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A FINSLER-LAPLACIAN
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Abstract: In this paper we prove existence results and asymptotic behavior for

strong solutions u ∈W 2,2
loc (Ω) of the nonlinear elliptic problem

(P)

{
−∆Hu+H(∇u)q + λu = f in Ω,

u→ +∞ on ∂Ω,

where H is a suitable norm of Rn, Ω ⊂ Rn is a bounded domain, ∆H is the Finsler

Laplacian, 1 < q ≤ 2, λ > 0, and f is a suitable function in L∞loc. Furthermore, we

are interested in the behavior of the solutions when λ → 0+, studying the so-called

ergodic problem associated to (P). A key role in order to study the ergodic problem
will be played by local gradient estimates for (P).
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1. Introduction

Let Ω be a C2 bounded domain of Rn, n ≥ 2, and let us consider the
following Finsler-Laplacian of u, namely the operator ∆Hu defined as

∆Hu =

n∑
i=1

∂

∂xi
(H(∇u)Hξi(∇u)),

where H is a suitable smooth norm of Rn (see Subsection 2.1 for the
precise assumptions). The aim of the paper is to study the existence of
solutions of the equation

(1.1) −∆Hu+H(∇u)q + λu = f(x) in Ω,

where 1 < q ≤ 2, λ > 0, and f is a suitable function in L∞loc, bounded
from below, with the boundary condition

(1.2) lim
x→∂Ω

u(x) = +∞.
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We will refer to the solutions of (1.1) which satisfy (1.2) as blow-up solu-
tions. We are also interested in the asymptotic behavior of the solutions.
Moreover, we study the behavior of the blow-up solutions of (1.1) when
λ→ 0+.

Problems which deal with Finsler-Laplacian type operators have been
studied in several contexts (see, for example, [AFTL, BFK, FK, CS,
WX, CFV, DG1, DG2, DG3, Ja]).

When H is the Euclidean norm, namely H(ξ) = |ξ| =
√∑

ξ2
i , blow-

up problems for equations depending on the gradient have been studied
by many authors. We refer the reader, for example, to [LL, BG, GNR,
PV, Le, Po, BPT, FGMP]. In the Euclidean setting, problem (1.1)–
(1.2) reduces to

(1.3)

{
−∆u+ |∇u|q + λu = f(x) in Ω,

lim
x→∂Ω

u(x) = +∞.

The interest in problems modeled by (1.3) has been grown since the
seminal paper by Lasry and Lions [LL]. The equation in (1.3) is a par-
ticular case of Hamilton–Jacobi–Bellman equations, which are related to
stochastic differential problems. Indeed, in [LL] the authors enlightened
the relation between problem (1.3) and a model of a stochastic control
problem involving constraints on the state of the system by means of
unbounded drifts. We briefly recall a few facts about this link.

Let us consider the stochastic differential equation

dXt = a(Xt) dt+ dBt, X0 = x ∈ Ω,

where Bt is a standard Brownian motion. We assume that a(·) ∈ A,
where A is the class of feedback controls such that the state process Xt,
solution to the above SDE, remains in Ω with probability 1, for all t ≥ 0
and for any x ∈ Ω. Thanks to the dynamic programming principle due
to Bellman, the function uλ ∈ W 2,r

loc (Ω), r < ∞, which solves (1.3) can
be represented as the value function

uλ = inf
a∈A

E

∫ ∞
0

[
f(Xt) + cq|a(Xt)|q

′
]
e−λt dt,

where E is the expected value, 1 < q ≤ 2, q′ = q
q−1 , cq = (q − 1)q−q

′
,

and e−λt is a discount factor.
In [LL] there are several results regarding the existence, uniqueness,

and asymptotic behavior of the solutions of (1.3).
When λ tends to zero, the limit of λuλ is known as ergodic limit. This

kind of problems have been largely studied (see, for example, [BF1, LL,
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BF2, Po, FGMP]). A typical result states that λuλ tends to a value
u0 ∈ R and uλ(x)−uλ(x0), for fixed x0 ∈ Ω, tends to a function v which
solves

(1.4)

{
−∆v + |∇v|q + u0 = f(x) in Ω,

lim
x→∂Ω

v(x) = +∞.

Problem (1.4) is seen as the ergodic limit, as λ → 0+, of the stochastic
control problem just described.

The scope of the present paper is to obtain existence, uniqueness, and
asymptotic behavior of the solutions to problem (1.1)–(1.2), in the spirit
of the work by Lasry and Lions [LL], when H is a general norm of Rn.

The interest in this kind of problems is twofold. First, in analogy with
the relation between the quoted SDE and the elliptic problem (1.3), we
stress that the Finsler Laplacian ∆H can be interpreted as the genera-
tor of a “h-Finslerian diffusion”, which generalizes the standard Brown-
ian motion in Rn. Stochastic processes of this type arise in some Biol-
ogy problems, as in the theory of evolution by endo-symbiosis in which
modern cells of plants and animals arise from separately living bacterial
species. We refer the reader to [AZ1, AZ2] (and to the bibliography
cited therein) for the stochastic interpretation of ∆H and for the quoted
applications. Second, apart from the stochastic motivation, the nonlin-
ear elliptic problem we study is of interest in its own right. In our case,
the operator in (1.1) is, in general, anisotropic and quasilinear, with a
strong nonlinearity in the gradient, and generalizes to this setting some
extensively studied problems in the isotropic case. Actually, this brings
several difficulties and differencies with respect to the Euclidean case.
Moreover, in [LL] the asymptotic behavior of the solutions of (1.3) near
to the boundary of Ω is strongly related to a precise behavior of f with
respect to the distance to ∂Ω. In our case, the anisotropy of the op-
erator leads to use an appropriate distance function to the boundary
related to H. On the other hand, the function ∇2H2(ξ) is always dis-
continuous at ξ = 0, unless it is constant. Hence, also giving smoothness
assumptions on H and on the data, it is not possible to apply classi-
cal Calderón–Zygmund type regularity results to get strong solutions in
W 2,r

loc (Ω), r <∞. We deal, in fact, only with solutions in W 2,2
loc (Ω). Fur-

thermore, this lack of regularity does not permit to obtain, in general,
the same gradient estimates for the solutions of (1.1)–(1.2) proved in
the Euclidean case, which play a central role in the study of the ergodic
problem. Actually, we are able to treat also the case λ→ 0+, obtaining
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existence results for the limit problem{
−∆Hv +H(∇v)q + u0 = f(x) in Ω,

lim
x→∂Ω

v(x) = +∞,

and some properties of the ergodic constant u0. We refer the reader to
Subsection 2.3 for the complete scheme of the obtained results.

The paper is organized as follows.

In Section 2 we give the precise assumptions on H and recall some ba-
sic facts of convex analysis. Moreover, we state our results. In Section 3
we prove some a priori estimates for the gradient. Finally, in Section 4
we give the proof of the main results.

2. Assumptions, main results, and comments

2.1. Notation and preliminaries. Throughout the paper we will con-
sider a convex even 1-homogeneous function

ξ ∈ Rn 7→ H(ξ) ∈ [0,+∞[,

that is, a convex function such that

(2.1) H(tξ) = |t|H(ξ), t ∈ R, ξ ∈ Rn,

and such that

(2.2) a|ξ| ≤ H(ξ), ξ ∈ Rn,

for some constant 0 < a. Under this hypothesis it is easy to see that
there exists b ≥ a such that

H(ξ) ≤ b|ξ|, ξ ∈ Rn.

Moreover, we will assume that

(2.3) H2 ∈ C3(Rn \ {0}), and ∇2
ξH

2 is positive definite in Rn \ {0}.

In all the paper we will denote by Ω a set of Rn, n ≥ 2 such that

(2.4) Ω is a bounded connected open set with C2 boundary.

The hypothesis (2.3) on H assures that the operator ∆H is elliptic,
hence there exists a positive constant γ such that

(2.5) γ|ξ|2 ≤
n∑

i,j=1

∂

∂ξj
(H(η)Hξi(η))ξiξj ,

for any η ∈ Rn \ {0} and for any ξ = (ξ1, . . . , ξn) ∈ Rn.
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We will consider as solutions of equation (1.1) the strong solutions,

namely functions u ∈ W 2,2
loc (Ω) such that the equality in (1.1) holds

almost everywhere in Ω.
In this context, an important role is played by the polar function of H,

namely the function Ho defined as

x ∈ Rn 7→ Ho(x) = sup
ξ 6=0

ξ · x
H(ξ)

.

It is not difficult to verify that Ho is a convex, 1-homogeneous function
that satisfies (2.2) (with different constants). Moreover,

H(ξ) = (Ho)o(ξ) = sup
x6=0

ξ · x
Ho(x)

.

The assumption (2.3) on H2 implies that {ξ ∈ Rn : H(ξ) < 1} is strongly
convex, in the sense that it is a C2 set and all the principal curvatures
are strictly positive functions on {ξ : H(ξ) = 1}. This ensures that
Ho ∈ C2(Rn \ {0}) (see [Sch] for the details).

The following well-known properties hold true:

∇ξH(ξ) · ξ = H(ξ), ξ 6= 0,(2.6)

∇ξH(tξ) = sign t · ∇ξH(ξ), ξ 6= 0, t 6= 0,(2.7)

∇2
ξH(tξ) =

1

|t|
∇2
ξH(ξ), ξ 6= 0, t 6= 0,(2.8)

H(∇xHo(x)) = 1, ∀ x 6= 0,(2.9)

Ho(x)∇ξH(∇xHo(x)) = x, ∀ x 6= 0.(2.10)

Analogous properties hold interchanging the roles of H and Ho.
The open set

W = {x ∈ Rn : Ho(x) < 1}
is the so-called Wulff shape centered at the origin. More generally, we
set

Wr(x0) = rW + x0 = {x ∈ R2 : Ho(x− x0) < r},
and Wr(0) =Wr.

2.2. Anisotropic distance function. Due to the nature of the prob-
lem, it seems to be natural to consider a suitable notion of distance to
the boundary. The anisotropic distance of x ∈ Ω to the boundary of ∂Ω
is the function

(2.11) dH(x) = inf
y∈∂Ω

Ho(x− y), x ∈ Ω.
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It is not difficult to prove that dH ∈W 1,∞(Ω). Moreover, property (2.9)
gives that dH(x) satisfies

(2.12) H(∇dH(x)) = 1 a.e. in Ω.

Furthermore, if ∂Ω is C2, then dH is C2 in a suitable neighborhood of ∂Ω
in Ω (see [CM]).

Since ∂Ω is C2, it is possible to extend dH outside Ω to a function
which is still C2 in a suitable neighborhood of ∂Ω in Rn. Indeed, let

d̃H(x) = inf
y∈∂Ω

Ho(x− y), x ∈ Rn \ Ω,

and define the signed anisotropic distance function dsH as

(2.13) dsH(x) =

{
dH(x) if x ∈ Ω,

−d̃H(x) if x ∈ Rn \ Ω.

The following result is proved in [CM].

Theorem 2.1. Let Ω be as in (2.4). Then there exists µ > 0 such that
dsH is C2(Aµ), with Aµ = {x ∈ Rn : −µ < dsH(x) < µ}.

2.3. Main results. The first result concerns the case when f blows up
at the boundary at most as dH(x)−q

′
, with q′ = q/(q − 1).

Theorem 2.2. Let f ∈ L∞loc(Ω) bounded from below and such that

(2.14) lim
dH(x)→0

f(x) dH(x)q
′

= C1, for some 0 ≤ C1 < +∞.

Then there exists a unique solution u ∈ W 2,2
loc (Ω) of (1.1) such that

u blows up at ∂Ω. Moreover, any subsolution v ∈ W 2,2
loc (Ω) of (1.1) is

such that u ≥ v in Ω. Finally, if C0 is the unique positive solution of(
2−q
q−1

)q
Cq0 −

2−q
(q−1)2C0 − C1 = 0 if q < 2, C2

0 − C0 − C1 = 0 if q = 2,

then

(2.15) u(x) ∼


C0

dH(x)
2−q
q−1

if q < 2,

C0 log
1

dH(x)
if q = 2,

as dH(x)→ 0.

The second main result we are able to prove is the case in which
f blows up very fast on ∂Ω.
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Theorem 2.3. Let us suppose that f ∈ L∞loc(Ω) is bounded from below
and satisfies

(2.16) lim inf
dH→0

f(x) dβH(x) > 0, for some β ≥ q′.

Then, any solution u ∈ W 2,2
loc (Ω) of (1.1) bounded from below blows up

at ∂Ω. Moreover there exists a maximum solution of (1.1) in W 2,2
loc (Ω)

and, among all the solutions bounded from below in Ω, there exists a
minimum one which is the increasing limit of sequences of subsolutions
of (1.1).

If in addition there exists C1 > 0 such that

(2.17) f(x) ∼ C1

dβH(x)
, for some β > q′,

then the blow up solution u is unique and, as dH(x)→ 0,

u(x) ∼ C0

dH(x)
β
q−1

,

with C0 = (α−1C1)1/q.

Finally, we prove what happens when λ→ 0+. We will denote by uλ
a blow up solution of (1.1), and vλ = uλ− uλ(x0), where x0 is any fixed
point chosen in Ω.

Theorem 2.4. Let 1 < q ≤ 2, and suppose that f ∈W 1,∞
loc (Ω) is bounded

from below and such that, as dH(x)→ 0,

(2.18) f(x) = o

(
1

dH(x)q′

)
.

Denote by uλ the unique solution of (1.1) in W 2,2
loc (Ω) such that uλ blows

up at ∂Ω. Then, ∇uλ and λuλ are bounded in L∞loc(Ω) and λuλ → u0 ∈
R, vλ → v ∈ W 2,2

loc (Ω) as λ → 0+, where the convergence is uniform on
compact sets of Ω. Moreover, v verifies (2.15) and it is a solution of the
ergodic equation

(2.19) −∆Hv +H(∇v)q + u0 = f in Ω.

In addition, if ũ0 is such that the equation −∆Hw +H(∇w)q + ũ0 = f

admits a blow-up solution in W 2,2
loc (Ω), then necessarily ũ0 = u0.

We will refer to the unique constant u0 such that (2.19) admits a
blow-up solution as the ergodic constant relative to (2.19).
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Remark 2.1. We observe that the ergodic constant u0, in the case q = 2,
is related to an eigenvalue problem. Indeed, if v is a solution of the
ergodic problem, performing the change of variable w = e−v and using
the properties of H we have that w satisfies

(2.20)


−∆Hw + f(x)w = u0 w in Ω,

w = 0 on ∂Ω,

w > 0 in Ω.

This observation will be useful in the proof of the uniqueness, up to
an additive constant, of the blow-up solutions of (2.19) (Theorem 2.5
below). As a matter of fact, u0 is the smallest eigenvalue of (2.20). We
refer to the proof of Theorem 2.5 for the details.

When q ∈]1, 2[, due to the nonlinearity of the principal part of the
operator, and the fact that problem (2.19) is non-variational, the unique-
ness up to an additive constant of the solution of (2.19) does not seem
to be easy to prove.

Theorem 2.5. If q = 2, under the hypotheses of Theorem 2.4, and
assuming also that f ∈W 1,∞

loc (Ω) satisfies

(2.21) |∇f(x)| ≤ C1

d3
H(x)

for some C1 ≥ 0, if v and ṽ are blow-up solutions in W 2,2
loc (Ω) of (2.19),

then ṽ = v + C, for some constant C ∈ R.

3. Gradient bounds

In this section we prove a local gradient bound for the solutions of

(3.1) −∆Hu+H(∇u)q + λu = f, u ∈W 2,2
loc (Ω).

Such estimate is crucial in order to prove Theorem 2.4 on the ergodic
problem. The method we will use relies in a local version, contained
in [LL] (see also [Lio1, Lio2]), of the classical Bernstein technique
(see[GT, LU]).

Theorem 3.1. Let Ω be a bounded open set, and suppose that u ∈
W 2,2

loc (Ω) solves (3.1). For any δ > 0, let us consider the set Ωδ = {x ∈
Ω : dH(x) > δ}. If f ∈ C1,ϑ

loc (Ω), for some ϑ ∈]0, 1[, then

(3.2) |∇u| ≤ Cδ for any x ∈ Ωδ,

where the constant Cδ depends on ‖∇f‖∞, sup(f − λu), δ, and q.
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Actually, we will prove in Section 4 that the estimate (3.2) holds also
under different assumptions on f (see Remark 4.1).

In order to prove Theorem 3.1, we will need the following matrix trace
inequality.

Lemma 3.1. Let A, B symmetric n × n matrices, with A ≥ 0. The
following inequality holds:

(3.3) [Tr(AB)]2 ≤ Tr(AB2) Tr(A),

where Tr(A) is the trace of A.

Proof: By diagonalizing, we can write A = PDPT , with P orthogonal
matrix, D = diag(λ1, . . . , λn), and 0 ≤ λi i-th eigenvalue ofA. Moreover,

let D
1
2 = diag(

√
λ1, . . . ,

√
λn).

For two given n × n matrices X, Y , the Cauchy–Schwarz inequality
can be written as

[Tr(XY )]2 ≤ Tr(XTX) Tr(Y TY );

hence

[Tr(AB)]2 =
[
Tr
(
D

1
2D

1
2PTBP

)]2
≤ Tr(D) Tr

[(
D

1
2PTBP

)T
D

1
2PTBP

]
= Tr(A) Tr(AB2).

Proof of Theorem 3.1: If u is constant, there is nothing to prove. Then,
let us assume that u is not constant in Ω.

The regularity assumptions on H imply that u ∈ C3({∇u 6= 0}) ∩
C1,γ(Ω) (see [To, CFV, CS, LU]).

For the sake of simplicity, we put

aij(ξ) =
1

2
{[H(ξ)]2}ξiξj .

Hence the equation (3.1) can be written as (here and in the following
the Einstein summation convention is understood)

−aij(∇u)uxixj + [H(∇u)]q + λu = f.

If ∇u 6= 0, we can derive the equation with respect to xk, obtaining that

−aijuxixjxk − a
ij
ξm
uxmxk uxixj + q Hq−1Hξmuxmxk + λuxk = fxk .

Let us consider ϕ ∈ D(Ω) such that 0 ≤ ϕ ≤ 1 in Ω, ϕ ≡ 1 on Ωδ, and

(3.4) |∆ϕ| ≤ C ϕθ, |∇ϕ|2 ≤ C ϕ1+θ in Ω,
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for some θ ∈]0, 1[ that will be determined later, and for some constant
C = C(δ, θ). For example, a function ϕ with the above properties can
be determined by taking a cut-off function ψ ∈ D(Ω), with ψ ≡ 1 in Ωδ,

0 ≤ ψ ≤ 1 in Ω, and then choosing ϕ = ψ
2

1−θ .
In the following, C will denote a constant whose value may change

from line to line.
Multiplying by ϕuxk and summing we get

(3.5) −aijuxixjxkϕuxk−a
ij
ξm
uxmxk uxixjϕuxk+q H

q−1Hξmuxmxkϕuxk

+ λϕuxkuxk = ϕfxkuxk .

Denoting v = |∇u|2, equation (3.5) can be rewritten as

− aij vxixj ϕ+ 2ϕaijuxixkuxjxk − a
ij
ξm
uxixjϕvxm

+ q Hq−1∇ξH · ∇v ϕ+ 2λϕ v = 2ϕ∇f · ∇u,
or

−aij(ϕv)xixj + 2ϕaijuxixkuxjxk − a
ij
ξm
uxixj (ϕv)xm

+ q Hq−1∇ξH · ∇(v ϕ) + 2λϕ v +
2

ϕ
(aijϕxi(ϕv)xj )

= 2ϕ∇f · ∇u+
[
−aijξm uxixj ϕxm + qHq−1∇ξH · ∇ϕ

]
v

− aijϕxixjv + 2
v

ϕ
(aijϕxiϕxj ).

Let x0 be a maximum point for ϕv in Ω. Obviously, ∇u(x0) 6= 0, oth-
erwise ϕv ≡ 0 in Ω, which contradicts the fact that u is not constant.
For the same reason, we can assume that x0 ∈ Suppϕ. Then by the
maximum principle we get the following inequality in x0:

2ϕaijuxixkuxjxk+2λϕ v≤ 2ϕ∇f ·∇u

+
[
−aijξm uxixj ϕxm+qHq−1∇ξH ·∇ϕ

]
v

− aijϕxixjv + 2
v

ϕ
(aijϕxiϕxj ).

(3.6)

Now, being H(ξ) 1-homogeneous, and recalling that aij = HHξiξj +

HξiHξj , it follows that aijξm are homogeneous of degree −1, and then

|∇u|
∣∣∣aijξm(∇u)

∣∣∣ =

∣∣∣∣aijξm ( ∇u|∇u|
)∣∣∣∣ ≤ C.
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Hence, using the above inequality, the boundedness of aij , Young in-
equality, and the equation, we get∣∣∣aijξm(∇u)uxixjϕxmv

∣∣∣ = |∇u|
∣∣∣∣aijξm ( ∇u|∇u|

)
uxixjϕxm

∣∣∣∣
≤ C|∇u||∇ϕ|(aij(∇u)uxixj )

≤ εϕ(aij(∇u)uxixj )
2 + C(ε)

|∇ϕ|2

ϕ
|∇u|2

= εϕ(H(∇u)q + λu− f)2 + C(ε)
|∇ϕ|2

ϕ
|∇u|2.

On the other hand, from (3.3) and the equation it follows that

aij(∇u)uxixkuxjxk ≥
(aij(∇u)uxixj )

2

Tr[aij ]
≥ C(H(∇u)q + λu− f)2.

Hence, for ε sufficiently small, recalling (3.6) and that λu−f is bounded
from below, we have

[(H(∇u)q − C1)+]2ϕ ≤ C
{
|∇ϕ|2

ϕ
|∇u|2 + 2ϕ|∇f ||∇u|

+ q|H(∇u)|q−1|∇ξH(∇u)||∇ϕ|v

− aij ϕxixjv + 2
v

ϕ
(aijϕxiϕxj )

}
.

Now using conditions (3.4), (2.2), the boundedness of aij , and the 0-ho-
mogeneity of ∇ξH, we get

[(H(∇u)q − C1)+]2ϕ ≤ C
(
ϕv

1
2 + ϕθv

q+1
2 + ϕθv

)
that means

ϕvq ≤ C
(

1 + ϕv
1
2 + ϕθv

q+1
2 + ϕθv

)
.

Choosing θ ≥ 3−q
2 and recalling that 1 < q ≤ 2 and 0 ≤ ϕ ≤ 1, the

above inequality implies that

Xq ≤ C(ϕq−1 + ϕq−
1
2X

1
2 + ϕθ−

3−q
2 X

q+1
2 + ϕθ−2+qX)

≤ C(1 +X
1
2 +X

q+1
2 +X),

where X = ϕv. Then necessarily

max
Ω

ϕv = ϕv(x0) ≤ C.
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Being ϕ ≡ 1 in Ωδ, we get that

|∇u| = v1/2 ≤ Cδ in Ωδ,

and the proof is complete.

Actually, we can prove a more precise estimate of the gradient of
the solutions when we specify the behavior of the datum f near the
boundary.

Theorem 3.2. Let Ω be a bounded open set, and suppose that u ∈
W 2,2

loc (Ω) solves (3.1). Supposing that f ∈W 1,∞
loc (Ω) satisfies

(3.7) |f(x)| ≤ C1

dβH(x)
, |∇f(x)| ≤ C1

dβ+1
H (x)

for some β ≤ q′, C1 ≥ 0, and

λu ≥ −C2

for some C2 ≥ 0. Then

|∇u| ≤ C3

d
1
q−1

H (x)
in Ω,

where C3 only depends on C1, C2, β, and the diameter of Ω.

Proof: Let x0 ∈ Ω, define r = 1
2 dH(x0) and consider v(x) = rαu(x0 +

rx), α = 2−q
q−1 , for x ∈ W1(0) =W. The function v ∈W 2,2

loc (W) solves

−∆Hv +H(∇v)q + λr2v = rq
′
f(x0 + rx) in W.

The hypothesis (3.7) on f gives that

|rq
′
f(x0 + rx)| ≤ C12βrq

′−β ≤ C12β [diamH(Ω)]q
′−β = C4,

where diamH(Ω) = sup
x,y∈Ω

Ho(x− y), and, similarly,

|rq
′
∇xf(x0 + rx)| ≤ C12βrq

′−β ≤ C4.

Now, using the estimate (3.2), we have

|∇v(0)| = |∇u(x0)|r
1
q−1 ≤ C3,

where C3 depends on C4.
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4. Proof of the main results

Proof of Theorem 2.2: We split the proof considering first the case of f
bounded, then we study the general case, with f ∈ L∞loc(Ω) such that
(2.14) holds.

Case 1: f ∈ L∞(Ω). We look for solutions which blow up approaching
the boundary. To this aim, we consider functions of the type u(x) =
C0 dH(x)−α, with C0 > 0 and α > 0. Recall that the anisotropic distance
function is C2(Γ), where Γ = {x ∈ Ω : dH(x) ≤ δ0}, with δ0 > 0
sufficiently small, is a tubular neighborhood of ∂Ω. If we substitute such
functions in (1.1), by (2.1) and property (2.12) we get that

H(∇d−αH ) = αC0 d
−α−1
H .

Moreover, if yx is the unique minimum point of (2.11), that is dH(x) =
Ho(x− yx), then

∇dH(x) = ∇xHo(x− yx)

(see [CM, Proposition 3.3]), and then by (2.10) we have

∇ξH(∇dH(x)) = ∇ξH(∇xHo(x− yx)) =
x− yx

Ho(x− yx)
.

Moreover, using (2.7), we finally have

(4.1) ∇ξH(∇d−αH ) = −∇ξH(∇dH) = − x− yx
Ho(x− yx)

.

Hence, computing the anisotropic Laplacian and using (4.1) and (2.6) it
follows that

∆H(C0 d
−α
H ) = −C0 α div

[
dH(x)−α−1∇ξH(∇dH(x))

]
= C0α(α+ 1) dH(x)−α−2∇xHo(x− yx) · (x− yx)

Ho(x− yx)

− C0 αdH(x)−α−1
n∑

i,j=1

Hξiξj (∇dH(x))∂xixj dH(x)

= C0α(α+ 1) dH(x)−α−2 −K(x) dH(x)−α−1,
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where

K(x) = C0 α

n∑
i,j=1

Hξiξj (∇dH(x))∂xixj dH(x)

is bounded in Γ, being ∇2
ξH bounded on {ξ : H(ξ) = 1}, and dH ∈

C2(Γ). Hence

(4.2) −∆Hu+H(∇u)q + λu− f = −C0α(α+ 1) d−α−2
H

+K(x) dH(x)−α−1 + Cq0α
q d
−(α+1)q
H + λC0 d

−α
H − f.

If f is in L∞, the leading term in (4.2) is

−C0α(α+ 1) d−α−2
H + Cq0α

q d
−(α+1)q
H .

If q < 2 this leads to the choice of

(4.3) α =
2− q
q − 1

, C0 =
1

α
(α+ 1)

1
q−1 .

For q = 2 we choose u(x) = −C0 log dH and C0 = 1.
We construct, by means of the signed distance function dsH(x), defined

in (2.13), a suitable family of subsolutions and supersolutions of (1.1).
To this aim, recalling that dsH(x) ∈ C2(Aµ), where Aµ is given in Theo-
rem 2.1, it is possible to construct a function d(x) in C2(Rn) such that

(4.4)



d(x) = dH(x) if x ∈ Ω, and dH(x) ≤ δ0,

d(x) ≥ δ0 if x ∈ Ω, and dH(x) > δ0,

d(x) = −d̃H(x) if x 6∈ Ω, and d̃H(x) ≤ δ0,

d(x) ≤ −δ0 if x 6∈ Ω, and d̃H(x) > δ0,

where δ0 is a positive constant smaller than µ. Hence, if q < 2, for ε ≥ 0
and δ such that 0 ≤ δ ≤ δ0, we define

(4.5)
wε,δ(x) = (C0 − ε)(d(x) + δ)−α − Cε x ∈ Ωδ,

wε,δ(x) = (C0 + ε)(d(x)− δ)−α + Cε x ∈ Ωδ,

where Cε is a constant which will be chosed later, and

Ωδ := {x ∈ Rn : d(x) ≥ −δ} ⊃ Ω,

Ωδ := {x ∈ Ω : d(x) > δ} ⊂ Ω.
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Ωδ

Ω

Ωδ
δ

δ

If q = 2, the functions (d ± δ)−α in (4.5) have to be substituted with
− log(d± δ).

For suitable choices of Cε, the functions in (4.5) are a supersolution
and a subsolution of (1.1) in Ωδ and Ωδ, respectively (we may assume
f ≡ 0 in Ωδ \ Ω). Indeed, for α and C0 as in (4.3), we get

−∆Hwε,δ +H(∇wε,δ)q + λwε,δ − f

= −α(α+1)(C0+ε)(d−δ)−α−2H(∇d)2+α(C0+ε)(d−δ)−α−1∆Hd

+αq(C0+ε)q(d−δ)−q(α+1)H(∇d)q+λ(C0+ε)(d−δ)−α+λCε−f

≥ α(α+ 1)(C0 + ε)(d− δ)−α−2

[(
1 +

ε

C0

)q−1

H(∇d)q−H(∇d)2

]

+ λCε − C(1 + (d− δ)−α−1)

≥ νε(d− δ)−α−2 + λCε − C(1 + (d− δ)−α−1),

for some ν > 0 and C > 0. We stress that ∆Hd = 1
2 div(∇ξ(H2)(∇d))

is bounded in Ωδ being d ∈ C2(Rn) and ∇2
ξH

2 ∈ L∞(Rn).
By choosing Cε sufficiently large, the last term in the above inequal-

ities is nonnegative, and wε,δ is a supersolution of (1.1) in Ωδ. The
same argument shows that wε,δ is a subsolution of (1.1) in Ωδ. Now,
fixed M > 0, let us consider the approximating problem

(4.6)

{
−∆HuM +H(∇uM )q + λuM = f in Ω,

uM = wε,1/M on ∂Ω.
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Observe that wε, 1
M

= (C0−ε)Mα−Cε =: Cε,M on ∂Ω. Then, by setting

vM = uM − (C0 − ε)Mα − Cε, problem (4.6) can be rewritten as

(4.7)

{
−∆HvM +H(∇vM )q + λvM = f − λCε,M in Ω,

vM = 0 on ∂Ω.

Problem (4.7) admits a subsolution and a supersolution in L∞(Ω) (it is
sufficient to take two suitable constants). Under hypotheses (2.2) and
(2.5), by [BMP, Theorem 2.1], we get that problem (4.7) admits a weak

solution vM ∈W 1,2
0 (Ω) ∩ L∞(Ω), namely vM satifies∫

Ω

[H(∇vM )∇ξH(∇vM ) · ∇ϕ+H(∇vM )qϕ+ λvMϕ] dx

=

∫
Ω

(f − λCε,M )ϕdx, ∀ ϕ ∈W 1,2
0 (Ω) ∩ L∞(Ω).

Then also (4.6) admits a weak solution uM ∈ W 1,2(Ω) ∩ L∞(Ω). More-
over, such solutions are in W 2,2(Ω) (see [To], and the remarks contained
in [CS, CFV]), and in C1,ϑ(Ω) (see [LU, Lie]). Now we apply the
comparison principle contained in [BBGK, Theorem 3.1] (see also [BM,
Theorem 3.1]). We stress that the hypothesis (22) in [BBGK] holds,
because the function H(ξ)∇ξH(ξ) is 1-homogeneous, and then

∇ξ[H(ξ)∇ξH(ξ)]ξ −H(ξ)∇ξH(ξ) = 0.

Hence we have that, for 0 < M < N and for any ε′ > 0,

(4.8) wε,1/M ≤ uM ≤ uN ≤ wε′,0 in Ω.

Last inequality in (4.8) follows observing that uN < wε′,0 near the
boundary of Ω, being uN finite on ∂Ω, while wε′,0|∂Ω = +∞, and using
the comparison principle. Hence (4.8) gives that the functions uM , M >
0 are uniformly bounded in L∞loc(Ω). This estimate, since f ∈ L∞loc(Ω),

allows to apply [To, Theorem 1] in order to obtain a W 1,∞
loc (Ω) estimate.

Actually, in any compact set Ω′ b Ω, by [To, Theorem 1] we have

|∇uM (x)−∇uM (x′)| ≤ C|x− x′|ϑ, ∀ x, x′ ∈ Ω′,

where C is a constant which depends only on n, γ, Γ, Ω′, ϑ, and on the
L∞ bound of uM in Ω′. Then by Ascoli–Arzelà Theorem uM , as M →
+∞, converges locally uniformly to a function u ∈ C1(Ω). Moreover,
u is a weak solution of (1.1) and, recalling (4.8),

(4.9) wε,0 ≤ u ≤ wε′,0, ∀ ε′ > 0.
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Using again [To], u ∈W 2,2
loc (Ω)∩C1,ϑ

loc (Ω). Then, by the chain rule for
vector-valued functions contained in [MM], we have that u is a strong
solution of (1.1).

As a matter of fact, u ≥ wε′,0, for any ε′ > 0. By comparison prin-

ciple, if v ∈ W 2,2
l oc(Ω) is another solution of (1.1) which blows up on the

boundary, then uM ≤ v. Hence, u is the minimal blow up solution.
The next step consists in constructing a maximum blow-up solution

of (1.1). To this end, we may argue as before to get the minimal solu-
tion uδ of (1.1) in Ωδ which diverges on ∂Ωδ. We have that

(4.10) wε,δ ≤ uδ ≤ wε,δ, ∀ ε > 0.

Moreover, if v ∈W 2,2
loc (Ω) is any blow up solution of (1.1), being v bound-

ed on ∂Ωδ, we have that

(4.11) v ≤ uδ.

Passing to the limit as δ → 0 in (4.10), using (4.9) and (4.11), reasoning
as before we get a maximal blow-up solution u = limδ→0 uδ of (1.1) such
that

(4.12) wε,0 ≤ u ≤ v ≤ u ≤ wε,0
for any ε > 0. As a matter of fact, we claim that

u = u.

Indeed, by (4.12) it follows that

lim
d(x)→0

u(x)

u(x)
= 1.

Hence, being u(x) and u(x) divergent near the boundary, we get that
for any θ ∈]0, 1[ there exists a neighborhood of ∂Ω, dependent on θ, in
which

u(x) > θu(x) + (1− θ)m
λ

=: wθ(x),

with m = infΩ f . The function wθ is a subsolution of (1.1), and by
maximum principle wθ ≤ u in all Ω. As θ → 1, we have that u ≤ u in Ω,
and we get the claim.

We further emphasize that inequality (4.11) clearly holds also if v ∈
W 2,2

loc (Ω) is any subsolution of problem (1.1). Passing to the limit, we
obtain v ≤ u.

Case 2: f unbounded. The proof runs analogously as in the previous
case, except what concerns the existence of the minimum explosive so-

lution. Indeed, if f ∼ C1 dH(x)−q
′

or f = o(d−q
′

H ) near ∂Ω, substituting
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u(x) = C0 dH(x)−α in (1.1), with α = (2− q)/(q − 1), we have that the
leading term in (4.2), when x approaches the boundary, is[(

2− q
q − 1

)q
Cq0 −

2− q
(q − 1)2

C0 − C1

]
d−q

′

H (x).

Hence, as before we can construct a maximum explosive solution u
of (1.1) such that

(4.13) (C0 − ε) d−α − Cε ≤ u ≤ (C0 + ε) d−α + Cε,

where d is the function defined in (4.4). As regards the existence of the
minimum solution, differently from the bounded case we have that wε,δ
defined in (4.5) is a subsolution of (1.1) in Ωδ, with f replaced by

fδ =

min
{
f, C2 + C3(d+ δ)−q

′
}

in Ω,

C2 + C3(d+ δ)−q
′

in Ωδ \ Ω,

with C2, C3 positive constants such that C3 > C1, and C2 +C3d
−q′ > f

in Ω. Now, fδ is bounded in Ω, and from the first case we get that there
exists a unique explosive solution uδ of (1.1) with f replaced by fδ, and
uδ ≥ wε,δ. Hence, being f ≥ fδ, the comparison principle gives that
u ≥ uδ. Passing to the limit, we obtain a minimal solution u(x) =
limδ→0 uδ(x) of (1.1), with u ≤ u, that satisfies (4.13). Again, the
uniqueness and the comparison with subsolutions follows as before.

Remark 4.1. We observe that by taking a closer look to the proof of
Theorem 2.2, we are able to conclude that the thesis of the Theorem 3.1
holds also if f ∈ W 1,∞

loc (Ω) and (2.14) is satisfied. Indeed, by using the
approximating problems{

−∆H ũM +H(∇ũM )q + λũM = fM in Ω,

ũM = wε,1/M on ∂Ω,

with fM sequence of smooth functions such that fM → f in W 1,∞
loc (Ω),

the solutions ũM are uniformly bounded in L∞loc(Ω) and converge, up to
a subsequence, to the unique blow-up solution u of problem (3.1). Then
applying the bound (3.2) in Ωδ to ũM and passing to the limit we get
the same bound also for u.

Proof of Theorem 2.3: The main part of the proof relies in the following
statement.

Claim. If (2.16) holds, then any solution of (1.1) in W 2,2
loc (Ω), which is

bounded from below, blows up when dH → 0.
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Once we prove the claim, the thesis of the theorem follows by adapting
the proof contained in [LL, Theorems III.2 and III.3] and the arguments
used in Theorem 2.2 in order to construct a minimum and a maximum
solution and, under the additional hypothesis (2.17), to prove that such
solutions coincide.

In order to prove the claim, we may suppose, without loss of generality,

that u ≥ 0 in Ω and f ≥ K̃ d−q
′

H for some positive constant K̃. Let x0

be a point in Ω such that dH(x0) = 2r. Hence Wr(x0) b Ω, and from
the equation we get that{

−∆Hu+H(∇u)q + λu ≥ Kr−q′ in Wr(x0),

u ≥ 0 on ∂Wr(x0),

where K = 3−q
′
K̃. This means that u is a supersolution of

(4.14)

{
−∆H ũr +H(∇ũr)q + λũr = Kr−q

′
in Wr(x0),

ũr = 0 on ∂Wr(x0),

and, obviously, w = 0 is a subsolution of (4.14). Applying again [BMP,
Theorem 2.1] and [To], there exists a strong solution ũr∈W 2,2(Wr(x0))∩
C1,ϑ(Wr(x0)) of (4.14). Hence, u(x) ≥ ũr(x) ≥ 0 in Wr(x0). Defining
ur(x) = rαũr(rx+ x0), for x ∈ W1(0) =W, with α = (2− q)/(q − 1), it
follows that ur solves

(4.15)

{
−∆Hur +H(∇ur)q + λr2ur = K in W,

ur = 0 on ∂W.

For k > 0, multiplying the above equation by (ur− k)+ and integrating,
by (2.6), (2.2), since ur ≥ 0, we easily get

a

∫
ur>k

|∇ur|2 dx ≤
∫
W
H(∇ur)∇ξH(∇ur)·∇(ur−k)+ dx ≤ K|{ur>k}|,

and, for h > k,

|{ur > h}| ≤ C(h− k)−2∗ |{ur > k}|2
∗/2,

where C is a constant independent of r. Hence, the classical Stampacchia
Lemma (see [St]) assures that ur is uniformly bounded in L∞(W). More-
over, by [BBGK] ur is the unique bounded solution of (4.15), which is
also radial with respect to Ho, due to the symmetry of the data. That
is, ur(x) = Ur(H

o(x)), x ∈ W.
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Reasoning as in Theorem 2.2 we get that ur → u0 ∈W 2,2
loc (W), where

u0(x) = U0(Ho(x)), x ∈ W solves{
−∆Hu0 +H(∇u0)q = K in W,

u0 = 0 on ∂W.

As a matter of fact, U0 solves the problem−U ′′0 −
n− 1

r
U ′0 + |U ′0(r)|q = K in [0, 1],

U0(1) = 0, U ′0(0) = 0.

Hence, by the maximum principle U0(0) = u0(0) > 0. This implies that,
for q < 2, u(x) diverges as dH → 0. As regards the case q = 2, this
method allows only to say that

lim inf
dH→0

u ≥ u0(0) = K0.

As a matter of fact, arguing as in [LL], we have that for any ε > 0 there
exists sε > 0 such that for x ∈ Ω with dH(x) < sε, then u(x) ≥ K0 − ε.
Now, putting v = u−(K0−ε), and repeating exactly the above argument
for v (at least for 2r < sε), we get that

lim inf
dH→0

u ≥ K0 +K0 − ε = 2K0 − ε.

Letting ε go to zero, and iterating the argument, we get that u diverges
as dH → 0 also if q = 2.

Proof of Theorem 2.4: The argument of the proof of Theorem 2.2 allows
to obtain that the solution uλ of problem (1.1) satisfies, if 1 < q < 2,

(4.16)
C0 − ε
dα

− Cε
λ
≤ uλ ≤

C0 + ε

dα
+
Cε
λ
,

for all ε > 0, λ ∈]0, 1], and for some Cε > 0. In the case q = 2, the
function d−α has to be replaced with | log d|. By (4.16), λuλ is uniformly
bounded from below and in L∞loc(Ω). Moreover using Theorem 3.1 and
Remark 4.1 we get that also∇uλ is uniformly bounded in L∞loc(Ω). Then,
vλ = uλ(x)− uλ(x0), for some fixed x0 ∈ Ω, is uniformly bounded with

respect to λ ∈]0, 1] in W 1,∞
loc (Ω). Hence, for any Ω′ b Ω, there exists a

constant CΩ′ independent of λ such that

|uλ(x)− uλ(x0)| ≤ CΩ′ |x− x0|.

Passing to the limit we obtain, up to a subsequence, the convergence
of λuλ(x0) to a constant u0 and of λvλ to 0. We finally prove that
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vλ converges to a blow-up solution of (2.19). First observe that vλ
satisfies the following equation in Ω:

(4.17) −∆Hvλ +H(∇vλ)q + λvλ + λuλ(x0) = f.

Hence, using again the arguments of the proof of the previous results,
we can pass to the limit in (4.17), obtaining that vλ converges to a

solution v ∈W 2,2
loc (Ω) of the problem (2.19).

Now we prove a lower bound for v. Let z = C1

dα , with C1 ∈]0, C0[ fixed.
Then in a sufficiently small inner tubular neighborhood of ∂Ω, namely
Ω \ Ωδ0 , we have that

−∆Hz +H(∇z)q + λz ≤ f − λuλ(x0).

On the other hand, vλ is bounded from below in Ωδ0 , namely there exists
a constant M ≥ 0 such that

vλ ≥ −M in Ωδ0 .

Adapting the methods used in Theorem 2.2 it is possible to obtain that

(4.18) vλ ≥ −M + z = −M +
C1

dα
in Ω.

Passing to the limit, also v satisfies (4.18).
Now we show that for any couple (ũ0, ṽ) of problem (2.19), with ṽ

such that blows up at the boundary, ṽ diverges as in (2.15). To this aim,
it is possible to consider wε,δ as in (4.5) which is supersolution of the
ergodic equation (2.19) in Ωδ \Ωδ0 , for some 0 < δ < δ0 = δ0(ε). Hence,
by the comparison principle, and letting δ go to zero, we can conclude
that

(4.19) − C ≤ ṽ ≤ wε,0 + max
d=δ0(ε)

|ṽ| = (C0 + ε)d−α + max
d=δ0(ε)

|ṽ| in Ω.

Hence, ṽ is such that −∆H ṽ + H(∇ṽ)q + ṽ = g, with g = f − ũ0 + ṽ.
The bounds in (4.19) and the condition (2.18) assure that g ∈ L∞loc(Ω)
and also satisfies (2.18). By Theorem 2.2 we get that ṽ satisfies (2.15).

Now we show that if (ũ0, ṽ) ∈ R ×W 2,2
loc (Ω) is a couple which solves

(2.19) and ṽ blows up at the boundary, then ũ0 = u0 and ṽ = v+C, for
some constant C ∈ R.

As regards the uniqueness of the ergodic constant u0, the proof runs
similarly as in [LL], supposing by contradiction that u0 < ũ0. Let us
choose ε > 0, and 0 < θ < 1. First, observe that obviously v satisfies

(4.20) −∆Hv +H(∇v)q + εv = f + εv − u0 a.e. in Ω.

On the other hand, we have from the 1-homogeneity of H that

−∆H(θṽ) +H(∇(θṽ))q + εθṽ ≤ f + C(1− θ) + εθṽ − θũ0.
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Moreover, since v and ṽ diverge as d−α near to the boundary of Ω, then
θṽ ≤ Cθ + v. So, from the above inequality it follows that

−∆H(θṽ)+H(∇(θṽ))q+εθṽ ≤ f+εv − u0+(u0 − θũ0)+εCθ + C(1− θ)
≤ f+εv − u0,

where last inequality holds for θ sufficiently near to 1 and for ε = ε(θ)
sufficiently small. Hence, θṽ is a subsolution of (4.20). By Theorem 2.2,
θṽ ≤ v; as θ → 1, ṽ ≤ v. This is in contradiction with the fact that any
function of the type ṽ+ c1, with c1 ∈ R solves the ergodic problem with
the same constant ũ0.

Proof of Theorem 2.5: The hypothesis q = 2 allows to perform a suit-
able change of variable. Let v ∈ W 2,2

loc (Ω) be a solution of the ergodic
equation (2.19) with v =∞ on ∂Ω. Then the function

w = e−v

belongs to W 1,∞
0 (Ω)∩W 2,2

loc (Ω). Let us verify that |∇w| ∈ L∞. Due the

condition (2.18), we have that C0 = 1 in (2.15), and then |v| ≤ log(d−1
H ).

Moreover, using also (2.21) we can apply Theorem 3.2, obtaining that
|∇v| dH is bounded. Hence

|∇w| = |∇v|e−v ≤ C.

Now we observe that using the properties of H it holds that the func-
tion w is a W 2,2

loc (Ω) ∩W 1,∞(Ω) solution of

(4.21)


−∆Hw + f(x)w = u0 w in Ω,

w = 0 on ∂Ω,

w > 0 in Ω.

The ergodic constant u0 is a critical point of the Rayleigh quotient

R[ψ] =

∫
Ω
H(∇ψ)2 dx+

∫
Ω
f(x)ψ2 dx∫

Ω
ψ2 dx

.

As a matter of fact, we claim that u0 is the minimum eigenvalue, namely

u0 = min
ψ∈W 1,2

0 (Ω)
u 6=0

R[ψ],

and u0 is the only eigenvalue associated to a positive eigenfunction. The
claim follows observing, first of all, that being f bounded from below,
f ≥ −C, the Rayleigh quotient R[ψ] satisfies

R[ψ] ≥ −C.
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Then the existence of the minimum value of R[ψ] easily follows by using
standard arguments of Calculus of Variations. Moreover the simplic-
ity of u0 and the fact that it is the unique eigenvalue associated to a
positive eigenfunction follows by adapting the proof contained, for ex-
ample, in [DG2] and [KLP]. Hence problem (4.21) admits, up to a
multiplicative constant, a unique solution. This implies that if v1 and v2

solve (2.19), then v1 and v2 differ by a constant.
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[Ja] J. Jaroš, Caccioppoli estimates through an anisotropic Pi-
cone’s identity, Proc. Amer. Math. Soc. 143(3) (2015),
1137–1144. DOI: 10.1090/S0002-9939-2014-12294-5.

[KLP] B. Kawohl, M. Lucia, and S. Prashanth, Simplicity of the
principal eigenvalue for indefinite quasilinear problems, Adv.
Differential Equations 12(4) (2007), 407–434.

[LU] O. A. Ladyzhenskaya and N. N. Ural’tseva, “Linear and
Quasilinear Elliptic Equations”, Translated from the Russian
by Scripta Technica, Inc. Translation editor: Leon Ehrenpreis
Academic Press, New York-London, 1968.

[LL] J.-M. Lasry and P.-L Lions, Nonlinear elliptic equations
with singular boundary conditions and stochastic control with
state constraints. I. The model problem, Math. Ann. 283(4)
(1989), 583–630. DOI: 10.1007/BF01442856.

[Le] T. Leonori, Large solutions for a class of nonlinear ellip-
tic equations with gradient terms, Adv. Nonlinear Stud. 7(2)
(2007), 237–269. DOI: 10.1515/ans-2007-0204.

[Lie] G. M. Lieberman, Boundary regularity for solutions of de-
generate elliptic equations, Nonlinear Anal. 12(11) (1988),
1203–1219. DOI: 10.1016/0362-546X(88)90053-3.

[Lio1] P.-L. Lions, Résolution de problèmes elliptiques quasilinéai-
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