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CONTINUITY OF SOLUTIONS TO SPACE-VARYING

POINTWISE LINEAR ELLIPTIC EQUATIONS

Lashi Bandara

Abstract: We consider pointwise linear elliptic equations of the form Lxux = ηx
on a smooth compact manifold where the operators Lx are in divergence form with

real, bounded, measurable coefficients that vary in the space variable x. We establish

L2-continuity of the solutions at x whenever the coefficients of Lx are L∞-continuous
at x and the initial datum is L2-continuous at x. This is obtained by reducing

the continuity of solutions to a homogeneous Kato square root problem. As an

application, we consider a time evolving family of metrics gt that is tangential to
the Ricci flow almost-everywhere along geodesics when starting with a smooth initial

metric. Under the assumption that our initial metric is a rough metric on M with a

C1 heat kernel on a “non-singular” nonempty open subset N , we show that x 7→ gt(x)
is continuous whenever x ∈ N .

2010 Mathematics Subject Classification: 58J05, 58J60, 47J35, 58D25.

Key words: Continuity equation, rough metrics, homogeneous Kato square root

problem.

Contents

1. Introduction 239
Acknowledgements 242
2. The structure and solutions of the equation 243
3. An application to a geometric flow 245
4. Proof of the theorem 250
4.1. Functional calculi for sectorial operators 250
4.2. Homogeneous Kato square root problem 251
4.3. The main theorem 254
References 256

1. Introduction

The object of this paper is to consider the continuity of solutions to
certain linear elliptic partial differential equations, where the differential
operators themselves vary from point to point. To fix our setting, let
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M be a smooth compact Riemannian manifold, and g a smooth metric.
Near some point x0 ∈ M, we fix an open set U0 containing x0. We
assume that U0 3 x 7→ Lx, are space-varying, elliptic, second-order
divergence form operators with real, bounded, measurable coefficients.
The equation at the centre of our study is the following pointwise linear
problem

(PE) Lxux = ηx

for suitable source data ηx ∈ L2(M). Our goal is to establish the continu-
ity of solutions x 7→ ux (in L2(M)) under sufficiently general hypotheses
on x 7→ Lx and x 7→ ηx.

There are abundant equations of the form (PE) that arise naturally.
An important and large class of such equations arise as continuity equa-
tions. These equations are typically of the form

(CE) −divg,y fx(y)∇ux,v(y) = dx(fx(y))(v),

where divg,y is the divergence operator in the variable y with respect to
the metric g and dx is the exterior derivative in the x variable. This
equation holds in a suitable weak sense in y. These equations play an
important role in geometry, and more recently, in mass transport and
the geometry of measure metric spaces. See the book [20] by Villani,
the paper [3] by Ambrosio and Trevisan, and references therein.

The operators Lx have the added complication that their domain may
vary as the point x varies. That being said, a redeeming quality is
that they facilitate a certain disintegration. That is, considerations in
x (such as continuity and differentiability), can be obtained via weak
solutions in y. This structural feature facilitates attack by techniques
from operator theory and harmonic analysis as we demonstrate in this
paper.

A very particular instance of the continuity equation that has been
a core motivation is where, in the equation (CE), the term fx(y) =
ρg
t (x, y), the heat kernel associated to the Laplacian ∆g. In this situa-

tion, Gigli and Mantegazza in [12] define a metric tensor gt(x)(v, w) =
〈Lxux,v, ux,w〉 for vectors v, w ∈ TxM. The regularity of the metric is
the regularity in x, and for an initial smooth metric, the aforementioned
authors show that this evolving family of metrics are smooth. More
interestingly, they demonstrate that

∂tgt(γ̇(s), γ̇(s))|t=0 = −2 Ricg(γ̇(s), γ̇(s))

for almost-every s along geodesics γ. That is, this flow gt is tangential
to the Ricci flow almost-everywhere along geodesics.
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In [7], Bandara, Lakzian, and Munn study a generalisation of this flow
by considering divergence form elliptic equations with bounded measur-
able coefficients. They obtain regularity properties for gt when the heat
kernel is Lipschitz and improves to a Ck map (k ≥ 2) on some non-empty
open set in the manifold. Their study was motivated by attempting to
describe the evolution of geometric conical singularities as well as other
singular spaces. As an application we return to this work and consider
the case when k = 1.

To describe the main theorem of this paper, let us give an account
of some useful terminology. We assume that Lx are defined through
a space-varying symmetric form Jx[u, v] = 〈Ax∇u,∇v〉 consisting of
coefficients Ax, where each Ax is a bounded, measurable, symmetric
(1, 1) tensor field elliptic at x: there exist κx > 0 such that Jx[u, u] ≥
κx‖∇u‖2. Next, let us be precise about the notion of Lp-continuity. We
say that x 7→ ux is Lp-continuous if, given an ε > 0, there exists an
open set Vx,ε containing x such that, whenever y ∈ Vx,ε, we have that
‖uy − ux‖Lp < ε. With this in mind, we showcase our main theorem.

Theorem 1.1. Let M be a smooth manifold and g a smooth metric.
Fix x ∈ M and suppose that near x, y 7→ Ay are real, symmetric,
elliptic, bounded measurable coefficients that are L∞-continuous at x.
Furthermore, suppose that ηy ∈ L2(M) for y near x and y 7→ ηy is
L2-continuous at x. If y 7→ uy satisfies (PE) near x with

´
M uy dµg = 0,

then x 7→ ux is L2-continuous at x.

As aforementioned, a complication that arises in proving this theo-
rem is that domains D(Lx) may vary with x. However, since the solu-
tions x 7→ ux live at the level of the resolvent of Lx, there is hope to
reduce this problem to the difference of its square root, which inciden-
tally has the fixed domain W1,2(M). As a means to this end, we make
connections between the study of the L2-continuity of these solutions
and solving a homogeneous Kato square root problem.

Let B be complex and in general, non-symmetric coefficients and let
JB [u, v] = 〈B∇u,∇v〉 whenever u, v ∈ W1,2(M). Suppose that there
exists κ > 0 such that Re JB [u, u] ≥ κ‖∇u‖. Then, the Lax–Milgram
theorem yields a closed, densely-defined operator LBu = −divg B∇u
(see Chapter 6 in [14]). The homogeneous Kato square root prob-
lem is to assert that D(

√
−divg B∇) = W1,2(M) with the estimate

‖
√
−divg B∇u‖ ' ‖∇u‖.

The Kato square root problem on Rn resisted resolution for almost
forty years before it was finally settled in 2002 by Auscher, Hofmann,
Lacey, McIntosh, and Tchamitchian in [4]. Later, this problem was
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rephrased from a first-order point of view by Axelsson, Keith, and McIn-
tosh in [5]. This seminal paper contained the first Kato square root result
for compact manifolds, but the operator in consideration was inhomoge-
neous.

In the direction of non-compact manifolds, this approach was subse-
quently used by Morris in [15] to solve a similar inhomogeneous prob-
lem on Euclidean submanifolds. Later, in the intrinsic geometric setting,
this problem was solved by McIntosh and the author in [8] on smooth
manifolds (possibly non-compact) assuming a lower bound on injectiv-
ity radius and a bound on Ricci curvature. Again, these results were for
inhomogeneous operators and are unsuitable for our setting where we
deal with the homogeneous kind. In §4, we use the framework and other
results in [8] to solve the homogeneous problem.

The solution to the homogeneous Kato square root problem is rele-
vant to us for the following reason. Underpinning the Kato square root
estimate is a functional calculus and due to the fact that we allow for
complex coefficients, we obtain holomorphic dependency of this calculus.
This, in turn, provides us with Lipschitz estimates for small perturba-
tions of the (non-linear) operator B 7→

√
−divg B∇. This is the crucial

estimate that yields the continuity result in our main theorem.
To demonstrate the usefulness of our results, we give an application of

Theorem 1.1 to the aforementioned geometric flow introduced by Gigli
and Mantegazza. In §3, we demonstrate under a very weak hypothesis
that this flow is continuous. We remark that this is the first instance
known to us where the Kato square root problem has been used in the
context of geometric flows. We hope that this paper provides an impe-
tus to further investigate the relevance of Kato square root results to
geometry, particularly given the increasing prevalence of the continuity
equation in geometric problems.

Throughout this paper, we will use the notation a . b to mean that
there exists a C > 0 independent of a and b such that a ≤ Cb. On
writing a ' b, we mean a . b and b . a. The notation 〈· , · 〉 will always
be reserved to mean the L2 inner product in question, ‖· ‖ its norm,
whereas |·| will be reserved to denote the pointwise norm on a finite
dimensional vector space.
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2. The structure and solutions of the equation

Throughout this paper, let us fix the manifoldM to be a smooth, com-
pact manifold and, unless otherwise stated, let g be a smooth Riemann-
ian metric. By TM, T∗M, and T (p,q)M, we denote the tangent, cotan-
gent, and (p, q)-tensor bundles respectively. We regard ∇ : W1,2(M) ⊂
L2(M) → L2(T∗M) to be the closed, densely-defined extension of the
exterior derivative on functions with domain W1,2(M), the first-order
L2-Sobolev space on M. Moreover, we let divg = −∇∗, the operator
adjoint of ∇, with domain D(divg) ⊂ L2(T∗M). Indeed, operator the-
ory yields that this is a densely-defined and closed operator (see, for
instance, Theorem 5.29 in [14] by Kato). The L2-Laplacian on (M, g)
is then ∆g = −divg∇ which can easily be checked to be a non-negative
self-adjoint operator with energy E [u] = ‖∇u‖2. We remark that our
Lebesgue and Sobolev spaces are complex, but the operators we consider
are have real, symmetric coefficients and hence, for real valued source
data, we obtain real solutions.

In their paper [7], the authors prove existence and uniqueness to el-
liptic problems of the form

(E) LAu = −divg A∇u = f,

for suitable source data f ∈ L2(M), where the coefficients A are real,
symmetric, bounded, measurable and for which there exists a κ > 0 sat-
isfying 〈A∇u,∇u〉 ≥ κ‖∇u‖2. The key to relating this equation to (PE)
is that the source data f can be chosen independent of the coefficients A.
See §4, and in particular Proposition 4.5 in [7] for details.

The operator LA is self-adjoint on the domain D(LA) supplied via
the Lax–Milgram theorem by considering the symmetric form JA[u, v] =
〈A∇u,∇v〉 whenever u, v ∈ W1,2(M). Since the coefficients are real-
symmetric, we are able to write JA[u, v] = 〈

√
LAu,

√
LAv〉. By the oper-

ator theory of self-adjoint operators, we obtain that L2(M) = N (LA)⊕⊥
R(LA), where by N (LA) and R(LA), we denote the null space and range
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of LA respectively. Moreover, LA restricted to N (LA) and R(LA) pre-
serves each subspace respectively. Similarly, L2(M) = N (

√
LA) ⊕⊥

R(
√

LA). We refer the reader to the paper [9] by Cowling, Doust, McIn-
tosh, and Yagi, in particular their Theorem 3.8, for further details.

First, we note that, due to the divergence structure of this equation,
an easy operator theory argument yields N (LA) = N (∇) = N (

√
LA)

(see Proposition 4.1 in [7]). The characterisation of R(LA) independent
of LA rests on the fact that, by the compactness of M and smoothness
of g, there exists a Poincaré inequality of the form

(P) ‖u− uM,g‖L2 ≤ C‖∇u‖L2 ,

where uM,g =
ffl
M u dµg (see Theorem 2.10 in [13] by Hebey). The

constant C can be taken to be λ1(M, g), the lowest non-zero eigenvalue

of the Laplacian ∆g of (M, g). The space R(LA) and R(
√

LA) can then
be characterised as the set

R =

{
u ∈ L2(M) :

ˆ
M
u dµg = 0

}
.

A proof of this can be found as Proposition 4.1 in [7].
Recall that, again as a consequence of the fact that (M, g) is smooth

and compact, the embedding E : W1,2(M) → L2(M) is compact (see
Theorem 2.9 in [13]). In [7], the authors use this fact to show that the
the spectrum of LA is discrete, i.e., σ(LA) = {λ0, λ1, . . . } with 0 = λ0

and λj ≤ λj+1. Coupled with the Poincaré inequality, we can obtain
that the operator exhibits a spectral gap between the zero and the first-
nonzero eigenvalues. That is, λ0 < λ1. Moreover, κλ1(M, g) ≤ λ1. See
Proposition 4.4 in [7] for details.

As aforementioned, the operator LA restricted to N (LA) and R(LA)
preserves each subspace respectively. Consequently, the operator LRA =
LA|R(LA)

has spectrum σ(LRA) = {0 < λ1 ≤ λ2 ≤ · · · } . Thus, the oper-

ator LRA is invertible on R(LA) and (LRA)−1 : R(LA)→ D( LA) ∩ R(LA).
Upon collating and combining the aforementioned facts, we obtain the
following conclusion.

Theorem 2.1. For every f ∈ L2(M) satisfying
´
M f dµg = 0, we obtain

a unique solution u ∈ D(LA) ⊂ W1,2(M) with
´
M u dµg = 0 to the

equation LAu = f . This solution is given by u = (LRA)−1f .

For the purposes of legibility, we write L−1
A in place of (LRA)−1.
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3. An application to a geometric flow

In this section, we describe an application of Theorem 1.1 to a geo-
metric flow first proposed by Gigli and Mantegazza in [12]. In their
paper, they consider solving the continuity equation

(GMC) −divg,y ρ
g
t (x, y)∇ϕt,x,v(y) = dx(ρg

t (x, y))(v),

for each fixed x, where ρg
t is the heat kernel of ∆g, divg,y denotes the

divergence operator acting on the variable y, where v ∈ TxM, and
dx(ρg

t (x, y))(v) is the directional derivative of ρg
t (x, y) in the variable x

in the direction v. They define a new family of metrics evolving in time
by the expression

(GM) gt(x)(u, v) =

ˆ
M

g(y)(∇ϕt,x,u(y),∇ϕt,x,v(y))ρg
t (x, y) dµg(y).

As aforementioned, this flow is of importance since it is tangential
(a.e. along geodesics) to the Ricci flow when starting with a smooth
initial metric. Moreover, in [12], the authors demonstrate that this flow
is equal to a certain heat flow in the Wasserstein space, and define a
distance metric flow for the recently developed RCD-spaces. These are
metric spaces that have a notion of lower bound of a generalised Ricci
curvature (formulated in the language of mass transport) and for which
their Sobolev spaces are Hilbert. We refer the reader to the seminal work
of Ambrosio, Gigli, and Savaré in [2] as well as the work of Gigli in [11]
for a detailed description of these spaces and their properties.

In [7], the authors were interested in the question of proving existence
and regularity of this flow when the metric g was no longer assumed to
be smooth or even continuous. The central geometric objects for them
are rough metrics, which are a sufficiently large class of symmetric tensor
fields which are able to capture singularities, including, but not limited
to, Lipschitz transforms and certain conical singularities. The underlying
differentiable structure of the manifold is always assumed to be smooth,
and hence, rough metrics capture geometric singularities.

More precisely, let g̃ be a measurable, symmetric (2, 0) tensor field
and suppose at each point x ∈ M, there exists a chart (ψx, Ux) near x
and a constant C = C(Ux) ≥ 1 satisfying

C−1|u|ψx∗δ(y) ≤ |u|g̃(y) ≤ C|u|ψx∗δ(y),

for y almost-everywhere (with respect to ψx
∗L , the pullback of the

Lebesgue measure) inside Ux, where u ∈ TyM, and where ψx
∗δ is the

pullback of the Euclidean metric inside (ψx, Ux). A tensor field g̃ satis-
fying this condition is called a rough metric. Such a metric may not, in
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general, induce a length structure, but (on a compact manifold) it will
induce an n-dimensional Radon measure.

Two rough metrics g̃1 and g̃2 are said to be C-close (for C ≥ 1) if

C−1|u|g̃1(x) ≤ |u|g̃2(x) ≤ C|u|g̃1(x),

for almost-every x and where u ∈ TxM. For any two rough met-
rics, there exists a symmetric measurable (1, 1)-tensor field B such that
g̃1(Bu, v) = g̃2(u, v). For C-close rough metrics, C−2|u| ≤ |B(x)u| ≤
C2|u| in either induced norm. In particular, this means that their
Lp-spaces are equal with equivalent norms. Moreover, Sobolev spaces
exist and are equal with comparable norms, and for p = 2, these are
Hilbert spaces. On writing θ =

√
detB, which denotes the density for

the change of measure dµg̃2
=
√

detB dµg̃1
, the divergence operators

satisfy divg̃2
= θ−1 divg̃1

θB, and the Laplacian ∆g̃2
= θ−1 divg̃1

θB∇.
Since we assume M is compact, for any rough metric g̃, there exists a
C ≥ 1 and a smooth metric g that is C-close.

As far as the author is aware, the notion of a rough metric was first
introduced by the author in his investigation of the geometric invariances
of the Kato square root problem in [6]. However, a notion close to this
exists in the work of Norris in [16] and the notion of C-closeness between
two continuous metrics can be found in [19] by Simon and in [18] by
Saloff-Coste.

There is an important connection between divergence form operators
and rough metrics, and this is crucial to the analysis carried out in [7].
The authors noticed that equation (GMC) and the flow (GM) still makes
sense if the initial metric g was replaced by a rough metric g̃. To fix
ideas, let us denote a rough metric by g̃ and by g, a smooth metric
that is C-close. In this situation, we can write the equation (GMC)
equivalently in the form

(GMC′) −divg,y ρ
g̃
t (x, y)Bθ∇ϕt,x,v = θ dx(ρg̃

t (x, y))(v).

Indeed, it is essential to understand the heat kernel of ∆g̃ and its reg-
ularity to make sense of the right hand side of this equation. In [7],

the authors assume ρg̃
t ∈ C0,1(M) and further assuming ρg

t ∈ Ck(N 2),
for k ≥ 2 and where ∅ 6= N ⊂ M represents a “non-singular” open
set, they show the existence of solutions to (GMC′) and provide a time
evolving family of metrics gt defined via the equation (GM) on N of reg-
ularity Ck−2,1. We remark that this set typically arises as N = M\ S
where S is some singular part of g. For instance, for a cone attached to
a sphere at the north pole, we have that S = {pnorth}, and on N , both
the metric and heat kernel are smooth.
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The aforementioned assumptions are not a restriction to the appli-
cations that the authors of [7] consider as their primary goal was to
consider geometric conical singularities, and spaces like a box in Eu-
clidean space. All these spaces are, in fact, RCD-spaces and such spaces
have been shown to always have Lipschitz heat kernels. General rough
metrics may fail to be RCD, and more seriously, even fail to induce a
metric. However, for such metrics, the following still holds.

Proposition 3.1. For a rough metric g̃, the heat kernel ρg̃
t for ∆g̃ exists

and for every t > 0, there exists some α > 0 such that ρg̃
t ∈ Cα(M).

Proof: We follow a similar argument to the proof of Theorem 5.2.1 in [10]
for a smooth g̃. The crux of his argument is to assert |e−t∆g̃f(x)| ≤
Ct,x‖f‖, so that f 7→ e−t∆g̃f(x) is a bounded functional on L2(M) for
each (t, x)∈(0,∞)×M, which allows us to invoke the Riesz representation
theorem to obtain a(t, x) ∈ L2(M) satisfying e−t∆g̃f(x) = 〈a(t, x), f〉.
The heat kernel is the readily checked to be given by ρg̃

t (x, y) = 〈a(t/2, x),
a(t/2, y)〉. Thus, we prove that for our rough metric g̃, the estimate
|e−t∆g̃f(x)| ≤ Ct,x‖f‖ holds.

First, we note that the semigroup e−t∆g̃ is positive: whenever f ∈
L2(M) with f ≥ 0, we have e−t∆g̃f ≥ 0. The positivity of e−t∆g̃ is

equivalent to the following Beurling–Deny type criterion: f ∈ D(∆
1
2

g̃ )

implies |f | ∈ D(∆
1
2

g̃ ) with ‖(∆g̃ − λ0)
1
2 |f |‖ . ‖(∆g̃ − λ0)

1
2 f‖, where

λ0 = inf σ(∆g̃) (see Theorem X11.50 in [17] by Reed and Simon). On
writing ∆g̃ = −θ−1 divg Aθ∇ against a smooth background g and using
the compactness ofM, we have that λ0 = 0 and by self-adjointness of ∆g̃,

we have D(
√

∆g̃) = W1,2(M) with ‖∇f‖ ' ‖
√

∆g̃f‖. The inequality
‖∇|f |‖ ≤ ‖∇f‖ follows immediately from the product rule. Thus, we
conclude that e−t∆g̃ is positive.

Now, let f ∈ L2(M) and note that f = f+ − f−, where f± =
max{0,±f} ≥ 0 respectively. So, letting u(t, x) = (e−t∆g̃f)(x) and
u±(t, x) = (e−t∆g̃f±)(x), we have that u(t, x) = u+(t, x) − u−(t, x)
since e−t∆g̃ is positive. Note that |e−tLf(x)| = |u(t, x)| ≤ u+(t, x) +
u−(t, x). Invoking Theorem 5.3 in [18] by Saloff-Coste upon viewing
∆g̃ = θ−1 divg Aθ∇ against a smooth background g (and by noting that
M is compact), we have a parabolic Harnack estimate for non-negative
solutions v(t, x) to (∂t −∆g̃)v(t, x) = 0 on a small g-ball Bδ(x) around
x of radius δ > 0. In particular, we obtain u±(t, x) . u±(t + ε0, y)
for y ∈ Bδ(x) and by integrating with respect to y and invoking the
Cauchy–Schwarz inequality,

u±(t, x) . µ(Bδ(x))−
1
2 ‖u±(t+ ε0, ·)‖.
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By the properties of the semigroup, we obtain that

‖u±(s, · )‖ = ‖e−s∆g̃f±‖ . ‖f±‖ . ‖f‖
and so we obtain the existence of the heat kernel.

The Cα-regularity of (x, y) 7→ ρt(x, y) is again a consequence of The-
orem 5.3 in [18] upon noting that v(t, x) = ρt(x, y) solves the heat
equation (∂t−∆g̃)v(t, x) = 0 for each y, and by using the fact thatM is
compact.

In order to proceed, we note the following existence and uniqueness
result to solutions of the equation (GMC′).

Proposition 3.2. Suppose that ρg
t ∈ C1(N 2) where ∅ 6= N ⊂ M is

an open set. Then, for each x ∈ N , the equation (GMC′) has a unique
solution ϕt,x,v ∈W1,2(M) satisfying

´
M ϕt,x,v dµg̃ = 0. This solution is

given by

ϕt,x,v = L−1
x (θηt,x,v)−

 
M

L−1
x (θηt,x,v) dµg̃,

where Lxu = − divg,y ρ
g
t (x, y)∇u and ηt,x,v = dx(ρg

t (x, y))(v).

Proof: We note that the proof of this proposition runs in a very similar
way to Propositions 4.6 and 4.7 in [7]. Note that the first proposition
simply requires that ρg

t ∈ C0(M2), and that ρg
t > 0. This latter in-

equality is yielded by Lemma 5.4 in [7], which again, only requires that
ρg
t ∈ C0(M2).

Remark 3.3. When inverting this operator Lx as a divergence form op-
erator on the nearby smooth metric g, the solutions ψt,x,v = L−1

x (θηt,x,v)
satisfy

´
M ψt,x,v dµg = 0. The adjustment by subtracting

ffl
M ψt,x,v dµg̃

to this solution is to ensure that
´
M ϕt,x,v dµg̃ = 0. That is, the integral

with respect to µg̃, rather than µg, is zero.

Collating these results together, and invoking Theorem 1.1, we obtain
the following.

Theorem 3.4. Let M be a smooth, compact manifold, and ∅ 6= N ⊂
M, an open set. Suppose that g̃ is a rough metric and that ρg̃

t ∈ C1(N 2).
Then, gt as defined by (GM) exists on N and it is continuous.

Proof: By Proposition 3.2, we obtain existence of gt(x) for each x ∈ N as
a Riemannian metric. The fact that it is a non-degenerate inner product
follows from similar argument to that of the proof of Theorem 3.1 in [7],
which only requires the continuity of ρg

t .
Now, to prove that x 7→ gt(x) is continuous, it suffices to prove that

x 7→ |u|2gt(x) as a consequence of polarisation. Here, we fix a coordinate
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chart (ψx, Ux) near x and consider u = ψ−1
x ∗ũ, where ũ ∈ Rn is a

constant vector inside (ψx, Ux). In this situation, we note that (GM)
can be written in the following way:

|u|2gt(x) = 〈Lxϕt,x,u, ϕt,x,u〉 = 〈ηt,x,u, ϕt,x,u〉.

Now, to prove continuity, we need to prove that ||u|gt(x) − |u|gt(y)| can
be made small when y is sufficiently close to x. This is obtained if, each
of |〈ηt,x,u−ηt,y,u, ϕt,x,u〉| and |〈ηt,y,u, ϕt,x,u−ϕt,y,u〉| can be made small.

The first quantity is easy:

|〈ηt,x,u − ηt,y,u, ϕt,x,u〉| ≤ ‖ηt,x,u − ηt,y,u‖‖ϕt,x,u‖,

and by our assumption on ρg
t (x, z) that it is continuously differentiable

for x ∈ N and Cα in z, we have that (x, y) 7→ ηx,t,u(y) is uniformly con-
tinuous on K ×M for every K b N (open subset, compactly contained
in N ) by the compactness of M. Thus, on fixing K b N , we have that
for x, y ∈ K,

‖ηt,x,u − ηt,y,u‖ ≤ µg̃(M) sup
z∈M

|ηt,x,u(z)− ηt,y,u(z)|

and the right hand side can be made small for y sufficiently close to x.
Now, the remaining term can be estimated in a similar way:

|〈ηt,y,u, ϕt,x,u − ϕt,y,u〉| ≤ ‖ηt,y,u‖‖ϕt,x,u − ϕt,y,u‖.

First, observe that ‖ηt,y,u‖ = ‖ηt,y,u − ηt,x,u‖ + ‖ηt,x,u‖ and hence, by
our previous argument, the first term can be made small and the second
term only depends on x. Thus, it suffices to prove that ‖ϕt,x,u − ϕt,y,u‖
can be made small. Note then that

‖ϕt,x,u − ϕt,y,u‖ ≤ ‖L−1
x θηt,x,u − L−1

x θηt,y,u‖

+ µg̃(M)

( 
M

)
L−1
x θηt,x,u − L−1

x θηt,y,u dµg̃

≤ (1 + µg̃(M))‖L−1
x θηt,x,u − L−1

x θηt,y,u‖,

where the last inequality follows from the Cauchy–Schwarz inequality
applied to the average.

Again, by the assumptions on ρg̃
t ,

‖Bθρg̃
t (x, · )−Bθρ

g̃
t (y, · )‖∞ . ‖Bθ‖∞ sup

z∈M
|ρg̃
t (x, z)− ρg̃

t (y, z)|

which shows that x 7→ B(· )θ(· )ρg̃
t (x, · ) is L∞-continuous. Moreover, we

have already shown that (w, z) 7→ ηt,x,u(z) is uniformly continuous on
K×M for K b N and hence, since θ is essentially bounded from above
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and below, x 7→ θηt,x,u is L2-continuous. Thus, we apply Theorem 1.1
to obtain the conclusion.

Remark 3.5. If we assume that g̃ is a rough metric on M, but away
from some singular piece S, we assume that the metric is C1, then, by
the results in §6 of [7], we are able to obtain that the heat kernel ρg̃

t ∈
C2(M\S). Hence, we can apply this theorem to obtain that the flow is
continuous onM\S. In [7] a similar theorem is obtained (Theorem 3.2)

but requires the additional assumption that ρg̃
t ∈ C1(M2).

4. Proof of the theorem

In this section, we prove the main theorem by first proving a homoge-
neous Kato square root result. We begin with a description of functional
calculus tools required phrase and resolve the problem.

4.1. Functional calculi for sectorial operators. Let H be a com-
plex Hilbert space and T : D(T ) ⊂ H → H a linear operator. Recall
that the resolvent set of T denoted by ρ(T ) consists of ζ ∈ C such that
(ζI−T ) has dense range and a bounded inverse on its range. It is easy to
see that (ζI− T )−1 extends uniquely to bounded operator on the whole
space. The spectrum is then σ(T ) = C \ ρ(T ).

Fix ω ∈ [0, π/2) and define the ω-bisector and open ω-bisector respec-
tively as

Sω = {ζ ∈ C : | arg ζ| ≤ ω or | arg(−ζ)| ≤ ω or ζ = 0} and

So
ω = {ζ ∈ C : | arg ζ| < ω or | arg(−ζ)| < ω and ζ 6= 0} .

An operator T is said to be ω-bi-sectorial if it is closed, σ(T ) ⊂ Sω, and
whenever µ ∈ (ω, π/2), there exists a Cµ > 0 satisfying the resolvent
bounds: |ζ|‖(ζI − T )−1‖ ≤ Cµ for all ζ ∈ C \ Sµ. Bi-sectorial opera-
tors naturally generalise self-adjoint operators: a self-adjoint operator is
0-bi-sectorial. Moreover, bi-sectorial operators admit a spectral decom-
position of the space H = N (T ) ⊕ R(T ). This sum is not, in general,
orthogonal, but it is always topological. By PN (T ) : H → N (T ) we de-

note the continuous projection from H to N (T ) that is zero on R(T ).
Fix some µ ∈ (ω, π/2) and by Ψ(So

µ) denote the class of holomorphic
functions ψ : So

µ → C for which there exists an α > 0 satisfying

|ψ(ζ)| . |ζ|α

1 + |ζ|2α
.
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For an ω-bi-sectorial operator T , we define a bounded operator ψ(T ) via

ψ(T )u =
1

2πı

˛
γ

ψ(ζ)(ζI− T )−1u dζ,

where γ is an unbounded contour enveloping Sω counter-clockwise in-
side So

µ and where the integral is defined via Riemann sums. The resol-
vent bounds for the operator T coupled with the decay of the function ψ
yields the absolute convergence of this integral.

Now, suppose there exists a C > 0 so that ‖ψ(T )‖ ≤ C‖ψ‖∞. In
this situation we say that T has a bounded functional calculus. Let
Hol∞(So

µ) be the class of bounded functions f : So
µ ∪ {0} → C for which

f |So
µ

: So
µ → C is holomorphic. For such a function, there is always a

sequence of functions ψn ∈ Ψ(So
µ) which converges to f |So

µ
uniformly

on compact subsets of So
µ. Moreover, if T has a bounded functional

calculus, the limit limn→∞ ψn(T ) exists in the strong operator topology,
and hence, we define

f(T )u = f(0)PN (T )u+ lim
n→∞

ψn(T )u.

The operator f(T ) is independent of the sequence ψn, it is bounded, and
moreover, satisfies ‖f(T )‖ ≤ C‖f‖∞. By considering the function χ+,
which takes the value 1 for Re ζ > 0 and 0 otherwise, and χ− taking 1
for Re ζ < 0 and 0 otherwise, we define sgn = χ+ − χ−. It is readily
checked that sgn ∈ Hol∞(So

µ) for any µ and hence, for T with a bounded

functional calculus, the χ±(T ) define projections. In addition to the
spectral decomposition, we obtain H = N (T )⊕R(χ+(T ))⊕R(χ−(T )).

Lastly, we remark that a quantitative criterion for demonstrating that
T has a bounded functional calculus is to find ψ ∈ Ψ(So

µ) satisfying the
quadratic estimateˆ ∞

0

‖ψ(tT )u‖2 dt
t
' ‖u‖2, u ∈ R(T ).

In particular, this criterion facilitates the use of harmonic analysis tech-
niques to prove the boundedness of the functional calculus. For a more
complete treatment of these ideas, we refer the reader to [1] by Albrecht,
Duong, and McIntosh for the treatment of one-one operators, and the
paper [9] (in particular the text following Theorem 3.8) where the au-
thors demonstrate how to extend these ideas to general operators on
reflexive spaces.

4.2. Homogeneous Kato square root problem. We have already
given a brief historical overview of the Kato square root problem in
the introduction. An important advancement, from the point of view of
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proving such results on manifolds, was the development of the first-order
Dirac-type operator approach by Axelsson, Keith, and McIntosh in [5].
Their set of hypotheses (H1)–(H8) is easily accessed in the literature,
and therefore, we shall omit repeating them here. For the benefit of the
reader, we remark that the particular form that we use here is listed
in [8].

Let H = L2(M)⊕ L2(T∗M),

Γ =

(
0 0
∇ 0

)
, and Γ∗ =

(
0 −divg

0 0

)
.

Then, for elliptic (possibly complex and non-symmetric) coefficients B ∈
L∞(T (1,1)M) (where we recall that T (1,1)M are the bundle of (1, 1)-ten-
sors) satisfying Re〈Bu, u〉 ≥ κ1‖u‖2, and b ∈ L∞(M) with Re b(x) ≥ κ2,
define B1, B2 : H →H by

B1 =

(
b 0
0 0

)
and B2 =

(
0 0
0 B

)
.

Define the Dirac-type operators ΠB = Γ + B1Γ∗B2 and Π = Γ + Γ∗.
The first operator is bi-sectorial and the second is self-adjoint (but with
spectrum possibly on the whole real line).

First, we note that by bi-sectoriality and by invoking Theorem 3.8
of [9],

H = N (Π)⊕⊥ R(Π) = N (ΠB)⊕R(ΠB),

where the second direct sum is topological but not necessarily orthogo-
nal. In particular, the first direct sum yields that L2(M) = N (∇) ⊕⊥
R(div) and L2(T∗M) = N (div)⊕⊥ R(∇). We observe the following.

Lemma 4.1. The space R(div) =
{
u ∈ L2(M) :

´
M u = 0

}
.

Proof: Let u ∈ R(div). Then, there is a sequence un ∈ R(div) such that
un → u in L2(M). Indeed, un = div vn, for some vectorfield vn ∈ D(div).
Thus, ˆ

M
u dµg̃ = 〈u, 1〉 = lim

n→∞
〈un, 1〉 = lim

n→∞
〈div vn, 1〉 = 0,

where the second equality follows from the fact that strong convergence
implies weak convergence.

Now, suppose that
´
M u dµg̃ = 0. Then, since (M, g̃) admits a

Poincaré inequality, we have that 〈u, v〉 = 0 for all v ∈ N (∇). But

since we have that L2(M) = N (∇) ⊕⊥ R(div) via spectral theory, we

obtain that u ∈ R(div).

With this lemma, we obtain the following coercivity estimate.
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Lemma 4.2. Let u ∈ R(Π)∩D(Π). Then, there exists a constant C > 0
such that ‖u‖ ≤ C‖Πu‖.

Proof: Fix u = (u1, u2) = R(Π) = R(div) ⊕⊥ R(∇). Then, ‖Πu‖ =
‖∇u1‖ + ‖div u2‖. By the Poincaré inequality along with the previous
lemma, we obtain that ‖∇u1‖ ≥ C1‖u1‖. For the other term, note that
div u2 = div∇v = ∆v for some v ∈ D(∇). Thus,

‖∆v‖ = ‖
√

∆
√

∆v‖ = ‖∇(
√

∆v)‖ ≥ C1‖
√

∆v‖ = C1‖∇v‖ = C1‖u2‖.

On setting C = C1, we obtain the conclusion.

Indeed, this is the key ingredient to obtain a bounded functional cal-
culus for the operator ΠB .

Theorem 4.3 (Homogenous Kato square root problem for compact
manifolds). On a compact manifold M with a smooth metric g, the
operator ΠB admits a bounded functional calculus. In particular,
D(
√
bdivB∇) = W1,2(M) and ‖

√
bdivB∇u‖ ' ‖∇u‖. Moreover,

whenever ‖b̃‖∞ < η1 and ‖B̃‖∞ < η2, where ηi < κi, we have the
following Lipschitz estimate

‖
√
bdivB∇u−

√
(b+ b̃) div(B + B̃)∇u‖ . (‖b̃‖∞ + ‖B̃‖∞)‖∇u‖

whenever u ∈W1,2(M). The implicit constant depends on b, B, and ηi.

Proof: Our goal is to check the Axelsson–Keith–McIntosh hypotheses
(H1)–(H8) as listed in [8] to invoke Theorem 4.2 in that paper and
obtain a bounded functional calculus for ΠB .

To avoid unnecessary repetition by listing this framework, we leave it
to the reader to consult [8]. However, for completeness of the proof, we
will remark on why the bulk of these hypothesis are automatically true.

First, by virtue of the fact that we are on a smooth manifold with a
smooth metric, we have that |Ric| . 1, and inj(M, g) > κ > 0. Cou-
pling this with the fact that Γ is a first-order differential operator makes
their hypotheses (H1)–(H7) valid immediately. The hypotheses (H1)–
(H6) are valid as a consequence of their Theorem 6.4 and Corollary 6.5
in [8], and the proof of (H7) is contained in their Theorem 6.2. The
hypothesis (H8) splits into two parts, (H8)-1 and (H8)-2. The first part
is a direct consequence of their Theorem 6.2, along with bootstrapping
the Poincaré inequality (P) and coupling this with their Proposition 5.3.
It only remains to prove their (H8)-2: that there exists a C > 0 such
that ‖∇u‖+ ‖u‖ ≤ C‖Πu‖, whenever u ∈ R(Π) ∩ D(Π).
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Fix such a u = (u1, u2) and note that u1 = div v2 for some v2 ∈ D(div)
and u2 = ∇v1 for some v1 ∈ D(∇). Then,

‖∇u‖2 = ‖∇u1‖2 + ‖∇u2‖2 = ‖∇ div v2‖2 + ‖∇2v1‖2.
Also,

‖Πu‖2 = ‖div∇v1‖2 + ‖∇ div v2‖2.
Thus, it suffices to estimate the term ‖∇2v1‖ above from ‖∆v1‖+ ‖v1‖.
By exploiting the fact that C∞c functions are dense in both D(∆) and
W2,2(M) on a compact manifold, the Bochner–Weitzenböck identity
yields ‖∇2v1‖2 . ‖∆v1‖2 + ‖v1‖2. Now, u2 = ∇v1 ∈ R(∇) and we can
assume that u2 6= 0. Thus, v1 6∈ N (∇) and hence,

´
M v1 dµg̃ = 0. Thus,

by invoking the Poincaré inequality, we obtain that ‖v1‖ ≤ C‖∇v1‖ =
‖u2‖. On combining these estimates, we obtain that ‖∇u‖ . ‖Πu‖. In
Lemma 4.2, we have already proven that ‖u‖ . ‖Πu‖.

This allows us to invoke Theorem 4.2 in [8], which says that the
operator ΠB has a bounded functional calculus. The first estimate in
the conclusion is then immediate.

For the Lipschitz estimate, by the fact that that ΠB has a bounded
functional calculus, we can apply Corollary 4.6 in [8]. This result states
that for multiplication operators Ai satisfying

(i) ‖Ai‖∞ ≤ ηi,
(ii) A1A2R(Γ), B1A2R(Γ), A1B2R(Γ) ⊂ N (Γ), and

(iii) A2A1R(Γ∗), B2A1R(Γ∗), A2B1R(Γ∗) ⊂ N (Γ∗),

we obtain that for an appropriately chosen µ < π/2, and for all f ∈
Hol∞(Soµ),

‖f(ΠB)− f(ΠB+A)‖ . (‖A1‖∞ + ‖A2‖∞)‖f‖∞.
Setting

A1 =

(
b̃ 0
0 0

)
and A2 =

(
0 0

0 B̃

)
,

it is easy to see that these conditions are satisfied, and by repeating
the argument in Theorem 7.2 in [8] for our operator ΠB , we obtain the
Lipschitz estimate in the conclusion.

4.3. The main theorem. Let us now return to the proof of Theo-
rem 1.1. Recall the operator Lxu = −divAx∇u, and that 〈Ax∇u,∇u〉 ≥
κx‖∇u‖2, for u ∈ W1,2(T∗M). From here on, we identify κx by the
largest such constant at x, which is given by the expression

(EL) κx = inf
u∈W1,2(M)

〈Ax∇u,∇u〉
‖∇u‖2

.
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A direct consequence of the Kato square root result from our previous
subsection is then the following.

Corollary 4.4. Fix x ∈ M and that the operator y 7→ Ly is defined
near x. If ‖Ax −Ay‖∞ ≤ ζ < κx, then for u ∈W1,2(M),

‖
√

Lxu−
√

Lyu‖ . ‖Ax −Ay‖∞‖∇u‖.

The implicit constant depends on ζ and Ax.

In turn, this implies the following.

Corollary 4.5. Fix x ∈ M, assume that y 7→ Ly is defined near x and
that ‖Ax −Ay‖∞ ≤ ζ < κx. Then,

‖L−1
x ηx − L−1

y ηy‖ . ‖Ax −Ay‖∞‖ηx‖+ ‖ηx − ηy‖,

whenever ηx, ηy ∈ L2(M) satisfies
´
M ηx dµg =

´
M ηy dµg = 0. The

implicit constant depends on ζ, κx, and Ax.

Proof: First consider the operator Tx =
√

Lx, and fix u ∈ L2(M) such
that

´
M u dµg = 0. We prove that ‖T−1

x u− T−1
y u‖ . ‖Ax −Ay‖∞‖u‖.

Observe that D(Tx) = W1,2(M) and so T−1
x u = T−1

x (TyT
−1
y )u =

(T−1
x Ty)T−1

y u since T−1
y u ∈ W1,2(M). Also, since T−1

x Tx = TxT
−1
x on

W1,2(M), we have that T−1
y u = T−1

x TxT
−1
y u. Thus,

‖T−1
x u−T−1

y u‖=‖T−1
x TyT

−1
y u−T−1

x TxT
−1
y u‖ = ‖T−1

x (Ty−Tx)T−1
y u‖

. ‖(Ty − Tx)T−1
y u‖ . ‖Ax −Ay‖∞‖∇T−1

y u‖,

where the final inequality follows from Corollary 4.4.
On letting Jx[u] = 〈Ax∇u,∇u〉 ≥ κx‖∇u‖2, and fixing ε > 0, we

note that since κy is the largest constant given by (EL), there exists
uε ∈ W1,2(M) such that Jy[uε] − ε ≤ κy. It is easy to also see that
κx ≤ Jx[uε]. Thus,

κx − κy − ε ≤
Jx[uε]− Jy[uε]

‖∇uε‖2
≤ ‖Ax −Ay‖∞ ≤ ζ < κx.

Since ε is arbitrary, we get that κx−ζ ≤ κy, by our hypothesis κx−ζ > 0
and therefore,

(κx − ζ)‖∇u‖2 ≤ κy‖∇u‖2 ≤ Jy[u] = ‖Tyu‖2.

Thus, ‖∇T−1
y u‖ ≤ (κx − ζ)−1‖u‖, and hence,

‖T−1
x u− T−1

y u‖ . ‖Ax −Ay‖∞‖u‖,

where the implicit constant depends on ζ, κx, and Ax.
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Next, let vx, vy ∈ L2(M) satisfy
´
M vx dµg =

´
M vy dµg = 0 and note

that

‖T−1
x vx − T−1

y vy‖≤‖T−1
x vx − T−1

y vx‖+ ‖T−1
y (vx − vy)‖

.‖Ax −Ay‖∞‖vx‖+ ‖(T−1
x − T−1

y )(vx − vy)‖
+ ‖T−1

x (vx − vy)‖
.‖Ax −Ay‖∞‖vx‖+ ‖Ax−Ay‖∞‖vx−vy‖+‖vx−vy‖
.‖Ax −Ay‖∞‖vx‖+ ‖vx − vy‖,

where the constant depends on ζ, κx, and Ax. Now, putting vx =

L
− 1

2
x ηx = T−1

x ηx, and similarly choosing vy, since we assume
´
M ηx dµg =´

M ηy dµg = 0, the same is satisfied for vx and vy. Hence, we apply what
we have just proved to obtain

‖L−1
x ηx − L−1

y ηy‖ . ‖Ax −Ay‖∞‖L
− 1

2
x ηx‖+ ‖T−1

x ηx − T−1
y ηy‖

. ‖Ax −Ay‖∞‖ηx‖+ ‖Ax −Ay‖∞‖ηx‖+ ‖ηx − ηy‖

. ‖Ax −Ay‖∞‖ηx‖+ ‖ηx − ηy‖.

This proves the claim.

With the aid of this, the proof of Theorem 1.1 is immediate.

Proof of Theorem 1.1: Fix ε ∈ (0, κx/2) and by the assumption that
x 7→ ηx is L2-continuous at x and that x 7→ Ax is L∞-continuous at x,
we have a δ = δ(x, ε) such that

‖ηx − ηy‖ < ε and ‖Ax −Ay‖∞ < ε

uniformly for y ∈ Bδ(x), the ball of radius δ at x. Thus, in invoking
Corollary 4.5, we obtain ‖ux− uy‖ . ε where the implicit constant only
depends on ηx, κx, and Ax.
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