per a FPs. Després, es dissenya un
processador hardware per a FPs en el que es detallen totes les etapes del FP
aplicant-lo a un algorisme de mapatge i localització simultània i implementant-lo
sobre FPGA. També es dissenya i implementa un co-processador paral·lel per a
un escàner làser emprat en FPs emprant un algorisme de Bresenham. Aquesta
proposta hardware ha conduit al desenvolupament del primer prototip totalment
hardware (sobre FPGA) per a filtres de partícules emprats en SLAM.

Contents

List of Figures xix

List of Tables xxiii

List of Abbreviations xxv

1 Introduction 1
1.1 Background . 1
1.2 State of the Art on Real Time PFs 4

1.2.1 Adaptive Particle Filtering 5
1.2.2 Algorithmic Modifications 7
1.2.3 FPGA Based Implementations 8
1.2.4 Non-GPGA Based Implementations 10

1.3 Objectives . 11
1.4 Publications . 13
1.5 Thesis Outline . 14

References 17

2 Particle Filters (PFs) and SLAM Background 23
2.1 Introduction . 23
2.2 Dynamic State Space Models . 24
2.3 Recursive Bayesian Filters . 26
2.4 Principles of Importance Sampling 28
2.5 Sequential Importance Sampling (SIS) 30
2.6 Sampling Importance Resampling (SIR) 34
2.7 Regularized PF (RPF) . 35
2.8 Resampling Operations . 36

2.8.1 Multinomial Resampling . 38
2.8.2 Stratified Resampling . 39
2.8.3 Systematic Resampling . 39
2.8.4 Residual Resampling . 40
2.8.5 Independent Metropolis Hastings Algorithm (IMHA) 40

xvi Contents

2.9 PFs Applications . 42
2.9.1 SLAM Principle . 43
2.9.2 Localization . 45
2.9.3 Probabilistic Models . 48
2.9.4 Robotic Mapping . 51
2.9.5 The SLAM Solution . 55

References 61

3 PFs Complexity Analysis and HW Acceleration Methods 71
3.1 Introduction . 71
3.2 Comparison on PFs and Resampling Methods 72
3.3 Computational Bottlenecks Identifications and HW/SW Partitioning 73
3.4 PF Acceleration Techniques . 77

3.4.1 CORDIC Acceleration Technique 77
3.4.2 CORDIC Harware Architecture 84
3.4.3 CORDIC PE Architecture 87

3.5 Random Number Acceleration Technique 89
3.5.1 Review on GRNGs . 89
3.5.2 The Ziggurat Algorithm . 90
3.5.3 Ziggurat GRNG Hardware Architecture 92
3.5.4 Ziggurat GRNG FPGA Implementation 96

References 99

4 HW/SW Approach for PF-SLAM FPGA Architecture and Imple-
mentation 103
4.1 Introduction . 103
4.2 Embedded Systems Implementation 104

4.2.1 On the Use of FPGA Based Embedded Systems 104
4.2.2 Embedded Processors in FPGAs 105
4.2.3 FPGA Development Tools 107

4.3 PF Embedded Design Based on MicroBlaze Processor 108
4.4 PF HW/SW FPGA Implementation 109
4.5 PF-SLAM Performance Evaluation 113

4.5.1 On The Use of Laser Scanners 113
4.5.2 On Neato XV-11 Laser Scanner 113
4.5.3 Results Discussion . 114

4.6 Parallel PF with Metropolis Coupled MCMC 121
4.7 Parallel PF Architecture . 125
4.8 Proposed Parallel PF Implementation and Results 127
4.9 Discussion on Parallel PF Implementations 129

Contents xvii

References 135

5 HW Approach for PF-SLAM Processing Element Design 137
5.1 Introduction . 137
5.2 Proposed System Architecture . 138
5.3 Laser Scanner Parallel Co-processor Design 138

5.3.1 Description of the LRF IP Core 141
5.3.2 Description on Bresenham IP Core 143

5.4 PF Processing Element Design . 146
5.4.1 Sample Unit Design . 148
5.4.2 Importance Weight Unit Design 151
5.4.3 Resample Unit Design . 153

5.5 Implementation and Results . 156
5.5.1 Resource Utilization . 156
5.5.2 Execution Time . 158
5.5.3 Estimation Performance . 163

References 165

6 Conclusions and Future Work 167
6.1 Summary and Contributions . 167
6.2 Future Work . 170

xviii

List of Figures

1.1 Real time particle filter approaches 4

2.1 Graphical representation of a first order hidden Markov Model . . . 25
2.2 Illustration of a Bayesian filtering scheme 27
2.3 Principle of Importance Sampling 29
2.4 Principle of sampling importance resampling (SIR) 35
2.5 2D parameters of a robot pose . 44
2.6 The SLAM principle . 44
2.7 Mobile robot localization as dynamic Bayes network 46
2.8 Odometry motion model . 49
2.9 Environmental representations for robotic mapping 51
2.10 Occupancy grid maps . 54
2.11 Graphical model of online and full SLAM problems 55
2.12 Illustration of 2D SLAM . 58

3.1 Comparison of the execution time for generic PF (GPF) and RPF
with different resampling methods 75

3.2 Comparison on sample impoverishment among the different resam-
pling methods . 75

3.3 Percentage of computations for sampling, importance and resampling
steps for SIR PF . 76

3.4 PF computational bottlenecks identifications 77
3.5 CORDIC rotation trajectories for the linear, hyperbolic and circular

coordinate systems . 78
3.6 Folded (serial) CORDIC architecture 85
3.7 Bit-serial iterative CORDIC architecture 86
3.8 Unfolded (pipelined) CORDIC architecture 87
3.9 Architecture of the CORDIC PE 88
3.10 Partitioning of a Gaussian distribution into rectangular, wedge, and

tail regions with Ziggurat method. 91
3.11 C code description of the Tausworthe URNG 93
3.12 Architecture of Tausworthe URNG. 94

xx List of Figures

3.13 Architecture of the Ziggurat module 95
3.14 Ziggurat coefficients in memory . 96
3.15 Histogram of hardware generated samples and theoretical Gaussian

distribution, and residual error . 97

4.1 MicroBlaze architecture . 106
4.2 MicroBlaze processor based PF-SLAM FPGA architecture 108
4.3 Internal structure of the PF HW Acceleration module 110
4.4 Comparison on execution times for the sampling (S) , importance

weight (I) and resampling (R) steps for embedded software imple-
mentation (SW) vs HW/SW embedded implementation and the
corresponding speed up in the execution time 111

4.5 Neato XV-11. 114
4.6 SimTwo simulation environment . 115
4.7 A simulation maze environment (top) and the occupancy grid map

(bottom) constructed based on the laser model on the FPGA. . . . 116
4.8 Robot trajectories for the odometry estimate, ground truth and the

particle filter estimated path . 116
4.9 Angular and translational errors for pose estimation 117
4.10 Generated map of a lab at UAB university 118
4.11 x, y, and θ of robot pose evolution with time and corresponding

errors in pose estimation shown as error bars (UAB lab) 119
4.12 Map generated based on the Ubremen-Cartesium (a) and MIT CSAIL

(b) data sets. The particle filter estimated and the raw odometry
trajectories are shown with red and blue colors respectively 120

4.13 x, y, and θ of robot pose evolution with time and corresponding
errors in pose estimation shown as error bars (Ubremen-Cartesium) 121

4.14 x, y, and θ of robot pose evolution with time and corresponding
errors in pose estimation shown as error bars (MIT CSAIL) 122

4.15 Comparison of mean errors for the pose (x, y, θ) of all datasets. . . . 122
4.16 Effect of number of particles on RMSE for Ubremen-Cartesium (a)

and MIT CSAIL (b) data set. 123
4.17 Sampled and resampled particles memory (MEM) schemes for Metropolis-

coupled MCMC . 125
4.18 Parallel particle filter architecture 126
4.19 FPGA hardware resources overhead ratio of the parallel PF over the

serial PF. 128
4.20 Comparison between serial and parallel PF based on (MC)3 (a) and

timing for N = 100 particles with varying number of PEs (b) 129

List of Figures xxi

5.1 System architecture . 138
5.2 Laser scanner parallel processor . 140
5.3 Representation of map in hardware 141
5.4 LRF IP architecture . 142
5.5 Effect of the number of CORDIC iterations on precision (a) and

maximum frequency (b) of the LRF parallel processor 143
5.6 Finite state machine design for Bresenham IP core 144
5.7 Parallel processing of laser end points with parallel Bresenham IPs

(left) and partitioning of the map memory into k smaller memory
modules (right) . 146

5.8 Laser scan point processed by the Bresenham IP module 147
5.9 Block diagram for particle processing element (PE) 148
5.10 Example of particle sampling based on their replication factor in the

RPI MEM . 149
5.11 Sample unit architecture . 150
5.12 Sample control unit fsm based control sub module 150
5.13 Importance weight unit architecture 152
5.14 Resample unit architecture . 154
5.15 Number of particles (N) vs RMSE 157
5.16 FPGA HW resource utilization with varying number of particles.

The number of particles is shown in log scale 157
5.17 Execution time of the PF . 158
5.18 RMSE for robot pose over time for N=1024 163
5.19 Software and Hardware generated map for CMUNewellSimonHall

data set . 164

xxii

List of Tables

2.1 Dynamic state space model notations 24

3.1 Execution Time for Sampling and Importance Weight steps 72
3.2 Execution Time and RMSE for SIR/RPF with Different Resampling

Methods . 74
3.3 CORDIC configurations for functions evaluation. K ∼ Km(n→∞) 82
3.4 Pre-scaling identities for function evaluations [8–10] 83
3.5 Comparison on performance and resource utilization among different

FPGA implementation of the GRNGs 97

4.1 Resource utilization for PF hardware acceleration module and the
HW/SW co-design system on Xilinx Kintex-7 KC705 FPGA 113

4.2 FPGA resource utilization for serial PF and parallel PF with 3 PEs 127
4.3 Xilinx IP Resource utilization overview 128
4.4 Comparisons with other Implementations 130

5.1 Resource unitlization for LRF parallel processor 147
5.2 Resource utilization on Xilinx Kintex-7 KC705 FPGA device 158
5.3 Maximum frequency of operation for PF computational modules . . 160
5.4 Comparison with other implementations 162

6.1 Performances Comparisons on Proposed Approaches for PF-SLAM
FPGA Implementation . 170

xxiv

List of Abbreviations

AXI4 Advanced eXtensible Interface 4

ASIC Application Specific Integrated Circuit

ASSP Application Specific Standard Product

ALU Arithmetic Logic Unit

CORDIC . . . COordinate Rotation DIgital Computer

CPU Central Processing Unit

CDF Cumulative Distribution Function

DE Differential Evolution

DSP Digital Signal Processor

EDK Embedded Development Kit

EKF Extended Kalman Filter

FPGA Field Programmable Gate Arrays

FPU Floating Point Unit

FSL Fast Simplex Link

GPGPU General Purpose Graphic Processing Unit

GRNG Gaussian Random Number Generator

HW/SW . . . Hardware/Software

IW Importance Weight

ICDF Inverse Cumulative Distribution Function

IMH Independent Metropolis-Hastings

IP Intellectual Property

ISE Integrated Software Environment

KLD Kullback-Leibler Distance

KF Kalman Filter

LRF Laser Range Finder

xxvi List of Abbreviations

LFSR Linear Feedback Shift Register

LMB Local Memory Bus

LUTs Lookup Tables

MCMC Markov Chain Monte Carlo

(MC)3 Metropolis Coupled Markov Chain Monte Carlo

MCL Monte Carlo Localization

MEM Memory

OGM Occupancy Grid Map

PDF Probability Density Function

PE Processing Element

PFs Particle Filters

PLB Processor Local Bus

RMSE Root Mean Square Error

RNG Random Number Generator

RNA Resampling with Non-proportional Allocation

RPA Resampling with Proportional Allocation

RPF Regularized Particle Filter

S Sampling

SDK Software Development Kit

SIR Sampling Importance Resampling

SLAM Simultaneous Localization and Mapping

SMG-SLAM . Scan-Matching Genetic Simultaneous Localization and Mapping

SoC Systems on Chip

URNG Uniform Random Number Generator

UART Universal Asynchronous Receiver Transmitter

VHDL Very High Speed Integrated Circuit Hardware Description Lan-
guage

XCL Xilinx Cache Link

XPS Xilinx Platform Studio

1
Introduction

1.1 Background

Estimating the state of a dynamic system has diverse applications in engineering

and scientific areas including communications, machine learning, radar and sonar

target tracking, satellite navigation, neuroscience, economics, finance, political

science, and many others. In the history of solving the state estimation problems,

the introduction of a Kalman filtering (KF) method in the year 1960 was a major

breakthrough for estimating the state of linear Gaussian problems [1]. As the basic

KF is restricted to linear Gaussian systems, an Extended Kalman filter (EKF)

version was introduced in 1980 in order to handle systems with nonlinear model and

non-gaussian noise [2]. However, the EKF approximates the nonlinear model by a

linear model and then utilise KF to obtain an optimal solution. As a result, the

degree of accuracy of the EKF relies on the validity of the linear approximation and

is not suitable for highly non-Gaussian conditional probability density functions

(PDFs). If the non-linearities are significant, or the noise is non-Gaussian, it diverges

and results in poor performance, and the references contained therein [3, 4]. Bearing

in mind that KF method is limited by its assumptions, the provision of optimal

estimation problems for non-linear/non-Gaussian systems that do not typically

rely on analytic solutions is essential. This is where the sequential Monte Carlo

2 1.1. Background

methods called particle filters (PFs) come into play, where they approximate the

posterior probability of the state through generation of a weighted state samples,

called particles using Monte Carlo Methods [5].

Since their introduction in 1993, PFs methods have become a very popular class

of algorithms to solve the state and the parameter estimation for nonlinear and

non-Gaussian system in diverse fields as computer vision, econometrics, robotics and

navigation. Their popularity is due to the fact that for any nonlinear/non-Gaussian

dynamic estimation problem one can design an accurate and reliable recursive

Bayesian filter. Their principal advantage is that they do not rely on any local

linearization technique or any crude functional approximation and provide enhanced

performance with respect to EKF approximation method [3, 5, 6].

PFs estimate the state based on the principle of importance sampling whereby

the particles are sampled from an importance density function (sampling step). This

sampling step is followed by the importance weight computation step where weights

are assigned to the individual particles based on the received observation to form

the weighted set of particles. The weighted set of particles represent the posterior

density of the state and is used to find various estimates of the state. The posterior is

then recursively updated in time as new observations become available. Resampling

is another step of the PF required to avoid the weight degeneracy problem [7, 8],

which causes the weights of many particles to be negligible after a few time instances.

The non-parametric representation of the posterior densities makes PFs suitable

candidate for highly non-linear and / or non-Gaussian estimation problems. Such

greater flexibility and estimation accuracy, however, comes at the cost of large

computational complexity. Due to such computational complexity, the conventional

software implementations of PFs for an accurate result in most real time applications

is prohibitive and lack enough computational power. As such, the practical use

of PFs has been limited especially in hard real-time systems in which a failure to

meet the deadline is potentially catastrophic [9]. Therefore, in order to overcome

such limitations and make PFs amenable for real-time applications, the speedup of

the intensive computations in PFs with an efficient implementation using flexible

1. Introduction 3

hardware / software (HW / SW) platforms is required. As most of the operations

in PFs can be performed independently, parallel processing and pipelining can be

exploited by use of an appropriate hardware platform, like field programmable

gate arrays (FPGAs), considering their suitability for low power, pipelined and

parallel hardware designs. However, there are some challenges for a high throughput

hardware implementation of the PFs.

At first, due to the wide range of applications to which PF techniques can

be applied, the design and implementation of a generic and highly optimized

architecture for all PF-based systems is difficult. This is mainly due to the

dependency of the implementation upon the properties of the model. Thus it

is required to develop an efficient hardware architecture focusing on the high-level

data and control flow with the objective to easily incorporate the architecture to

other application domains. Second, particle filtering is both computation intensive

and memory access intensive. It is characterized as an iterative processing of

particles where the number of particles can vary from a few tens to thousands

depending on the applications. Of course, a large number of particles increase

the precision of the system, however when the number is large also the overall

hardware complexity grows rapidly and satisfying real-time constraint becomes very

difficult. Third, as the algorithm is a mixture of parallel and sequential operations

the direct mapping from algorithm to architecture results in bad performance. The

sequential operation results from the resampling step of the particle filter, which

inhibits the ability for full parallelization of the PF computations. Resampling

is a computationally expensive step that requires a complicated hardware design.

Thus, it can greatly impact the speed and resource utilization in PFs hardware

realization. In particular, traditional resampling algorithms pose a significant

challenge for a pipelined implementation and lead to increased latency of the

whole implementation [10–14]. However, resampling method based on Markov

Chain Monte Carlo (MCMC)[15] helps to avoid the expensive resampling step

that traditional resampling based implementations would need. The Independent

Metropolis-Hastings (IMH) resampling method which is adopted in this work, is

4 1.2. State of the Art on Real Time PFs

a MCMC based method that does not suffer from bottlenecks in pipelining and

is suitable for parallelization [16].

1.2 State of the Art on Real Time PFs

The implementation of the PFs for real time applications has so far been a major

obstacle due to the PFs high computational requirements. In this sense, there

exists several studies aimed at accelerating the intensive computations in PFs and

make them amenable to real-time problems. These studies, in general, can be

classified under three major topics (Fig. 1.1):

1. Algorithmic modifications

2. Adaptive particle filtering

3. Hardware implementations

• FPGA based implementations

• Non-FPGA based implementations

The discussion on literature studies related to the above three major topics

are explained in the following subsections.

Figure 1.1: Real time particle filter approaches

1. Introduction 5

1.2.1 Adaptive Particle Filtering

The number of particles is the key parameter of PFs, were its square root is inversely

proportional to the rate of convergence of the approximate probability distribution

towards the true posterior [17]. This implies that the filter perfectly approximates

the posterior distribution when the number of particles tends to infinity. However,

since the computational cost grows with the number of particles, for practical use

a specific number of particles has to be chosen in the design. In many practical

applications, the observations arrive sequentially, and there is a strict deadline

for processing each new observation. Then, the best solution in terms of filter

performance is to increase the number of particles as much as possible and keep

it fixed. Also, in some hardware implementations, the number of particles is a

design parameter that cannot be modified during implementation. Nevertheless, in

many other applications where resources are scarce or are shared with a dynamical

allocation and/or with energy restrictions, one might be interested in adapting

the number of particles in a smart way.

However, the selection of the number of particles, is often a delicate subject

because, the performance of the filter cannot usually be described in advance as a

function of the number of particles, and the mismatch between the approximation

provided by the filter and the unknown posterior distribution is obviously also

unknown. Therefore, although there is a clear trade-off between performance and

computational cost, this relation is not straightforward. Increasing the number

of particles over a certain value may not significantly improve the quality of the

approximation while decreasing the number of particles below some other value

can dramatically affect the performance of the filter. For example, in a robot

localization problem choosing not enough samples results in a poor approximation

of the underlying posterior and the robot frequently fails to localize itself. On the

other hand, if we choose too many samples, each update of the algorithm takes

several seconds and valuable sensor data could be lost or not processed.

In the adaptive approaches different kind of metrics such as Kullback-Leibler

distance (KLD), innovation error, likelihood and entropy are used to track the

6 1.2. State of the Art on Real Time PFs

estimation accuracy which helps to tune the number of particles at run time. The

existing techniques based on these metrics for adapting the number of particles are:

KLD:- The work in [18, 19] presents a KLD-sampling method that helps to

choose a small number of particles while the density is focused on a small part of the

sate space, and a large number of particles if the state uncertainty is large. In this

study the authors particularly, applied the procedure to a mobile robot localization

problem. The application of this approach to a real time robot localization problem

is presented in [20]. In this study the issue of a significantly higher sensor data

rate than the PF update rate is considered to avoid the lose of useful sensor

data. In their approach, for an efficient use of sensor information, particle sets

are divided between all available observations and the state is represented as a

mixture of particle sets. And this leads to an increase in the performance of the

PF compared to the original PF approach. An improvement to the KLD sampling

is conducted in [21], by adjusting the variance and gradient data to generate

particles near the high likelihood region. A similar recent study in [22] uses the

adaptive PF approach to a mobile robot localization application for reducing the

run-time computational complexity in PF. With a similar reasoning, the study in

[23] suggests to adaptively vary the number of particles based on the estimation

quality for reducing the complexity in PF.

Likelihood:- In the likelihood adaptation approach the number of samples is

determined while the sum of non-normalized likelihoods (importance weights)

exceeds a prespecified threshold. Such an approach has been applied to a mobile

robot localization in [24]. In a robot localization context, the main idea in this

approach is that the required particle set is small while the particle set is well in

tune with the sensor measurement and the individual importance weights of the

particles are large. However, the particle set is large while it is not well in tuned

with the sensor reading and the individual weight of the particles is small. From

the study presented in [25] the likelihood adaptation approach has showed lower

estimation performance compared to the KLD approach.

1. Introduction 7

Innovation:- The approach presented in [26] uses the innovation error metric

to modify the number of particles where the authors particularly applied it to

a target tracking problem. This approach has recently been applied to a visual

tracking in [27]. The adaptation of the particles in this approach is controlled by the

relative distance among the particles. While the distance between two neighboring

particles is below a predefined threshold, the particle with the largest weight is

kept and the one with the smaller weight is rejected.

1.2.2 Algorithmic Modifications

Besides the adaptive particle size approach for handling the real time computational

challenges with PFs, there have been also studies aimed at modifying the basic PF

algorithm to achieve the same objective. For example, the work in [28] incorporates

MCMC steps to improve the quality of the sample based posterior approximation.

Another approach, Auxiliary PF, applies a one step lookahead to minimize the

mismatch between the proposal and the target distributions thereby minimizing

the variability of the importance weights, which in turn determines the efficiency of

the importance sampler [29]. The application of this approach to the simultaneous

localization and mapping (SLAM) problem is presented in [30], were a hybrid

auxiliary PF and differential evolution (DE) method is used. The auxiliary PF and

the DE are applied for the estimation of the pose (position and orientation) and

the robots environment respectively. For systems containing a linear substructure

subjected to Gaussian noise, with a combination of the standard PF and the KF

(Marginalized PF) it is possible to obtain better estimates with reduced complexity

compared to using the standard PF only approach [31]. This approach is applied in

the two common SLAM variants, Fast-SLAM 1.0 [32] and Fast-SLAM 2.0 [33]. In

general, the disadvantages with the adaptive PF and modification of the basic PF

approaches is that they introduce extra computational steps to the basic particle

filtering algorithm that increases the complexity of the PF algorithm.

8 1.2. State of the Art on Real Time PFs

1.2.3 FPGA Based Implementations

PFs have been applied in the field of mobile robotics to perform tracking, localization,

mapping and navigation tasks to deal with the uncertainties and / or noise generated

by the sensors as well as with the intrinsic uncertainties of the environment. Most

real-time robotics applications have constraints on performance, area, cost, flexibility

and power consumption. Therefore, the development of hardware architectures

focused on speeding up the PF execution, using an appropriate hardware platform

like the FPGA is of importance in the real-time applicability of the PFs. With

this context, PFs hardware implementations have been previously proposed to

tackle the intensive computation.

A parallel hardware architecture for the PF applied to target tacking in wireless

network is suggested for an implementation on an FPGA or on a fixed-point digital

signal processor in [34]. From this study a massive increase in the processing speed

is shown by dividing the PF process into twenty parallel PFs. The authors have also

presented an algorithm that facilitates the mixing among the parallel processing

units and reduces memory bandwidth. The work presented in[35] discusses on

different hardware architectures for PF algorithm for an FPGA implementation

to target tracking application. Their proposed architecture allowed to perform

all the three steps of the PF concurrently. Regarding to the implementation of

the importance weight step this study used piecewise linear function instead of

the exponential function to reduce the complexity of the hardware architecture

showing small degradation in performance.

The real time execution of the PFs becomes further difficult in certain applica-

tions due to the complexity of models or the large number of particles requirements.

This happens when the rate of incoming measurement data is higher than the

update rate of the PFs. In [20] this issue has been addressed by distributing the

particles among different observations within an estimation interval. A similar study

to Monte Carlo Localization algorithm for a real time mobile robot application is

presented in [36]. This work focuses on the sampling step of the PF by emphasizing

the importance of providing a good quality pseudo random number generator. The

1. Introduction 9

study presented an embedded implementation based on the FPGA customized to

compute the complete Monte Carlo Localization algorithm for a real time mobile

robot application. In addition, the authors in [37] considered a mixture PF algorithm

for a real time realization of integrated 3D navigation system for a land vehicle, due

to its requirement of less number of particle compared to the standard sampling

importance resampling (SIR) PF. They considered further optimization for their

embedded system implementation to run the algorithm at higher rate. For the

optimization they considered a method called fast median-cut clustering to reduce

the computation time needed in the importance weighting step.

For bridging the gap between PF theory and its practical use it is a well known

fact to reduce the execution time of the algorithms by implementing them using

multiple parallel processing elements. However, the main challenge to such an

implementation is the parallelization of the resampling step with the other steps of

the PF. As a result of this, most of the works on parallel PFs focus on designing a

resampling step suitable for parallel implementation. There are some studies that

address this in hardware. The work in [38] presents hardware architectures and

memory schemes to the resampling and sampling steps of the SIR PF algorithm. The

presented architectures are based on systematic resampling and residual systematic

resampling algorithms. The implementation of the proposed architectures on the

FPGA resulted in 32 times faster speed than the same problem on a DSP. In [39] a

compact threshold based resampling algorithm and architecture for efficient hardware

implementation is presented. The use of such simple threshold-based scheme in

the resampling algorithm resulted in a reduction in the complexity of hardware

implementation. Their algorithm showed approximately equal performance with the

traditional systematic resampling algorithm. A similar work is also presented in [40].

In[41] an improvement over the basic residual resampling algorithm is done and

its hardware implementation is proposed. The proposed algorithm helps to avoid

the resampling of the residuals as a result of which it has only one loop compared

to the basic residual resampling algorithm. The modified algorithm resulted in

approximately equal performance with the traditional systematic resampling and

10 1.2. State of the Art on Real Time PFs

residual systematic algorithms. Distributed resampling algorithms with proportional

allocation (RPA) and non-proportional allocation (RNA) of particles are considered

for real time FPGA implementation in [42]. The main advantage considered with

such resampling schemes is that the communication between the parallel particle

processing units is reduced and made deterministic.

1.2.4 Non-GPGA Based Implementations

The hardware implementations of the PFs, besides FPGA, on many-core architec-

tures (GPGPUs and multi-core CPUs) has been also one of the approaches taken for

making the PFs more feasible for real-time applications. This section is dedicated to

the literature review of such non-FPGA based hardware implementation of the PFs.

A comprehensive study on the design and implementation of high-performance

PFs on many-core architectures is presented in [43]. The study considered a complex

robotic arm application with nine state variables for pushing the estimation rates

and accuracy to new levels. For such application utilizing over one million particles,

they claimed on achieving estimation rates of 100-200 Hz on GPGPUs. A similar

work in [44] presented a parallel implementation of the PF and KF on a multi-core

platform. The study presented a comparison of the speed up and performances for

four existing parallel PFs (globally distributed PF, resampling with proportional

allocation PF, resampling with non-proportional allocation PF and the Gaussian

PF) implementation on a shared memory multicore computer using up to eight cores.

The work in [45] developed parallel algorithm for PF specifically designed for

GPUs and similar parallel computing devices. In this study all the PF steps are

executed in a massively parallel manner. Their approach helps to consider the

limited bandwidth for data transfer between the GPUs and the CPUs memory by

performing all the numerical computations or memory access solely inside the GPUs.

In [46] a multicore processor based parallel implementation and performance analysis

of the PF for a vehicle localization and map-matching algorithm is presented. In

this study a speedup of up to 75 times is reported on parallel GPU implementation

compared to the sequential implementation.

1. Introduction 11

To solve the serial nature of the basic systematic resampling, which resulted in

a major bottleneck to the full parallelization of the PF, the study [13] proposed a

shared-memory systematic resampling algorithm for an implementation on GPU.

This work aims to tackle the problems of the distributed resampling approach

considered by several authors. These problems include: the responsibility of the

central processing unit for generating and distributing random numbers, the use of

single processor for weight summation and normalization, the centralized resampling

of particles and the requirement of huge communication between central processor

and other processors. So in their approach random numbers are generated in

parallel, the sum of weights are obtained through a parallel reduction algorithm

and the resampling step is parallelized. The study presented in [47] showed

the implementation for different resampling methods including the Metroplois

and rejection sampling on a GPU. It is suggested that Metropolis and rejection

resampling methods resulted in a significant increase in speed compared to the most

common resampling methods like multinomial, stratified and systematic resampling.

In summary, several works present hardware realizations of the PF algorithm in

many applications based on different hardware platforms. However, there are few

studies of hardware realization applying PFs to more complex real-time problems

like SLAM in order to accelerate the underlying intensive computations and achieve

real-time performance. Among the very few attempts to SLAM implementation in

hardware platforms is the work presented in [48]. However, this work presents an

FPGA implementation of a variant SLAM based on a genetic algorithm called SMG-

SLAM (Scan-Matching Genetic SLAM). Other studies are based on KF algorithm

[49–51]. This fact suggest the necessity of designing hardware architectures for

PF applied to SLAM.

1.3 Objectives

Even though several methods for accelerating the intensive computations of PFs

have been proposed in the literature, still the practical use of PFs has been limited

for a vast range of hard real-time applications such as robotics, target tracking,

12 1.3. Objectives

positioning, and navigation as they cannot meet the requirements of real-time

processing. Furthermore, in the literature no significant effort has been considered

for the development of efficient HW/SW architectures for PFs specially tailored

to complex practical real-time applications, where real time processing and power

consumption optimizations are crucial. On the other hand, PFs are potentially

useful tools in real time navigation and robotics applications to provide precise and

accurate estimations [37, 52, 53]. Taking the advantages of the FPGAs flexibility in

the realization of PFs implementation, improved performance for PFs in complex

real-time problem can be achieved. In this sense, the evaluation on the possibility

of the PFs for a complex real-time applications, in particular to the SLAM problem,

is considered in this thesis. SLAM is one of the core applications in most robotic

systems, where a mobile robot is required to localize its position while at the same

time building the map of its environment.

According to the review presented in the aforementioned paragraphs, the overall

purpose of this doctoral thesis is the speedup of the intensive computations in PFs

with the aim to make them amenable to real time applications. In order to achieve

this overall objective, the following specific objectives are set.

Thesis Objectives

• To determine the critical computational challenges involved in the different

operational steps of the PF algorithm for hardware implementation.

• To design and develop efficient HW / SW architectures for high speed PF, with

the goal to bring the PF closer to complex practical real-time applications. It

aims to reduce the computational complexity of the PF algorithm and achieve

fast computations using less hardware resources so as to be implemented in

real-time robotic system. To achieve this objective, hardware architectures

for PF are proposed and implemented on an FPGA platform.

• To apply the developed HW / SW architectures to real time SLAM problem.

1. Introduction 13

1.4 Publications

This doctoral thesis is mainly based on the following previous publications and

submitted materials.

• Sileshi, B.G, Oliver, J., Toledo, R., Gonçalves, J., Costa,P., On the Behaviour

of Low Cost Laser Scanners in HW/SW Particle Filter SLAM Applications,

Robotics and Autonomous Systems, Volume 80, June 2016, Pages 11-23, ISSN

0921-8890, (http://www.sciencedirect.com/science/article/pii/S0921889015303

201)

• Sileshi, B.G.; Ferrer, C.; Oliver, J., Accelerating Techniques for Particle

Filter Implementations on FPGA, In Emerging Trends in Computer Science

and Applied Computing, edited by Quoc Nam Tran and Hamid Arabnia,

Morgan Kaufmann, Boston, 2015, Pages 19-37, Emerging Trends in Compu-

tational Biology, Bioinformatics, and Systems Biology, ISBN 9780128025086,

(http://www.sciencedirect.com/science/article/pii/B9780128025086000028)

• Sileshi, B.G.; Ferrer,C.; Oliver, J., Accelerating Particle Filter on FPGA,

2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Pitts-

burgh, 2016, Accepted.

• Sileshi, B.G.; Ferrer, C.; Oliver, J., Computational Speedup Hardware

Architectures for Particle Filter, to be submitted to a journal.

• Sileshi, B.G.; Ferrer, C.; Oliver, J., Particle Filter Parallelization Using

Metropolis Coupled Markov Chain Monte Carlo, Submitted to Journal of

Circuits, Systems & Signal Processing.

• Sileshi, B.G.; Oliver.J,Toledo.R, Gonçalves, J., Costa, P., Particle Filter

SLAM on FPGA: A Case Study on Robot@ Factory Competition, In Robot

2015: Second Iberian Robotics Conference, pp. 411-423, 2016.

14 1.5. Thesis Outline

• Sileshi, B.G.; Ferrer, C.; Oliver, J., Hardware/Software Co-design of Particle

Filter in Grid Based Fast-SLAM Algorithm, International Conference on

Embedded Systems and Applications (ESA), 2014 Conference on , 24-27 Jul.

2014.

• Sileshi, B.G.; Ferrer, C.; Oliver, J., Accelerating Hardware Gaussian Random

Number Generation Using Ziggurat and CORDIC Algorithms, In SENSORS,

2014 IEEE. IEEE, 2014. p. 2122-2125.

• Sileshi, B.G.; Ferrer,C.; Oliver, J., Particle Filters and Resampling Tech-

niques: Importance in Computational Complexity Analysis, Design and Archi-

tectures for Signal and Image Processing (DASIP), 2013 Conference on , vol.,

no., pp.319,325, 8-10 Oct. 2013

1.5 Thesis Outline

This thesis is composed of six chapters including this introduction which are

organized as follow:

• Chapter 2- Particle Filters (PFs) and SLAM Background: is dedicated

to an in depth explanation on the theoretical foundations of the PFs algorithm

evaluated during this thesis. Detailed explanations on the computations

involved in each step of the PF is presented. In addition, a discussion on

some of the most commonly used variants of the basic PF algorithm and

the different techniques for performing the resampling operation is provided.

Finally, the explanation on the application of the PF to the SLAM problem

is presented, where the theory of the SLAM problem is described based on

the PF algorithm.

• Chapter 3- PFs Complexity Analysis and HW Acceleration Methods:

presents the analysis on the identification of the computational bottlenecks

of the PFs. Based on the computational complexity analysis, this chapter

provides the explanation on the proposed PFs acceleration techniques, namely

1. Introduction 15

the CORDIC and Ziggurat algorithms. The discussion on the CORDIC

algorithm for a hardware evaluation of different complex functions involved in

PF computations is given. Furthermore, a discussion on uniform and Gaussian

hardware random number generator based on Ziggurat and Thausworth

algorithms respectively is provided.

• Chapter 4- HW / SW Approach for PF-SLAM FPGA Architecture

and Implementation: explains the FPGA hardware design of the PF based

on a HW/SW co-design approach. Based on the PF acceleration techniques

provided in Chapter 3, a discussion on the proposed hardware architecture of a

PF hardware acceleration module is presented. The PF hardware acceleration

module is interfaced with the soft-core MicroBlaze processor of the FPGA

resulting in the PF HW/SW architecture. The proposed PF HW/SW co-

design architecture is evaluated for the SLAM application based on different

real data sets. Finally, with an effort to parallelize the PF computations this

chapter presents a parallel PF architecture with the application a Metroplis

coupled Markov Chain Monte Carlo approach.

• Chapter 5- HW Approach for PF-SLAM Processing Element Design:

provides the fully hardware architecture design for the different steps of the

PF applied to the SLAM problem. The details in the design and evaluation

of hardware architectures of the different computational modules is given.

In addition, the design and implementation of a parallel laser scanner co-

processor is explained with the objective of accelerating the processing of

large measurement data from a laser scanner sensor in the update step of the

PF applied to the SLAM problem.

• Chapter 6- Conclusions: gives the general conclusions and future outlooks

regarding to the efforts made in this thesis to achieve real time PF computa-

tions.

16

References

[1] R. E. Kalman. “A new approach to linear filtering and prediction problems”.
In: Journal of basic Engineering 82.1 (1960), pp. 35–45.

[2] B. Anderson and J. Moore. “Optimal filtering”. In: Information and system
sciences series (1979).

[3] R. J. Meinhold and N. D. Singpurwalla. “Robustification of Kalman filter
models”. In: Journal of the American Statistical Association 84.406 (1989),
pp. 479–486.

[4] G. A. Einicke and L. B. White. “Robust extended Kalman filtering”. In:
IEEE Transactions on Signal Processing 47.9 (1999), pp. 2596–2599.

[5] N. J. Gordon, D. J. Salmond, and A. F. Smith. “Novel approach to nonlinear/non-
Gaussian Bayesian state estimation”. In: Radar and Signal Processing, IEE
Proceedings F. Vol. 140. 2. IET. 1993, pp. 107–113.

[6] N. Gordon, B Ristic, and S Arulampalam. “Beyond the kalman filter: Particle
filters for tracking applications”. In: Artech House, London (2004).

[7] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. “A tutorial on
particle filters for online nonlinear/non-Gaussian Bayesian tracking”. In:
Signal Processing, IEEE Transactions on 50.2 (2002), pp. 174–188.

[8] A. Smith, A. Doucet, N. de Freitas, and N. Gordon. Sequential Monte Carlo
methods in practice. Springer Science & Business Media, 2013.

[9] A. Doucet and A. M. Johansen. “A tutorial on particle filtering and smooth-
ing: Fifteen years later”. In: Handbook of Nonlinear Filtering 12.656-704
(2009), p. 3.

[10] R. Douc and O. Cappé. “Comparison of resampling schemes for particle
filtering”. In: Image and Signal Processing and Analysis, 2005. ISPA 2005.
Proceedings of the 4th International Symposium on. IEEE. 2005, pp. 64–69.

[11] J. D. Hol, T. B. Schon, and F. Gustafsson. “On resampling algorithms for
particle filters”. In: Nonlinear Statistical Signal Processing Workshop, 2006
IEEE. IEEE. 2006, pp. 79–82.

[12] M. Bolić, P. M. Djurić, and S. Hong. “New resampling algorithms for
particle filters”. In: Acoustics, Speech, and Signal Processing, 2003. Proceed-
ings.(ICASSP’03). 2003 IEEE International Conference on. Vol. 2. IEEE.
2003, pp. II–589.

18 References

[13] P. Gong, Y. O. Basciftci, and F. Ozguner. “A parallel resampling algorithm
for particle filtering on shared-memory architectures”. In: Parallel and
Distributed Processing Symposium Workshops & PhD Forum (IPDPSW),
2012 IEEE 26th International. IEEE. 2012, pp. 1477–1483.

[14] S. Hong, M. Bolić, and P. M. Djuric. “An efficient fixed-point implementation
of residual resampling scheme for high-speed particle filters”. In: Signal
Processing Letters, IEEE 11.5 (2004), pp. 482–485.

[15] C. M. Carlo. “Markov Chain Monte Carlo and Gibbs Sampling”. In: Notes
(2004).

[16] A. C. Sankaranarayanan, A. Srivastava, and R. Chellappa. “Algorithmic and
architectural optimizations for computationally efficient particle filtering”.
In: Image Processing, IEEE Transactions on 17.5 (2008), pp. 737–748.

[17] A. Bain and D. Crisan. Fundamentals of stochastic filtering. Vol. 3. Springer,
2009.

[18] D. Fox. “Adapting the sample size in particle filters through KLD-sampling”.
In: The international Journal of robotics research 22.12 (2003), pp. 985–1003.

[19] T. Li, S. Sun, and T. P. Sattar. “Adapting sample size in particle filters
through KLD-resampling”. In: Electronics Letters 49.12 (2013), pp. 740–742.

[20] C. Kwok, D. Fox, and M. Meila. “Real-time particle filters”. In: Proceedings
of the IEEE 92.3 (2004), pp. 469–484.

[21] S.-H. Park, Y.-J. Kim, and M.-T. Lim. “Novel adaptive particle filter using
adjusted variance and its application”. In: International Journal of Control,
Automation and Systems 8.4 (2010), pp. 801–807.

[22] T. C. Chau, W. Luk, P. Y. Cheung, A. Eele, and J. Maciejowski. “Adap-
tive sequential monte carlo approach for real-time applications”. In: Field
Programmable Logic and Applications (FPL), 2012 22nd International Con-
ference on. IEEE. 2012, pp. 527–530.

[23] M. Bolić, S. Hong, and P. M. Djurić. “Performance and complexity analysis of
adaptive particle filtering for tracking applications”. In: Signals, Systems and
Computers, 2002. Conference Record of the Thirty-Sixth Asilomar Conference
on. Vol. 1. IEEE. 2002, pp. 853–857.

[24] D. Fox, W. Burgard, F. Dellaert, and S. Thrun. “Monte carlo localization:
Efficient position estimation for mobile robots”. In: AAAI/IAAI 1999 (1999),
pp. 343–349.

[25] D. Fox. “KLD-sampling: Adaptive particle filters”. In: Advances in neural
information processing systems. 2001, pp. 713–720.

[26] P. Closas and C. Fernández-Prades. “Particle filtering with adaptive number
of particles”. In: Aerospace Conference, 2011 IEEE. IEEE. 2011, pp. 1–7.

[27] D. Forte and A. Srivastava. “Resource-aware architectures for adaptive
particle filter based visual target tracking”. In: ACM Transactions on Design
Automation of Electronic Systems (TODAES) 18.2 (2013), p. 22.

References 19

[28] W. R. Gilks and C. Berzuini. “Following a moving target—Monte Carlo
inference for dynamic Bayesian models”. In: Journal of the Royal Statistical
Society: Series B (Statistical Methodology) 63.1 (2001), pp. 127–146.

[29] M. K. Pitt and N. Shephard. “Filtering via simulation: Auxiliary particle
filters”. In: Journal of the American statistical association 94.446 (1999),
pp. 590–599.

[30] R. Havangi, M. A. Nekoui, M. Teshnehlab, and H. D. Taghirad. “A SLAM
based on auxiliary marginalised particle filter and differential evolution”. In:
International Journal of Systems Science 45.9 (2014), pp. 1913–1926.

[31] R Karlsson, T Schon, and F Gustafsson. “Complexity analysis of the
marginalized particle filter”. In: IEEE Transactions on Signal Processing 53
(2005), pp. 4408–4411.

[32] M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit, et al. “FastSLAM: A
factored solution to the simultaneous localization and mapping problem”.
In: Aaai/iaai. 2002, pp. 593–598.

[33] D Roller, M. Montemerlo, S Thrun, and B. Wegbreit. “Fastslam 2.0: an
improved particle filtering algorithm for simultaneous localization and map-
ping that provably converges”. In: Proceedings of the International Joint
Conference on Artificial Intelligence. 2003.

[34] Y. Zhang, T. Sathyan, M. Hedley, P. H. Leong, and A. Pasha. “Hardware
efficient parallel particle filter for tracking in wireless networks”. In: Personal
Indoor and Mobile Radio Communications (PIMRC), 2012 IEEE 23rd
International Symposium on. IEEE. 2012, pp. 1734–1739.

[35] H. A. A. El-Halym, I. I. Mahmoud, and S. Habib. “Proposed hardware
architectures of particle filter for object tracking”. In: EURASIP Journal on
Advances in Signal Processing 2012.1 (2012), pp. 1–19.

[36] V. Bonato, B. F. Mazzotti, M. M. Fernandes, and E. Marques. “A Mersenne
twister hardware implementation for the Monte Carlo localization algorithm”.
In: Journal of Signal Processing Systems 70.1 (2013), pp. 75–85.

[37] M. M. Atia, J. Georgy, M. Korenberg, and A. Noureldin. “Real-time imple-
mentation of mixture particle filter for 3D RISS/GPS integrated navigation
solution”. In: Electronics letters 46.15 (2010), pp. 1083–1084.

[38] A. Athalye, M. Bolic, S. Hong, and P. M. Djuric. “Architectures and memory
schemes for sampling and resampling in particle filters”. In: Digital Signal
Processing Workshop, 2004 and the 3rd IEEE Signal Processing Education
Workshop. 2004 IEEE 11th. IEEE. 2004, pp. 92–96.

[39] S.-H. Hong, Z.-G. Shi, J.-M. Chen, and K.-S. Chen. “A low-power memory-
efficient resampling architecture for particle filters”. In: Circuits, Systems
and Signal Processing 29.1 (2010), pp. 155–167.

[40] Z.-G. Shi, Y. Zheng, X. Bian, and Z. Yu. “Threshold-based resampling for
high-speed particle PHD filter”. In: Progress In Electromagnetics Research
136 (2013), pp. 369–383.

20 References

[41] S. Hong, J. Jiang, and L. Wang. “Improved residual resampling algorithm and
hardware implementation for particle filters”. In: Wireless Communications
& Signal Processing (WCSP), 2012 International Conference on. IEEE. 2012,
pp. 1–5.

[42] M. Bolić, P. M. Djurić, and S. Hong. “Resampling algorithms and architec-
tures for distributed particle filters”. In: Signal Processing, IEEE Transactions
on 53.7 (2005), pp. 2442–2450.

[43] M. Chitchian, A. S. van Amesfoort, A. Simonetto, T. Keviczky, and H. J. Sips.
“Adapting particle filter algorithms to many-core architectures”. In: Parallel
& Distributed Processing (IPDPS), 2013 IEEE 27th International Symposium
on. IEEE. 2013, pp. 427–438.

[44] O. Rosén and A. Medvedev. “Efficient parallel implementation of state esti-
mation algorithms on multicore platforms”. In: Control Systems Technology,
IEEE Transactions on 21.1 (2013), pp. 107–120.

[45] K. McAlinn, H. Katsura, and T. Nakatsuma. “Fully Parallel Particle Learning
for GPGPUs and Other Parallel Devices”. In: arXiv preprint arXiv:1212.1639
(2012).

[46] O. Tosun et al. “Parallelization of particle filter based localization and map
matching algorithms on multicore/manycore architectures”. In: Intelligent
Vehicles Symposium (IV), 2011 IEEE. IEEE. 2011, pp. 820–826.

[47] L. M. Murray, A. Lee, and P. E. Jacob. “Rethinking resampling in the particle
filter on graphics processing units”. In: arXiv preprint arXiv:1301.4019
(2013).

[48] G. Mingas, E. Tsardoulias, and L. Petrou. “An FPGA implementation of the
SMG-SLAM algorithm”. In: Microprocessors and Microsystems 36.3 (2012),
pp. 190–204.

[49] V. Bonato, E. Marques, and G. A. Constantinides. “A floating-point extended
kalman filter implementation for autonomous mobile robots”. In: Journal of
Signal Processing Systems 56.1 (2009), pp. 41–50.

[50] V Bonato. “Proposal of an FPGA hardware architecture for SLAM us-
ing multi-cameras and applied to mobile robotics”. PhD thesis. Ph. D.
dissertation, Institute of Computer Science and Computational Mathematics-
University of Sao Paulo, Sao Carlos, SP, Brazil, 2008.

[51] S. Cruz, D. M. Munoz, M. E. Conde, C. H. Llanos, and G. A. Borges.
“A hardware approach for solving the robot localization problem using
a sequential EKF”. In: Parallel and Distributed Processing Symposium
Workshops & PhD Forum (IPDPSW), 2013 IEEE 27th International. IEEE.
2013, pp. 306–313.

[52] F. Gustafsson, F. Gunnarsson, N. Bergman, U. Forssell, J. Jansson, R.
Karlsson, and P.-J. Nordlund. “Particle filters for positioning, navigation,
and tracking”. In: Signal Processing, IEEE Transactions on 50.2 (2002),
pp. 425–437.

References 21

[53] J. Georgy, A. Noureldin, and C. Goodall. “Vehicle navigator using a mixture
particle filter for inertial sensors/odometer/map data/GPS integration”. In:
Consumer Electronics, IEEE Transactions on 58.2 (2012), pp. 544–552.

22

2
Particle Filters (PFs) and SLAM

Background

2.1 Introduction

This chapter examines the relevant background in the PFs theory, where detailed

explanation on typically used particle filtering methods and their respective com-

putational steps is given. In addition, a discussion on the application of the PFs

to one of the fundamental problem in the field of mobile robotics, namely the

simultaneous localization and mapping (SLAM) problem, is provided. As PFs

complexity and performance depends on a specific application model nonlinearity,

model dynamics and dimension of the state, detailed explanation behind the

theoretical aspect of the SLAM problem is also given. First the robot localization

problem is explained including the different motion and measurement models

required to solve the problem. Then an explanation on the probabilistic robotic

mapping is given, where the different robot mapping techniques are explained.

Finally the explanation on the mathematical foundation to the solution of the

SLAM problem based on PF approach is given.

The chapter provides a discussion of theoretical techniques presented in the

recent literature in respect to PFs and SLAM. All these techniques present the

recent evolution in the field that forms the basis of this thesis research.

24 2.2. Dynamic State Space Models

2.2 Dynamic State Space Models

PFs are applied to many real world systems for state estimations that are formulated

as dynamic state space models. A dynamic state space model assumes two

fundamental mathematical models: the state dynamics and the measurement

equation. The state dynamics model describes the evolution of the state of interest

xt ∈ Rdx with time and is given by:

xt = ft(xt−1, vt−1) (2.1)

Here xt is the state vector to be estimated, t denotes the time step and ft is

a known possibly non-linear function, vt−1 is the process noise sequences, dx is

the dimensions of the state. The measurement (observation) equation relates the

received measurements to the state vector and is given by:

zt = ht(xt, wt) (2.2)

where zt ∈ Rdz is the vector of received measurements at time step t, dz is the

dimensions of the measurement vector, ht is the known measurement function and

wt is the measurement noise sequences. The process vt−1 and measurement wt noise

Table 2.1: Dynamic state space model notations

Variable Description
t Time index
xt State vector at time step t
dx Dimension of the state vector
v Process noise sequence
ft Nonlinear function of the state and process noise sequence
zt Measurement vector at time step t
dz Dimension of the measurement vector
w Measurement noise sequence
ht Nonlinear function of the state and measurement noise sequence
p(x0) Prior state probability density
p(xt|xt−1) Sate transition probability density
p(zt|xt) Measurement probability density

2. Particle Filters (PFs) and SLAM Background 25

sequences are assumed to be white, with known probability density functions

and mutually independent.

Equations 2.1 and 2.2 define a first order Markov process, where their equivalent

probabilistic descriptions for the state and measurement evolution are given by

p(xt|xt−1) and p(zt|xt) respectively. A process is a first order Markov process if the

conditional probability distribution of future states, given the present state and

all past states, depends only upon the present state and not on any past states

(Fig. 2.1). Fig. 2.1 thus implies that the distribution of the state xt+1 conditional

on the history of the states, x0, ..., xt, is determined by the value taken by the

preceding one, xt; this is called the Markov property. Similarly, the distribution

of zt conditionally on the past observations zo, ..., zt−1 and the past values of the

state, x0, ..., xt, is determined by the xt only. Therefore, for a first order Markov

process the true states are conditionally independent of all earlier states given the

immediately previous state (Equation 2.3). Similarly, the measurement at the tth

time step is dependent only upon the current state and is conditionally independent

of all other states given the current state (Equation 2.4).

p(xt|x0, ..., xt−1) = p(xt|xt−1) (2.3)

p(zt|x0, ..., xt) = p(zt|xt) (2.4)

The final piece of information to complete the specification of the estimation

problem is the initial conditions. This is the prior probability density function

(PDF) p(x0) of the state vector at time t = 0, before any measurements have been

Figure 2.1: Graphical representation of the dependence structure of a first order hidden
Markov Model, where xt and zt are the hidden and observed states respectively.

26 2.3. Recursive Bayesian Filters

received. The state-space model can equivalently be formulated as a hidden Markov

model (HMM), as summarized in Equation 2.5 where the stochastic states xt evolve

according to a Markov chain with transition probabilities p(xt|xt−1). In other words,

the chain is defined by the initial PDF, p(x0), combined with the likelihood of

the states at some time given the states at the previous time, p(xt|xt−1). The

observations zt are distributed according to p(zt|xt).

p(x0)

p(xt|xt−1)

p(zt|xt)

(2.5)

The solution to the estimation of the states xt at time t based on history of

measurements up to time t (z0:t), is given by the filtering density p(xt|z0:t). PFs

provide approximations to the filtering density for dynamic systems described by

Equations 2.1, 2.2 and 2.5. As these equations describe a general, nonlinear and

non-Gaussian systems, the assumptions of linear systems with Gaussian noise,

required by the classical Kalman filter can be ignored. Such a capability to handle

nonlinear, non-Gaussian systems allows PFs to achieve improved accuracy over

Kalman filter-based estimation methods.

2.3 Recursive Bayesian Filters

Bayesian filtering allows the online estimation of the unknown state xt of a dynamic

system based on the sequence of all available measurement up to time t which is

given by the posterior distribution p(xt|z1:t). In recursive Bayesian estimation, the

true states are assumed to be a hidden Markov process, and the measurements are

the observed states of a HMM. The posterior distribution, p(xt|z1:t), is obtained

by a recursive estimation that consists of a prediction and an update steps. In

the prediction step the state estimate from the previous time step is used to

predict the current state. This estimate is known as the prior estimate, as it does

not incorporates any measurement from the current time step. In the update

step, the state estimate from the previous step is updated according to the actual

2. Particle Filters (PFs) and SLAM Background 27

measurements done on the system. This estimate is referred to as the a posteriori

estimate. The measurements of the state follows the probability distribution which

is often called the likelihood probability given by the distribution p(xt|zt).

The recursive estimation of the posterior distribution with the prediction and

update steps is given as follows

Prediction: This step involves using the system model p(xt|xt−1) and the available

PDF p(xt−1|z1:t−1) at time t − 1, to obtain the prediction density of the state at

time t via the Chapman Kolmogorov equation [6]:

p(xt|z1:t−1) =
∫
p(xt|xt−1)p(xt−1|z1:t−1)dxt−1 (2.6)

Where the probabilistic model of the state evolution (transitional density), p(xt|xt−1),

is defined by the system equation 2.1.

Update: The update step is carried out while the measurement zt becomes

available at time step t. This involves an update of the prediction (or prior)

PDF via the Bayes rule:

p(xt|z1:t) = p(zt|xt)p(xt|z1:t−1)
p(zt|z1:t−1) (2.7)

where the normalizing constant p(zt|z1:t−1) is :

p(zt|z1:t−1) =
∫
p(zt|xt)p(xt|z1:t−1)dxt (2.8)

Fig. 2.2 illustrates the above two steps of the recursive Bayesian filtering

approach to the posterior estimation.

Figure 2.2: Illustration of a Bayesian filtering scheme

28 2.4. Principles of Importance Sampling

2.4 Principles of Importance Sampling

If the solutions to the prediction and update, equations 2.6 and 2.7 respectively, of

the optimal Bayesian filtering are not analytically tractable, approximate solutions

based on Monte Carlo sampling is normally used. Monte Carlo integration is the

basis of Monte Carlo sampling method. It is used in the approximation of integrals

of the form
∫
f(x)µ(x)dx, where f is real-valued measurable function and µ(x)

denotes a probability measure of interest referred to as the target distribution. The

Monte Carlo sampling approach for the approximation of the integral
∫
f(x)µ(x)dx

consists of drawing N � 1 identically independent (i.i.d.) samples {xi}Ni=1 from the

probability density µ(x) and then evaluating the sample mean 1
N

∑N
i=1 f(xi). Of

course, this technique is applicable only when it is possible and reasonably simple

to sample from the target distribution. Unfortunately, it is usually not possible to

sample effectively from the target distribution, being multivariate, nonstandard,

and only known up to a proportionality constant. A possible solution is to apply the

importance sampling technique, which is a general Monte Carlo integration method.

In importance sampling, for the estimate of the integral
∫
f(x)µ(x)dx, samples

are generated from a density q(x) which is similar to µ(x). The PDF q(x) is referred

to as the importance or proposal density. A Monte Carlo estimate of the integral

is computed by generating N � 1 independent samples distributed according to

q(x) and forming the weighted sum given by:

1
N

N∑
i=1

f(xi)w̃i (2.9)

where

w̃i = µ(xi)
q(xi) (2.10)

are the un-normalized importance weights. As equation 2.9 is an estimator of the

integral
∫
f(x)µ(x)dx with the sample mean of independent random variables, the

law of large number implies that the estimate given by equation 2.9 converges to the

integral
∫
f(x)µ(x)dx almost surely as N tends to infinity. In many situations the

2. Particle Filters (PFs) and SLAM Background 29

target density µ(x) or the proposal density q(x) are known only up to a normalizing

factor, particularly when applying importance sampling ideas to HMMs and more

generally in Bayesian statistics [1, 2]. If the normalizing factor of the target density

µ(x) is unknown, the normalization of the importance weights is required and

the estimate of the integral is given by:

1
N

N∑
i=1

f(xi)wi (2.11)

where the normalized importance weights are given by:

wi = w̃i∑N
i=1 w̃

i
(2.12)

Fig. 2.3 illustrates the importance sampling principle, where a weighted set of

samples that are drawn from a proposal distribution (solid line) is used for approxi-

mating a target distribution (dashed line). In Fig. 2.3, the samples drawn from the

proposal distribution are shown with vertical lines and the weighted samples are

shown with the lengths of the lines being proportional to their importance weights.

���������	
�

�	
�
�������
	���
�
�

�����
����������

�	
�
���

��	��

Figure 2.3: Principle of Importance Sampling [3]. The target distribution is approxi-
mated by samples that are drawn from the proposal distribution. After weighting the
resulting sample set is an approximation of the target distribution.

30 2.5. Sequential Importance Sampling (SIS)

2.5 Sequential Importance Sampling (SIS)

Although importance sampling is primarily intended to overcome difficulties with

direct sampling from µ(x) when approximating integrals of the form
∫
f(x)µ(x)dx,

it can also be used for sampling from the distribution µ(x). The latter can be

achieved by the Sequential Importance Sampling (SIS) method [4, 5], which is

the most basic Monte Carlo method for implementing a recursive Bayesian filter

based on the importance sampling principle [6–8]. It is known variously as particle

filtering, interacting particle approximation, bootstrap, survival of the fittest and

condensation [9–13].

SIS PF applies a Monte Carlo integral approximation method for the representa-

tion of the posterior PDF with a random measure composed of discrete set of samples

(particles) {xit}
N
i=1 drawn from an easy to sample proposal distribution q(x0:t|z1:t)

with their corresponding weights {wit}
N
i=1 suitably normalized so that∑N

i=1 w
i
t = 1. A

discrete weighted approximation to the true posterior density, p(x0:t|z1:t) is given by:

p(x0:t|z1:t) ≈
N∑
i=1

witδ(x0:t − xi0:t) (2.13)

Where δ(.) is a Dirac Delta function and wit is the importance weight. For samples

{xit}
N
i=1 drawn from an importance density q(x0:t|z1:t), as per equation 2.10 the

normalized importance weights are given by:

wit ∝
p(xi0:t|z1:t)
q(xi0:t|z1:t)

(2.14)

SIS algorithm consists of a recursive procedure for the propagation of the

samples and their associated weights as successive observations become available.

For recursive estimation, an approximation to the posterior p(x0:t|z1:t) at time t is

obtained based on samples that approximate the posterior p(x0:t−1|z1:t−1) from the

previous time t − 1. If the importance density is chosen to factorize as given by

Equation 2.15, then one can obtain samples xi0:t ∼ q(x0:t|z1:t) by augmenting each

of the existing samples xi0:t−1 ∼ q(x0:t−1|z1:t−1) with new state xit ∼ q(xt|x0:t−1, z1:t).

2. Particle Filters (PFs) and SLAM Background 31

q(x0:t|z1:t) , q(xt|x0:t−1, z1:t)q(x0:t−1|z1:t−1) (2.15)

For the derivation of the weight update equation, p(x0:t|z1:t) is first expressed

in terms of p(x0:t−1|z1:t−1), p(zt|xt), and p(xt|xt−1).

p(x0:t|z1:t) = p(zt|x0:t, z1:t−1)p(x0:t|z1:t−1)
p(zt|z1:t−1)

= p(zt|x0:t, z1:t−1)p(xt|x0:t−1, z1:t−1)
p(zt|z1:t−1) × p(x0:t−1|z1:t−1)

= p(zt|xt)p(xt|xt−1)
p(zt|z1:t−1) × p(x0:t−1|z1:t−1)

∝ p(zt|xt)p(xt|xt−1)p(x0:t−1|z1:t−1)

(2.16)

By substituting equations 2.15 and 2.16 into equation 2.14, the weight update

equation can then be shown to be:

wit ∝
p(zt|xit)p(xit|xit−1)p(xi0:t−1|z1:t−1)
q(xit|xi0:t−1, z1:t)q(xi0:t−1|z1:t−1)

= wit−1
p(zt|xit)p(xit|xit−1)
q(xit|xi0:t−1, z1:t)

(2.17)

If q(xt|x0:t−1, z1:t) = q(xt|xt−1, zt) then the importance density becomes only

dependent on xt−1 and zt. This is particularly useful in the common case when

only a filtered estimate of p(xt|z1:t) is required at each time step. With such an

assumption , only xit need to be stored; therefore, one can discard the path xi0:t−1

and history of observations z1:t−1. The modified weight is then given by:

wit ∝ wit−1
p(zt|xit)p(xit|xit−1)
q(xit|xit−1, zt)

(2.18)

The posterior filter density p(xt|z1:t) is approximated as:

p(xt|z1:t) ≈
N∑
i=1

witδ(xt − xit) (2.19)

where the weights are defined by equation 2.18. It can be shown that N → ∞

the approximation given by equation 2.19 approached the true posterior density

p(xt|z1:t). In summary, SIS filtering consists of recursive propagation of the particle

32 2.5. Sequential Importance Sampling (SIS)

set St = {xit, wit}
N
i=1 at time t, from the set St−1 = {xit−1, w

i
t−1}

N

i=1 at the previous

time t− 1. The initial particle set S0 is obtained from samples drawn from the prior

density p(x0). The pseudo code description of the SIS method is given in Algorithm 1.

The major problem of the SIS algorithm is that after a certain number of

iterations, the weight degeneracy problem starts to reveal [14–16]. In other words, a

small number of normalized importance weights tend to one while the remaining

weights are negligible. This is not a desirable phenomenon, as only few particles

contribute in the approximation of the posterior density and lots of computation is

wasted to the particles with negligible weight. A common measure of the degeneracy

of the algorithm is the effective sample size Neff given by [15, 17]:

Neff = 1∑N
i=1(wit)2 (2.20)

The degeneracy problem in SIS method can be reduced by use of very large value

of samples N but, since it is an impractical approach other alternative techniques

are commonly used. Which includes; use of resampling and an optimal importance

density. In resampling, particles are resampled N times with replacement from the

discrete approximation of the posterior density. In this process particles with low

importance weight are eliminated and particles with high importance weight are

multiplied. This step is performed whileNeff falls below certain predefined threshold

NT . The different methods for performing the resampling operation are explained

Algorithm 1 SIS PF

Input: {xit−1, w
i
t−1}

N

i=1, zt
1: for i = 1 : N do
2: Draw xt ∼ q(xt|xt−1, zt)
3: Calculate the non normalized importance weight

w̃it = wit−1
p(zt|xit)p(xit|xit−1)
q(xit|xit−1,zt)

4: end for
5: Calculate sum of weights W = ∑N

i=1 w̃
i
t

6: for i = 1 : N do
7: Normalize: wit = W−1w̃it
8: end for
9: return {xit, wit}

N
i=1

2. Particle Filters (PFs) and SLAM Background 33

in section 2.8. The inclusion of a resampling step in the SIS algorithm results in

the formulation of the generic PF, where its pseudo code is given in Algorithm 2.

In the design of a PF the choice of the importance density q(xt|xit−1, zt) is the

most critical issue. The optimal importance density function that minimizes the

variance of importance weights, conditioned upon xit−1 and zt is shown to be [5]:

q(xt|xit−1, zt)opt = p(zt|xt, xit−1)p(xt|xit−1)
p(zt|xit−1) (2.21)

Substituting equation 2.21 in 2.18 results in equation 2.22, which states that

importance weights at time step t can be computed before the particle are propagated

to time t. In order to use the optimal importance function, it is necessary to be

able to sample from p(xt|xit−1, zt) and evaluate the integral given by equation 2.23.

wit ∝ wit−1p(zt|xit−1) (2.22)

p(zt|xit−1) =
∫
p(zt|xt)p(xt|xit−1)dxt (2.23)

In general, as sampling from the distribution p(xt|xit−1, zt) and the evaluation of

the integral in equation 2.23 may not be straightforward, commonly a suboptimal

choice of the importance density by using the prior density is considered as shown

in equation 2.24.

q(xt|xit−1, zt) = p(xt|xit−1) (2.24)

Substituting 2.24 in 2.18 results in:

Algorithm 2 Generic PF

Input: {xit−1, w
i
t−1}

N

i=1, zt
1: SIS filtering (Algorithm 1)
2: Calculate Neff using equation 2.20
3: if Neff ≤ NT then
4: RESAMPLE
5: Input:{xit−1, w

i
t−1}

N

i=1 Output:{xit−1, w
i
t−1,−}

N

i=1
6: end if
7: return {xit, wit}

N
i=1

34 2.6. Sampling Importance Resampling (SIR)

wit ∝ wit−1p(zt|xit) (2.25)

2.6 Sampling Importance Resampling (SIR)

The SIR PF shown in Algorithm 3 is one variant of the SIS algorithm and

it is derived by:

1. Using the prior density p(xit|xit−1) as the importance density q(xit|xit−1, zt)

2. Performing the resampling at every time step.

For this particular choice of the importance density and performing the resam-

pling every time step, the weights are given by:

wit ∝ p(zt|xit) (2.26)

The resampling step in the SIR and generic PFs is intended to reduce the

degeneracy problem. However, it leads to the loss of diversity among the particles.

The loss of diversity among the particles may lead to the occupancy of the same

point in the state space by all N particles, giving poor representation of the posterior

density. The sample diversity in the PF can be improved either via regularization

Algorithm 3 SIR PF

Input: {xit−1, w
i
t−1}

N

i=1, zt
1: for i = 1 : N do
2: Draw xit ∼ p(xt|xit−1)
3: Calculate the non normalized importance weight

w̃it = p(zt|xit)
4: end for
5: Calculate sum of weights W = ∑N

i=1 w̃
i
t

6: for i = 1 : N do
7: Normalize: wit = W−1w̃it
8: end for
9: RESAMPLE

Input :{xit−1, w
i
t−1}

N

i=1 Output:{xit−1, w
i
t−1,−}

N

i=1
10: return {xit, wit}

N
i=1

2. Particle Filters (PFs) and SLAM Background 35

Figure 2.4: Principle of sampling importance resampling (SIR). The particles with
weights are represented along the horizontal axis by bullets, the radii of which being
proportional to the normalized weight of the particle.

step (Regularized PF) or by the Markov Chain Monte Carlo (MCMC) move step

based on the Metropolis-Hasting algorithm [14].

Fig. 2.4 illustrates a graphical representation for a single cycle of the SIR PF

operation. The operation starts with a uniformly weighted particle set {xit, 1
N
}

which provides an approximation to the prediction density p(xt|z1:t−1). While

the measurement zt becomes available at time t, the importance weight of the

individual particles are computed by using the measurement likelihood p(zt|xt).

This results in a weighted measure {xit, wit} for the approximation of the density

p(xt|z1:t). In the resampling step, particles are selected more often in proportion

to their importance weights to obtain the unweighted measure {xi∗t , 1
N
} which is

still an approximation of the density p(xt|z1:t). Finally, the resampled particle set

is propagated to the next time step t + 1 resulting in the measure {xit+1,
1
N
} for

the approximation of the density p(xit+1|z1:t).

2.7 Regularized PF (RPF)

The RPF resamples from a continuous approximation of the posterior density

(equation 2.13) in contrast to the SIR filter by replacing the Dirac-delta function

with a kernel function.

36 2.8. Resampling Operations

p(xt|Zt) ≈
N∑
i=1

witKh(xt − xit) (2.27)

where

Kh(x) = 1
hdx

K(x
h

) (2.28)

is the rescaled kernel densityK(.), h > 0 is the kernel bandwidth, dx is the dimension

of the state vector x and wit, i = 1, ..., N are normalized weights.

In the special case of an equally weighted sample, the optimal choice of the

kernel Kopt is the Epanechnikov kernel. But to reduce the computational cost, the

samples can be drawn from the Gaussian kernel instead of the Epanechnikov kernel

and the optimal choice for the bandwidth for a Gaussian kernel is given by [14]:

hopt = A×N−
1

dx+4 with A =
(4
dx + 2

) 1
dx+4

(2.29)

The main difference of the RPF to the generic PF is only in the additional

regularization steps when conducting resampling. The RPF steps are summarized

in Algorithm 4.

2.8 Resampling Operations

Resampling is an essential step for PF because without this step the particle

weight degeneracy problem reveals [2]. The degeneracy of particles weights problem

is the unbounded increase of the variance of the importance weights wit of the

particles with time which results in inaccurate estimates with unacceptably large

variances. For preventing such a growth in the variance a resampling operation

must be employed. Resampling aims to prevent the degeneracy of the propagated

particles by replacing an old set St = {xit, wit}
N
i=1 of N particles by a new set

S∗t = {xi∗t , wi∗t }
N
i=1 based on their weights wit. Thus the particles from St with

large weights are more likely to dominate S∗t than particles with small weights,

and, consequently, in the next time step, more new particles will be generated in

the region of large weights. This enables to focus on the exploration of the state

space to the parts with large probability masses.

2. Particle Filters (PFs) and SLAM Background 37

Algorithm 4 Regularized PF

Input: {xit−1, w
i
t−1}

N

i=1, zt
1: for i = 1 : N do
2: Draw xt ∼ p(xt|xt−1)
3: Calculate the non normalized importance weight

w̃it = p(zt|xit)
4: end for
5: Calculate sum of weights W = ∑N

i=1 w̃
i
t

6: for i = 1 : N do
7: Normalize: wit = W−1w̃it
8: end for
9: Calculate Neff using equation 2.20

10: if Neff ≤ NT then
11: Calculate the empirical covariance matrix Et of {xit, wit}

N
i=1

12: Compute Dt such that DtD
T
t = Et

13: Resample
[{xit, wit}

N
i=1,−] =RESAMPLE[{xit, wit}

N
i=1]

14: for i = 1 : N do
15: Draw εi ∼ K from Epanechnikov / Gaussian kernel
16: xit

∗ = xit + hoptDkε
i

17: end for
18: end if
19: return {xit, wit}

N
i=1

Even if resampling is intended to prevent the degeneracy problem it may

introduce undesired effects such as sample impoverishment [11, 18, 19]. Sample

impoverishment is the reduction in diversity among the particles which results due

to replicating many instances of particles with large weights and removing those

particles with low importance weights with the resampling operation. For example,

if few particles of St have most of the weight, many of the resampled particles in the

new set S∗t will be the same and as a result the number of different particles in S∗t
will be small. To reduce the effect of sample impoverishment, resampling operation

is normally done by measuring the variance of the particle weights with the effective

sample size parameter Neff . This parameter provides a measure of the variance of

the particle weights. e.g. this parameter tends to 1 while one single particle carries

the largest weight and the rest have negligible weights in comparison. In addition to

the sample impoverishment problem, resampling also limits the full parallelization

38 2.8. Resampling Operations

of the PF computations due to the serial nature of most resampling method [20–25].

Due to the undesired effects of resampling, different advanced methods for

resampling have been proposed, such as multinomial resampling, systematic re-

sampling, residual resampling, stratified resampling and independent Metropolis

Hastings. As the resampling is a computational intensive step, a justified decision

regarding which resampling algorithm to use might result in a reduction of the

overall computational effort of the PFs. Therefore, for facilitating on the decision of

which resampling algorithm to adopt, this section describes the different strategies

for performing the resampling operation.

2.8.1 Multinomial Resampling

Multinomial resampling [11] is the most straightforward method, where N indepen-

dent random numbers uj, j = 1, ..., N are generated from a uniform distribution

(0, 1] in order to pick a particle from the approximate discrete posterior density. In

the jth selection, a particle with index i is chosen while the condition in equation

2.30 is satisfied. Thus, the probability of selecting a particle with index i is the

same as that of uj being in the interval bounded by the cumulative sum of the

normalized weights given in Equation 2.31.

Ci−1 ≤ uj ≤ Ci (2.30)

where

Ci =
N∑
j=1

wjt (2.31)

Multinomial resampling has a computational complexity in the order of O(NM),

where the M factor arises from the search of the required j in equation 2.30

which makes it an inefficient method [9]. The multinomial resampling method

is summarized in Algorithm 5.

2. Particle Filters (PFs) and SLAM Background 39

Algorithm 5 RESAMPLE: Multinomial
1: Generate N uniform independent random numbers uj ∼ U(0, 1)
2: Calculate the cumulative sum of weights Ci = ∑N

j=1 w
j
t

3: Find Ci so that Ci−1 ≤ uj ≤ Ci, the particle with index i is chosen
4: Given {xit, wit}, for j = 1, ..., N , generate new samples xjt by duplicating xit

according to the associated wit
5: Reset wit = 1

N

2.8.2 Stratified Resampling

In the stratified resampling [26], the N particles are divided into sub particles

called strata. The (0, 1] interval is partitioned into N disjoint sub-intervals, where

the N random numbers ui, i = 1, ..., N are drawn independently in each of these

sub-intervals given by Equation 2.32.

ui = (i− 1) + ũl
N

(2.32)

Then the bounding method based on the cumulative sum of normalized weights

given by equation 2.33 is used.

max
(⌊
Nwj

⌋
− 1, 0

)
≤ uj ≤

⌊
Nwj

⌋
+ 2 (2.33)

Algorithm 6 RESAMPLE: Stratified
1: Generate N ordered random numbers
ui = (i−1)+ũl

N
, with ũl ∼ U(0, 1)

2: Use ui to select a particle with index i according to the multinomial distribution

2.8.3 Systematic Resampling

Systematic Resampling [9, 15] is the most popular method where it applies the idea

of strata in a different way. Here the first random number u1 is drawn from the

interval (0, 1/N] and the rest of the random numbers are obtained deterministically

by applying Equation 2.34.

ui = u1 + i− 1
N

, i = 2, ..., N (2.34)

40 2.8. Resampling Operations

The upper and lower limits of the times the jth particle is resampled in the

systematic method is given by Equation 2.35, where bc denotes the floor operation.

⌊
Nwj

⌋
≤ uj ≤

⌊
Nwj

⌋
+ 1 (2.35)

Both systematic and stratified resampling has complexity in the order of O(N).

However, the systematic method is computationally more efficient than the stratified

method as it only requires the generation of a single random number.

Algorithm 7 RESAMPLE: Systematic
1: Sample u1 ∼ U(0, 1

N
) and define ui = u1 + i−1

N
for i = 2, ..., N

2: Use ui to select a particle index i according to the multinomial distribution

2.8.4 Residual Resampling

Residual Resampling [17, 19] method involves two stages. First particles are

resampled deterministically by picking ki = Nwi copies of the i′th particle followed

by multinomial sampling on the residual weights as shown in Algorithm 8.

Algorithm 8 RESAMPLE: Residual
1: For i = 1 : N , retain ki = Nwi copies of xit
2: Let Nr = N − k1 − ...− kN , obtain Nr i.i.d. draws from {xit} with probabilities

proportional to Nwi − ki where i = 1 : N
3: Reset wit = 1

N

2.8.5 Independent Metropolis Hastings Algorithm (IMHA)

In PFs, the sampling and importance weight computations can be easily parallelized

and pipelined as there is no data dependencies between them. However the

resampling step, in particular with the traditional resampling methods explained

so far, is hard to be pipelined with other steps as it requires the knowledge of all

normalized weights of particles. Thus resampling with traditional methods create

bottleneck in the full parallelization of the whole PF steps computations. In order

to overcome such bottleneck, resampling methods such as the Metropolis Hasting

Algorithm (MHA)[27–29] which requires only ratios between weights that do not need

2. Particle Filters (PFs) and SLAM Background 41

to be normalized can be used. MHA is suitable for parallel processing as knowledge

about all the particle weights is not required and the resampling computation can

start as soon as the first particle weight becomes available [30]. In particular from

hardware implementation point of view, the use of the MHA for resampling has

the advantage of a bottleneck free operation compared to traditional resampling

methods and reduces the latency of the whole PF implementation [31, 32].

MHA is a Markov Chain Monte Carlo (MCMC)[33–35] based sampling method

used for generating samples from a desired posterior density p(xt) by generating

samples from an easy to sample proposal distribution q(xt). Compared to traditional

resampling methods MHA has the advantage that it does not require the knowledge

about all the particles as it can produce a sequence of Markov chain states in

which the current state xi+1
t depends on the previous state xit. The MHA steps for

generating sequence of Markov chain states is described in Algorithm 9. The first

step of Algorithm 9 is to initialize the chain with the first particle index, i.e. (x1
t , w̃

1
t).

Then in the main loop three operations are performed: (1) Generate a proposal (or

a candidate) particle x∗t from the proposal distribution q(x∗t |xit); (2) Compute the

acceptance probability Pa via the acceptance function α
(
xit, x

∗
t

)
based upon the

proposal distribution and the posterior density p(.); (3) Accept the candidate particle

with probability Pa, the acceptance probability, or reject it with probability 1− Pa.

Algorithm 9 The Metropolis Hasting algorithm (MHA)
1: Initialize the chain with (x1

t , w̃
1
t)

2: for i = 2 : N do
3: From xit draw samples and compute corresponding weights (x∗t , w̃∗t) from

q(x∗t |xit)
4: Compute the acceptance probability, Pa = α

(
xit, x

∗
t

)
α
(
xit, x

∗
t

)
= min

p

(
x∗
t

)
p

(
xit

) q
(
xit|x∗

t

)
q

(
x∗
t |xit

) , 1


5: (
xi+1
t , w̃i+1

t

)
=


(
x∗t , w̃

∗
t

)
, with prob. Pa(

xit, w̃
i
t

)
, with prob. 1− Pa

6: end for

42 2.9. PFs Applications

Independent Metropolis Hastings algorithm (IMHA)[2, 32, 36, 37] is a special

case of the general MHA where q
(
x∗t |xit

)
is independent of xit. This lead to an

acceptance probability Pa, given by Equation 2.36.

Pa = min


p
(
xit

)
p
(
x∗t

) q
(
x∗t

)
q
(
xit

) , 1
 (2.36)

The acceptance probability in Equation 2.36 can be evaluated using the non

normalized importance weights w̃∗t and w̃it of a proposed particle x∗t and previous

particle xit respectively by using Equation 2.37[32]. A proposed particle x∗t is

accepted or rejected by comparing its acceptance probability Pa with a uniform

random number u ∼ (0, 1) as shown in Equation 2.38.

Pa = min
{
w̃∗t
w̃it
, 1
}

(2.37)

(
xi+1
t , w̃i+1

t

)
=


(
x∗t , w̃

∗
t

)
, u ≤ min

{
w̃∗
t

w̃it
, 1
}

(
xit, w̃

i
t

)
, u > min

{
w̃∗
t

w̃it
, 1
} (2.38)

2.9 PFs Applications

PFs have been used for estimating the unknown states of a system from noisy

measurements in many important applications of today’s high technology. These

applications include; robotics [38–42], positioning and navigation [43, 44], computer

vision [45–47], communication [48–50], biomedical applications [51–53], financial

time series analysis and econometrics [54, 55], whether forecasting [56] and many

other challenging problems. Due to the different characteristics of each application,

in our research, we mainly focus on the application of the PFs to one of the

fundamental problems of mobile robotics field, the Simultaneous localization and

mapping (SLAM) problem [57–61].

In mobile robotics, for autonomous navigation the knowledge of the environment

and the position of the robot within the environment is mandatory. If the robot

position is provided along with its trajectory, the map can be easily constructed

2. Particle Filters (PFs) and SLAM Background 43

through the information coming from robot sensors [62]. Similarly if the true

map of the environment were available, estimating the path of the robot would

be a straightforward localization problem [63, 64]. However, as the map is not

available in most of the practical applications, the robot must be able to build

a map of the surroundings environment and to determine its location within the

map. Such inter dependency between the position of the robot and the map poses a

challenging problem. SLAM is one of the solution to solve such a problem through

a probabilistic approach. The goal of SLAM is to reconstruct a map of the world

and the path taken by the robot while the robot makes relative observations of its

motion and of the objects in its environment, both corrupted by noise.

SLAM has diverse applications for generating maps of unknown environments

which are dangerous or inaccessible to humans. For example, SLAM is used for deep

sea explorations[65, 66], for autonomous terrain vehicles involved with tasks such as

mining and construction[67, 68] and autonomous planetary and space exploration of

the solar system [69–72]. SLAM is also used to obviate or assist navigation systems

in indoor and outdoor environments where the GPS information is unavailable

[73–78]. In addition, it can be also used to improve object-recognition systems

[79, 80], which will be a vital component of future robots that have to manipulate

the objects around them in arbitrary ways.

2.9.1 SLAM Principle

The basics of all SLAM algorithms is based on two alternating steps, prediction

and update, for estimating the pose and map of a mobile robot. The pose of a

robot moving on a 2D plane is described by xt = [x, y, θ]T , where x and y represent

the position of the robot in some fixed global coordinate system and θ is the

angle between the bearing of the robot and the positive x-axis, as shown in Fig.

2.5. The pose and map estimates covers the localization and mapping part of the

SLAM problem respectively (Fig. 2.6).

The prediction step is used to determine a new robot pose from the previous

pose using a motion model and possibly taking motion sensor readings as inputs

44 2.9. PFs Applications

Figure 2.5: 2D parameters of a robot pose

(Fig. 2.6). Commonly used motion sensors include odometry, inertial measurement

units (IMU) and GPS. The update step corrects the predicted robot pose based

on observations of the environment and by applying an observation model (Fig.

2.6). Measurement sensors are used for gathering information about the structures

of the surrounding environment and build a map. Typically robots are equipped

with range sensors such as laser range finders, sonars, cameras, etc, that returns

Figure 2.6: The SLAM principle

2. Particle Filters (PFs) and SLAM Background 45

a set of distance measurements to obstacles in its field of view.

2.9.2 Localization

Localization is the process by which a mobile robot keeps track of its position as it

moves around an environment and it is a key problem in making truly autonomous

robots. For localization a robot rely on its control actions and sensors to determine

its location as accurate as possible. However, the existence of uncertainty in both

the control actions and the sensing of the robot makes the problem of localization

difficult. Therefore, the uncertainty in the information needs to be combined in an

optimal way. This naturally leads to the consideration of probabilistic methods,

in which the spatial state of the robot is represented as a probability distribution

over the space of possible robot poses. The problem of localization is then the

problem of updating the distribution, based on robot motion and sensing, given

a map of the environment that may be imperfect.

In robot localization, we are interested in estimating the robot pose at the current

time step t, based on the knowledge about the initial state x0 which is assumed to

be available in the form of a probabilistic density p(x0) and all measurements z1:t

up to the current time t. Mathematically, probabilistic robot localization consists

of estimating the distribution p(xt|z1:t, ut,m) of the hidden dynamic variable xt at

time step t, given sensor observations z1:t, a map of the environment m and robot

actions ut (normally, odometry increments). Fig. 2.7 shows a dynamic Bayesian

network representation of the localization problem, where the sequence of robot

poses constitute a Markov process (i.e. given a pose xt, the pose at the next

instant xt+1 is conditionally independent of all previous poses). The computation

of the distribution p(xt|z1:t, ut,m) at each time step t is performed with the two

(prediction and update) step recursive Bayesian estimation.

1. In the prediction step a motion model is used to predict the current position

of the robot in the form of a predictive PDF p(xt|z1:t−1) taking only motion

into account. It is assumed that the current state xt is only dependent on

the previous state xt−1 (Markov) and a known control input ut−1 and the

46 2.9. PFs Applications

Figure 2.7: Mobile robot localization as dynamic Bayes network

motion model is specified as a conditional PDF p(xt|xt−1, ut−1). The predictive

density over xt is then obtained by integration using equation 2.39.

p(xt|z1:t−1) =
∫
p(xt|xt−1, ut−1)︸ ︷︷ ︸

motion model

p(xt−1|z1:t−1)︸ ︷︷ ︸
prior

dxt−1 (2.39)

2. In the update step the posterior PDF p(xt|z1:t) is computed using a measure-

ment model given in terms of a likelihood p(zt|xt) to incorporate information

from the sensors. The measurement likelihood expresses the likelihood that

the robot is at location xt given that zt was observed. The measurement zt
is assumed conditionally independent of earlier measurements zt−1 given xt.

The posterior density over xt is obtained using Bayes theorem:

p(xt|z1:t) =

observation model︷ ︸︸ ︷
p(zt|xt) p(xt|z1:t−1)

p(zt|z1:t−1) (2.40)

The solution to the robot localization problem is obtained by recursively solving

the prediction and update equations 2.39 and 2.40 respectively. A PF based

solution to robot localization problem is commonly know as Monte Carlo localization

(MCL) [81–83]. MCL applies models of various sensors with the application of

PFs for generating the belief state of the robot’s location. In MCL, rather than

approximating posteriors p(xt|z1:t) in parametric form, as is the case for Kalman

filter [84, 85], MCL simply represents the posteriors by N random set of weighted

2. Particle Filters (PFs) and SLAM Background 47

particles which approximates the desired distribution, i.e. p(xt|z1:t) ≈ {xit, wit}Ni=1.

The use of PFs approach in MCL has the following advantages [81]:

• Accommodating arbitrary sensor characteristics, motion dynamics, and noise

distributions.

• Focusing computational resources in areas that are most relevant by sampling

in proportion to the posterior likelihood.

• Avoid the Gaussian restrictive assumptions on the posterior density compared

to parametric approaches which makes PFs a universal density approximators.

• Flexible adaption of available computational resource by on-line monitoring

of number of particles.

The recursive update of the particles set St = {xit, wit}Ni=1 which approximates

the posterior of PDF p(xt|z1:t) of the robot pose at time t is realized with the

application of the SIR PF algorithm with the following steps:

1. Prediction: approximate the predictive density p(xt|z1:t−1) starting with set

of particles St−1 computed from a previous time step t− 1 and applying the

motion model to each particle xit−1 by sampling N new particles from the

density p(xt|xit−1, ut−1).

2. Update: taking the measurement zt into account, evaluate the importance

weight, wit, of each particle xit in proportion to the measurement likelihood

i.e., wit ≈ p(zt|xit).

3. Resampling: generate a new particle set from St by selecting particles having

higher importance weights with higher probability. The newly generated

particle set approximates the desired posterior PDF p(xt|z1:t) and it is used

for the recursive update of the particles in the Prediction step.

48 2.9. PFs Applications

2.9.3 Probabilistic Models

As per the prediction and update equations 2.39 and 2.40 respectively of the

localization problem, the computation of the PDF p(xt|z1:t) requires two conditional

densities: the probability p(xt|xt−1, ut−1), which is often called motion model

and the likelihood density p(zt|xt) commonly called observation model or sensor

model. The description of the specific probabilistic models used for motion and

observation model are given below.

Motion Model

Modeling the inherent uncertainty in robot motion using PDF is by far the most

widely used approach in robotics. The uncertainty in the pose xt is best modeled

by a probability distribution p(xt|xt−1, ut−1) over possible poses that the robot

might attain after executing the control ut−1 in xt−1. The control ut is normally

obtained by integrating odometry data from wheel encoders and it is used as the

basis for calculating the robot’s motion over time. For example, an odometry

motion model [81, 86] which is adopted in this work uses the relative information of

the robot’s internal odometry and transform it into a sequence rotation, followed

by a straight line motion (translation) and another rotation. Fig. 2.8 illustrates

an odometry model, where the robot motion in the time interval t − 1 to t is

approximated by a rotation δrot1, followed by a translation δtrans and a second

rotation δrot2. The odometry motion model assumes that these three parameters

are corrupted by independent noise. For a small motion segment, these errors

can be modeled by independent Gaussian noise variables, which are added to the

commanded translation and rotation [87].

Observation Model

The observation model, physically models the inherent noise in the robot’s sensors.

In our case we use mainly laser-range finders as the robotic sensor, which are very

common in robotics. The signal of a laser-range finder is emitted in a beam that

provide the distance information to a nearest obstacle. By combining several of the

2. Particle Filters (PFs) and SLAM Background 49

Figure 2.8: Odometry motion model [86].

beams, laser-range finders provide a two dimensional scan of the robot environment.

At each time t a complete scan Zt is provided, which is a combination of several

distance measurements from the individual laser beams znt , where n is the index of

a beam. It is assumed the distance measurements znt in the scan Zt are independent

and therefore the beams are considered individually.

The laser range finder measurement error is modeled by a Gaussian distribution

with mean znt of the actual laser measurement at time t, equation 2.41. Where m

is the map of the robot environment represented by fine-grained metric grid cells,

k represents the index of a gird cell and δ(znt) is the standard deviation function

which can be obtained from experiments for the specific laser scanner. Under

the assumption that the map m and the robot pose xt is known, the observation

model specifies the probability that Zt is measured. The probability that the

range measurement with an index n is returned by a grid cell mk along the path

of the laser beam is given by:

po(mn
k |znt) = 1

δ(znt)
√

2π
e

−(mn
k

−znt)2

2δ2(zn
t

) (2.41)

Beside the error model of the sensor, the observation model considered in this

work takes into account a scan matching to determine how well the current scan

50 2.9. PFs Applications

matches the occupied points in the map. It assumes that each scan induces a local

map, which can be conceptually decomposed into three types of areas: free space,

occupied space and occluded space. The same conceptual decomposition applies to

the map. Each of the the measurements znt in a range scan Zt can thus fall into

three different regions in the map. If it falls into the occluded (unknown) space, the

probability is uniformly high. If it coincides with occupied space, the probability is

high, too. While it falls into free space, the probability is low. The specific probability

of the measurement is then given by a function that decreases monotonically with

the distance to the nearest object. The probability of the complete laser path is

computed by taking the product of the probability that the laser is passing through

unoccupied grid cells, and the probability that it will be stopped by an obstacle in

the grid cell that terminates the path. For grid cells along the path of the laser,

the probability that the laser measurement will have traveled through unoccupied

grid cells and stopped by an obstacle at grid cell mk is given by [88]:

p(mk = occupied) = po(mk)
k−1∏
j=1

(
1− po(mj)

)
(2.42)

Considering a total of M laser beams in the current laser scan Zt, the scan

matching between Zt and the occupied points in the map is obtained by the function

fsm(Zt) given by equation 2.43. In equation 2.43, those laser scans which fall in

unoccupied or unexplored grid cells contribute small values to the final value of

the scan matching function fsm(Zt), when compared to the occupied points in

the evaluation of scan matching. Therefore, this equation is maximized while the

current laser scan points match well with the occupied points in the map. The

scan-matching is applied per particle basis.

fsm(Zt) =
M∑
n=1

p(mt−1|znt) (2.43)

The total probability of the laser scan Zt at time t is obtained by taking the

product of the fsm(Zt) and sum of the p(mk = occupied), as shown in equation 2.44.

2. Particle Filters (PFs) and SLAM Background 51

fsm(Zt)
M∑
n=1

po(mk)
k−1∏
j=1

(
1− po(mj)

)
(2.44)

2.9.4 Robotic Mapping

Robotic mapping addresses the problem of acquiring spatial models of physical

environments through mobile robots. Map is a data model of the environment

which is used for autonomous navigation by robots [89]. There exists different

types of models for the representation of the environment, where the two major

categories are topological and metric maps[90–92].

Topological maps are a sparse representation of the environment where only key

places for navigation are represented by using measurement data and connections

between these places using position information data from sensors. In general,

topological maps are represented as graphs, where nodes represent distinctive places

and arcs that connect nodes represent path information between places. An example

of a 2D topological map of an office environment is shown in Fig. 2.9 (right), where

the nodes represent distinctive places such as corridors (C), doors (D) and rooms

(R) and arcs that connect nodes represent path information between distinctive

places. In Fig. 2.9 (right) the positions of two points P1 and P2 in the environment

may be recognized as being part of the rooms. This makes it possible to infer that

position P2 can be reached from position P1 via the different nodes.

In case of metric maps, the position of the obstacles encountered by the robot

in the environment are stored in a common reference frame. In metric maps

Figure 2.9: Environmental representations for robotic mapping.

52 2.9. PFs Applications

measurement information is stored after transformation in the 2D space by means

of a sensor model. This transformation results a set of objects or obstacles along

with their positions relative to the robot. An example of a metric map is shown in

Fig. 2.9 (left), where the position of two points P1 and P2 in the environment are

represented by their coordinates in respect to a common reference frame and the

distance of the two points can be easily inferred from their coordinates.

Metric maps are much more precise than the topological framework as the

position estimate is continuous in the 2D space [93]. Moreover, metric maps display

the layout of the environment in easy to read format which is independent of any

given robot. This makes it easy for different robots to reuse such maps. Metric

maps are also easier to build than topological maps due to the non-ambiguous

definition of locations by their coordinates. However, metric map building often

heavily depends on the quality of the position estimates from the odometry sensors.

In respect to metric maps, topological maps have the advantage as do not require a

metric sensor model to convert sensor measurement data in a common 2D reference

frame. The only requirement is a method for storing place definitions and for

recognizing places given sensor data. However, as the sensor data is available

for places physically explored by the robot, topological maps require exhaustive

exploration of the environment when higher precision for position estimation is

required. In addition, in case of unreliable sensors and in dynamic environments,

it introduces a difficulty for the definition of places.

Depending on the representation of obstacles in the environment, metric maps

are further classified into feature, geometric, and grid maps[94–96]. A feature map

stores a set of features such as lines and corners detected in the environment. For

each feature, these maps store the feature information together with a coordinate

and eventually an uncertainty measure. In geometric maps obstacles detected by

the robot are represented by geometric objects, like circles or polygons. In the case

of grid maps the environment is modeled by discretized grid cells, where each cell

stores information about the area it covers. Most frequently used are occupancy

grid maps that store for each cell a single value representing the probability that

2. Particle Filters (PFs) and SLAM Background 53

this cell is occupied by an obstacle. The advantage of grids is that they do not rely

on predefined features which need to be extracted from sensor data and doesn’t

suffer from data association problem [97]. Furthermore, they offer a constant time

access to grid cells and provide the ability to model arbitrary environments [98].

However, it suffers from discretization errors and requires lot of memory resources.

Occupancy Grid Mapping (OGM)

The statistical dependency of the noise in different measurements, makes robotic

mapping problem challenging [64]. This is because errors in control accumulate

over time, and they affect the way future sensor measurements are interpreted.

Probabilistic techniques are normally used for robotic mapping as robot mapping is

characterized by uncertainty and sensor noise. Occupancy grid mapping algorithm

is one of the probabilistic techniques used to address the problem of generating

a consistent metric map from noisy sensor data. Occupancy grid maps normally

generate two-dimensional probabilistic maps, which may also extend to three spatial

dimensions [99–101], represented as grids.

The standard occupancy grid mapping algorithm is a version of Bayes filters used

to calculate the posterior over the occupancy of each grid cell. For generating an

occupancy grid map, it is required to determine the occupancy probability of each

grid cell. The assumption of independence among the grid cells is often considered

for an efficient generation of the occupancy grid map. Even if such an assumption

is not accurate in particular while considering the fact that adjacent grid cells could

represent the same object in the environment, it greatly facilitates and simplifies

the mapping algorithm without the introduction of significant errors. With such

an assumption, the probability of a particular map m can be factorized into the

product of the probabilities of the individual grid cells. Therefore, the probabilistic

representation of the map of the robot’s environment is given by:

p(m|x0:t, zt) =
n−1∏
k=0

p
(
mi|x0:t, zt

)
(2.45)

54 2.9. PFs Applications

In equation 2.45, x0:t represents the history on the position of the robot until a

given time step t and zt is the corresponding measurement data taken at each position

of the robot. The computation of the k’th grid cell’s probability p(mk|x0:t, zt) is

conditioned on the position of the robot and measurement data. As a result it can

be easily computed given these two information as it is determined by whether the

robot sees it as occupied or free. The occupancy grid mapping evaluates the grid

cells probabilities iterativly considering the position and measurements starting

from time step t = 0 and to the most recent reading. Therefore, with occupancy

grid maps, the mapping step determines the occupancy probability of each cell.

The map cells are updated iteratively according to the position and measurement

data which would require significant processing for updating the entire map at

each step. However, as the processing of the entire map is unnecessary only those

grid cells visible to the robots are updated. Each grid cell that is perceived by

the robot’s sensor at a given position is updated depending on whether the sensor

reports it as occupied or free. The success of an accurate mapping depends on

the position x0:t being correct. A typical 2D example of an occupancy grid map

constructed from laser range finders and a 3D occupancy grid map of an outdoor

environment are shown in Fig. 2.10.

Figure 2.10: Typical 2D occupancy grid map (a) [64] and 3D Occupancy grid map (b)
[99].

2. Particle Filters (PFs) and SLAM Background 55

2.9.5 The SLAM Solution

It is natural to formulate the SLAM problem using probabilities to incorporate

the uncertainties originating from the robot sensors, environmental factors and the

control action given to the robot actuators. From a probabilistic perspective, there

are two main forms of the SLAM problem: one is called the full SLAM problem

and the other the online SLAM problem (Fig. 2.11).

The full SLAM problem seeks to calculate the posterior probability over the

entire path, x1:t, along with the map, i.e.

p(x1:t,m|u1:t, z1:t) (2.46)

where x1:t denotes the pose estimates from the first time instance up to time t, m

is the map, z1:t and u1:t are the measurements and controls respectively. Since the

full SLAM problem is formulated in such a way that it seeks an estimate over all

the previous measurements and controls, it is often an offline algorithm concerned

with finding out what the robot has already done.

The online SLAM problem requires the posterior over the current pose xt along

with the map, and is formulated as:

p(xt,m|u1:t, z1:t) (2.47)

This problem is called the online SLAM problem since it only involves the

estimation of variables that persist at time t. The online SLAM problem is the

Figure 2.11: Graphical model of online and full SLAM problems, adopted from [86].

56 2.9. PFs Applications

result of integrating out past poses from the full SLAM problem:

p(xt,m|u1:t, z1:t) =
∫ ∫

...
∫
p(x1:t,m|z1:t, u1:t) dx1 dx2 ... dxt−1 (2.48)

Therefore, the solution to the online SLAM problem requires an incremental

algorithm that discards previous measurements and controls after they have been

processed. Because of the continuous nature of the pose estimation variables it

is intractable to calculate the full posterior in equation 2.48. In practice, SLAM

algorithms rely on approximations.

Taking into account the initial state of the robot, x0, the online SLAM problem

is given by a joint posterior probability density distribution p(xt,m|u1:t, z1:t, x0). A

recursive Bayes solution for the computation of the joint PDF is used by starting with

an estimate for the distribution at time t−1, p(xt−1,m|z1:t−1, u1:t−1), and following a

control ut and observation zt. Therefore, the SLAM algorithm is implemented with

the two standard recursive state update and measurement update steps. Where the

recursion is a function of the robot motion model p(xt|xt−1, ut) and an observation

model p(zt|xt,m). The two recursive state and measurement updates are given by

[102]:

SLAM state update:

p(xt,m|z1:t−1, u1:t−1, x0) =∫
p(xt|xt−1, ut)p(xt−1,m|z1:t−1, u1:t−1, x0) dxt−1 (2.49)

SLAM measurement update:

p(xt,m|z1:t, u1:t, x0) = p(zt|xt,m)p(xt,m|z1:t−1, u1:t−1, x0)
p(zt|zt−1, u1:t)

(2.50)

For the analytical solution of the SLAM state update and measurement update,

equations 2.49 and 2.50 respectively, a PF based approach based on MCL (Section

2.9.2) and OGM (Section 2.9.4) is often used [62, 86]. SLAM applies factorization

2. Particle Filters (PFs) and SLAM Background 57

of the posterior by using a Rao-blackwellization technique [102], which allows first

to estimate only the trajectory, using the SIR PF, and then to compute the map

given that trajectory. The basic framework for PF-SLAM algorithms based on

Rao-blackwellized SIR filter updates the particles following the steps shown in

Algorithm 10. The Update map () procedure in Algorithm 10 applies the occupancy

grid mapping methods and it is performed by tracing all the grid cells which lies

along the path of the laser beams and updating their corresponding occupancy

likelihood. However, the occupancy likelihood of those grid cells that are outside

the laser’s beam range of view remain unchanged. The trace of the grid cells along

the path of the laser beam is performed based on the a Bresenham’s line tracing

algorithm [103] and the occupancy likelihood of each grid cell is read and updated

accordingly. Those grid cells that lies between the starting point and end point of

the laser beam corresponds to unoccupied points and their occupancy likelihoods

are updated by a certain factor ffree and for the grid cell that corresponds to the

end point of the laser beam, its occupancy likelihood is updated by incrementing

its previous value by a factor of foccupied. The value ffree = 0.1 and foccupied = 0.1

are heuristic parameter determined from extensive tests.

Some variations of the basic PF-SLAM framework includes; Grid based Fast-

SLAM [62, 86], Fast-SLAM [104], GridSLAM [105], DP-SLAM [88], and GMapping

Algorithm 10 Occupancy Grid FastSLAM
1: for i = 1 to N do
2: Sampling

xit ∼ p(xt|xit−1, ut,m)
3: Importance weight

wit = p(zt|xit,m)
4: Map estimation

mi
t =Update map

(
zt, x

i
t,m

i
t−1

)
X̃t = X̃t U < xit, w

i
t,m

i
t >

5: Resampling
for i = 1 to N do
draw i from X̃t with probability ∝ wit
Xt = X i

t U < xit,m
i
t >

end for
6: end for

58 2.9. PFs Applications

[106]. In Fast-SLAM the map is represented with landmarks and uses a PF to

estimate the robot’s pose and particle has an associated set of independent Extended

Kalman Filters (EKFs) that each tracks the parameters of one landmark. GridSLAM

is an extension of FastSLAM where an occupancy grid is used and performs scan-

matching as a way to maximize the likelihood of odometry measurements. GMapping

addresses the problem of particle depletion that results due to resampling [14] by

applying a selective resampling based on the measurement of particle variance.

DP-SLAM is an occupancy grid map based SLAM technique where the cost of

copying the map of particles during the resampling is addressed by maintaining a

single map that is shared by all particles and applies a tree-like data structure to

keep record of all updates done by all different particles. Grid based FastSLAM [86,

107] method which is adopted in this work and shown in Fig. 2.12 is performed by

combining the MCL particle filtering with the occupancy grid mapping algorithm

using Rao-Blackwellized PFs.

The use of occupancy grids in PF framework to solve the SLAM problem can

be memory intensive. There exists two primary approaches to reduce the amount

of memory required when applying PFs and occupancy grids in SLAM. The first

approach [105] aimed at reducing the number of particles required to produce a

Figure 2.12: Illustration of 2D SLAM. The odometry and laser range finder (LRF)
sensors data are used for performing SLAM based on MCL and OGM.

2. Particle Filters (PFs) and SLAM Background 59

good estimate by improving the distribution from which potential particles are

sampled. The approach considers the use of corrected odometry by applying scan

matching procedure. However, for low cost laser range finders performing a proper

scan matching procedure can be difficult due to noisy measurements (especially

for large range measurements). The second approach is DP SLAM, where an

alternative method of storing the occupancy grid for each particle is considered.

In DP-SLAM approach, instead of each particle maintaining its own occupancy

grid, a single occupancy grid map is maintained to all the particles. Each cell in

the occupancy grid maintains a tree structure. Every time a particle makes an

observation that affects a cell in the occupancy grid a node is added to the tree

structure containing the ID of the particle that made the observation and value of

the observation. This approach is elegant and has been shown to be computationally

efficient, however it introduces additional complexity.

Besides the heavy memory requirement in Grid-based Fast SLAM due to the

representation of robot’s environment by a metric grid map, it could also lead to

a heavy time cost at the resampling step, when the entire map has to be copied

over from an old particle to a new one [88, 107]. To overcome both downfalls, in

this thesis a different data structure is conducted for maintaining the particles map

without additional complexity. The proposed approach maintains a single global

occupancy grid map that is shared by all particles. However, instead of maintaining

a tree structure at each grid cell like DP-SLAM, in the proposed method each grid

of the global map stores an observation array that is indexed with the lists of all

particles that have made observation on this grid and their observation values. While

accessing a given particle’s current estimate for a particular grid while computing

its weight, one can simply retrieve the observation value at the index of the given

particle. Initially, the map is initialized only with pointers at each grid cells. While

a given grid cell is being observed by a particle a dynamic vector is associated with

that grid cell and the occupancy likelihood of the particle is inserted at the index

of the given particle in the dynamic vector. In general, if there are N particles

and the map is L× L, the proposed approach stores to the worst case N scalars

60 2.9. PFs Applications

in all H << L× L observed grid cells, assuming that all the particles have made

the observations in all the H observed grid cells. During resampling step, using

the index of the replicated particles the map of a given particle is updated with

the occupancy likelihood of its replication particle index only. Such an approach

helps to avoid the requirement of copying the particle maps during the resampling

step by maintaining the index of the particle in each grid cell.

References

[6] N. Gordon, B Ristic, and S Arulampalam. “Beyond the kalman filter: Particle
filters for tracking applications”. In: Artech House, London (2004).

[1] O. Cappé, S. J. Godsill, and E. Moulines. “An overview of existing methods
and recent advances in sequential Monte Carlo”. In: Proceedings of the IEEE
95.5 (2007), pp. 899–924.

[2] H. N. Nagaraja. “Inference in Hidden Markov Models”. In: Technometrics
48.4 (2006), pp. 574–575.

[3] S. Thrun, M. Montemerlo, D. Koller, B. Wegbreit, J. Nieto, and E. Nebot.
“Fastslam: An efficient solution to the simultaneous localization and mapping
problem with unknown data association”. In: Journal of Machine Learning
Research 4.3 (2004), pp. 380–407.

[4] A. Doucet, N. De Freitas, and N. Gordon. “An introduction to sequential
Monte Carlo methods”. In: Sequential Monte Carlo methods in practice.
Springer, 2001, pp. 3–14.

[5] A. Doucet, S. Godsill, and C. Andrieu. “On sequential Monte Carlo sampling
methods for Bayesian filtering”. In: Statistics and computing 10.3 (2000),
pp. 197–208.

[6] N. Bergman, A. Doucet, and N. Gordon. “Optimal estimation and Cramér-
Rao bounds for partial non-Gaussian state space models”. In: Annals of the
Institute of Statistical Mathematics 53.1 (2001), pp. 97–112.

[7] J. Harrison and M. West. Bayesian Forecasting & Dynamic Models. Springer,
1999.

[8] N. Bergman. “Recursive Bayesian Estimation”. In: Department of Electri-
cal Engineering, Linköping University, Linköping Studies in Science and
Technology. Doctoral dissertation 579 (1999).

[9] J. Carpenter, P. Clifford, and P. Fearnhead. “Improved particle filter for
nonlinear problems”. In: Radar, Sonar and Navigation, IEE Proceedings-.
Vol. 146. 1. IET. 1999, pp. 2–7.

[10] P. Del Moral. “Non-linear filtering: interacting particle resolution”. In:
Markov processes and related fields 2.4 (1996), pp. 555–581.

[11] N. J. Gordon, D. J. Salmond, and A. F. Smith. “Novel approach to nonlinear/non-
Gaussian Bayesian state estimation”. In: Radar and Signal Processing, IEE
Proceedings F. Vol. 140. 2. IET. 1993, pp. 107–113.

62 References

[12] K. Kanazawa, D. Koller, and S. Russell. “Stochastic simulation algorithms for
dynamic probabilistic networks”. In: Proceedings of the Eleventh conference
on Uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc.
1995, pp. 346–351.

[13] J. MacCormick and A. Blake. “A probabilistic exclusion principle for tracking
multiple objects”. In: International Journal of Computer Vision 39.1 (2000),
pp. 57–71.

[14] N. Gordon, B Ristic, and S Arulampalam. “Beyond the kalman filter: Particle
filters for tracking applications”. In: Artech House, London (2004).

[15] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. “A tutorial on
particle filters for online nonlinear/non-Gaussian Bayesian tracking”. In:
Signal Processing, IEEE Transactions on 50.2 (2002), pp. 174–188.

[16] C. Andrieu, A. Doucet, and E. Punskaya. “Sequential Monte Carlo methods
for optimal filtering”. In: Sequential Monte Carlo Methods in Practice.
Springer, 2001, pp. 79–95.

[17] J. S. Liu and R. Chen. “Sequential Monte Carlo methods for dynamic
systems”. In: Journal of the American statistical association 93.443 (1998),
pp. 1032–1044.

[18] M. Bolić, P. M. Djurić, and S. Hong. “Resampling algorithms for particle
filters: A computational complexity perspective”. In: EURASIP Journal on
Applied Signal Processing 2004 (2004), pp. 2267–2277.

[19] E. R. Beadle and P. M. Djuric. “A fast-weighted Bayesian bootstrap filter
for nonlinear model state estimation”. In: Aerospace and Electronic Systems,
IEEE Transactions on 33.1 (1997), pp. 338–343.

[20] T. Li, M. Bolic, and P. M. Djuric. “Resampling methods for particle
filtering: classification, implementation, and strategies”. In: Signal Processing
Magazine, IEEE 32.3 (2015), pp. 70–86.

[21] J. D. Hol, T. B. Schon, and F. Gustafsson. “On resampling algorithms for
particle filters”. In: Nonlinear Statistical Signal Processing Workshop, 2006
IEEE. IEEE. 2006, pp. 79–82.

[22] P. Gong, Y. O. Basciftci, and F. Ozguner. “A parallel resampling algorithm
for particle filtering on shared-memory architectures”. In: Parallel and
Distributed Processing Symposium Workshops & PhD Forum (IPDPSW),
2012 IEEE 26th International. IEEE. 2012, pp. 1477–1483.

[23] M. Bolić, P. M. Djurić, and S. Hong. “New resampling algorithms for
particle filters”. In: Acoustics, Speech, and Signal Processing, 2003. Proceed-
ings.(ICASSP’03). 2003 IEEE International Conference on. Vol. 2. IEEE.
2003, pp. II–589.

[24] M. Bolić, P. M. Djurić, and S. Hong. “Resampling algorithms and architec-
tures for distributed particle filters”. In: Signal Processing, IEEE Transactions
on 53.7 (2005), pp. 2442–2450.

References 63

[25] A. Athalye, M. Bolic, S. Hong, and P. M. Djuric. “Architectures and memory
schemes for sampling and resampling in particle filters”. In: Digital Signal
Processing Workshop, 2004 and the 3rd IEEE Signal Processing Education
Workshop. 2004 IEEE 11th. IEEE. 2004, pp. 92–96.

[26] G. Kitagawa. “Monte Carlo filter and smoother for non-Gaussian nonlinear
state space models”. In: Journal of computational and graphical statistics
5.1 (1996), pp. 1–25.

[27] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and
E. Teller. “Equation of state calculations by fast computing machines”. In:
The journal of chemical physics 21.6 (1953), pp. 1087–1092.

[28] S. Chib and E. Greenberg. “Understanding the metropolis-hastings algo-
rithm”. In: The american statistician 49.4 (1995), pp. 327–335.

[29] F. Liang, C. Liu, and R. J. Carroll. “The Metropolis-Hastings Algorithm”. In:
Advanced Markov Chain Monte Carlo Methods: Learning from Past Samples
(2010), pp. 59–84.

[30] C. Robert and G. Casella. Monte Carlo statistical methods. Springer Science
& Business Media, 2013.

[31] Y. Bao, J. Chen, Z. Shi, and K. Chen. “New real-time resampling algorithm
for particle filters”. In: Wireless Communications & Signal Processing, 2009.
WCSP 2009. International Conference on. IEEE. 2009, pp. 1–5.

[32] A. C. Sankaranarayanan, A. Srivastava, and R. Chellappa. “Algorithmic and
architectural optimizations for computationally efficient particle filtering”.
In: Image Processing, IEEE Transactions on 17.5 (2008), pp. 737–748.

[33] C. Geyer. “Introduction to Markov Chain Monte Carlo”. In: Handbook of
Markov Chain Monte Carlo (2011), pp. 3–48.

[34] C. J. Geyer. “Practical markov chain monte carlo”. In: Statistical Science
(1992), pp. 473–483.

[35] G. O. Roberts, J. S. Rosenthal, et al. “Optimal scaling for various Metropolis-
Hastings algorithms”. In: Statistical science 16.4 (2001), pp. 351–367.

[36] W. R. Gilks. Markov chain monte carlo. Wiley Online Library, 2005.
[37] W. K. Hastings. “Monte Carlo sampling methods using Markov chains and

their applications”. In: Biometrika 57.1 (1970), pp. 97–109.
[38] S. Thrun. “Particle filters in robotics”. In: Proceedings of the Eighteenth

conference on Uncertainty in artificial intelligence. Morgan Kaufmann Pub-
lishers Inc. 2002, pp. 511–518.

[39] J. Pineau, M. Montemerlo, M. Pollack, N. Roy, and S. Thrun. “Towards
robotic assistants in nursing homes: Challenges and results”. In: Robotics
and Autonomous Systems 42.3 (2003), pp. 271–281.

64 References

[40] A Canedo-Rodríguez, V Álvarez-Santos, C. Regueiro, R Iglesias, S Barro,
and J Presedo. “Particle filter robot localisation through robust fusion of
laser, WiFi, compass, and a network of external cameras”. In: Information
Fusion 27 (2016), pp. 170–188.

[41] J. González, J.-L. Blanco, C. Galindo, A Ortiz-de Galisteo, J.-A. Fernandez-
Madrigal, F. A. Moreno, and J. L. Martínez. “Mobile robot localization
based on ultra-wide-band ranging: A particle filter approach”. In: Robotics
and autonomous systems 57.5 (2009), pp. 496–507.

[42] A. Canedo-Rodriguez, J. M. Rodriguez, V. Alvarez-Santos, R. Iglesias, and
C. V. Regueiro. “Mobile Robot Positioning with 433-MHz Wireless Motes
with Varying Transmission Powers and a Particle Filter”. In: Sensors 15.5
(2015), pp. 10194–10220.

[43] H. M. Georges, D. Wang, Z. Xiao, and J. Chen. “Hybrid global navigation
satellite systems, differential navigation satellite systems and time of arrival
cooperative positioning based on iterative finite difference particle filter”. In:
Communications, IET 9.14 (2015), pp. 1699–1709.

[44] C. Boucher and J.-C. Noyer. “A hybrid particle approach for GNSS appli-
cations with partial GPS outages”. In: Instrumentation and Measurement,
IEEE Transactions on 59.3 (2010), pp. 498–505.

[45] S Sutharsan, T Kirubarajan, T. Lang, and M. McDonald. “An optimization-
based parallel particle filter for multitarget tracking”. In: Aerospace and
Electronic Systems, IEEE Transactions on 48.2 (2012), pp. 1601–1618.

[46] M. S. Arulampalam, B. Ristic, N Gordon, and T Mansell. “Bearings-only
tracking of manoeuvring targets using particle filters”. In: EURASIP Journal
on Advances in Signal Processing 2004.15 (2004), pp. 1–15.

[47] J.-R. Larocque, J. P. Reilly, and W. Ng. “Particle filters for tracking an
unknown number of sources”. In: Signal Processing, IEEE Transactions on
50.12 (2002), pp. 2926–2937.

[48] N. Ahmed, M. Rutten, T. Bessell, S. S. Kanhere, N. Gordon, and S. Jha.
“Detection and tracking using particle-filter-based wireless sensor networks”.
In: Mobile Computing, IEEE Transactions on 9.9 (2010), pp. 1332–1345.

[49] F. Caballero, L. Merino, I. Maza, and A. Ollero. “A particle filtering method
for wireless sensor network localization with an aerial robot beacon”. In:
Robotics and Automation, 2008. ICRA 2008. IEEE International Conference
on. IEEE. 2008, pp. 596–601.

[50] F. Zafari and I. Papapanagiotou. “Enhancing iBeacon Based Micro-Location
with Particle Filtering”. In: 2015 IEEE Global Communications Conference
(GLOBECOM). 2015, pp. 1–7.

[51] Q. Wen, J. Gao, A. Kosaka, H. Iwaki, K. Luby-Phelps, and D. Mundy.
“A particle filter framework using optimal importance function for protein
molecules tracking”. In: Image Processing, 2005. ICIP 2005. IEEE Interna-
tional Conference on. Vol. 1. IEEE. 2005, pp. I–1161.

References 65

[52] H. Cui, X. Xie, S. Xu, and Y. Hu. “Application of Particle Filter for
Vertebral body Extraction: A Simulation Study”. In: Journal of Computer
and Communications 2.02 (2014), p. 48.

[53] G. Imai, H. Takahata, and M. Okada. “Particle filter assisted RFID tag
location method for surgery support system”. In: Medical Information and
Communication Technology (ISMICT), 2013 7th International Symposium
on. IEEE. 2013, pp. 135–138.

[54] H. F. Lopes and R. S. Tsay. “Particle filters and Bayesian inference in
financial econometrics”. In: Journal of Forecasting 30.1 (2011), pp. 168–209.

[55] D. Creal. “A survey of sequential Monte Carlo methods for economics and
finance”. In: Econometric Reviews 31.3 (2012), pp. 245–296.

[56] T. Bengtsson, P. Bickel, B. Li, et al. “Curse-of-dimensionality revisited:
Collapse of the particle filter in very large scale systems”. In: Probability and
statistics: Essays in honor of David A. Freedman. Institute of Mathematical
Statistics, 2008, pp. 316–334.

[57] J. A. Castellanos, J. Montiel, J. Neira, and J. D. Tardós. “The SPmap: A
probabilistic framework for simultaneous localization and map building”. In:
Robotics and Automation, IEEE Transactions on 15.5 (1999), pp. 948–952.

[58] S. Thrun. “A probabilistic on-line mapping algorithm for teams of mobile
robots”. In: The International Journal of Robotics Research 20.5 (2001),
pp. 335–363.

[59] J. J. Leonard and H. J. S. Feder. “A computationally efficient method for
large-scale concurrent mapping and localization”. In: ROBOTICS RESEARCH-
INTERNATIONAL SYMPOSIUM-. Vol. 9. Citeseer. 2000, pp. 169–178.

[60] H. Durrant-Whyte and T. Bailey. “Simultaneous localization and mapping:
part I”. In: Robotics & Automation Magazine, IEEE 13.2 (2006), pp. 99–110.

[61] T. Bailey and H. Durrant-Whyte. “Simultaneous localization and mapping
(SLAM): Part II”. In: IEEE Robotics & Automation Magazine 13.3 (2006),
pp. 108–117.

[62] F. Dellaert, D. Fox, W. Burgard, and S. Thrun. “Monte carlo localization
for mobile robots”. In: Robotics and Automation, 1999. Proceedings. 1999
IEEE International Conference on. Vol. 2. IEEE. 1999, pp. 1322–1328.

[63] H. P. Moravec. “Sensor fusion in certainty grids for mobile robots”. In: AI
magazine 9.2 (1988), p. 61.

[64] S. Thrun et al. “Robotic mapping: A survey”. In: Exploring artificial
intelligence in the new millennium 1 (2002), pp. 1–35.

[65] S. Williams, G. Dissanayake, and H. Durrant-Whyte. “Towards terrain-aided
navigation for underwater robotics”. In: Advanced Robotics 15.5 (2001),
pp. 533–549.

[66] D. Ribas, P. Ridao, and J. Neira. Underwater SLAM for structured environ-
ments using an imaging sonar. Vol. 65. Springer, 2010.

66 References

[67] S Scheding, E. Nebot, M Stevens, H Durrant-Whyte, J Roberts, P Corke,
J Cunningham, and B Cook. “Experiments in autonomous underground
guidance”. In: Ultrasonics 10 (1997), p. 4.

[68] S. Thrun, D. Hahnel, D. Ferguson, M. Montemerlo, R. Triebel, W. Burgard,
C. Baker, Z. Omohundro, S. Thayer, and W. Whittaker. “A system for
volumetric robotic mapping of abandoned mines”. In: Robotics and Automa-
tion, 2003. Proceedings. ICRA’03. IEEE International Conference on. Vol. 3.
IEEE. 2003, pp. 4270–4275.

[69] J. K. Uhlmann, S. J. Julier, B. Kamgar-Parsi, M. O. Lanzagorta, and H.-
J. S. Shyu. “NASA Mars rover: a testbed for evaluating applications of
covariance intersection”. In: AeroSense’99. International Society for Optics
and Photonics. 1999, pp. 140–149.

[70] R. Li, F Ma, F Xu, L Matthies, C Olson, and Y Xiong. “Large scale
mars mapping and rover localization using escent and rover imagery”. In:
International Archives of Photogrammetry and Remote Sensing 33.B4/2;
PART 4 (2000), pp. 579–586.

[71] C. H. Tong. “Laser-based 3D mapping and navigation in planetary worksite
environments”. PhD thesis. University of Toronto, 2013.

[72] A. Ellery. Planetary Rovers: Robotic Exploration of the Solar System. Springer,
2015.

[73] D. Holz and S. Behnke. “Mapping with micro aerial vehicles by registration
of sparse 3D laser scans”. In: Intelligent Autonomous Systems 13. Springer,
2016, pp. 1583–1599.

[74] S. Weiss, D. Scaramuzza, and R. Siegwart. “Monocular-SLAM–based navi-
gation for autonomous micro helicopters in GPS-denied environments”. In:
Journal of Field Robotics 28.6 (2011), pp. 854–874.

[75] A. S. Huang, A. Bachrach, P. Henry, M. Krainin, D. Maturana, D. Fox,
and N. Roy. “Visual odometry and mapping for autonomous flight using an
RGB-D camera”. In: International Symposium on Robotics Research (ISRR).
Vol. 2. 2011.

[76] M Bosse, J Leonard, and S Teller. “Large-scale CML using a network
of multiple local maps”. In: Workshop Notes of the ICRA Workshop on
Concurrent Mapping and Localization for Autonomous Mobile Robots (W4),
Washington, DC. 2002.

[77] S. Thrun, W. Burgard, and D. Fox. “A probabilistic approach to concurrent
mapping and localization for mobile robots”. In: Autonomous Robots 5.3-4
(1998), pp. 253–271.

[78] T. Bailey. “Mobile robot localisation and mapping in extensive outdoor
environments”. PhD thesis. Citeseer, 2002.

References 67

[79] P. Jensfelt, S. Ekvall, D. Kragic, and D. Aarno. “Augmenting slam with
object detection in a service robot framework”. In: Robot and Human Inter-
active Communication, 2006. ROMAN 2006. The 15th IEEE International
Symposium on. IEEE. 2006, pp. 741–746.

[80] S. Pillai and J. Leonard. “Monocular SLAM Supported Object Recognition”.
In: arXiv preprint arXiv:1506.01732 (2015).

[81] S. Thrun, D. Fox, W. Burgard, and F. Dellaert. “Robust Monte Carlo
localization for mobile robots”. In: Artificial intelligence 128.1 (2001), pp. 99–
141.

[82] I. M. Rekleitis. “A particle filter tutorial for mobile robot localization”. In:
Centre for Intelligent Machines, McGill University, Tech. Rep. TR-CIM-04-
02 (2004).

[83] F. Dellaert, D. Fox, W. Burgard, and S. Thrun. “Monte carlo localization
for mobile robots”. In: Robotics and Automation, 1999. Proceedings. 1999
IEEE International Conference on. Vol. 2. IEEE. 1999, pp. 1322–1328.

[84] B. Schiele and J. L. Crowley. “A comparison of position estimation techniques
using occupancy grids”. In: Robotics and Automation, 1994. Proceedings.,
1994 IEEE International Conference on. IEEE. 1994, pp. 1628–1634.

[85] M. Pinto, A. P. Moreira, and A. Matos. “Localization of mobile robots
using an extended Kalman filter in a LEGO NXT”. In: Education, IEEE
Transactions on 55.1 (2012), pp. 135–144.

[86] S. Thrun, W. Burgard, and D. Fox. Probabilistic robotics. MIT press, 2005.
[87] D. Fox, W. Burgard, and S. Thrun. “Markov localization for mobile robots

in dynamic environments”. In: Journal of Artificial Intelligence Research
(1999), pp. 391–427.

[88] A. I. Eliazar and R. Parr. “DP-SLAM 2.0”. In: Robotics and Automation,
2004. Proceedings. ICRA’04. 2004 IEEE International Conference on. Vol. 2.
IEEE. 2004, pp. 1314–1320.

[89] L. F. J. Bohrenstein, H. Everett, and L. Feng. “Navigating mobile Robots”.
In: AK Peters (1996).

[90] A. R. Siddiqui. “On Fundamental Elements of Visual Navigation Systems”.
In: (2014).

[91] D. Filliat and J.-A. Meyer. “Map-based navigation in mobile robots:: I. a
review of localization strategies”. In: Cognitive Systems Research 4.4 (2003),
pp. 243–282.

[92] P. G. Zavlangas and S. G. Tzafestas. “Integration of topological and metric
maps for indoor mobile robot path planning and navigation”. In: Methods
and applications of artificial intelligence. Springer, 2002, pp. 121–130.

[93] S. Thrun. “Learning metric-topological maps for indoor mobile robot navi-
gation”. In: Artificial Intelligence 99.1 (1998), pp. 21–71.

68 References

[94] C. Stachniss. “Spatial Modeling and Robot Navigation”. PhD thesis. Univer-
sitat Freiburg, 2009.

[95] K. O. Arras, J. A. Castellanos, M. Schilt, and R. Siegwart. “Feature-based
multi-hypothesis localization and tracking using geometric constraints”. In:
Robotics and Autonomous Systems 44.1 (2003), pp. 41–53.

[96] A. Corominas Murtra and J. M. Mirats Tur. “Map format for mobile robot
map-based autonomous navigation”. In: (2007).

[97] A. Elfes. “Occupancy grids: a probabilistic framework for robot perception
and navigation”. In: (1989).

[98] A. Milstein. Occupancy grid maps for localization and mapping. INTECH
Open Access Publisher, 2008.

[99] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard.
“OctoMap: An Efficient Probabilistic 3D Mapping Framework Based on
Octrees”. In: Autonomous Robots (2013). Software available at http://
octomap.github.com. url: http://octomap.github.com.

[100] I. Dryanovski, W. Morris, and J. Xiao. “Multi-volume occupancy grids:
An efficient probabilistic 3D mapping model for micro aerial vehicles”.
In: Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International
Conference on. IEEE. 2010, pp. 1553–1559.

[101] M. Yguel, C. Tay, M. Keat, C. Braillon, C. Laugier, and O. Aycard. “Dense
mapping for range sensors: Efficient algorithms and sparse representations”.
In: (2007).

[102] A. Doucet, N. De Freitas, K. Murphy, and S. Russell. “Rao-Blackwellised
particle filtering for dynamic Bayesian networks”. In: Proceedings of the Six-
teenth conference on Uncertainty in artificial intelligence. Morgan Kaufmann
Publishers Inc. 2000, pp. 176–183.

[103] J. E. Bresenham. “Algorithm for computer control of a digital plotter”. In:
IBM Systems journal 4.1 (1965), pp. 25–30.

[104] D Roller, M. Montemerlo, S Thrun, and B. Wegbreit. “Fastslam 2.0: an
improved particle filtering algorithm for simultaneous localization and map-
ping that provably converges”. In: Proceedings of the International Joint
Conference on Artificial Intelligence. 2003.

[105] D. H. D. Fox, W Burgard, and S Thrun. “A highly efficient FastSLAM algo-
rithm for generating cyclic maps of large-scale environments from raw laser
range measurements”. In: Proceedings IEEE/RSJ International Conference
on Intelligent Robots and Systems. 2003.

[106] G. Grisetti, C. Stachniss, and W. Burgard. “Improving grid-based slam
with rao-blackwellized particle filters by adaptive proposals and selective
resampling”. In: Robotics and Automation, 2005. ICRA 2005. Proceedings
of the 2005 IEEE International Conference on. IEEE. 2005, pp. 2432–2437.

http://octomap.github.com
http://octomap.github.com
http://octomap.github.com

References 69

[107] C. Stachniss, D. Hähnel, and W. Burgard. “Exploration with active loop-
closing for FastSLAM”. In: Intelligent Robots and Systems, 2004.(IROS
2004). Proceedings. 2004 IEEE/RSJ International Conference on. Vol. 2.
IEEE. 2004, pp. 1505–1510.

70

3
PFs Complexity Analysis and HW

Acceleration Methods

3.1 Introduction

The huge computational complexities involved with PFs is known to be one of the

major constraint to their widespread use for different real time applications. To

improve the computational performance of PFs and achieve real-time computations,

the knowledge of their computational complexity is of paramount importance.

This chapter analyzes the computational complexities of the sampling, impor-

tance weight and resampling steps for the two most popular types of PFs, generic

PF (SIR) and regularized PF (RPF). In the resampling step, the different types

of resampling methods explained in Chapter 2 are considered. In addition, the

evaluation on the performance of the PFs is considered by using the most common

root mean squared error (RMSE) metrics. The results obtained are of importance in

the study of accelerating the PF algorithm in a hardware based platform and to be

applied in real time problems. Therefore, based on the analysis of the computational

complexities, hardware acceleration techniques are proposed for the design and

development of PF hardware acceleration architectures in the next chapters.

72 3.2. Comparison on PFs and Resampling Methods

3.2 Comparison on PFs and Resampling Meth-
ods

The investigations on the computational complexities and performance of the

SIR PF, RPF and the different types of resampling methods are based on their

implementation on a computer with an Intel Core 2 Duo CPU 3.00 GHz and 4 Gb

RAM, running Windows XP service Pack 3. The computational complexity study

is conducted using MATLAB® software’s Profiler functionality which is used to

debug and optimize MATLAB® code files by tracking their execution time.

The computational complexity study is conducted by measuring the time required

to perform one step of the iteration by varying the number of particles, N . The

performance of the algorithms is studied using the RMSE metrics evaluated for 100

run steps. These investigations are performed based on the specific application of

the PF adopted in this study, namely the Grid-based fast-SLAM algorithm. Real

time odometry and laser scanner data collected from a mobile robot platform is

used for post processing in the Grid-based fast-SLAM algorithm. The estimation is

performed for the 2D positions and orientation of the robot, given by the Euclidian

distance (range) and orientation (bearing) of the robot.

Considering that the sampling and importance weight steps are identical for

both SIR and RPF, Table 3.1 provides the results of the execution time for these

two steps of the PF applied to the Grid-based fast-SLAM algorithm. The results of

Table 3.1 shows that the importance weight computation requires larger amount

of computational time in comparison to the sampling step. This is attributed to

the requirement of nonlinear function evaluations and map updating procedures

Table 3.1: Execution Time for Sampling and Importance Weight steps

N Sampling Importance weight
Execution time (s)

20 0.00224 0.330
50 0.00554 0.818
80 0.00902 1.340
110 0.01220 1.810

3. PFs Complexity Analysis and HW Acceleration Methods 73

in the importance weight step. As expected theoretically, the execution times for

both steps increase with the number of particles, N .

Table 3.2 provides the execution times and performance results of the different

resampling methods with the SIR PF and RPF. For clarity the execution time

results of the SIR and RPF with the different resampling methods is summarized

in Fig. 3.1. The results in Fig. 3.1 show that the IMHA resampling algorithm

has the least computational time followed by the systematic, stratified, residual

and multinomial resampling algorithms. Except the IMHA, the other resampling

methods differ only the way they generate the random numbers. Due to the complex

operation in random number generation and the need to generate N independent

random numbers in multinomial resampling compared to the generation of only

one random number in the case of systematic and stratified resampling methods,

resulted in its higher computational complexity. Regarding the computational

complexity between the RPF and generic PF, RPF has a relatively higher execution

time which can be accounted to the extra regularization step where most of it

is accounted to the empirical covariance matrix calculation. The study on the

comparison of sample impoverishment among the different resampling methods

is shown in Fig. 3.2. Fig. 3.3 compares the percentage of computations for the

sampling, importance weight and resampling steps for the SIR PF considering the

IMHA resampling. Fig. 3.3 confirms the higher percentage in computation of the

importance weight step in relative to the sampling and resampling steps.

3.3 Computational Bottlenecks Identifications and
HW/SW Partitioning

The analysis and experimental results of Section 3.2 show that the SIR PF with

the IMHA resampling has the lowest computational complexity compared to the

RPF. As a result, the SIR PF with the IMHA resampling is considered in this

study. Compared to the other resampling methods IMHA provides a bottleneck

free operation as the resampling operation can be pipelined with the sampling

and importance weight steps.

74 3.3. Computational Bottlenecks Identifications and HW/SW Partitioning

Table 3.2: Execution Time and RMSE for SIR/RPF with Different Resampling Methods

N Execution Time RMSE
Range (m) Bearing (rad)

Multinomial
20 2.00e-4/2.86e-4 0.0045/0.0051 0.0335/0.0263
50 9.30e-4/1.02e-3 0.0044/0.0137 0.0351/0.0329
80 2.26e-3/3.14e-3 0.0056/0.0046 0.0315/0.0310
110 4.06e-3/4.26e-3 0.0073/0.0086 0.0310/0.0299

Average
0.0055/0.0080 0.0328/0.0890

Systematic
20 1.30e-4/2.16e-4 0.0082/0.0036 0.0296/0.0332
50 1.40e-4/2.28e-4 0.0077/0.0022 0.0328/0.0294
80 1.60e-4/2.48e-4 0.0027/0.0033 0.0372/0.0310
110 1.60e-4/2.38e-4 0.0029/0.0034 0.0342/0.0341

Average
0.0054/0.0031 0.0335/0.0319

Residual
20 1.20e-4/2.16e-4 0.0040/0.0131 0.0400/0.0338
50 4.50e-4/5.58e-4 0.0061/0.0046 0.0338/0.0325
80 1.10e-3/1.09e-3 0.0035/0.0029 0.0360/0.0292
110 1.92e-3/1.99e-3 0.0037/0.0079 0.0382/0.0333

Average
0.0043/0.0071 0.0370/0.0322

Stratified
20 1.30e-4/2.16e-4 0.0142/0.0141 0.0314/0.0289
50 2.50e-4/3.38e-4 0.0069/0.0092 0.0315/0.0296
80 3.60e-4/4.48e-4 0.0038/0.0061 0.0344/0.0328
110 4.70e-4/6.88e-4 0.0090/0.0052 0.0348/0.0342

Average
0.0085/0.0087 0.0330/0.0314
IMHA

20 5.00e-5/1.36e-4 0.1001/0.1047 0.2082/0.2117
50 6.00e-5/1.48e-4 0.1097/0.1147 0.1948/0.1971
80 7.00e-5/1.58e-4 0.1021/0.1017 0.1984/0.1998
110 9.00e-5/1.68e-4 0.1118/0.1082 0.2138/0.2091

Average
0.1059/ 0.1073 0.2038/0.2044

3. PFs Complexity Analysis and HW Acceleration Methods 75

Figure 3.1: Comparison of the execution time for generic PF (GPF) and RPF with
different resampling methods

A preliminary study on the identification of the critical bottlenecks of the SIR PF

is crucial for the design of hardware modules in order to accelerate the computational

Figure 3.2: Comparison on sample impoverishment among the different resampling
methods

76 3.3. Computational Bottlenecks Identifications and HW/SW Partitioning

Figure 3.3: Percentage of computations for sampling, importance and resampling steps
for SIR PF

bottleneck steps and consequently the overall computation. Based on an embedded

implementation of the SIR PF (applied to a Grid-based Fast SLAM algorithm) on

an FPGA soft-core processor (MicroBlaze), profiling is conducting on each step of

the SIR PF using a hardware timer. Fig. 3.4 summarizes the critical computational

bottlenecks obtained from such a study. In the sampling step, trigonometric function

computations (sine, cosine and atan2) and Gaussian random number generation

accounts to 45.91% and 53.62% of the sampling step execution time respectively.

In the importance weight step, the computation of sine and cosine, and exponential

functions contribute 75.34% and 7.65% of the execution time respectively. For the

resampling step, the generation of uniform random numbers accounts for most of

the execution time (60.71%). For each step of the SIR PF computations shown in

Fig. 3.4, ’others’ corresponds to other related computations involved in each step.

The profiling information of the PF shown in Fig. 3.4 can be used in the hard-

ware/software partitioning i.e. which parts of the algorithm should be implemented

in hardware and which ones can be kept in software (running on the FPGA’s

embedded processor). It is clear from Fig. 3.4 that the trigonometric functions

and random number generation, are the critical bottlenecks of the Grid-based Fast

SLAM algorithm, thus requiring acceleration with a hardware implementation.

3. PFs Complexity Analysis and HW Acceleration Methods 77

Figure 3.4: Computational bottlenecks identifications in the sampling (s), importance
weight (I) and resampling (R) steps of the PF in the Grid-based Fast SLAM application.

3.4 PF Acceleration Techniques

The techniques used in the speedup of the computational bottleneck steps of the

PF explained in section 3.3 are based on the use of COordinate Rotation DIgital

Computer (CORDIC) algorithm [1] for the evaluations of the trigonometric and

exponential functions, and the Ziggurat [2] and Tausworthe [3] algorithms for

generations of Gaussian and uniform random numbers respectively. The details of

these techniques and the respective hardware designs are provided in this section.

3.4.1 CORDIC Acceleration Technique

CORDIC is an iterative algorithm for the calculation of the rotation of a two-

dimensional vector v = (x, y)T in linear, circular and hyperbolic coordinate systems.

The rotation is performed iteratively using a series of specific incremental rotation

angles selected so that each iteration is performed by shift and add operation. The

resulting trajectories for the vector vi from the successive CORDIC iterations in

the linear, hyperbolic and circular coordinate systems is shown in Fig. 3.5. The

norm of the vector (x, y)T in these coordinate systems is defined as
√
x2 +my2,

78 3.4. PF Acceleration Techniques

(a) (b)

(c)

Figure 3.5: CORDIC rotation trajectories for the linear (a), hyperbolic (b) and circular
(c) coordinate systems[4]

where m ∈ {1, 0,−1} is a coordinate parameter specifying whether the rotation

is in a circular, linear or hyperbolic coordinate respectively. The norm preserving

rotation trajectory is a circle defined by x2 + y2 = 1 in the circular coordinate

system, while in the hyperbolic coordinate system the rotation trajectory is a

hyperbolic function defined by x2 + y2 = −1 and in the linear coordinate system

the trajectory is a simple line x = 1.

The unified CORDIC algorithm for the computation of the rotation of the

two-dimensional vector v = (x, y)T is given by the following iterative equations [1]:

3. PFs Complexity Analysis and HW Acceleration Methods 79

xn+1 = xn −mµnyiδm,n

yn+1 = yn + µnxiδm,n

zn+1 = zn − µnαm,n

(3.1)

where αm,n defines the angle of the vector vn = (xn, yn)T , the variable zn is used to

keep track of the rotation angle αm,n, µn ∈ {1,−1} represents either clockwise or

counter clockwise direction of rotation. The variable δm,n is defined as δm,n = 2−sm,n ,

where sm,n defines a non decreasing integer shift sequence.

The first two equations in the unified CORDIC equation 3.1 can be represented

as vn+1 = Rm,nvn, where Rm,n is a rotation matrix given by equation 3.2. For

m ∈ {−1, 1}, Rm,n is an unnormalized rotation matrix by scale factor of Km,n =√
1 + tan2(

√
mαm,n) describing a rotation with scaling rather than a pure rotation.

However, for m = 0, Rm,n is a normalized rotation matrix with no scaling is involved.

Rm,n = Km,n

(
cos(
√
mαm,n) −µn

√
msin(

√
mαm,n)

µn√
m

sin(
√
mαm,n) cos(

√
mαm,n

)
= Km,nR

∗
m,n

(3.2)

After k successive iterations the resulting vector vk is given by equation 3.3,

which is a rotation by an angle θ =
k−1∑
n=0

µnαm,n is performed with an overall scaling

factor of Km(k) =
k−1∏
n=0

Km,n.

vk =
k−1∏
n=0

Km,n

k−1∏
n=0

R∗m,nv0 (3.3)

The third iteration component of the unified CORDIC equation (i.e. zn+1 =

zn − µnαm,n) simply keeps track of the overall rotation angle accumulated during

successive pseudo-rotations. After k iterations it results in zk given by equation 3.4,

which is the difference of the start value z0 and the total accumulated rotation angle.

zk = z0 −
k−1∑
n=0

µnαm,n (3.4)

80 3.4. PF Acceleration Techniques

In rotation mode it performs a general rotation by a given angle z and in

vectoring mode it computes unknown angle z of a vector by performing a finite

number of micro rotations.

CORDIC Modes of Operation

The CORDIC algorithm is formulated by using a shift sequence sm,n defining an

angle sequence αm,n = 1√
m
tan−1(

√
m2−sm,n) and a control scheme generating a sign

sequence µn which guarantees convergence. The shift sequences which guarantees

convergence for the linear (m = 0), circular (m = 1) and hyperbolic (m = −1)

coordinates are given by equation 3.5. For m = −1 convergence is not satisfied

for α−1,i = tanh−1(2−i), but it is satisfied if the integers (4, 13, 40, ..., n, 3n+ 1, ...)

are repeated in the shift sequence [5, 6]. For any implementation, the angle

sequence αm,n resulting from the chosen shift sequence can be calculated in advance,

quantized according to a chosen quantization scheme and retrieved from storage

during execution of the CORDIC algorithm.

sm,n =


0, 1, 2, 3, 4, ..., n, ... m = 0
1, 2, 3, 4, 5..., n+ 1, ... m = 1
1, 2, 3, 4, 4, 5... m = −1

(3.5)

In CORDIC algorithm the direction of the rotation angle has to be chosen such

that the absolute value of the remaining rotation angle, |βn+1| = ||βn| − αm,n|, after

rotation n eventually becomes smaller during successive iterations. Two control

schemes, namely rotation mode and vectoring mode are used for this purpose.

In rotation mode the desired rotation angle θ is given for an input vector (x, y)T .

Setting x0 = x, y0 = y, and z0 = θ, after k iterations results in:

zk = θ −
k−1∑
n=0

µnαm,n (3.6)

If zk holds, then θ =
k−1∑
n=0

µnαm,n, i.e. the total accumulated rotation angle is

equal to θ. In order to drive zk to zero, µn = sign(zn) is used leading to

3. PFs Complexity Analysis and HW Acceleration Methods 81

xn+1 = xn −m sign(zn) yn2−sm,n

yn+1 = yn + sign(zn) xn2−sm,n

zn+1 = zn − sign(zn) αm,n

(3.7)

The finally computed scaled rotated vector is given by (xk, yk)T .

In vectoring mode the objective is to rotate the given input vector (x, y)T with

magnitude
√
x2 +my2 and angle φ = 1√

m
tan−1(

√
m y

x
) towards the x-axis. The

initial values are set as x0 = x, y0 = y and z0 = 0. The control scheme is such that

during the k iterations yk is driven to zero and µn = sign(xn) sign(yn). Depending

on the sign of x0 the vector is then rotated towards the positive (x ≥ 0) or negative

(x0 < 0) x-axis. If yk = 0 holds, zk contains the negative total accumulated rotation

angle after k iterations which is equal to φ and xk contains the scaled and eventually

(for x0 < 0) signed magnitude of the input vector.

zn = φ = −
k−1∑
n=0

µnαm,n (3.8)

The CORDIC iterations driving the yn variables to zero is given by:

xn+1 = xn +m sign(xn) sign(yn) yn2−sm,n

yn+1 = yn − sign(xn) sign(yn) xn2−sm,n

zn+1 = zn + sign(xn) sign(yn)αm,n

(3.9)

Analysis of CORDIC Functions for PFs

Using the unified CORDIC iteration equations for m ∈ (1, 0,−1) configurations

a large class of mathematical functions can be computed in hardware using

rotation and vectoring modes. In linear configuration (m = 0), the evaluation

of a multiplication function can be performed. However, the computation of a

multiplication with the linear configuration requires a number of clock cycles due

to the sequential nature of the CORDIC algorithm. Alternatively, multiplication

can be efficiently performed with a single clock using standard MAC (Multiply-

Accumulate) unit. Therefore, the multiplication realized with the linear CORDIC

82 3.4. PF Acceleration Techniques

mode (m = 0) can not compete to the standard MAC unit. In contrast all functions

calculated in the circular and hyperbolic modes compare favorably to the respective

implementations on DSPs [4, 7]. Therefore, a CORDIC processing element extension

for m ∈ {1,−1} to standard DSPs is the most attractive possibility.

The configurations to the variables x, y and z, and the set of equations that the

unified CORDIC iteration equations converges after k iterations in rotation and vec-

toring modes is given in Table 3.3. Where, in circular-rotation mode of configuration

the functions f1 and f2 correspond to the sine() and cosine() functions respectively

and for hyperbolic-rotation configuration f1 and f2 correspond sinh() and cosh()

functions. In vectoring-hyperbolic configuration the function f3 corresponds to

tanh−1 and in circular-hyperbolic configuration it corresponds to tan−1.

The evaluation of the sine and cosine functions are obtained directly by applying

the properties given in Table 3.3. However for the evaluation of an exponential

and natural logarithm functions indirect properties are used. The evaluation of the

exponential function is obtained indirectly by applying the property:

Table 3.3: CORDIC configurations for functions evaluation. K ∼ Km(n→∞)

Mode
Configuration

Circular Hyperbolic

Rotation Functions
Sine/Cosine Exponential

x = K(xf1z − yf2z)
y = K(yf1z − xf2z)
z = 0

x = 1/K
y = 0
z = input

K ∼ 1.646 K ∼ 0.828159

Vectoring Functions
tan−1 Logarithmic

x = K
√
x2 − y2

y = 0
z = z + f3

(y
x

)
x = 1
y = input
z = 0

3. PFs Complexity Analysis and HW Acceleration Methods 83

exp(z) = sinh(z) + cosh(z) (3.10)

Similarly, in the case of natural logarithm function the property given by

equation (14) is used for its indirect evaluation.

lnw = 2tanh−1(y
x

) (3.11)

Where, x = w + 1 and y = w − 1.

As the CORDIC algorithm works for a limited range of the input arguments for

the evaluation of the elementary functions, it is required to extend the range of the

inputs for each mode of operation by applying proper pre-scaling identities. This

is achieved by dividing the original input arguments to the CORDIC algorithm

by a constant to obtain a quotient Q and remainder D [8]. In the case of the

sine and cosine functions the constant value corresponds to (π2), and loge2 for

the exponential and logarithmic functions. The pre-scaling identities for all the

required functions are given in Table 3.4.

Table 3.4: Pre-scaling identities for function evaluations [8–10]

Identity Domain

sin
(
Qπ

2 +D
)

=


sin(D) if Q mod 4=0
cos(D) if Q mod 4=1
-sin(D) if Q mod 4=2
-cos(D) if Q mod 4=3

|D| < π
2

cos
(
Qπ

2 +D
)

=


cos(D) if Q mod 4=0
-sin(D) if Q mod 4=1
-cos(D) if Q mod 4=2
sin(D) if Q mod 4=3

|D| < π
2

exp(Qloge2 +D) = 2Q
(
cosh(D) + sinh(D)

)
|D| < loge2

loge(M2M) = loge(M) + Eloge2 0.5 ≤M < 1

84 3.4. PF Acceleration Techniques

The accuracy of the functions evaluated with the unified CORDIC iteration

equations are affected with two primary sources of errors [10]. The first sources

of error is an angle approximation errors. Theoretically, the rotation angle is

approximated by decomposing into infinite number of elementary angles. However,

for practical implementation a finite number of k micro-rotations are considered in

order to approximate the input rotation angle which results in an approximation

error of φ ≤ αm,k−1. The second source of error is a finite precision error that

results due to the fixed point representations of the different variables in the fixed

point realization of the CORDIC algorithm. Additionally the rounding error, which

increases with the number of iterations, has to be taken into account.

3.4.2 CORDIC Harware Architecture

Based upon the hardware realization of the three iterative equations, CORDIC

architectures can be broadly classified as folded and unfolded [10, 11].

Folded Architecture

The direct mapping of the iterative operations of the unified CORDIC algorithm,

equation 3.1, into hardware results in the folded architecture [12, 13] shown in Fig.

3.6. In the folded architecture a single adder/subtractor unit, a shifter and a register

for holding the computed values after each iteration are used. As single shift-add/sub

stage is used, the folded architecture have to be multiplexed in time domain for

carrying out all the iterations with a single functional unit. The sets of elementary

rotation angles αm,n to be used can be stored in a ROM or in register files, if the

number of angles is reasonably small. A control unit steers the operations in the data

path according to the chosen coordinate system m and the chosen shift sequence.

The folded architecture exactly emulates the sequences of the unified CORDIC

algorithm steps. For the initial level of calculation, initial values of x0, y0, and z0

are provided at each branch via a multiplexer to a register block. During FPGA

implementation, these initial values are given hardwired in a word wide manner. In

the x and y-branches, values are first passed to a shift unit and finally subtracted or

3. PFs Complexity Analysis and HW Acceleration Methods 85

Figure 3.6: Folded (serial) CORDIC architecture.

added to un-shifted signal value from the reverse path. The operation of the parallel

adder/subtractors is controlled by the rotation direction which is obtained based

on the MSB of the z-branch. In the z-branch, based on the number of iterations k,

a constant angle value of αm,n, n = 0, 1, ..., k − 1, accessed from a lookup table is

added or subtracted to a register value. After k operations output is passed again

to register block before primary values are fed in again and this final value can be

accessed as output. The addressing of the constant values αm,k and the control of

the multiplexers units can be achieved with a finite state machine design.

Due to time multiplexing to share the hardware resources in each path, the folded

architecture is not suitable for high speed applications. Furthermore, because of

the necessity to implement a number of different shifts according to the chosen shift

sequence at each iteration, the folded architecture requires the use of variable shifters

(barrel shifters). These variable shifter do not map well into FPGA architectures

due to the high fan-in required and typically require several layers of the FPGA logic

[14]. The result is a slow design that uses large number of logic cells. In addition the

output rate is also limited by the fact that the operation is performed iteratively and

therefore the maximum output rate equals 1/k times the clock rate. A higher clock

rate and more compact design of the folded architecture with simplified interconnect

86 3.4. PF Acceleration Techniques

and logic can be achieved using bit serial arithmetic. Fig. 3.7 shows such a bit

serial CORDIC architecture where it consists of three bit serial adder subtractor,

three shift registers and a serial ROM. The number of clock cycles required for each

of the n iterations in this design is equivalent to the width of the data word.

Unfolded Architecture

The unfolded architecture shown in Fig. 3.8 is acquired by unrolling (unfolding)

the iteration process so that each n processing element always perform at the

same iteration [15–18]. Unfolding is a transformation rule applied to a folded

architecture to reorganize its operations onto a combinatoric structure [11]. In

unfolded architectures no reusing of the same unit is performed during execution of

the complete CORDIC algorithm as in the folded case. This results rapid increase

in circuit complexity since no time multiplexing of components is exploited. On

the other hand, the throughput is highly increased since it becomes always equal

to the inverse of the number of clock cycles. The unfolded CORDIC architecture

implement hard-wired shifters rather than area and time consuming barrel shifters.

As the shifter needs not to be updated as in the iterative structure it make their

FPGA implementation quite feasible.

The unfolded architectures can be realized as a parallel or pipelined architecture,

where in both cases the shift-add/sub operations are implemented in parallel using

Figure 3.7: Bit-serial iterative CORDIC architecture (adopted from [14]).

3. PFs Complexity Analysis and HW Acceleration Methods 87

Figure 3.8: Unfolded (pipelined) CORDIC architecture.

an array of shift-add/sub stages. The difference between the parallel and pipelined

realizations is the use of pipeline registers in between each iteration phase in the

later case. In the parallel CORDIC architecture, instantiation of blocks must be

performed k times to achieve a k bit precision output. Since all iterations are done

parallelly, the outputs are available within a single clock cycle. Hence there is no

need to wait for k clock cycles. Pipelined CORDIC architecture is advantageous

if relatively long streams of data have to be processed in the same manner since

it takes a number of clock cycles to fill the pipeline and also to flush the pipeline

[4]. The first output of a k-stage pipelined CORDIC core is obtained after k clock

cycles. Thereafter, outputs will be generated during every clock cycle. Compared

to the folded and parallel architectures, a pipelined CORDIC architecture provides

higher frequency of operation making it the best possible option for high speed

applications [19–21]. A drawback of pipelined structure is the increase in area

introduced by the pipeline registers.

3.4.3 CORDIC PE Architecture

The variety of functions calculated by the CORDIC algorithm leads to the idea

of proposing a programmable CORDIC processing element (PE) for accelerating

the intensive computations in PF applications. The architecture of the CORDIC

88 3.4. PF Acceleration Techniques

PE with the input/output interface is shown in Fig. 3.9. There are two 32-bit

wide input ports for two possible arguments u0 and u1. There is a 3-bit input port,

Config, which specifies which function is to be evaluated, as per the encoding used

for the different functions. In addition to these input interfaces, a "Start" input

signal is used to inform the CORDIC PE that the desired values are on the inputs

and to begin calculation. There is also a clock input signal. In terms of output

ports, there is a 32-bit result output port, f() and a Done output signal to indicate

the end of a computation. The different functions that can be obtained at the

output port f() are: sin(), cos(), exp(), atan2() and ln() function.

The CORDIC PE is composed of three hardware computational sub-modules:

CORDIC-core, Pre-scaling and Post-scaling. The implementation of these sub-

modules is based on the folded or unfolded CORDIC-core architectures for the

CORDIC-core sub-module, and the identity equations given in Table 3.4 for the

Pre-scaling and Post-scaling sub-modules. The identity equations are used by

the Pre-scaling and Post-scaling modules to extend the range of input arguments

while evaluating the different functions. The CORDIC PE involves three stages of

computations, first any input arguments outside the specified domain are scaled

before being input to the CORDIC core at the centre of the CORDIC PE. The

Figure 3.9: Architecture of the CORDIC PE.

3. PFs Complexity Analysis and HW Acceleration Methods 89

results from the CORDIC core finally pass through Post-scaling module, to provide

the true result.

3.5 Random Number Acceleration Technique

High quality Gaussian (normal) pseudo random number generators are key com-

ponents in many scientific applications of stochastic problems and Monte Carlo

simulations. Most PF application formulations, particularly for models involving

Gaussian noise require the generation of Gaussian random numbers for their

operation [22]. For example, as explained in the previous chapter the sampling

step of the PF in the Grid-based Fast SLAM application requires the generation

of Gaussian random numbers per particle filtering iteration. This section presents

the technique for the generation of Gaussian random numbers in hardware with

the objective of accelerating the overall PF computations.

3.5.1 Review on GRNGs

Gaussian Random Number Generators (GRNGs) aim to produce random numbers

that, to the accuracy necessary for a given application, are statistically indistinguish-

able from samples of a random variable with an ideal Gaussian distribution. The

generation of a normally distributed pseudo random number involves transforming a

uniformly distributed random numbers into a normal distribution by applying

appropriate transformation methods [23];- inversion, transformation, rejection

sampling and recursion.

Inversion [24–27]: applies the inverse cumulative distribution function (ICDF)

of the target distribution to uniformly distributed random numbers. The CDF

inversion method simply inverts the CDF to produce a random number from a desired

distribution. The ICDF converts a uniformly distributed random number x ∈ (0, 1)

to one output y = ICDF (x) with the desired distribution. The disadvantage in

such method lies in the need to calculate the CDF or its inverse.

Transformation (Box-Muller method [28–30]): In this method trigonometric

functions are used to transforms a pair of uniformly distributed random numbers

90 3.5. Random Number Acceleration Technique

into a pair of normally distributed random numbers. Its advantage is that it

provides a pair of random numbers for each call deterministically. A drawback for

hardware implementations is the high demand of resources needed to accurately

evaluate the trigonometric functions.

Recursion (Wallace method [31]): utilizes linear combinations of previously

generated Gaussian numbers to produce new outputs.

Rejection sampling (Ziggurat method [2, 32–34]): generates normal random

numbers by setting conditionality i.e. it only accepts correct random values if they

are within specific predefined ranges in the target distribution and discards others.

The Ziggurat method described in this section is an example of such method. The

Ziggurat method is one of the fastest methods to generate normally distributed

random numbers while also providing excellent statistical properties [2, 35]. The key

strength of the Ziggurat method is that most of the cases only two table lookups,

a multiply, and a compare are needed per variate. As a result, it produces most

of its outputs in a single clock cycle using fast integer operations. However, for

small percentage of the outputs complex elementary functions such as exponential

and natural logarithmic has to be evaluated.

3.5.2 The Ziggurat Algorithm

A Gaussian distribution with mean zero and standard deviation one, often known

as a "standard normal" distribution, has the probability density function (PDF):

φ(x) = 1√
2π
e−x

2/2 (3.12)

The Ziggurat algorithm generates normally distributed random variates from

an arbitrary decreasing PDF φ(x) by applying acceptance-rejection methods. In

the acceptance-rejection methods, random variates are generated considering a set

of points C = {(x, y)} under the curve of the function φ(x) and a subset Z of these

points, Z ⊂ C, by uniformly taking the random points (x, y) until (x, y) ⊂ C. The

acceptance-rejection method involves conditionality in accepting correct random

values that are part of the target distribution and rejecting incorrect ones.

3. PFs Complexity Analysis and HW Acceleration Methods 91

The Ziggurat partitions the standard normal density function (given by equation

3.12) for x > 0, into n horizontal rectangular blocks Ri, where i = 0, 1, 2, . . . , (n−1),

extending horizontally from x = 0 to xi and vertically from φ(xi) to φ(xi−1). The

bottom block consists of a rectangular block joined with the remainder of the

density starting from a point r (Fig. 3.10). All the rectangular blocks have equal

area v given by equation 3.13.

v = xi[φ(xi−1)− φ(xi)] = rφ(r) +
∫ ∞
r

φ(x)dx (3.13)

The description of the Ziggurat algorithm for generating normally distributed

random variates by partitioning the normal density distribution, and with the

application of the acceptance-rejection method is given in Algorithm 11. In line 4

of the Ziggurat Algorithm 11, the method to generate the normal random numbers

from the tail of the distribution is obtained using Algorithm12. The Ziggurat

algorithm requires a table of xi points and their corresponding function values

φi. The number of rectangular blocks n is normally considered as power of two

(64, 128, 256, ..), and for n = 128 a value of r = 3.442619855899 is used to determine

the xi points that are required in the hardware realization of the algorithm [2].

Figure 3.10: Partitioning of a Gaussian distribution into rectangular, wedge, and tail
regions with Ziggurat method.

92 3.5. Random Number Acceleration Technique

Algorithm 11 The Ziggurat Algorithm [32]

Input: {xii}
n−1
i=1

1: Draw an index i of a rectangle (0 ≤ i ≤ n− 1) at random with probability 1
n

2: Draw a random number x from the rectangle i as x = U0xi. where U0 is a
uniform random number drawn from a uniform distribution U(0, 1).

3: Rectangular
If i ≥ 1 and x < xi−1 accept x

4: Tail
If i = 0, accept x from the tail

5: Wedge
Else if i > 0 and U1|f(xi−1) − f(xi)| < f(x) − f(xi) accept x, where U1 is a
uniform random number.

6: Return to step 1
7: return normal random number x

3.5.3 Ziggurat GRNG Hardware Architecture

In the description of a Gaussian random number generator algorithm, the existence

of a uniform random number generator (URNG) that can produce random numbers

with the uniform distribution over the continuous range (0, 1) denoted by U(0, 1) is

assumed. In the Ziggurat algorithm, Algorithm 11, for example two uniform random

numbers U0 and U1 are required for generating a Gaussian random number from the

tail and wedge regions respectively. The generation of these two uniform random

numbers is achieved with a Tausworthe URNG[3]. Although traditional linear

feedback shift registers (LFSRs) are often sufficient as a URNG, the Tausworthe

URNGs are fast, provide better quality and occupy less area [33]. The Tausworthe

URNG follows the algorithm with its C code implementation illustrated in Fig.

3.11 as presented in [3]. It combines three LFSR-based URNGs to obtain improved

statistical properties and generates a 32-bit uniform random number per clock with

Algorithm 12 Generate from the tale
1: Do
2: Generate i.i.d. uniform (0, 1) variates u0 and u1

3: x← −ln(u0)
r

, y ← −ln(u1)
4: While (y + y) < x2

5: Return x > 0 ? (r + x) : −(r + x)

3. PFs Complexity Analysis and HW Acceleration Methods 93

large period of 288. The hardware architecture of the Tausworthe URNG based

on its description in Fig. 3.11 is shown in Fig. 3.12.

The generation of Gaussian random numbers from the tail (line 4) and wedge

(line 5) regions of the Ziggurat algorithm (Algorithm 11), requires the evaluation

of natural logarithmic and an exponential function respectively. The hardware

evaluation of these functions is mostly performed with the application of polynomial

approximation method. For example in the two most relevant discussions on

hardware implementation for Ziggurat algorithm on FPGAs [33, 34] such an

approach is used. These approaches lead to a tradeoff between the accuracy

and resource utilizations. However, more accurate methods like CORDIC seem to

be better candidate for such an application. But one of the limitations suggested

in the literature for the use of CORDIC algorithm in the Ziggurat method is the

high resource requirement. This is related to the need to use multiple CORDIC

cores for the evaluation of each individual elementary function involved in the

Ziggurat algorithm. To take advantage of the accuracy of the CORDIC algorithm,

in this work a single CORDIC core that is configurable to the specific function

evaluation at run-time is proposed and used. Such approach avoids the large

resource requirements in the CORDIC unit for the Ziggurat algorithm. In addition,

the accuracy level in the CORDIC approach can be adjusted by simply increasing

and decreasing the iteration levels depending on the required level of accuracy

for the specific application at hand.

Figure 3.11: C code description of the Tausworthe URNG

94 3.5. Random Number Acceleration Technique

Figure 3.12: Architecture of Tausworthe URNG.

The proposed hardware architecture based on the Ziggurat algorithm for a

GRNG is shown in Fig. 3.13. The three computational modules comprising the

architecture are: Ziggurat GRNG, CORDIC and Tausworthe URNG modules. The

Ziggurat GRNG module is the main module responsible for the generation of the

normal random numbers. The Tausworthe URNG module provides two uniform

random numbers U0 and U1 at each clock cycle required by the Ziggurat module.

The CORDIC module is responsible to evaluate a specific function while requested by

the Ziggurat module to generate the random variates from the tail or wedge region.

The hardware design of the Ziggurat module follows the description of the Ziggurat

algorithm given in Algorithm 11, where it composed of individual hardware blocks

to generate the normal random number from the rectangular, wedge and tail region

of the distribution (Fig. 3.10 and Algorithm 11). All the three modules (wedge,

rectangular and tail) work independently of one another. The Region selector

module determines the conditions for generating the normal random number from

the rectangular, wedge and tail regions of the distribution. In addition, it also

provides the necessary configuration bits required to configure the CORDIC module

while the normal random number is generated from the wedge and tail sections.

3. PFs Complexity Analysis and HW Acceleration Methods 95

F
ig

ur
e

3.
13

:
A
rc
hi
te
ct
ur
e
of

th
e
Zi
gg
ur
at

m
od

ul
e.

96 3.5. Random Number Acceleration Technique

Figure 3.14: Illustration for the storage of the xi and fi coefficients in memory and the
parallel access of the xi ,xi−1 , fi and fi−1 for n = 128.

To further speedup the normal random number generation process in the Ziggurat

GRNG sub-module, an effective mechanism for the simultaneous access to the

coefficients xi and φi is required. This is achieved by dividing the random index i

into even and odd values, and storing the respective xi and φi in separate memories

(Fig. 3.14). While the generated index i is an odd value the xi and xi−1 are read

from the odd and even memories at the same memory index positions simultaneously.

However, if the generated index is with an even value, then xi is read from the

even memory and the xi−1 is read from the odd memory at the next memory

position in parallel. As a result the parallel access of the coefficients is achieved

with such an effective method.

3.5.4 Ziggurat GRNG FPGA Implementation

The implementation of the architecture given in Fig. 3.13 is performed on a Xilinx

Kintex-7 KC705 FPGA device. The design is written in VHDL and synthesized

using the Xilinx ISE 14.6. The implementation is done for a value of n = 128. The

xi and φi coefficients that are stored in their respective even and odd memories

are all 32 bits wide represented as fixed point number with Q(8:24) format. From

the synthesis results, the implementation shows a maximum clock frequency of

3. PFs Complexity Analysis and HW Acceleration Methods 97

Table 3.5: Comparison on performance and resource utilization among different FPGA
implementation of the GRNGs

FPGA target de-
vices

Kintex 7 Vertex 4 Vertex 2

GRNGs Ziggurat Box-Muller Wallace
References Our Implementation [34] [33] [28] [31]
M Samples/sec 689.2 515.4 400 169 466 155
Maximum
Frequency(MHz)

697.69 521.730 200 170 233 155

Slices 236 299 500 891 1528 770
Block RAMS - - 4 4 12 4
DSP Slices 4 4 24 2 3 6

689.2MHz on the KC705 FPGA device. For a value of n = 128 the efficiency

of the normal random generator is 98.78% [2]. As a result, the corresponding

throughput of our implementation is 0.9878× 689.2 = 697.69 samples per second

which is 58.04% higher throughput from previous implementation. The results

obtained are given in Table 3.5 with comparison to other hardware implementations

of the GRNGs from the literature. The proposed architecture is also synthesized

for the Vertex 4 FPGA device to provide fair comparison with the most recent

implementation of the Ziggurat from the literature [34]. Table 3.5 shows that

the proposed architecture provides a high throughput with comparable resource

(a) Hardware and theoretical distributions (b) Residual error

Figure 3.15: Histogram of hardware generated samples and theoretical Gaussian
distribution (half of the distribution) (a) and corresponding residual error (b).

98 3.5. Random Number Acceleration Technique

utilization among all the other previous hardware implementations. In addition, the

proposed implementation does not utilize the Block RAM resources of the FPGA

as all the required constant variables for both CORDIC and Ziggurat algorithms

are implemented as ROM (lookup tables).

The histogram plot for 107 samples generated by the proposed hardware

architecture is shown in Fig. 3.15 with the theoretical Gaussian distribution curve

and the corresponding residual error (fitting deviation) values. As Fig. 3.15 shows,

the hardware generated Gaussian random numbers fitted well with the theoretical

curve with an average residual error of 1.311×10−4. Furthermore, the quality of the

Ziggurat GRNG is confirmed using the goodness of fit tests such as the Shapiro-Wilk

test [36] and the coefficient of determination (R2) test [37] (R2 = 0.99996).

References

[1] J. S. Walther. “A unified algorithm for elementary functions”. In: Proceedings
of the May 18-20, 1971, spring joint computer conference. ACM. 1971,
pp. 379–385.

[2] G. Marsaglia, W. W. Tsang, et al. “The ziggurat method for generating
random variables”. In: Journal of statistical software 5.8 (2000), pp. 1–7.

[3] P. L’ecuyer. “Maximally equidistributed combined Tausworthe generators”.
In: Mathematics of Computation of the American Mathematical Society
65.213 (1996), pp. 203–213.

[4] H. Dawid and H. Meyr. “CORDIC algorithms and architectures”. In: Digital
Signal Process Multimedia Syst 2 (1999), pp. 623–655.

[5] R. Parris. “Elementary Functions and Calculators”. In: Phillips Exeter
Academy. Disponível em: http://math. exeter. edu/rparris/peanut/cordic. pdf
(2012).

[6] X. Hu, R. G. Harber, and S. C. Bass. “Expanding the range of convergence of
the CORDIC algorithm”. In: Computers, IEEE Transactions on 40.1 (1991),
pp. 13–21.

[7] R Mehling and R Meyer. “CORDIC-AU, a suitable supplementary unit to
a general-purpose signal processor”. In: AEU. Archiv für Elektronik und
Übertragungstechnik 43.6 (1989), pp. 394–397.

[8] A. Boudabous, F. Ghozzi, M. W. Kharrat, and N. Masmoudi. “Implementa-
tion of hyperbolic functions using CORDIC algorithm”. In: Microelectronics,
2004. ICM 2004 Proceedings. The 16th International Conference on. IEEE.
2004, pp. 738–741.

[9] T. Vladimirova, D. Eamey, S. Keller, and M. Sweeting. “Floating-Point
Mathematical Co-Processor for a Single-Chip On-Board Computer”. In:
Proceedings of the 6th Military and Aerospace Applications of Programmable
Logic Devices and Technologies (MAPLD’2003) (2003).

[10] B. Lakshmi and A. Dhar. “CORDIC architectures: a survey”. In: VLSI
design 2010 (2010), p. 2.

[11] S. Wang and V. Piuri. “A unified view of CORDIC processor design”. In:
Application Specific Processors. Springer, 1997, pp. 121–160.

[12] U. Meyer-Baese and U Meyer-Baese. Digital signal processing with field
programmable gate arrays. Vol. 65. Springer, 2007.

[13] M. D. Ercegovac and T. Lang. Digital arithmetic. Elsevier, 2004.

100 References

[14] R. Andraka. “A survey of CORDIC algorithms for FPGA based computers”.
In: Proceedings of the 1998 ACM/SIGDA sixth international symposium on
Field programmable gate arrays. ACM. 1998, pp. 191–200.

[15] J. Bu, E. Deprettere, and F du Lange. “On the optimization of pipelined
silicon CORDIC algorithm”. In: Proc. EUSIPCO Signal Process. III: Theories
Applicat (1986), pp. 1227–1230.

[16] Y.-j. Dai and Z. Bi. “CORDIC algorithm based on FPGA”. In: Journal of
Shanghai University (English Edition) 15 (2011), pp. 304–309.

[17] S. Vadlamani and W. Mahmoud. “Comparison of CORDIC algorithm
implementations on FPGA families”. In: System Theory, 2002. Proceedings
of the Thirty-Fourth Southeastern Symposium on. IEEE. 2002, pp. 192–196.

[18] R. Bhakthavatchalu, M. Sinith, P. Nair, and K Jismi. “A comparison of
pipelined parallel and iterative CORDIC design on FPGA”. In: Industrial
and Information Systems (ICIIS), 2010 International Conference on. IEEE.
2010, pp. 239–243.

[19] A. Mandal and R. Mishra. “FPGA Implementation of Pipelined CORDIC for
Digital Demodulation in FMCW Radar”. In: Infocommunications Journal
5.2 (2013), pp. 17–23.

[20] A. De Lange, E. Deprettere, A van der Veen, and J Bu. “Real time appli-
cation of the floating point pipeline CORDIC processor in massive-parallel
pipelined DSP algorithms”. In: Acoustics, Speech, and Signal Processing,
1990. ICASSP-90., 1990 International Conference on. IEEE. 1990, pp. 1013–
1016.

[21] C. S. Lee and P. R. Chang. “A maximum pipelined CORDIC architecture
for inverse kinematic position computation”. In: Robotics and Automation,
IEEE Journal of 3.5 (1987), pp. 445–458.

[22] A. Athalye. Design and implementation of reconfigurable hardware for real-
time particle filtering. ProQuest, 2007.

[23] D. B. Thomas, W. Luk, P. H. Leong, and J. D. Villasenor. “Gaussian random
number generators”. In: ACM Computing Surveys (CSUR) 39.4 (2007), p. 11.

[24] N. A. Woods and T. VanCourt. “FPGA acceleration of quasi-Monte Carlo
in finance”. In: Field programmable logic and applications, 2008. FPL 2008.
International Conference on. IEEE. 2008, pp. 335–340.

[25] R. C. Cheung, D.-U. Lee, W. Luk, and J. D. Villasenor. “Hardware generation
of arbitrary random number distributions from uniform distributions via the
inversion method”. In: Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on 15.8 (2007), pp. 952–962.

[26] C. De Schryver, D. Schmidt, N. Wehn, E. Korn, H. Marxen, and R. Korn.
“A new hardware efficient inversion based random number generator for
non-uniform distributions”. In: Reconfigurable Computing and FPGAs (Re-
ConFig), 2010 International Conference on. IEEE. 2010, pp. 190–195.

References 101

[27] C. De Schryver, D. Schmidt, N. Wehn, E. Korn, H. Marxen, A. Kostiuk,
and R. Korn. “A hardware efficient random number generator for nonuni-
form distributions with arbitrary precision”. In: International Journal of
Reconfigurable Computing 2012 (2012), p. 12.

[28] D.-U. Lee, J. D. Villasenor, W. Luk, and P. H. Leong. “A hardware Gaussian
noise generator using the Box-Muller method and its error analysis”. In:
Computers, IEEE Transactions on 55.6 (2006), pp. 659–671.

[29] J. S. Malik, A. Hemani, and N. D. Gohar. “Unifying CORDIC and Box-Muller
algorithms: An accurate and efficient Gaussian Random Number generator”.
In: Application-Specific Systems, Architectures and Processors (ASAP), 2013
IEEE 24th International Conference on. IEEE. 2013, pp. 277–280.

[30] D.-U. Lee, W. Luk, J. D. Villasenor, and P. Y. Cheung. “A Gaussian
noise generator for hardware-based simulations”. In: Computers, IEEE
Transactions on 53.12 (2004), pp. 1523–1534.

[31] D.-U. Lee, W. Luk, J. D. Villasenor, G. Zhang, and P. H. Leong. “A hardware
Gaussian noise generator using the Wallace method”. In: Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on 13.8 (2005), pp. 911–920.

[32] J. A. Doornik. “An improved ziggurat method to generate normal random
samples”. In: University of Oxford (2005).

[33] G. Zhang, P. H. Leong, D. U. Lee, J. D. Villasenor, R. C. Cheung, and
W. Luk. “Ziggurat-based hardware Gaussian random number generator”. In:
Field Programmable Logic and Applications, 2005. International Conference
on. IEEE. 2005, pp. 275–280.

[34] H. Edrees, B. Cheung, M. Sandora, D. B. Nummey, and D. Stefan. “Hardware-
Optimized Ziggurat Algorithm for High-Speed Gaussian Random Number
Generators.” In: ERSA. 2009, pp. 254–260.

[35] P. H. Leong, G. Zhang, D.-U. Lee, W. Luk, J. Villasenor, et al. “A Comment
on the Implementation of the Ziggurat method”. In: Journal of Statistical
Software 12.7 (2005), pp. 1–4.

[36] S. S. Shapiro and M. B. Wilk. “An analysis of variance test for normality
(complete samples)”. In: Biometrika 52.3/4 (1965), pp. 591–611.

[37] https://en.wikipedia.org/wiki/Coefficient_of_determination.

https://en.wikipedia.org/wiki/Coefficient_of_determination

102

4
HW/SW Approach for PF-SLAM FPGA

Architecture and Implementation

4.1 Introduction

This chapter provides an FPGA system-on-chip realization of the PF-SLAM

methodology explained in Chapter 2 with the objective to overcome PF low speed

problems. A HW/SW co-design approach is used for the design of a HW/SW

PF-SLAM system by applying the PF acceleration techniques from Chapter 3.

The organization of this chapter is as follows. Initially a brief discussion is

provided on embedded system design and on the tools used to assist in the design

and implementation of the PF-SLAM on FPGA platform as it is the platform used

for the development of the PF system. Second, the explanation on the HW/SW

PF-SLAM architecture is given. Then follows the performance evaluation of the

HW/SW PF-SLAM system considering that the inputs to the system comes mainly

from laser scanners. The analysis on the performance of the system is presented

based on a low cost alternative laser scanner and with standard laser scanners

to corroborate the good behaviour of the PF-SLAM system also with low cost

laser scanners in low cost robotics applications. Finally, with an effort to further

speedup the PF computations a new approach for parallel PF implementations is

presented. The proposed approach helps to avoid the high communication data

104 4.2. Embedded Systems Implementation

flux involved with traditional parallel PF architectures through few data exchanges

among parallel particle processors via a central processing unit.

4.2 Embedded Systems Implementation

4.2.1 On the Use of FPGA Based Embedded Systems

Embedded systems are computer systems that are dedicated to a specific purpose.

Embedded systems composed of embedded blocks as parts of a complete device

and often defined as Systems on Chip (SoC) which consist of processing cores

(CPUs), Micro-controllers, DSPs and hardware specific cores tailored for dedicated

tasks. The technologies for the design of embedded systems is based on software /

hardware solutions. Software solutions based on a micro-programmed system, such

as a CPU, general purpose graphic processing units (GPGPUs), a Micro-controller

or a DSP, present the very best flexibility. However, their main drawback is that

their computation is weakly intensive, especially for some embedded applications

where the process requires a long computation time. Therefore, for most applications

the computation time will be prohibitive if a software solution is adopted.

Hardware based solutions include FPGAs, application specific integrated circuit

(ASIC) and application specific standard product (ASSP). FPGAs enable the

optimization of hardware resources and the use of soft processor cores that are

implemented within the FPGA logic for real-time computing. MicroBlaze [1] and

Nios [2] are the most popular soft core examples provided by the two major FPGA

vendors Xilinx and Altera respectively. A modern FPGA consists of a 2-D array of

programmable logic blocks, memories, fixed-function blocks, and routing resources

implemented in the CMOS technology. ASIC is an integrated circuit specialized to

implement application specific tasks. In the ASIC the design is physically etched

in the silicon. The main limitation of an ASIC is its price and the time-to-market,

which limits its use to applications that requires very high performance or high

volume production. The design using ASIC offers better performance, density and

power consumption when compared to an FPGA. However, compared to ASIC

the FPGAs have the advantages in flexibility, lower price and shorter time to

4. HW/SW Approach for PF-SLAM FPGA Architecture and Implementation 105

market design. ASSPs are designed and implemented in exactly the same way as

ASICs. The only difference is that ASSPs are more general-purpose device that

they intended for use by multiple system design houses.

FPGAs are more appealing choice for embedded system designs compared to

microprocessor-based solutions, ASIC solutions, or other System-on-a-Chip (SoC)

solutions. Compared to microprocessor-GPU based solutions, FPGA based solutions

provide performance improvements with less power consumption. In addition,

FPGAs flexibility provide the possibility of frequent updates of the digital hardware

functions. The use the dynamic resources allocation feature in FPGAs also helps

in order to instantiate each function for the strict required time. This permits the

enhancement of silicon efficiency by reducing the reconfigurable array’s area. Overall,

FPGA-based embedded system is an excellent choice to perform fast processing

while maintaining a good level of flexibility in allowing any modifications in the run

time required for current embedded systems. The discussion on PF implementations

based on FPGAs and the other platforms is provided in Section 1.2 of Chapter 1.

4.2.2 Embedded Processors in FPGAs

In the design of embedded systems based on FPGAs, there exists a hard-core and/or

soft-core processor option. Hard-core processors are fixed and have dedicated

resources of the FPGAs. Soft-core processors are implemented entirely in the

FPGA logic and unlike the hard-core processors they must be synthesized and

fit into the FPGAs fabric. Soft-core processors provide a substantial amount of

flexibility through the configurable nature of the FPGA. MicroBlaze is one typical

example of a soft-core processor which is used for the design of the PF-SLAM

HW/SW system presented in this Chapter.

MicroBlaze is a 32-bit reduced instruction set computer (RISC) Harvard ar-

chitecture soft-core processor core optimized for embedded applications in Xilinx

FPGAs. The MicroBlaze soft-core processor solution provides the flexibility to

incorporate a combination of peripherals, memory and interface features for the

specific embedded application. The functional block diagram of the MicroBlaze

106 4.2. Embedded Systems Implementation

core is shown in Fig. 4.1. The architecture of Microblaze is a single -issue, 3 -stage

pipeline with 32 general-purpose registers, an Arithmetic Logic Unit (ALU), a shift

unit, and two levels of interrupt. In addition to this basic design, the processor

is highly configurable allowing the selection of a specific set of features tailor to

the exact needs of the target embedded application. These additional features

include: barrel shifter, divider, multiplier, single precision floating point unit (FPU),

instruction and data caches, exception handling, debug logic, Fast Simplex Link

(FSL) interfaces and others. The configurability of the MicroBlaze architecture

provides the flexibility in the compromization of performance requirements against

the logic area cost of the soft processor for target application. Any optional features

which are not required by the specific application are not implemented therefore

do not utilize the FPGA resources.

The processor supports four different type memory interfaces: Local Memory

Bus (LMB), IBM’s Processor Local Bus (PLB) or On-chip Peripheral Local Bus

(OPB), the AMBA AXI4 (Advanced eXtensible Interface 4) interface and ACE

interface, and Xilinx Cache Link (XCL). The LMB provides single-cycle access

to on-chip dual port block RAM. The AXI4 and PLB/OPB interfaces provide

Figure 4.1: MicroBlaze architecture [3]

4. HW/SW Approach for PF-SLAM FPGA Architecture and Implementation 107

a connection to both on-chip and off-chip peripherals and memory. The ACE

interfaces provide cache coherent connections to memory. The XCL interface is

intended for use with specialized external memory controllers. MicroBlaze also

supports up to 16 Fast Simplex Link (FSL) or AXI4-Stream interface ports, each

with one master and one slave interface. FSL is a uni-directional point-to-point

communication channel bus used to perform fast communication between any two

design elements on the FPGA. The FSL interfaces are used to transfer data to

and from the register file on the processor to hardware running on the FPGA. The

performance of the FSL interface can reach up to 300 MB/sec. The FSL bus system

is ideal for MicroBlaze-to-MicroBlaze or streaming I/O communications.

4.2.3 FPGA Development Tools

For embedded system development, a broad range of development system tools

collectively called the ISE Design Suite is offered. The ISE Design Suite is a Xilinx

development system product that is required to implement designs into Xilinx

programmable logic devices. For embedded system design an Embedded Edition

of the Xilinx ISE Design Suite is offered comprising main tools like the Integrated

Software Environment (ISE), the Embedded Development Kit (EDK), and hardware

Intellectual Properties (IP), drivers and libraries for embedded software development.

ISE is a Xilinx development system product that is required to implement

designs into Xilinx programmable logic devices. EDK is a suite of tools and IPs

that enables designing a complete embedded processor system for implementation

in a Xilinx FPGA device. The EDK enables the design and integration of both the

hardware and software using two main tools, Xilinx Platform Studio (XPS) and

Software Development Kit (SDK). The XPS is the development environment used

for designing the hardware portion of the embedded processor system. The SDK,

based on the Eclipse open-source framework, is used for development and verification

embedded software applications. The SDK is also available as a standalone program.

Recently the ISE Design Suite is offered as the Vivado Design Suite with some

additional features for system on a chip development and high-level synthesis.

108 4.3. PF Embedded Design Based on MicroBlaze Processor

4.3 PF Embedded Design Based on MicroBlaze
Processor

The global architecture of the proposed system for the PF in a Grid-based Fast

SLAM algorithm is given in Fig. 4.2. It comprises of an embedded Microblaze

processor responsible for the execution of software functions, the PF hardware

accelerator (PF HW accelerator) and, other peripheral such as timer and universal

asynchronous receiver transmitter (UART) cores with the purpose to help in the

analysis and verification of the system.

In the architecture shown in Fig. 4.2, the sampling module is responsible

for generating particles by applying a probabilistic motion model of the robot

and odometry sensor data. The importance weight module is responsible for the

evaluation of the weights of the particles using the laser scanner measurement data

and the occupancy grid map data. The resampling module conducts the evaluation

of the replication factors of the particles based on their weight obtained from the

importance weight module. For its operation this module requires a uniform random

number generation. The OGM module performs map related operations. The PF

Figure 4.2: MicroBlaze processor based PF-SLAM FPGA architecture

4. HW/SW Approach for PF-SLAM FPGA Architecture and Implementation 109

hardware acceleration module accelerates the computational demanding steps of

the PF to SLAM application. The PF HW accelerator contains the CORDIC

and RNG cores where they are connected to the Microblaze soft-core processor

through a dedicated one-to-one communication bus, FSL (Fast simplex Link) for

fast streaming of data. The details of PF HW accelerator is shown in Fig. 4.3.

In the PF HW accelerator, individual CORDIC hardware modules are assigned

for the evaluation of different functions in the sampling, fS(), and importance

weight, fI(), steps and are configured through their config port. The CORDIC

modules implements the architecture of the CORDIC module explained in Chapter

3, Section 3.4.3. In Fig. 4.3, the input/output interfaces to the CORDIC module is

given with two possible inputs I0 and I1, and a three bit configuration input port

config to choose a specific function for evaluation. Depending on the configuration

bits on the config input interface to the CORDIC module, a specific function is

evaluated and the result is provided at the output interface. Uniform (URN) and

Gaussian random numbers (GRN) are provided to the resampling and sampling

steps respectively by the RNG module. The hardware architecture of the RNG

module comprises the Tausworthe URNG, CORDIC and Ziggurat GRNG sub-

modules as explained in Chapter 3, Section 3.5.3. The Tausworthe URNG module

is responsible for generation of two uniform random numbers (U0 and U1) that are

used by the Ziggurat module and in the resampling step of the PF.

4.4 PF HW/SW FPGA Implementation

For verification of the proposed architecture shown in Fig. 4.2, both a realistic

simulation generated log data and real experimental log data from odometry and

laser scanner is interfaced with a DDR3 SDRAM memory in order to synchronize

data for the processing. The odometry data is used in the sampling step to generate

new particle instances and the laser data is used in the importance weight step

for the evaluation of particle weights. The particles and their associated weights

are buffered to a Block RAM for fast accessing.

110 4.4. PF HW/SW FPGA Implementation

F
igure

4.3:
Internalstructure

ofthe
PF

H
W

A
cceleration

m
odule

4. HW/SW Approach for PF-SLAM FPGA Architecture and Implementation 111

The Xilinx version 14.6 ISE, EDK and SDK are used for the design and

implementation of the system architecture on Xilinx Kintex-7 KC705 FPGA device

running at 100 MHz. The design of the hardware modules is written in VHDL

language, where the different variables are represented as fixed point numbers with

Q(8:24) format (i.e. 8 bits for the integer part and 24 bits for the fractional part).

For the different variables in the software part of the algorithm a 32 bit floating

point representation is used by enabling the FPU of the MicroBlaze processor.

Fig. 4.4 summarizes the execution time given by the number of clock cycles

for each step of the PF in the Grid-based Fast SLAM algorithm. Fig. 5.16(a),

5.16(b) and 5.16(c) show the comparisons on the number of clock cycles required

for sampling, importance weight and resampling steps respectively in the case of an

(a) Sampling (b) Importance weight

(c) Resampling (d) Speed up

Figure 4.4: Comparison on execution times for the sampling (S), importance weight
(I) and resampling (R) steps for embedded software implementation (SW) vs HW/SW
embedded implementation and the corresponding speed up factor in the execution time
for each step (d).

112 4.4. PF HW/SW FPGA Implementation

embedded software and HW/SW implementations. Fig. 5.16(d) shows the overall

speed up obtained with the HW/SW implementation over the embedded software

implementation. The results in Fig. 4.4 show that, the hardware acceleration leads

to better speed up in the execution time of the HW/SW PF in all the three steps

of the algorithm. In particular, a significant speedup is achieved in the sampling

step which can be attributed to the fast generation of Gaussian random numbers

by the random number generator hardware module. Compared to the other steps,

the importance weight steps shows a relatively higher clock cycles as shown in

Fig. 5.16(b). This is due to the fact that, for the evaluation of the weight of each

particle in the importance weight step, it is required to transform every laser scan

measurements point data (range and bearing angle) from a robot frame of reference

to a global frame of reference where normally more than hundreds of laser scans

points have to be evaluated from the sensor. This requires the evaluation of the sine

and cosine functions for every scan point. Furthermore, for every laser scan end point

the computation of an exponential function and scan matching between occupied

points in a map is required. These are the main reasons attributed to the relatively

large clock cycles obtained in the importance weight step. In general, the presented

approach leads to an improvement in the speedup of 140×, 14.87× and 19.36× in

the sampling, importance weight and resampling steps respectively (Fig. 5.16(d)).

In respect to the resource usage of the implemented PF-SLAM on FPGA,

Table 6.1 shows the hardware resource utilization of the whole HW/SW system

architecture (Fig. 4.2) and the PF acceleration module (Fig. 4.3). It can be seen

that few of the available FPGA resources are used for the implementation.

4. HW/SW Approach for PF-SLAM FPGA Architecture and Implementation 113

Table 4.1: Resource utilization for PF hardware acceleration module and the HW/SW
co-design system on Xilinx Kintex-7 KC705 FPGA

Resources PF HW Acc. HW/SW System Available

Slice registers 101 (0%) 9406 (2%) 407600
Slice LUTs 4216 (2%) 12246 (6%) 203800
DSP48E1s 12 (1%) 23 (2%) 840
BRAMB36E1 2 (0%) 42 (9%) 445

4.5 PF-SLAM Performance Evaluation

4.5.1 On The Use of Laser Scanners

In mobile robotic applications for performing SLAM efficiently, the robot needs

to sense, calculate the distances to the obstacles and build the map for robot

navigation. To achieve that, laser scanners are widely used in mobile robotics

localization systems [4]. However, the high price tag in the most commonly used

laser scanners, SICK LMS 200 and Hokuyo URG-04LX [5], has been a major

drawback for many hobbyist and educational robotics practitioners which results in

the need for alternative low cost laser scanners. This section presents the evaluation

of the PF-SLAM implementation explained in sections 4.3 and 4.4 using also a

low cost Neato XV-11 laser scanner and other typically used laser scanners. For

the typically used laser scanners the proposed system is validated under complex

robot environments based on real data sets.

4.5.2 On Neato XV-11 Laser Scanner

The domestic vacuum cleaner robot Neato XV-11 [6], shown in Fig. 4.5 (left)

includes an alternative low cost 360 degree laser scanner [7]. The laser scanner can

be removed from the robot Fig. 4.5 (right) in order to allow robotics practitioners

to use it in their projects. Instead of using time of flight measurement, like the

more expensive laser scanners, it uses triangulation to determine the distance to

the target, using a fixed-angle laser, a CMOS imager and a DSP for subpixel

114 4.5. PF-SLAM Performance Evaluation

Figure 4.5: Neato XV-11.

interpolation [8]. The sensor establishes a serial communication with a 115200 bps

baudrate, sending data up to about 5 Hz. Its power consumption without motor is

relatively low: 145 mA at 3.3 V, which is very important factor in order to increase

the autonomy of a mobile robot powered by only on-board batteries. It provides a

360 ◦ range of measurements, with an angular resolution of 1 degree, with its range

from 0.2m up to 6m with an error inferior to 0.03m up to 6m measures.

In order to obtain all the data information required for evaluating the PF-SLAM

system using this laser scanner, the following procedure can be established. First,

using a SimTwo [9] realistic simulation software (screen shot shown in Fig. 4.6) that

supports several types of robots the behavior of the laser scanner can be mimicked

based on its model in a virtual simulation environment. Then a simulation is

performed by navigating a robot equipped with a hacked Neato XV-11 laser scanner

in a Robot@Factory competition maze [10]. Based on the actuator [11] and laser

scanner models [12] used in the simulator, the simulation finally provides the robot

odometry and laser scanner data information for performing SLAM on the FPGA.

4.5.3 Results Discussion

This section presents qualitative and quantitative results obtained based on the

application of the proposed system on different laser scanners. First the proposed

system is validated based on the Neato XV-11 low cost laser scanner using the

procedure just introduced. Then, further evaluation of the system is conducted by

applying datasets gathered with real robots from the two most commonly used laser

4. HW/SW Approach for PF-SLAM FPGA Architecture and Implementation 115

Figure 4.6: SimTwo simulation environment

scanners, Hokuyo and SICK. In all cases a total of 100 particles and an occupancy

grid map with a resolution of 0.01 meters/map cells are used. The performance of

the system is evaluated qualitatively on the generated occupancy grid map and by

evaluating the error between the ground truth and the PF estimated pose. In the

evaluation of the estimation errors in the pose of the robot, while no ground truth

is available a measure of the error against an approximated robot path generated

by the GMapping approach is used [13].

Neato XV-11

For the evaluation of the system on the Neato XV-11 laser scanner, a simulated

Robot@Factory competition maze environment shown in Fig. 4.7 (top) is used. A

robot is guided to navigate in the maze while collecting odometry and laser scanner

data for post processing in the SLAM algorithm on the FPGA. Raw collected data

is first processed to calibrate the odometry. Then synchronization between the

calibrated odometry data and laser data is performed. The final data is used for

performing the SLAM algorithm on the FPGA, with the objective of constructing a

probabilistic occupancy grid map of the robot’s maze environment while estimating

the trajectory of the robot simultaneously. Fig.4.7 (bottom) shows the FPGA

implementation result for the occupancy grid map generated based on the odometry

and laser log data. The size of the occupancy grid map is 4meter × 4meter.

116 4.5. PF-SLAM Performance Evaluation

Figure 4.7: A simulation maze environment (top) and the occupancy grid map (bottom)
constructed based on the laser model on the FPGA.

For qualitative analysis of the performance of the implementation, the plot of

the trajectory of the robot obtained from odometry, ground truth and particle filter

estimate are provided in Fig. 4.8. The results in Fig. 4.8 shows that the particle

filter estimated path of the robot is close to the actual ground truth path of the

robot, which confirms the good performance of the implementation. Besides the

qualitative analysis, a quantitative evaluation of the performance of the particle

filter to the pose estimation of the robot is performed by evaluating the error

between the ground truth and the particle filter estimated pose (Fig. 4.9(a) and

Figure 4.8: Robot trajectories for the odometry estimate, ground truth and the particle
filter estimated path

4. HW/SW Approach for PF-SLAM FPGA Architecture and Implementation 117

(a) Translational error (b) Angular error

(c) Translational RMSE (d) Angular RMSE

Figure 4.9: Angular and translational errors for pose estimation

4.9(b)), and the root mean squared error (RMSE) metrics (Fig. 4.9(c) and 4.9(d)).

The pose error shown in Fig. 4.9(c) and 4.9(d) is obtained by taking the difference

of the sample mean of the particle filter with 100 particles and the ground truth

data. The RMSE for the pose is calculated by averaging 50 independent runs

of the algorithm at each time step.

Hokuyo

For the evaluation of the system based on a Hokuyo laser scanner, an experiment

is conducted with a TurtleBot [14] mobile robot equipped with a Hokuyo laser

scanner in an office environment. While the robot is navigating autonomously, raw

odometry and laser scanner data are acquired for processing on the FPGA. The

robot navigates starting from the inside of the lab and moves around a corridor

and returns back to its starting position. The resulting map and particle filter

estimated trajectory generated by the proposed system for this experiment is shown

in Fig. 4.10. Imperfect edges in some parts of the generated occupancy grid

map part of the office resulted due to the fact that there are a cloud of boxes

and other materials in the office.

118 4.5. PF-SLAM Performance Evaluation

Figure 4.10: Generated map of a lab at UAB university

As no ground truth is available, the navigation error is estimated using the

GMapping tool from ROS (Robot Operating System). Fig. 4.11 shows the evolution

in the estimated robot pose with time and the corresponding errors shown as error

bars. Our system shows no significant error for all the x, y, and θ of the robot pose.

SICK

Finally the proposed system is validated on SICK laser scanners involving large

and complex indoor environments. The raw odometry and laser scanner data

for conducting this validation is obtained from the Robotics Data Set Repository

(Radish) [15]. In this case, a ground truth is neither available, therefore the

estimation error is evaluated in respect to the pose obtained with the GMapping

tool. The resulting map and estimated trajectory generated by applying our system

to the Ubremen-Cartesium and MIT CSAIL data sets which are based on a SICK

LMS laser scanner from Radish can be seen in Fig.4.12, top and bottom respectively.

The raw odometry trajectory and the estimated trajectory of the robot are also

shown in Fig 4.12, where in both cases our system is able to correct the high

odometry error and generates the correct maps. The pose estimation errors for the

Ubremen-Cartesium and MIT CSAIL data sets is shown in Fig. 4.13 and Fig.4.14

respectively, where low errors are achieved in both cases.

4. HW/SW Approach for PF-SLAM FPGA Architecture and Implementation 119

(a) Robot x position (b) Robot y position

(c) Robot orientation (θ)

Figure 4.11: x, y, and θ of robot pose evolution with time and corresponding errors in
pose estimation shown as error bars (UAB lab)

Summarizing Results

The mean of the pose estimation errors for all the data sets is summarized in Fig. 4.15

for the (x, y) position and orientation θ of the robot. The mean error is calculated

by averaging 50 independent runs of the algorithm over a given number of time steps.

The results show that in general the proposed system is capable to maintain low

errors in the (x, y) positions and orientation θ of a robot. Furthermore, the results

confirm that for the low cost laser scanner low estimation errors are also achieved.

In addition, a study on the effect of the number of particles on the estimation

performance is conducted based on the RMSE metrics. Fig. 4.16 shows the results

obtained for the effect of the number of particles on the RMSE for the pose of a

120 4.5. PF-SLAM Performance Evaluation

(a)

(b)

Figure 4.12: Map generated based on the Ubremen-Cartesium (a) and MIT CSAIL (b)
data sets. The particle filter estimated and the raw odometry trajectories are shown with
red and blue colors respectively

robot based on the Ubremen-Cartesium and MIT CSAIL data sets. The results

of Fig. 4.16 shows a decrease in the RMSE with the number of particles.

The performance evaluation of the system on low cost and standard laser scanners

shows the goodness of the method in front of the very low cost alternative laser

scanner. The results achieved with the application of the presented system using

the low cost laser scanner shows good performance in the estimation and confirms

that such low cost laser range finder can be used in low cost applications.

4. HW/SW Approach for PF-SLAM FPGA Architecture and Implementation 121

(a) Robot x position (b) Robot y position

(c) Robot orientation (θ)

Figure 4.13: x, y, and θ of robot pose evolution with time and corresponding errors in
pose estimation shown as error bars (Ubremen-Cartesium)

4.6 Parallel PF with Metropolis Coupled MCMC

To make PFs amenable to real time applications, a speedup of their intensive

computations through parallel processing is an appealing option. This can be

achieved as most of the operations in PFs are performed independently. In particular,

the sampling and importance weight computations can be easily parallelized and

pipelined as there is no data dependencies between them. However the resampling

step, in particular with traditional resampling methods, creates a bottleneck in

the full parallelization of the whole PF steps computations. Furthermore, the

acceleration of PF computations with parallel hardware implementation normally

requires a significant amount of communication overhead between parallel particle

processing units and a central unit. The huge communication overhead results due

122 4.6. Parallel PF with Metropolis Coupled MCMC

(a) Robot x position (b) Robot y position

(c) Robot orientation (θ)

Figure 4.14: x, y, and θ of robot pose evolution with time and corresponding errors in
pose estimation shown as error bars (MIT CSAIL)

Figure 4.15: Comparison of mean errors for the pose (x, y, θ) of all datasets.

4. HW/SW Approach for PF-SLAM FPGA Architecture and Implementation 123

(a) (b)

Figure 4.16: Effect of number of particles on RMSE for Ubremen-Cartesium (a) and
MIT CSAIL (b) data set.

to the large volume of particle information exchange in the resampling process[16].

To reduce the amount of data communication overhead and accelerate the whole

PF computations, a parallel Metropolis Coupled MCMC (P (MC)3) approach is

introduced in this work. The P (MC)3 approach has the advantages of bottleneck-

free pipelined implementation with the sampling and importance weight steps, which

leads to the reduction of the overall latency of the PF computation. Furthermore,

the P (MC)3 method is suitable for parallel PF realization as it involves few data

exchange and provides simplified parallel architecture design.

The P (MC)3 applies the IMHA algorithm (see Chapter 2, Section 2.8.5) by

running n Markov chains in parallel. Some of the chains are heated by raising their

posterior probability to a power β, where 0 < β < 1. Incremental heat value of

the ith chain is given by βi = 1/[1 + ∆T (i− 1)], where ∆T > 1 is a temperature

increment parameter [17]. The heating parameter of the first chain is 1 (i.e. β1 = 1)

and it is unaltered making it the only cold chain. The details of the P (MC)3

is given in [17, 18]. The algorithm works by running Markov chains in parallel

where heat values are swapped between two randomly selected chains at certain

interval of the iteration to provide better mixing among the parallel chains through

a central processing unit (CU). Based on the P (MC)3 approach, our proposed PF

algorithm follows the steps shown in Algorithm 13.

124 4.6. Parallel PF with Metropolis Coupled MCMC

Algorithm 13 Parallel PF with P (MC)3

1. Perform the sampling and importance weight computation in parallel as
described in section II.

2. Perform P (MC)3 in parallel PEs with IMHA by initializing each Markov
chain with the respective first particle index.

(a) Exchange heat values βi between two randomly chosen PEs based on the
heat acceptance probability [17] at certain interval of the iteration.

(b) Send the acceptance probability Pa calculated in the PEs, where particles
are accepted to the CU.

(c) The highest Pa PE send its particle data to the CU and CU sends the
particle data to the other PEs.

(d) Based on the particle data of the PE with largest Pa, the rest of the PEs
evaluate their proposed particles for acceptance as shown in Fig. 4.17.

(e) Each PE proposes its next particle and evaluates the acceptance
probability based on the current Markov chain particle.

(f) Return to step 2 until all the particles of each PE are considered for
resampling

3. Go to the sampling and importance weight steps

The exchange of βi in step 2(a) improves the mixing of particles among the

multiple Markov chain running in each processing elements (PEs). In step 2(b)

the CU compares the acceptance probabilities Pa’s for the proposed particles by

each PE and requests the PE with the highest Pa value to send its particle data

to the CU. It will be broadcasted to the rest of the PEs. Based on the particle

data from the PE with the highest Pa value, and by proposing a particle from their

Sampled Particle Memory, each PE evaluates the acceptance probability Pa in order

to make the decision of whether to accept or reject the proposed particle. Fig. 4.17

shows the memory architecture for the processing of particle data from the Sampled

Particle MEM in each PE during the resampling step, where the resampled particle

set is stored in the resampled particle memory (Resampled Particle MEM). If a

proposed particle Pi from the Sampled Particle MEM in a given PE is accepted then

it is written to the same memory address in the Resampled Particle MEM. If the

4. HW/SW Approach for PF-SLAM FPGA Architecture and Implementation 125

Figure 4.17: Sampled and resampled particles memory (MEM) schemes for Metropolis-
coupled MCMC

proposed particle is rejected, then two possible particle candidates are considered

for acceptance; one is the previous Markov chain particle pi−1 from the Sampled

Particle MEM and the other is a particle received from the CU. By comparing the

weights of these two candidates, the particle with the highest weight is accepted

and written to the same memory index in the Resampled Particle MEM. This

new approach provides good mixing of particle among the PEs as well as selecting

particles with highest weight value.

4.7 Parallel PF Architecture

The parallel architecture for the proposed PF is shown in Fig. 4.18. It consists of

several PEs and a Central Processing Unit (CU). All the particle processing steps

sampling (S), importance weight (I) and resampling (MC)3 are performed locally in

each PE. A HW/SW co-design approach is used in the design of each PE, where the

software parts of the implementation is realized based on an embedded processor,

and the hardware part is based on a PF hardware acceleration (PF HW accelerator)

block. The details of the design of PF HW accelerator block are given in Section 4.3.

126 4.7. Parallel PF Architecture

Figure 4.18: Parallel particle filter architecture

The CU performs simple tasks like global estimation and coordination among

the PEs. Each PE communicates with the CU through a dedicated connection from

its resampling step. The communication among the PEs is taking place through

the CU that involves few data exchange such as the current chain of the Markov

which consists of a single particle data, the heat values βi, acceptance probabilities

α and the inference value taken from the cold chain. One of the advantage of this

proposal is that it leads to a distributed computation with very few information

exchange between the parallel PEs through a CU. For example, considering the

traditional parallel architecture [16], N weights and N/2 index factors have to

be shared between the PEs and CU, and, in the worst case scenario, there could

be N/2 inter-PE communication. In our proposed algorithm there is no inter-PE

communication, which results in a reduced communication overhead and simplifies

the parallel PF architecture design. Furthermore, as IMHA does not require all the

normalized particle weights, resampling starts as soon as the first particle weight

is available, and avoids the latency of the whole implementation.

4. HW/SW Approach for PF-SLAM FPGA Architecture and Implementation 127

4.8 Proposed Parallel PF Implementation and
Results

The implementation of the parallel PF architecture presented in Fig. 4.18 is

synthesized on a Xilinx Kintex 7-XC7K325T FPGA device. The CU is implemented

using the Microblaze processor and the PEs are implemented using the PF HW/SW

architecture shown in Fig. 4.2. Table 5.1 and Table 4.3 respectively provide the

FPGA hardware resource utilization and the number of different Xilinx IP modules

required in the synthesis of the parallel HW/SW PF architecture shown in Fig.

4.18, considering n = 3 PEs. Fig. 4.19 shows the FPGA hardware resources

overheads of the parallel implementation (with n = 3 PEs), in respect to the serial

implementation as shown in Fig. 4.2. The overheads are of 4.75×, 5.44×, 1.61×

and 2.56× in slice registers, LUTs, DSP48E1 and RAM36E1 respectively.

The improvements in hardware acceleration obtained in the parallelization are

made evident in Fig. 4.20(a) . It shows the processing time (number of clock cycles)

of the PF by varying the number of particles and the number of parallel PEs. This

result shows that with parallelization of the PF, significant improvement in the

computation is achieved with parallel PEs compared to the serial implementation

with single PE. The parallel implementation of the PF consisting of n = 3 PEs

and for N = 100 particles, a speedup of 72.28× and 3.97× are achieved over an

embedded software implementation and a serial single PE HW/SW implementation

respectively. Fig. 4.20(b) shows the effect of increasing the number of parallel PEs

Table 4.2: FPGA resource utilization for serial PF and parallel PF with 3 PEs

Resources Serial PF Parallel PF with 3 PEs Available resources

Slice registers 2950 (0.7%) 14025 (3%) 407600
Slice LUTs 3661 (1.8%) 19905 (9%) 203800
DSP48E1s 23 (2.7%) 37 (4%) 840
RAMB36E1 136 (31%) 348 (78%) 445

128 4.8. Proposed Parallel PF Implementation and Results

Table 4.3: Xilinx IP Resource utilization overview

IP Module Number of Used

MicroBlaze 3
Fast Simplex Link (FSL) Bus 24
Local Memory Bus (LMB) 1.0 6
AXI Interconnect 2
Block RAM (BRAM) Block 9
LMB BRAM Controller 18
AXI 7 Series Memory Controller (DDR2/DDR3) 1
Processor System Reset Module 1
MicroBlaze Debug Module (MDM) 1
Clock Generator 1
AXI UART (Lite) 1
AXI Timer/Counter 1

on the overall execution time of the particle filter. The result of Fig. 4.20(b) further

approves the processing time reduction with parallelism.

Figure 4.19: FPGA hardware resources overhead ratio of the parallel PF over the serial
PF.

4. HW/SW Approach for PF-SLAM FPGA Architecture and Implementation 129

20 40 60 80 100

0

2

4

6

8

10

12

14

16

18

20

22

24

P

ro
c

e
s

s
in

g
 t

im
e

 (
M

 c
lo

c
k

 c
y

c
le

s
)

Number of particles

 Serial PF

 PF-(MC)
3
 (2PE)

 PF-(MC)
3
 (4PE)

 PF-(MC)
3
 (6PE)

 PF-(MC)
3
 (8PE)

 PF-(MC)
3
 (10PE)

(a)

2 4 6 8 10

2

4

6

8

10

12

P
ro

c
e

s
s

in
g

 t
im

e
 (

M
 c

lo
c

k
 c

y
c

le
s

)

Number of PEs

(b)

Figure 4.20: Comparison between serial and parallel PF based on (MC)3 (a) and timing
for N = 100 particles with varying number of PEs (b)

4.9 Discussion on Parallel PF Implementations

In this section a discussion on the comparison of the performance of the proposed

parallel PF with other parallel PF implementations is provided. However, the

direct comparison of the proposed parallel PF with other parallel PF HW/SW

implementations is difficult due to the variations in the computations involved in the

sampling and importance weight steps depending on the specific application of the

PF. Nevertheless, taking this into account, some comparisons of the implemented

work can be made with previous implementations from the literature. Table

4.4 presents a summary of works implementing the PF for different applications.

It provides information on the application area, the implementation device and

platform, the number of particles and parallel PEs, the respective hardware resource

utilization and the execution time of the implementations considered for comparison.

130
4.9.

D
iscussion

on
ParallelPF

Im
plem

entations

Table 4.4: Comparisons with other Implementations

Ref. [19] [20] [21] [22] Proposed

Application Waveform-agile
radar tracking

3D facial pose
tracking

Localization and peo-
ple tracking

Tracking Grid-based Fast
SLAM

Platform HW HW/SW FPGA/CPU HW HW/SW
FPGA Device Virtex-5

XC5VSX240T
Virtex-4SX Virtex-6

XC6VSX475T
Virtex-5
XC5VLX50T-
3-FF1136

Kintex-7
XC7K325T

N 1000 100 70 64 100
No. of PEs 4 2 2 8 3
Slice registers 5 87.57 9.36 31.14 3
Slice LUTs 7 41.03 39 52.12 9
DSP48E1s 9 66.67 48 35.42 4
RAMB36E1 9 96.35 48 6.67 78
Execution
Time (ms)

0.00684 73.72 18 0.00258 110.31/0.994

4. HW/SW Approach for PF-SLAM FPGA Architecture and Implementation 131

The work presented in [19] is a total hardware based implementation based

on IMHA resampling. Besides the local computation of the PF steps in each

PE, their approach requires an extra one-dimensional grouping method to reduce

communication overheads. This leads to extra computations like local maxima and

minima in each PE and their transfer to a CU for the global maxima and minima

computation. This approach requires the exchange of a total (2G× d× n) + (4× n)

data between the PEs and the CU, where G is the number of groups in each PE,

d is the dimension of the state vector, and n is the number of PEs. In respect

to this work, our approach requires only a total of 4 data exchange (i.e. a single

particle data, the heat values βi, acceptance probabilities pa and the inference value

taken from the cold chain). As a result, in our approach data exchange is fixed

and not dependent on other parameters like the dimension of the state vector and

the number of PEs compared to this work.

In [22] a two-step parallel architecture is proposed. In the first step the sampling,

importance weight, and output calculations are carried out in parallel. Then in

the second step a sequential resampling based on a modified residual systematic

resampling [23] algorithm is conducted. For conducting the residual systematic

resampling, normalization of the particle weights is required. This results in the

exchange of N weight data among the PEs. To minimize such large data exchange,

the authors suggested first each PE to calculate the sum of the weights of its particles

and send that data to the CU. The CU uses the sum of the weights of the particles

from each PE to determine the number replicated particle each PE is allocated.

This minimizes the particle weight data exchange by a factor of k. However their

presented scheme requires interconnection among the PEs for exchange of surplus

particles, which results in the communication overhead and complicate the hardware

design. Further more, extra resampling step is required to be performed by the CU.

In [20] a parallel PF architecture based on an array of PEs, and a resampling

unit along with a set of parameterized interfaces is proposed. The parameterized

interfaces are suggested as a means to a parameterized design framework for different

application of the particle filter. In the implementation a centralized resampling

132 4.9. Discussion on Parallel PF Implementations

based on the systematic resampling is considered, which results in immense data

exchange between the PEs and the central resampling unit [24]. In [21] a HW/SW

design based on an FPGA and a multi-threaded host CPU is realized for robot

localization application. The sampling and importance are implemented on the

FPGA with a long pipeline for processing many particles are at once and the

resampling is implemented on the host CPU. Their approach requires the host CPU

to gather all the particle data from the FPGA via PCI Express link to perform

the resampling and particle size adaptation.

In contrast to the implementations given in Table 4.4, the proposed imple-

mentation shows a significant improvements in hardware resources utilization,

except the block RAM requirements (due to the BRAM usage resulted from the

occupancy grid map representation). The execution time of 110.31ms for our

implementation in Table 4.4 account to the whole PF computations applied to

the SLAM problem. SLAM is a complex problem in robotics, where it involves

complex system and measurement models and requires intensive data processing.

The intensive processing results due to the occupancy grid map update procedure

and the requirement of processing large number of laser range finder sensor data.

As shown in Fig. 3.3 of Chapter 3, most of the computations in the PF for the

SLAM application lies in the importance weight step (69.03%). Where most of the

computations in this steps account to the processing of laser data and the occupancy

map update procedure. For fair comparison, if the number of clock cycles accounted

for these procedures is neglected, the parallel implementation with 3 PEs could

result in an execution time of about 0.994 ms as shown in Table 4.4. Therefore, the

parallel processing of the large sensor data and map update procedure would be

specially helpful for further speedup of the PF computation in robotics application

where 100 ms level of sensor update rate is quite common.

The performance of our system is compared to parallel PF implementations in

Table 4.4 which are based on a totally hardware or a HW/SW solution. Without

considering the intensive sensor data processing and occupancy map update proce-

dures, our implementations resulted in an improved performance while compared

4. HW/SW Approach for PF-SLAM FPGA Architecture and Implementation 133

to the execution time of the HW / SW based implementation in [20] and [21]. The

low execution times reported in [19] and [22] are based on a total hardware parallel

implementation for a tracking application, where compared to SLAM application

the system and measurement models are simpler and does not involve large sensor

data processing and memory access operations (as required for the occupancy

grid map update procedure). While considering parameters like the amount and

complexity of data exchange schemes and CU design complexity our algorithm

shows optimization in respect to the works presented in [19–22]. For example, in

these studies an additional particle regrouping step is required to be performed

which introduces extra computation and requires certain information exchange

between PEs and CU. In general, similar characteristics of the obtained results are

reported by these authors considering different types of resampling algorithms. In

general, besides the very complex arithmetic operations in the models involved in

SLAM and the requirement of large sensor / memory data processing, compared to

other FPGA based implementations of the PF, the proposed P (MC)3 based parallel

PF demonstrated improved processing speed as a result of the PF parallelization.

134

References

[1] http://www.xilinx.com/products/design-tools/microblaze.html.
[2] https://www.altera.com/products/processors/overview.html.
[3] MicroBlaze Processor Reference Guide- Embedded Development Kit EDK

14.7. English. Version UG081 (v14.7). Xilinx.
[4] K. O. Arras and N. Tomatis. “Improving robustness and precision in mobile

robot localization by using laser range finding and monocular vision”. In:
Advanced Mobile Robots, 1999.(Eurobot’99) 1999 Third European Workshop
on. IEEE. 1999, pp. 177–185.

[5] M. Alwan, M. Wagner, G. Wasson, and P. Sheth. “Characterization of
Infrared Range-Finder PBS-03JN for 2-D Mapping”. In: Robotics and Au-
tomation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International
Conference on. 2005, pp. 3936–3941.

[6] Hacking the Neato XV-11. https : / / xv11hacking . wikispaces . com/.
Accessed:2015.

[7] Neato Robotics XV-11 Tear-down. https://www.sparkfun.com/news/490.
Accessed:2015.

[8] P. Shah, K. Konolige, J. Augenbraun, N. Donaldson, C. Fiebig, Y. Liu,
H. M. Khan, J. Pinzarrone, L. Salinas, H. Tang, et al. Distance sensor
system and method. US Patent 8,996,172. 2015.

[9] P. Costa, J. Gonçalves, J. Lima, and P. Malheiros. “Simtwo realistic simulator:
A tool for the development and validation of robot software”. In: Theory
and Applications of Mathematics & Computer Science 1.1 (2011), p. 17.

[10] J. Gonçalves, J. Lima, P. Costa, and A. Moreira. “Manufacturing education
and training resorting to a new mobile robot competition”. In: Conference
on Flexible Automation and Intelligent Manufacturing FAIM 2012. Tampere
University of Technology. 2012.

[11] J. Gonçalves, J. Lima, P. J. Costa, and A. P. Moreira. “Modeling and
simulation of the EMG30 geared motor with encoder resorting to simtwo:
the official robot@ factory simulator”. In: Advances in Sustainable and
Competitive Manufacturing Systems. Springer, 2013, pp. 307–314.

[12] D. Campos, J. Santos, J. Gonçalves, and P. Costa. “Modeling and simulation
of a hacked neato XV-11 laser scanner”. In: Robot 2015: Second Iberian
Robotics Conference. Springer. 2016, pp. 425–436.

http://www.xilinx.com/products/design-tools/microblaze.html
https://www.altera.com/products/processors/overview.html
https://xv11hacking.wikispaces.com/
https://www.sparkfun.com/news/490

136 References

[13] G. Grisetti, C. Stachniss, and W. Burgard. “Improved techniques for grid
mapping with rao-blackwellized particle filters”. In: Robotics, IEEE Trans-
actions on 23.1 (2007), pp. 34–46.

[14] http://www.turtlebot.com.
[15] http://radish.sourceforge.net/index.php.
[16] M. Bolic. “Architectures for efficient implementation of particle filters”.

PhD thesis. Stony Brook University, 2004.
[17] G. Altekar, S. Dwarkadas, J. P. Huelsenbeck, and F. Ronquist. “Parallel

metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic
inference”. In: Bioinformatics 20.3 (2004), pp. 407–415.

[18] C. J. Geyer. “Markov chain Monte Carlo maximum likelihood”. In: (1991).
[19] L. Miao, J. J. Zhang, C. Chakrabarti, and A. Papandreou-Suppappola.

“Algorithm and parallel implementation of particle filtering and its use in
waveform-agile sensing”. In: Journal of Signal Processing Systems 65.2 (2011),
pp. 211–227.

[20] S. Saha, N. K. Bambha, and S. S. Bhattacharyya. “Design and implemen-
tation of embedded computer vision systems based on particle filters”. In:
Computer Vision and Image Understanding 114.11 (2010), pp. 1203–1214.

[21] T. C. Chau, X. Niu, A. Eele, W. Luk, P. Y. Cheung, and J. M. Maciejowski.
“Heterogeneous Reconfigurable System for Adaptive Particle Filters in Real-
Time Applications”. In: ARC. Springer. 2013, pp. 1–12.

[22] H. A. A. El-Halym, I. I. Mahmoud, and S. Habib. “Proposed hardware
architectures of particle filter for object tracking”. In: EURASIP Journal on
Advances in Signal Processing 2012.1 (2012), pp. 1–19.

[23] M. Bolic, A. Athalye, P. M. Djuric, and S. Hong. “Algorithmic modifica-
tion of particle filters for hardware implementation”. In: Signal Processing
Conference, 2004 12th European. IEEE. 2004, pp. 1641–1644.

[24] A. Athalye, S. Hong, and P. M. Djuric. “Distributed architecture and
interconnection scheme for multiple model particle filters”. In: Acoustics,
Speech and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE
International Conference on. Vol. 3. IEEE. 2006, pp. III–III.

http://www.turtlebot.com
http://radish.sourceforge.net/index.php

5
HW Approach for PF-SLAM Processing

Element Design

5.1 Introduction

For a high throughput PF realization, this chapter presents the design of the PF

processing element (PE) with hardware implementation that includes the three step

of the PF. For the development of a generic PF PE, the design approach considered

in this chapter primarily focuses on the high-level data and control flow with the aim

to provide the flexibility for easy integration of the design to different applications of

the PF. As part of the PF PE design, important challenges in SLAM are also solved.

Such as the design and implementation of a parallel laser scanner co-processor

has been realized. The hardware design of the parallel laser co-processor has been

realized with the objective of accelerating the processing of large measurement data

from a laser scanner sensor in the update step of the PF applied to the SLAM

problem. The hardware realization of Bresenham line drawing algorithm [1] that is

applied in our application is also presented. Finally, the analysis and evaluation on

the performance of the proposed PF PE based on real dataset is presented.

138 5.2. Proposed System Architecture

5.2 Proposed System Architecture

The high level block diagram of the proposed hardware architecture shown in Fig.

5.1 summarizes the global architecture for the PF implementation to the SLAM

problem. The architecture is composed of two major hardware computational units,

the PF processing element (PE) and laser range finder parallel processor (LRF

parallel processor). The PE performs all the three steps of the PF, the sampling (S),

importance weight (IW) and resampling (R). The LRF parallel processor performs

the parallel processing of laser scanner data from a laser range finder (LRF) sensor

and communicate with the PE module. Information about the position of the robot

is obtained from an odometry sensor and used by the PE module as per the system

model equations in the sampling step of the PF to the SLAM application. The

details of the description on the hardware design of the LRF parallel processor and

the PE modules are given in section 5.3 and 5.4 respectively.

5.3 Laser Scanner Parallel Co-processor Design

In PFs, an update to all the particles before the arrival of new measurement

data is required. However, for systems with complex sensor models it is possible

Figure 5.1: System architecture

5. HW Approach for PF-SLAM Processing Element Design 139

that the update not being performed to all the particles before the arrival of

new measurement data. This results in the discarding of valuable measurement

information that cannot be processed in time.

In SLAM, a robot uses sensor measurements (laser or ultrasonic scanners, cam-

eras, etc.) and odometry measurements to acquire information over its environment

and perform localization and mapping. SLAM involves the processing of large

measurement data at higher rate before every update step of the PF. Observations

obtained based on laser scanner, normally involves several hundreds of scan points

at a time. For each observation received, all the three steps of the PF are performed

to a large number of particles (typically several hundreds or thousands). Once

all the particles are processed through these three steps, the estimate of the state

at the sampling instant is calculated and the next observation can be processed.

These computations present significant computational load to the application of

the PF to SLAM in real time. Furthermore, as the processing of such a large

amount of sensor data with a central processor unit is a time consuming task, and

for a single central processor unit computing the state estimate using PF even

with a few sensor data is computationally too intensive, it requires the design of

dedicated hardware for performing this task.

SLAM implementations based on laser scanner requires the projection of individ-

ual laser scan end points into a global coordinate space of the map, and the tracing

of all the grid cells coordinates along the path of the individual laser beams. For

projection of the individual scan points into the global coordinate frame of the map

m it is required the pose (x, y, θ) of the robot in the global coordinate, the relative

position (xsens, ysens) of the laser scanner sensor in the robot coordinate and the

angular orientation θsens of the sensor beams relative to the robots heading. The

end point of the individual laser scan point k at time t, (given by Zk
t) for detected

obstacles in the robot’s environment is mapped to the global coordinate system via

trigonometric transformation (as shown in Fig. 5.2). Performing such computations

and tracing of the grid cells along individual laser beams for all the particles at a

given time t leads to a major bottleneck in the PF computations. As a result the

140 5.3. Laser Scanner Parallel Co-processor Design

Figure 5.2: Laser scanner parallel processor

speedup of such computations with parallel hardware design is required to avoid

the computational bottleneck of the PF application to SLAM.

The proposed hardware architecture of the LRF parallel co-processor is shown

in Fig. 5.2, where the top module of this architecture is the laser range finder

(LRF) parallel processor which contains two hardware IP cores: the LRF IP and

the Bresenham IP cores. The LRF IP is the module where the parallel projection

of laser scan points takes place. The Bresenham module performs the generation

of the index of the grid cells along the path of the individual laser scans. These

two main operations of the LRF parallel processor are also shown in Fig. 5.2

(right), where the processing of laser scanner data in hardware is performed by first

generating the coordinates of the end points of the laser scans by the LRF IP core.

Then using the Bresenham IP core the index of all the points between the start

point of the laser (which corresponds to the particle states) are generated. These

indices are used to access the gird cell in the global map, where the occupancy

values are read and used in the evaluation of the weight of the particles and in

updating the map of the robot environment. The Read_Data and Write_Data

modules, are used for verification purposes, where the Read_Data module performs

the reading of sensor log data from a file and provide it to the LRF IP module

and the Write_Data module performs task such as the writing of map data to

5. HW Approach for PF-SLAM Processing Element Design 141

a file. The importance weight and occupancy grid map (IW&OGM) module is

part of the PF hardware design explained in section 5.4.

After laser data is processed by the LRF parallel processor, a coordinate

transformation is performed from the robot coordinate to a hardware coordinate

in the IW&OGM module as shown in Fig. 5.3. The hardware coordinate is an

integer representation of the map. However, the actual map data is stored in the

map memory after a simple address mapping is performed on the map data from

the hardware coordinate. An example for the transformation a single point from

the robot’s coordinate to the hardware coordinate and finally the corresponding

memory index in the map memory is illustrated in Fig. 5.3.

5.3.1 Description of the LRF IP Core

The LRF IP core architecture shown in Fig. 5.4 mainly composed of the Compute,

CORDIC and SCB_R modules. The Compute module performs the parallel

projection of the laser scan end points into the global coordinate. For the projection

of the laser end points, initially the sine and cosine of the bearing angles of the

Figure 5.3: Representation of map in hardware

142 5.3. Laser Scanner Parallel Co-processor Design

Figure 5.4: LRF IP architecture

individual scan points are computed by the Cordic module. For this computation,

a product of the bearing angle resolution (Res.) and the index of the scan points

from the Scan counter modules is used as an input to the CORDIC module

and the results of the computations are stored in a register (SCB_R). Finally,

based on a particle pose (x, y, θ), SCB_R, and CORDIC data all the necessary

computations are performed in the Compute module by parallel processing of the

laser scans which enables in the projection of all the laser scan points to the global

coordinate in a single clock cycle.

As CORDIC is the core of the LRF IP, its performance and hardware resource

requirement is mainly dependent on the configuration of the CORDIC processor

(number of iterations and serial / pipelined configuration). However, a trade off in

performance and hardware resources is required under these configurations. First,

a study on the optimal number of CORDIC iteration is undertaken in order to

identify the corresponding error in the computation. The results of this study is

given in Fig. 5.5 (a), where with 10 iterations a precision of about 1.29983× 10−4 is

5. HW Approach for PF-SLAM Processing Element Design 143

(a) (b)

Figure 5.5: Effect of the number of CORDIC iterations on precision (a) and maximum
frequency (b) of the LRF parallel processor

assured. Fig. 5.5 (b) shows the effect of the CORDIC iteration number on the speed

of the LRF IP core. The computation of trigonometric functions using CORDIC

algorithm is essential in order to obtain the maximum frequency of operation in

the LRF IP core. A 10 bit CORDIC with pipelined configuration is considered

in this work for minimal error and hardware resource.

5.3.2 Description on Bresenham IP Core

The Bresenham IP core is responsible for evaluating the index of the grid cells along

the path of the individual laser scans. For the evaluation of the index of the grid cells,

it uses the end point of the individual laser scan computed by the LRF IP core and

the position (x, y) of a given particle which is input to the LRF parallel processor.

The Bresenham IP core design is based on Bresenham algorithm [1], which

consists of basic operations such as addition, subtraction and bit shifting. Such basic

operations are suitable for high-speed hardware implementation, and consequently

it is considered a good choice for generating the index of the grid cells along the

path of the laser scan for the application at hand. The input to the Bresenham

IP core are two set of points P1 = (x1, y1) and P2 = (x2, y2), i.e. the starting point

and the end point of the laser scan point respectively.

The implementation of the Bresenham IP core is based on a finite state machine

shown in Fig. 5.6 with five states: Idle, Initialization, Bresenham, Stole and Done

144 5.3. Laser Scanner Parallel Co-processor Design

Figure 5.6: Finite state machine design for Bresenham IP core

states. In the Idle state the core waits until a single bit Start signal is asserted

to 1, others wise it remains in this state. Once the Start bit is set to logic 1, the

Initialization state proceeds. In this state all the necessary initialization routines

to the Bresenham algorithm takes place and others parameters are also calculated

based on the input points P1 and P2. For example, the slope of the line between

the two input points is checked and swapping of the points takes place, the error

parameter is calculated and starting point of the line trace is set in this state.

Once it is finished it proceeds to the Bresenham state, where a loop is run for

generating the (x, y) index of a total of dx number of grid cells along the two input

points. Once all the index are generated it proceeds to the Done state. In this

state the necessary control tick signals for the synchronization of Bresenham IP

with the other hardware modules are generated, then follows the Idle state where

it waits for the next operation. The Stole state is used for halting the generation

of the next grid cell points for n clock cycles which is used for synchronization

while using parallel Bresenham IP modules.

5. HW Approach for PF-SLAM Processing Element Design 145

The exchange of data from the LRF IP to the Bresenham IP is conducted once

all set of the (x, y) end points of the laser data are computed by the LRF IP core.

Every clock cycle an index of a grid cell is returned by the Bresenham IP, and

once the index of all grid cells are returned the next end point of the LRF IP

output is considered for computation and this process continues until all the LRF

IP core output end point are evaluated. As a result a large number clock cycles are

normally required for evaluating the index of all grid cell along the paths of the

starting point of the laser scan and the corresponding scan end points. In order

to minimize the number of clock cycles, parallel processing of the end points of

the LRF can be achieved by pipelining the Bresenham IP. If a total of M laser

end points from the LRF IP are distributed to b parallel Bresenham IP modules,

then Bb = M/b laser end points are processed by each Bresenham IP module. This

results in the generation of b grid cell indices at every clock cycle compared to

a single grid cell with sequential processing.

Fig. 5.7 shows the parallel processing of the laser end points from the LRF IP

modules for b = 16 parallel Bresenham IP modules. As shown in the figure, the

laser scan end points from the LRF IP is partitioned into 16 sets, where the end

points in each set are processed by a dedicated Bresenham IP. The set of points

generated from each Bresenham IP module are then multiplexed to a corresponding

section of the occupancy grid map during the weight and map update stages by the

MUX unit. Instead of using a single large memory module for the representation of

the occupancy grid map of the robot’s environment, a total of b small map memory

modules are used. Each b map module is configured for 256× 256 grid cells size,

which results in a map size of 1024× 1024 grid cells for b memory modules. This

approach allows n parallel read and write operations to be performed in two clock

cycles, compared to a single read and write operation if a single map memory is

considered during the occupancy grid map update step. Besides performing the

multiplexing of the output points from the individual Bresenham IPs, the MUX unit

also determines the number of scan points from the parallel Bresenham IPs falling

in a given map memory. This is used by the Bresenham IPs for waiting a given

146 5.4. PF Processing Element Design

Figure 5.7: Parallel processing of laser end points with parallel Bresenham IPs (left)
and partitioning of the map memory into k smaller memory modules (right)

number of clock cycles until all the corresponding points to a given map memory

unit are updated before going into the generation of the index of the next grid cell.

To confirm the correct functionality of the Bresenham IP module, a plot of the

trace of the grid cells along the path of the individual laser scan beams at a given

time t is shown in Fig. 5.8. The data used for the verification is based on an actual

laser scanner data. The figure shows the plot of the indices of all the grid cells

in respect to the ground truth of a robot. The utilization of various resources of

the target FPGA necessary for the LRF parallel co-processor architecture shown

in Fig. 5.2 is provided in Table 5.1. The evaluation is conducted with a 32 bit

fixed point number representation with 16 bit for decimal and 16 bits for fractional.

The resource utilization percentage is given for the top level logic of the design

(i.e. LRF parallel processor).

5.4 PF Processing Element Design

This section describes the design and implementation of the hardware architecture

for the three main steps of the PF. The general block diagram of the PF processing

element (PE) design is shown in Fig. 5.9. In this design the sample unit is responsible

for generating new particle starting with a given initial particle from the initialize

unit. While the samples are generated in the sample unit their respective weights

5. HW Approach for PF-SLAM Processing Element Design 147

Figure 5.8: Laser scan point processed by the Bresenham IP module

are calculated by the importance weight unit using the available sensor measurement

data. Using the weight data from the importance unit and a uniform random number

from the random number generator (RNG) the index of the replicated particles is

determined by the IMH based resampler. The particle memory (PMEM), weight

memory (WMEM) and replicated particle index memory (RPI MEM) are used to

store the particles, the weights and indices of the replicated particles respectively.

As the PF involves many particles, one aspect in the implementation of the PF in a

hardware is the correct manipulation of the particles among the PF processing steps

and the memory units. With this in mind, the following subsection provide details

on the hardware design of the three steps for the Grid-based Fast SLAM application.

Table 5.1: Resource unitlization for LRF parallel processor

Resources LRF Bresenham Top level logic Available Utilization

Slice registers 2153 83 2768 407600 0%
Slice LUTs 8541 339 9255 203800 4%
DSP48E1s 52 - 60 840 7%
Block RAMs 9 - 0%

148 5.4. PF Processing Element Design

Figure 5.9: Block diagram for particle processing element (PE)

5.4.1 Sample Unit Design

The Sample unit is responsible for generating new set of particle instances based

on previous set of particles, and their respective replication factors in the RPI

MEM that is obtained from the resampling process. Before going into details

of the hardware architecture for the Sample unit, it is important to understand

how information about replication factor of particles are maintained in RPI MEM,

as the Sample unit operation heavily depends on the manipulation of such data.

Considering a total of eight particles, Fig. 5.10 shows an example of how replicated

particle indexes are maintained in the RPI MEM. For illustration, in Fig. 5.10

the indexes of replicated and discarded particles are shown with solid and empty

circles bullets respectively. Based on the index of the replicated particles in the

RPI MEM, then the replication factor (RF) (shown on the right side of Fig. 5.10)

for each particle is obtained indirectly from the RPI MEM.

5. HW Approach for PF-SLAM Processing Element Design 149

Figure 5.10: Example of particle sampling based on their replication factor in the RPI
MEM

The hardware architecture for the Sample unit is shown in Fig. 5.11 and it

is composed of different hardware sub modules. The Motion Model sub module,

implements the Monte Carlo Localization for generating particles based on an

odometry motion model of a robot explained in Chapter 2, Section 2.9.3. The

inputs to this module are a Gaussian random number and odometry data. The

Gaussian random numbers are generated based on a Ziggurat Gaussian random

number generator (GRNG) module (chapter section). The Sampler sub module

generates new instance of particles based on the previous particle instances from the

PMEM and motion information from the Motion Model sub module. The Control

module generates control signals in order to control the sampling process operations.

Its design is based on a finite state machine shown in Fig. 5.12 which composed of

three different states, Initialize particles, Wait and Sampling states. In the Initialize

particles state, the control unit sets the write enable (we) signal to the PMEM to a

logic level of one in order to initialize the PMEM with an initial set of particle. The

write address to the PMEM is generated by the index counter (Index Cnt) unit.

Once initialization is performed the state moves to the Wait state, where it waits for

the start of the sampling process. The start of the sampling process is controlled by

a single bit start signal. While this signal is asserted to a logic level of one, the finite

150 5.4. PF Processing Element Design

Figure 5.11: Sample unit architecture

state machine moves to the Sampling state and remains in the Sampling state until

the required number of particles are generated. After all the required particles are

generated, the state moves to the Wait state to wait for the next sampling process.

As a single memory is used for both sampled and resampled particles, avoiding

the overwriting of a replicated particle in the PMEM while new particle instances

Figure 5.12: Sample control unit fsm based control sub module

5. HW Approach for PF-SLAM Processing Element Design 151

are generated from previous sampled particles based on their replication factor

by the Sample unit is critical. This task is achieved by comparing the index of a

replicated particle, RPI from the replicated particle index memory (RPI MEM) and

sample index (SI) from the Index Cnt unit using the compare (Comp) component

shown in the Sample unit architecture. The result of the comparison generates

a single bit signal which is used as a select and load signal to the MUX and

temporary particle register (TPR) units respectively. The TPR is used to hold the

value of a replicated particle until all the instances of that particle based on its

replication factor are generated. The value of the TPR is updated by asserting

its load signal to a logic level of one from the comp unit, while the RPI and SI

have the equal value (which implies the particle at the SI index in the PMEM is

a replicated particle). On the other hand, if RPI not equal to SI then a particle

at the SI memory address in the PMEM is a discarded particle, which has to be

replaced by a replicated particle instance.

In summary, for replicated particles with a replication factor of one, new instance

of the particle is generated and written to the SI memory address in the PMEM.

For particles with replication factor of greater than one, first the replicated particle

is loaded to the TPR and its new instances are generated by directly using the

TPR data (i.e. a single read operation is performed for the replicated particles

from the PMEM). The proposed approach helps to avoid the extra requirement of

storing the replication factor in another memory [2] and avoids the multiple read

operation from PMEM for the replicated particle instances.

5.4.2 Importance Weight Unit Design

The importance weight unit performs the evaluation of the weight of the particles

based on the most recent measurement data. For the specific application adopted in

this work (SLAM), as the measurement data is obtained from laser range finder, the

hardware implementation of the importance weight unit is based on the application

of the parallel LRF processor design mentioned in section 5.3.

152 5.4. PF Processing Element Design

The hardware architecture of the importance weight unit is shown in Fig. 5.13,

where it composed of the Weight Update, Map Update, weight memory (W MEM)

and map memory (Map MEM) hardware sub modules. The W MEM and Map

MEM modules are used to store the weights of the particles and the occupancy grid

map of the robot environment respectively. In the architecture, only few control

and data ports are shown which are used for synchronization and data exchange

between the importance weight (IW) and occupancy grid map (OGM) modules.

The Weight Update hardware sub module calculates the weight of each particle

indexed by the particle index (P_Index) from the Sample unit based on the

laser end points in the global map coordinate from the parallel LRF processor

unit. The Weight Update unit starts its calculation while its done input from the

parallel LRF process is asserted to a logic one level, indicating that the data from

the parallel LRF process is ready. The Laser End points are used to access the

occupancy value of the grid cells at the end points of the current laser scan from

the occupancy map memory (Map MEM).

The weight wi of each particle is calculated by scan matching the current

laser scan points and the occupied points in the global map as given by equation

Figure 5.13: Importance weight unit architecture

5. HW Approach for PF-SLAM Processing Element Design 153

5.1. Current laser scan points which fall in unoccupied or unexplored grid cells

contribute a small values to the weight of the particles compared to the occupied

points. Therefore, the weight of a particle is maximized while the current laser

scan points match well with the occupied points in the map.

W i
Znt

=
L∑
n=1

255− p(mt−1|znt) (5.1)

Once the weight of all the particles is calculated, the global occupancy map

is updated with the particle that has the highest weight. Each grid cell of the

occupancy grid map corresponds to the probability of the grid cell being free (

which is represented by a value of 255). For an occupied grid cell the occupancy

value is represented by a value of 0 and for complete uncertainty over the occupancy

of a grid cell a value of 127 is used. The map update is performed by tracing

all the grid cells which lies along the path of the laser beams and updating their

corresponding occupancy likelihood. However, the occupancy likelihood of those

grid cells that are out side the laser’s beam range of view remain unchanged. The

update of the occupancy of the grid cells along the path of the laser beam is

performed by using the Bresenham points from the parallel LRF processor unit

in order to read and update their occupancy likelihood accordingly. And those

grid cells that lies between the staring point and end point of the laser beam

corresponds to unoccupied points and their occupancy likelihoods are updated by

a certain factor ffree and for the grid cell that corresponds to the end point of

the laser beam, its occupancy likelihood is updated by incrementing its previous

value by a factor of foccupied. The value ffree = 0.1 and foccupied = 0.1 are used

in this work, which are determined by heuristic tests.

5.4.3 Resample Unit Design

The hardware architecture of the resampling unit shown in Fig. 5.14 implements the

IMHA algorithm given in Chapter 2, Section 2.8.5. The hardware implementation

is based on four individual hardware sub modules; the Particle index generator,

Markov Chain Register, replicated particles index memory (RPI MEM) and finite

154 5.4. PF Processing Element Design

Figure 5.14: Resample unit architecture

state machine based CONTROL logic. The particle index generator generates

the index of the particles, the Markov Chain Register is a register for temporary

storage of the index and weight of the last accepted particle, the RPI MEM is used

to store the indexes of the replicated particles and, finally the CONTROL unit

performs the evaluation of the acceptance probability and generates appropriate

control signal for the Markov Chain Register module.

The inputs to the resampling units are the weight of a particle, a single bit enable

and start signals. The enable bit signal is used to control a read and write process to

the replicated particle index memory unit, and it is set to logic level of one during the

resampling operation to perform a write operation to the memory. The start signal

is used to indicate the starting of the resampling operation and the initialization

of the Markov chain with first particle index (i.e. i = 0). The initialization of the

Markov chain with the first particle index is achieved by first initializing the particle

index generator to zero and loading the corresponding index and weight of the

particle data to the current chain register unit. For loading of the particle index and

weight to the current chain register a single bit load signal is used by the current

chain register. This load signal is generated by the CONTROL logic unit, where it is

initially asserted to the value of the start signal by the MUX in the CONTROL unit.

5. HW Approach for PF-SLAM Processing Element Design 155

Once initialization of the Markov chain is performed, the decision whether

to accept or reject a new particle based on its weight data is performed by the

CONTROL logic unit. The CONTROL logic unit uses the new and last accepted

particle weights, wi and wc respectively, to evaluate the acceptance probability (α)

value. The last accepted particle corresponds to the current chain of the Markov

from the output of current chain register unit. The result of a comparison between

the acceptance probability and a uniform random number is used to accepted

the new particle or replicate the last accepted particle once more. The uniform

random number is generated by the uniform random number generator (URNG)

unit, which is implemented based on the Tausworthe uniform random number

generator algorithm (see Chapter 3 of Section 3.5.3).

If the new particle is accepted, its corresponding index (i) and weight (wi) are

loaded to the current chain register by asserting the load signal to a logic level

of 1. Simultaneously, the index of the accepted particle is written to the RPI

MEM at the ith memory address. If the new particle is rejected, the index of

the last accepted particle (j) from current chain register is written to the RPI

MEM at the ith memory index.

After the resampling operation is done, the RPI MEM contains a total of

(N +Nb) indexes of the replicated particles that are going to be used in generating

new particle instances by the sampling unit during the next time step of the PF

operation. During the sampling step, the RPI MEM is read randomly starting

from the memory address of Nb to N + Nb − 1 by generating a uniform random

integer from the range Nb to N + Nb − 1. This is achieved by using the uniform

random integer generator module (URAND IG), which implements the equation

I = U ∗ (N − 1) + Nb to generate N uniform random integers within the range

of Nb ≤ I ≤ N + Nb − 1. The values read from RPI MEM are used to fetch

the state of the corresponding particles in the PMEM which are updated as per

the state equation in the Sample unit.

156 5.5. Implementation and Results

5.5 Implementation and Results

In this section the results of the hardware implementation of the PF processing

element (PE) and its corresponding sub-modules for the Fast SLAM application

on a Xilinx Kintex-7 KC705 FPGA device are presented. The proposed system is

tested on real robot data collected from a mobile robot platform. In the hardware

implementation the output values of the state estimates from the PE are 32-

bits wide in fixed point format. These output values were first captured for

validating the system using the corresponding 32 bit floating values and plotting

the results in Matlab.

5.5.1 Resource Utilization

The hardware architectures are described in VHDL. A total of N = 1024 particles

and a grid map of size 1024×1024 grid cells with a resolution of 0.02meters/map cells

is used in the evaluation. All the memory modules required in the PE are realized

using block RAMs, and all the necessary trigonometric and others functions are

implemented using a pipelined CORDIC module, and other arithmetic operations

are implemented using DSP cores. The Gaussian random numbers required in the

sampling step in accordance with the state space model and the uniform random

numbers needed in the resampling step as per the IMHA algorithm are generated

using the random number generator given in Chapter 3 of Section 3.5.3.

As the number of particles N is a critical parameter which impacts the hardware

resource and estimation accuracy, a study for the optimal number of particles is

determined. Fig. 5.15 and 5.16 shows the effect of the number of particles N on

the RMSE and FPGA hardware resource utilization respectively. Considering the

results of Fig. 5.15 and 5.16, a value of N = 1024 is considered as the optimal value

of the particles. Table 5.2 summarizes the distribution of resources on the target

platform among the various modules of the PE. The importance weight module

consumes large amount of the total slices as it contains most of the logic, and most

of the Block RAMs in this module are used to store the map data.

5. HW Approach for PF-SLAM Processing Element Design 157

Figure 5.15: Number of particles (N) vs RMSE

(a) Shift Registers (SRs) (b) LUTs

(c) BRAMs (d) DSP48E

Figure 5.16: FPGA HW resource utilization with varying number of particles. The
number of particles is shown in log scale

158 5.5. Implementation and Results

Table 5.2: Resource utilization on Xilinx Kintex-7 KC705 FPGA device

Modules Resources
Top Level Sub Module Slice Regs. Slice LUTs DSP48E1s BRAMs

Sampling
OMM 5 4185 16 -
SMM 327 96 7312 332 38 16 3 -
SU - 2640 6 -

I. Weight WU 58 136 - 2
MU 848 9 11770 163 2 48 258 16

Resampling - 32 20 - 1

PE - 1462 19116 86 260

5.5.2 Execution Time

The execution time of the PF to the Fast SLAM application is shown in Fig. 5.17,

where LS, LIW and LR are the startup latencies in the sampling, importance weight,

and resampling modules respectively. TM is the number of clock cycles required

for map update. The total number of clock cycles for one recursion of the PF is

then given by TPF = LS + LIW + N + LR + TM .

As the implementation of the sampling unit is based on a pipelined CORDIC

for the realization of the different trigonometric functions and a Gaussian random

number generator which generates a Gaussian random number every clock cycle,

Figure 5.17: Execution time of the PF

5. HW Approach for PF-SLAM Processing Element Design 159

its start up latency LS = 1 clock cycle. For the importance weight unit, as the

evaluation of the weight of a particle is performed based on the scan matching

of the latest laser scan data (which consists of M laser beams) with the map of

the robot from previous time t its startup latency is dependent on the number

of the laser scan beams M .

For the implementation, the M laser scan beams are distributed among n = 16

parallel Bresenham IPs, which results in the processing of Bn = M/16 scans

beams in the individual 16 parallel Bresenham IPs. As a result the latency

in the importance weight is LIW = Bn. The start-up latency of the resam-

pling unit is LR = 1 clock cycle. The map update step have a latency of

LM = (Bn × range_max)/map_resolution, where range_max is the maximum

LRF measurement distance and map_resolution = 0.02meters/map cells is the

resolution of the map. The proposed system is evaluated on a real data set based

on a Sick PLS LRF for the CMU-Newell-Simon Hall building available at [3] which

has a total of M = 180 scans and a maximum range of range_max = 8.0meters.

Considering the PLS LRF data, the total number of clock cycles (TPF) required

for a complete iteration in hardware equals 5537 clock cycles. Using the FPGA

system clock frequency of 100 MHz, the speed at which new particles can be processed

is given by 100MHz/TPF . Therefore, the throughput for the implementation

based on the Sick PLS LRF is 18.06kHz. From the post place and route timing

analysis report, the maximum clock frequency of the PE and its sub-modules

is provided in Table 5.3. As shown in Table 5.3, the design can support clock

frequency of upto 304.174 MHz.

The variations in system and measurement models, variation in sensor inputs

and memory requirements for different applications of the PF, makes difficult the

direct comparison of the achieved results to other PF hardware implementations

and taking this into account, Table 5.4 provides a comparison on the performance

results achieved for various applications. In Table 5.4, the only complete FPGA

implementation of SLAM in [4] has achieved a maximum clock frequency of 143 MHz.

However, this implementation is not based on PF instead on a genetic algorithm. In

160 5.5. Implementation and Results

Table 5.3: Maximum frequency of operation for PF computational modules

PE sub-module Maximum frequency (MHz)

Sampling 539.476
OMM -
SMM 1426.228
SU -

Importance weight 308.482
WU 743.505
MU -

Resampling 534.574

PE 304.174

addition, among a total of 180 laser scans based on Sick LMS-200 LRF, by using only

20 of the scans the author suggested the speedup of the particle weight computations

at the cost of discarding useful measurement data. In our approach laser scans are

partitioned among 16 parallel Bresenham IPs, which enables the fast processing of

the whole sensor data. The relatively high throughput of 146 kHz in reference [5]

results from the fact that a total of 4 parallel PEs are used instead of the single

PE as in our case, furthermore, the system model for the specific application are

not as complex as that of the SLAM algorithm and does not involve the processing

of large sensor data and memory read / write operations as in SLAM. In general

the relatively high throughput in [5–8] are due to the parallel PE implementation

compared to a single PE realization, the simplicity of the computations, the non

intensive sensor data processing and memory read / write operation compared to

the SLAM problem. The lower throughput in our implementation resulted primarily

from the high latency in the map update procedures as it involves intense memory

read / write operations which limits the level of parallelism. The map update

requires LM = 4500 clock cycles out of the total 5537 clock cycles of the whole

5.
H
W

A
pproach

for
PF-SLA

M
Processing

Elem
entD

esign
161

Table 5.4: Comparison with other implementations

Reference Application FPGA Device No. Par-
ticles

No.
PE

Max.
Frequency
(MHz)

Throughput (kHz)
(System clock fre-
quency)

[2] BOT Virtex II (XC2VP50FF1152) 2048 1 118 16 (100 MHz)
[5] Wave-agile

radar tracking
Virtex 5 (XC5VSX240T) 1000 4 - 146 (100 MHz)

[6] Maneuvering
target tracking

Virtex II (XC2VP70FF1517) 1000 2 70 50 (60 MHz)

[7] Maneuvering
target tracking

Virtex II (XC2V4000) 1000 2 60 20 (not given)

[4] SMG-SLAM Virtex 5 (XC5VFX70T) - 1 143.394 0.623 (100 MHz)
[8] Tracking neural

activity
Virtex 5 (XC5VSX240k) 3200 4 - 20.61 (100 MHz)

Proposed SLAM Kintex7 (XC7K325T) 1024 1 304.174 18.06 (96.43)

162 5.5. Implementation and Results

implementation. For fair comparison, neglecting the map update step, our implemen-

tation requires only 1037 clock cycles to perform the sampling, importance weight

and resampling steps. This results in a throughput of 96.43kHz, which is higher

than even most of the parallel PF implementations given in Table 5.4. In summary,

the proposed system obtains comparable performance with significantly reduced

computational complexity for the SLAM problem and enables real time processing.

5.5.3 Estimation Performance

The state of the PF for the Fast SLAM algorithm is 4-dimensional due to the fact

that it incorporates the pose (x, y, θ) of the robot and its map m. The input to

the filter are the odometry and the laser scan data, where each input sample is

processed by the PE module to produce an estimate of the pose and map at that

sampling instance. The accuracy of the state estimate is measured by the RMSE

error metrics between the true state and the state estimate.

The evolution of the RMSE over time for the pose of the robot is shown in Fig.

5.18, where the RMSE error is maintained at low levels through out the time. The

performance of the system for the map estimation is evaluated qualitatively by

comparison with a software generated map. The maps obtained from the software

Figure 5.18: RMSE for robot pose over time for N=1024

5. HW Approach for PF-SLAM Processing Element Design 163

and hardware implementations are shown in Fig. 5.19 (a) and (b) respectively.

As per the results of Fig. 5.19 the quality of the SLAM solution is similar in the

software and hardware implementations. The slight difference in the shape of the

map between the software and hardware implementation is due to the difference

in random nature of the algorithm.

In conclusion, the proposed hardware architecture has led to the development

of the first hardware (FPGA) prototype for the PF applied to the SLAM problem.

The proposed system is validated with an implementation on Xilinx Kintex-

7 KC705 FPGA device, where 18.06 kHz throughput has been achieved and

this would enables the real-time applicability of the system for different robotic

applications. Taking into account the difficulty of a direct comparison of the

proposed system implementation with other FPGA based implementations due

to differences in models and number of particles, the proposed system obtains

comparable performance results with a relatively lower resource utilization and

significant reduction of computational complexity for the SLAM problem. For

real-time processing of SLAM applications, the proposed implementation has an

execution time of 55.37µs.

(a) Software (b) Hardware

Figure 5.19: Software and Hardware generated map for CMUNewellSimonHall data set

164

References

[1] J. E. Bresenham. “Algorithm for computer control of a digital plotter”. In:
IBM Systems journal 4.1 (1965), pp. 25–30.

[2] A. Athalye, M. Bolić, S. Hong, and P. M. Djurić. “Generic hardware
architectures for sampling and resampling in particle filters”. In: EURASIP
Journal on Advances in Signal Processing 2005.17 (2005), pp. 1–15.

[3] http://radish.sourceforge.net/index.php.
[4] G. Mingas, E. Tsardoulias, and L. Petrou. “An FPGA implementation of the

SMG-SLAM algorithm”. In: Microprocessors and Microsystems 36.3 (2012),
pp. 190–204.

[5] L. Miao, J. J. Zhang, C. Chakrabarti, and A. Papandreou-Suppappola.
“Algorithm and parallel implementation of particle filtering and its use in
waveform-agile sensing”. In: Journal of Signal Processing Systems 65.2 (2011),
pp. 211–227.

[6] S. Hong, Z. Shi, and K. Chen. “Easy-hardware-implementation MMPF for
maneuvering target tracking: algorithm and architecture”. In: Journal of
Signal Processing Systems 61.3 (2010), pp. 259–269.

[7] A. Athalye, S. Hong, and P. M. Djuric. “Distributed architecture and
interconnection scheme for multiple model particle filters”. In: Acoustics,
Speech and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE
International Conference on. Vol. 3. IEEE. 2006, pp. III–III.

[8] L. Miao, J. J. Zhang, C. Chakrabarti, and A. Papandreou-Suppappola. “Effi-
cient Bayesian tracking of multiple sources of neural activity: Algorithms and
real-time FPGA implementation”. In: Signal Processing, IEEE Transactions
on 61.3 (2013), pp. 633–647.

http://radish.sourceforge.net/index.php

166

6
Conclusions and Future Work

In this Chapter, first the summary and the contributions of this thesis are presented

followed by the future research directions in the acceleration of the PFs computations.

6.1 Summary and Contributions

Real-time estimation of the state of dynamic systems is extremely important in

different application areas. The most widely known tools for the state estimation

of dynamic systems with nonlinear and non-Gaussian nature are the particle

filters (PFs). PFs are sequential Monte Carlo estimation methods which operates

by representing the posterior density by a set of weighted samples (particles).

Compared to traditional filtering methods, such as Kalman filters, PFs offer superior

performance in several important practical problems. However such an excellent

performance of PFs comes at the expense of huge computational cost which inhibits

their wide range applicability. As a result, it is required to accelerate the intensive

computations involved in PFs through hardware to achieve real-time computations.

This PhD thesis has taken a significant step in enabling this by developing efficient

hardware for real-time PF in navigation application.

The contributions of this thesis can be classified into two major parts. The

first part relates to the review on recent developments behind the theory and

168 6.1. Summary and Contributions

implementations of PFs, the analysis on the computational challenges involved in the

different step of the PF-SLAM and the proposal of generic PF acceleration techniques.

This includes contributions from Chapters 1, 2 and, mainly 3. The second part

relates to the three approaches for the PF-SLAM FPGA implementations. This

includes contributions from Chapters 4 on the HW / SW co-design and Parallel HW

/ SW co-design FPGA implementations. The third approach, HW PF processing

element (PE) design, is presented in Chapter 5. The efforts and specific contributions

towards achieving the objective of developing real-time PF with the above three

approaches can be summarized as follows.

• The main challenges and limitations in the use of PFs in complex real-time

applications are discussed and studied. Taking into account our objective of

real-time PF in navigation applications, a particular attention has been given

to the SLAM technique.

• The study on the computational complexities and performances for two well

known PFs (SIR and RPF) are conducted by considering their sampling,

importance weight and the resampling steps. The RPF showed a relatively

higher complexity to the SIR PF. As the resampling step is crucial in

PFs hardware implementations, different available resampling techniques are

studied. Among the resampling methods considered, Independent Metropolis

Hastings Algorithm (IMHA) resampling resulted in the lowest computational

complexity with a bottleneck free operation.

• PF hardware acceleration techniques are presented in order to speed up the

underlying intensive computations involved in all the steps of the PF-SLAM.

The proposed acceleration techniques include the CORDIC, Tausworthe

and Ziggurat methods for evaluating computational intensive mathematical

functions and random numbers (uniform and Gaussian) generation respectively.

The presented random number generator resulted in the highest throughput

with comparable resource utilization compared with other reported hardware

implementations.

6. Conclusions and Future Work 169

• PF-SLAM FPGA HW / SW co-design: Based on the PF hardware acceleration

techniques, a PF hardware acceleration core is designed. Using the PF

hardware acceleration core and soft-core MicroBlaze processor, a HW/SW

PF-SLAM system is proposed. The presented HW/SW PF-SLAM system

leads to an improvement in the speedup of 140×, 14.87× and 19.36× in

the sampling, importance weight and resampling steps respectively. Due to

the flexibility in the HW/SW co-design and the presented PF acceleration

techniques, the same approach can be easily adopted to other real-time particle

filtering applications. The performance the HW/SW PF-SLAM system is

evaluated on standard and low cost laser scanner sensors considering that the

input to the system comes mainly from such sensors.

• PF-SLAM FPGA Parallel HW / SW co-design: In the acceleration of PFs

computations through parallelism, the sequential nature of PFs resampling

step introduces a bottleneck and limits PFs full parallelization. To address

this challenge, we present a new approach for full parallelization of the PFs

with the application of a Metropolis coupled Markov Chain Monte Carlo

(MC)3 approach. The (MC)3 approach reduces the high communication

data flux which severely degrades the performance of traditional parallel

PF implementations. Using the (MC)3 approach parallel PF architecture

is proposed. The proposed parallel PF resulted in a distributed resampling

with minimum communication bottleneck and without the requirement of

interconnect network among the parallel particle processors for routing par-

ticles. It also avoids the high communication costs by exchange of few data

among the parallel particle processors through a central processing unit. This

leads to a distributed particle filtering implementation with simplified parallel

architecture. The results obtained in this study shows a speedup improvement

of 3.97× in respect to a HW / SW approach. The improvement is of 72.28×

when compared to a totally software implementation.

170 6.2. Future Work

• PF-SLAM FPGA PE design: To avoid the limitations imposed on the level

of parallelism for further speedup by available bus interfaces in the soft-core

processor (Microblaze), generic hardware architecture by applying the PF

hardware acceleration techniques are proposed for the whole PF-SLAM steps.

The proposed PF-SLAM PE architecture can easily be extended to other PF

applications as our design approach focuses primarily on the high-level data

and control flow. The only design effort required is for designing the specific

application model dependent computational units.

As part of the PF PE design, important problems for PF in SLAM are also

solved. For example, the design and implementation of a parallel laser scanner

co-processor based on Bresenham line drawing algorithm has been realized.

The proposed hardware architecture has led to the development of the first fully

hardware prototype for the PF applied to the SLAM problem. The proposed

system is validated with an implementation on Xilinx Kintex-7 KC705 FPGA

device, where an execution time of 55.37µs has been achieved. This would

enables the real time processing for SLAM application and applicability of the

system for different robotic applications. Table 6.1provides the comparison on

the execution times for the PF-SLAM realization with the three approaches.

Table 6.1: Performances Comparisons on Proposed Approaches for PF-SLAM FPGA
Implementation

Approaches HW / SW Parallel HW / SW HW PE

Number of Particles 100 100 1024
Execution Time (ms) 437.93 110.31 0.05537

6.2 Future Work

There are several topics that still have to be investigated and that can open new

research lines. Here, the directions for this future research are presented briefly,

and can be considered extension to the research performed in this thesis.

6. Conclusions and Future Work 171

• Depending on the PFs application and the specific application models, the

computational bottlenecks in PFs may vary. Future work would be the

analysis of different types of PFs from the point of view of the computational

complexity of the target model and its impact on the various PF steps. The

main focus should be then in identifying and resolving these bottlenecks in

the algorithm and architecture levels by applying the different PF hardware

acceleration techniques presented in this thesis.

• Considering the fact that PF hardware acceleration techniques can be easily

extended to various applications of the PFs, an interesting research direction

is to automate the PFs FPGA design and implementation methodologies.

This would make the design process convenient and consequently helps in the

widespread use of PFs for complex real-time applications.

• The use of dynamic partial reconfiguration for the design and implementation

of adaptive and variable structure of PFs. This could be useful for system where

the model parameters are required to change dynamically. The application

of such PF structures to practical problems and development of methods to

control the adaptation in the PFs structure is a promising direction for the

future to make the PFs very powerful and enable them to be applied to most

complex systems.

• Parallelization of the PF PE by applying the (MC)3 approach and evaluate

its performance on practical real-time systems is required.

• It could also be interesting to combine the PFs with the other types of filters

such as extended Kalman filter and compare the performance of the respective

implemented design on FPGA. Due to their internal construction FPGAs can

still accommodate complex filter structures for real-time applications.

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Background
	State of the Art on Real Time PFs
	Adaptive Particle Filtering
	Algorithmic Modifications
	FPGA Based Implementations
	Non-GPGA Based Implementations

	Objectives
	Publications
	Thesis Outline

	References
	Particle Filters (PFs) and SLAM Background
	Introduction
	Dynamic State Space Models
	Recursive Bayesian Filters
	Principles of Importance Sampling
	Sequential Importance Sampling (SIS)
	Sampling Importance Resampling (SIR)
	Regularized PF (RPF)
	Resampling Operations
	Multinomial Resampling
	Stratified Resampling
	Systematic Resampling
	Residual Resampling
	Independent Metropolis Hastings Algorithm (IMHA)

	 PFs Applications
	SLAM Principle
	Localization
	Probabilistic Models
	Robotic Mapping
	The SLAM Solution

	References
	PFs Complexity Analysis and HW Acceleration Methods
	Introduction
	Comparison on PFs and Resampling Methods
	Computational Bottlenecks Identifications and HW/SW Partitioning
	PF Acceleration Techniques
	CORDIC Acceleration Technique
	CORDIC Harware Architecture
	CORDIC PE Architecture

	Random Number Acceleration Technique
	Review on GRNGs
	The Ziggurat Algorithm
	Ziggurat GRNG Hardware Architecture
	Ziggurat GRNG FPGA Implementation

	References
	HW/SW Approach for PF-SLAM FPGA Architecture and Implementation
	Introduction
	Embedded Systems Implementation
	On the Use of FPGA Based Embedded Systems
	Embedded Processors in FPGAs
	FPGA Development Tools

	PF Embedded Design Based on MicroBlaze Processor
	PF HW/SW FPGA Implementation
	PF-SLAM Performance Evaluation
	On The Use of Laser Scanners
	On Neato XV-11 Laser Scanner
	Results Discussion

	Parallel PF with Metropolis Coupled MCMC
	Parallel PF Architecture
	Proposed Parallel PF Implementation and Results
	Discussion on Parallel PF Implementations

	References
	HW Approach for PF-SLAM Processing Element Design
	Introduction
	Proposed System Architecture
	Laser Scanner Parallel Co-processor Design
	Description of the LRF IP Core
	Description on Bresenham IP Core

	PF Processing Element Design
	Sample Unit Design
	Importance Weight Unit Design
	Resample Unit Design

	Implementation and Results
	Resource Utilization
	Execution Time
	Estimation Performance

	References
	Conclusions and Future Work
	Summary and Contributions
	Future Work

	Títol de la tesi: Algorithmic and Architectural
Optimization Techniques in Particle
Filtering for FPGA-Based Navigation Applications
	Nom autor/a: Biruk Getachew Sileshi

