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Abstract

Hospital based emergency departments (EDs) are highly integrated service units to
primarily handle the needs of the patients arriving without prior appointment, and
with uncertain conditions. In this context, analysis and management of patient flows
play a key role in developing policies and decision tools for overall performance im-
provement of the system. However, patient flows in EDs are considered to be very
complex because of the different pathways patients may take and the inherent un-
certainty and variability of healthcare processes. Due to the complexity and crucial
role of an ED in the healthcare system, the ability to accurately represent, simulate
and predict performance of ED is invaluable for decision makers to solve operations
management problems. One way to realize this requirement is by modeling and sim-
ulation. Armed with the ability to execute a compute-intensive model and analyze
huge datasets, the overall goal of this study is to develop tools to better understand
the complexity (explain), evaluate policy (predict) and improve efficiencies (optimize)
of ED units. The two main contributions are:

(1) An agent-based model for quantitatively predicting and analyzing the complex
behavior of emergency departments. The objective of this model is to grasp the non-
linear association between macro-level features and micro-level behavior with the
goal of better understanding the bottleneck of ED performance and provide ability
to quantify such performance on defined condition. The model was built in collabo-
ration with healthcare staff in a typical ED and has been implemented in a NetLogo
modeling environment. In order to validate its adaptivity, the presented model has
been calibrated to emulate a real ED in Spain, simulation results have proven the fea-
sibility and ideality of using agent-based model & simulation techniques to study the
ED system. Case studies are provided to present some capabilities of the simulator
on quantitively analyzing ED behavior and supporting decision making.

(2) A simulation and optimization based methodology for calibrating model pa-
rameters under data scarcity. To achieve high fidelity and credibility in conducting
prediction and exploration of the actual system with simulation models, a rigorous
calibration and validation procedure should firstly be applied. However, one of the
key issues in calibration is the acquisition of valid source information from the target
system. The aim of this contribution is to develop a systematic method to automat-
ically calibrate a general emergency department model with incomplete data. The
proposed calibration method enables simulation users to calibrate the general model
for simulating their system without the involvement of model developers. High per-
formance computing techniques were used to efficiently search for the optimal set of
parameters. The case study indicates that the proposed method appears to be capa-
ble of properly calibrating and validating the simulation model with incomplete data.
We believe that an automatic calibration tool released with a general ED model is
promising for promoting the application of simulation in ED studies. In addition, the
integration of the ED simulator and optimization techniques could be used for ED
systematic performance optimization as well.

Starting from simulating the emergency departments, our efforts proved the feasi-
bility and ideality of using agent-based model methods to study healthcare systems.
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Resumen
Los servicios hospitalarios de urgencias (SU) son servicios altamente integrados que
gestionan las necesidades primarias de los pacientes que llegan sin cita previa y en
condiciones inciertas. En este contexto, el análisis y la gestión de flujos de pacientes
ejercen un papel clave en el desarrollo de las políticas y herramientas de decisión para
mejorar la actuación global del sistema. Pese a esto, los mismos flujos de pacientes en
un SU son considerados muy complejos debido a los diferentes caminos que pueden
tomar los pacientes y a la inherente incerteza y variabilidad de los servicios de salud.
Debido a la complejidad y al papel crucial de un SU en el sistema sanitario, la
habilidad de representar, simular y predecir el rendimiento de un SU tiene un valor
incalculable para quien toma decisiones para resolver los problemas de la gestión de las
operaciones. Una manera a percatarse de las consecuencias es mediante el modelado
y la simulación. El objetivo general de este estudio es desarrollar herramientas para
entender mejora la complejidad (explicar), evaluar la política (predecir) y mejorar la
eficiencia (optimizar) de unidades de SU. Las dos aportaciones principales son:

(1) Un modelo basado en agentes para predecir y analizar cuantitativamente el
complejo comportamiento de los servicios de urgencias. E objetivo de este modelo es
captar la asociación no lineal entre las funciones de nivel macro y el comportamiento a
nivel micro con el objetivo de comprender mejor el cuello de botella del rendimiento de
los SU y proporcionar la capacidad de cuantificar este rendimiento en una condición
dada. El modelo fue construido en colaboración con el personal de asistencia sanitaria
en un SU típica y ha sido implementado en el entorno de modelado NetLogo. Se
proporcionan casos de estudio para presentar algunas capacidades del simulador que
analizan cuantitativamente el comportamiento del SU así como el soporte a la toma
de decisiones.

(2) Una metodología de simulación basada en la optimización para el calibrado de
los parámetros del modelo en condiciones de escasez de datos. Para conseguir una alta
fidelidad y credibilidad en la realización de la predicción y exploración del sistema
actual con modelos de simulaciones se ha de aplicar en primer lugar una calibración
rigurosa y un procedimiento de validación. No obstante, una de las cuestiones clave
en el calibrado es la adquisición de información de una fuente válida para el sistema
destino. El objetivo de este trabajo es desarrollar un método sistemático para calibrar
automáticamente un modelo genérico de un servicio de urgencias con datos incomple-
tos. El método de calibrado propuesto permite a los usuarios de la simulación calibrar
el modelo genérico para la simulación de los propios sistemas sin involucrarse en el
modelo. Las técnicas de computación de alto rendimiento se utilizaron para buscar
el conjunto óptimo de parámetros de manera eficiente. Creemos que una herramienta
de calibrado automático publicado juntamente con un modelo genérico de un SU es
prometedor para la promoción de la aplicación de la simulación en los estudios de
SU. Además, la integración de técnicas de simulación de un SU i optimación podrían
también ser utilizada para la optimización sistemática de un SU.

A partir de la simulación de los servicios de urgencias, nuestros esfuerzos probaron
la viabilidad y la idoneidad de la utilización del modelo de simulación y técnicas
basadas en agentes para el estudio del sistema de salud.
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Resum
Els serveis hospitalaris d’urgències (SU) són serveis altament integrats que gestionen
les necessitats primàries dels pacients que arriben sense cita prèvia i en condicions
incertes. En aquest context, l’anàlisi i gestió de fluxos de pacients exerceix un paper
clau en el desenvolupament de les polítiques i instruments de decisió per millorar
l’actuació global del sistema. Malgrat això, els fluxos dels pacients en un SU són
considerats molt complexes degut als diferents camins que poden prendre els pacients
o que pot tindre el mateix la inherent incertesa i variabilitat dels serveis de salut.
Degut a la complexitat i el paper crucial d’un SU en el sistema sanitari, l’habilitat
per representar, simular i predir el rendiment d’un SU té un valor incalculable per a
qui pren les decisions per resoldre els problemes de gestió d’operacions. Una manera
d’adonar-se de les conseqüències is mitjançant el modelatge i la simulació. La objectiu
general d’aquest estudi és desenvolupar eines per entendre millor la complexitat (ex-
plicar), avaluar la política (predir) i millorar l’eficiència (optimitzar) d’unitats d’un
SU. Les dues aportacions principals són:

(1) Un model basat en agents per predir i analitzar quantitativament el com-
plex comportament dels serveis d’urgències. L’objectiu d’aquest model és captar
l’associació no lineal entre les funcions de nivell macro i el comportament a nivell
micro amb l’objectiu de comprendre millor el coll d’ampolla de rendiment dels SU i
proporcionar la capacitat de quantificar aquest rendiment en una condició donada.
El model va ser construït en col·laboració amb el personal d’assistència sanitària en
un SU típic i ha estat implementat en l’entorn de modelatge NetLogo. Els resultats
de la simulació han demostrat la viabilitat i la idoneïtat de la utilització del model de
simulació i tècniques basades en agents per estudiar un SU. Es proporcionen casos de
estudi per presentar algunes capacitats del simulador que analitzen quantitativament
el comportament del SU així com el suport a la presa de decisions.

(2) Una metodologia de simulació basada en l’optimització per al calibratge dels
paràmetres del model en condicions d’escassetat de dades. Per aconseguir una alta
fidelitat i credibilitat en la realització de la predicció i l’exploració del sistema actual
amb models de simulació, s’ha d’aplicar en primer lloc un calibratge rigorós i un
procediment de validació. No obstant això, una de les qüestions clau en el calibratge
és l’adquisició d’informació d’una font vàlida del sistema de destinació. L’objectiu
d’aquest treball és desenvolupar un mètode sistemàtic per calibrar automàticament un
model genèric d’un servei d’urgències amb dades incompletes. El mètode de calibratge
proposat permet als usuaris de la simulació calibrar el model genèric per a la simulació
del seu propis sistemes sense involucrar-se en el model. Les tècniques de computació
d’alt rendiment es van utilitzar per buscar el conjunt òptim de paràmetres de manera
eficient. Creiem que una eina de calibrat automàtica publicat juntament amb un
model genèric d’un SU és prometedor per a la promoció de la aplicació de la simulació
en SU. A més, la integració de tècniques de simulació d’un SU i optimització podrien
també ser emprades per a la optimització sistemàtica d’un SU.

A partir de la simulació dels serveis d’urgències, els nostres esforços van provar la
viabilitat i la idoneïtat de la utilització del model de simulació i tècniques basades en
agents per estudiar el sistema de salut.
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Chapter 1

Introduction

Emergency Departments (EDs) serve as the primary gateway to the acute healthcare

system, are struggling to provide timely care to a steadily increasing number of un-

scheduled visits [1]. In this thesis, we build high fidelity simulation tools to identify

system bottleneck, quantitatively predict the benefit and cost of a policy, and discov-

ery knowledge for a better understanding of the complex ED system. In particular,

we use agent-based model and simulation techniques to model the interaction of ED

components. We then applied high performance computing techniques to execute the

model and analyze simulation results. This first chapter presents a broad overview

of EDs, challenges for modeling and simulating EDs as well as the motivation for

simulating an ED.

1.1 The Emergency Department

An ED, also known as an accident & emergency department (A & E), emergency

room or casualty department, is a medical treatment facility specializing in emergency

medicine. EDs are responsible for managing patients who present without prior ap-

pointment. They operate 24 hours per day, 365 days per year although staffing levels

may be varied in an attempt to reflect patient volume. EDs are the gatekeeper of the

hospital’s different services, and also an important link between the community (pri-

mary care) and the hospital [2]. Due to the unplanned nature of patient attendance,
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the ED must provide initial treatment for a broad spectrum of illnesses and injuries,

some of which may be life-threatening and require immediate attention. In addition,

population aging in developed countries will challenge ED as old patients visit these

health services more frequently and present special needs.

EDs are suffering from increasing stress in recent years, due to remarkable growth

in demand, limited productivity, and reduced budgets which mostly led to overcrowd-

ing in EDs [3]. For example in Spain, all autonomous communities except Madrid

have faced continuous cuts in the healthcare budget since 2010. As a consequence,

patient congestion and long waiting times in EDs are the most common problems in

public hospitals [4]. Moreover, as investigated in Ref. [5]: "patients are no longer

prepared to accept poor quality service; they expect that services are well organized

from a ’customer’ perspective. That is, the service concept has shifted from opti-

mizing use of resources to finding the tradeoff between quality of service for patients

and operational efficiency for healthcare providers" [5]. For this purpose, ED man-

agers must control problems related to process flow (patients and information), as

well as internal restructuring reflected by resource pooling [6]. Moreover, an ED is a

highly complex, emotionally charged work environment where inefficient operational

decisions may lead to serious consequences, or even unnecessary deaths. Therefore,

efficient management of patient flow in EDs has become an urgent issue for many

hospital administrations while healthcare personnel are neither prepared nor trained

to solve such problems.

Healthcare and ED management is concerned with the mission of improving the

healthcare delivery system, i.e., organization, planning, coordination, staffing, eval-

uating and controlling of healthcare services. Their main objective is to provide

affordable healthcare of the best quality. Since a key activity in emergency man-

agement is planning and preparation for unscheduled scenarios. If the right safety

measures are implemented beforehand, harmful effects can be significantly mitigated.

However, the prediction, explanation & optimization of the system performance are

challenging for a complex system like an ED. Since performing experiments directly

with an actual ED system is a time-consuming, irresponsible (putting patients in risk
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situation) and dangerous method, a virtual platform which mimic the behavior of a

real ED for conducting experiments to study disordered system behavior is promis-

ing. For example, from a point view of healthcare operations managers, this virtual

ED platform could help us make decisions based on information extracted from data,

instead of guessing.

1.2 Simulation for Healthcare Operation

1.2.1 Modeling & simulation

Computer simulation based methods have enjoyed widespread use in healthcare sys-

tem investigation and improvement in recent years [7]. From a computation the-

oretical perspective, simulation of a system can be defined as an "imitation (on a

computer) of a system as it progresses through time" [8]. Normally, simulation is

used for a dynamic as opposed to static analysis [9] of the healthcare system. To-

day, many researchers are interested in modeling and simulating the operation of

EDs because it helps managers carry out different kinds of analyses, such as: (1)

resource utilization (human, equipment, and space resources) for alternative resource

scheduling and allocation policies, (2) finding the most influential factors affecting the

performance of the system in a given situation, (3) exploring the interrelationship be-

tween agents’ behavior and system performance under various scenarios, (4) estimate

system robustness under unexpected situations (e.g., outbreak of infectious diseases)

[10, 11, 12, 13, 14, 15]. An important characteristic of simulation modeling is that it

allows us to evaluate various scenarios so that "what-if" analyses can be performed

and improvement initiatives can be taken [16]. Once developed, the model can be

used to simulate extended horizons to thoroughly understand the performance of the

plan and resources required to implement it. In addition, modifications or alternatives

to the plan can be quantitively evaluated to improve overall responsiveness.

In summary, simulation is the imitation of the operation of a real-world system. It

allows users to reconstruct a more comprehensive representation of real-world system,
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so as to perform experiments for predicting, explaining and optimizing operations.

It is used in many contexts, such as performance optimization, safety engineering,

testing, training, education, scientific research, and video games.

1.2.2 Simulation method

With respect to modeling and simulation methods for studying healthcare systems,

Discrete Event Simulation (DES), System Dynamics (SD) and agent-based model

(ABM) are the three main approaches [17] (thoroughly review will be given in sec-

tion 2.2). SD and DES focus on system-level behavior but they differ in how the

system is modeled and how time is simulated [17]. The system dynamics (SD) mod-

els represent entities as continuous variables whose states change continuously with

time [18], whereas discrete event simulation (DES) models contain individual com-

ponents whose states only change at discrete moments in time [19, 20, 21]. In either

case, the goal is to aggregate the system behavior and draw conclusions about how

the system evolves over time under internal and external "forces". These techniques

can provide valuable insight to problems in healthcare operations management and

are ideally suited for many such problems. However, SD and DES requires excessive

abstractions from actual system to form computer algorithms. This requirements

may cause difficulty in explaining model concepts to healthcare professionals who are

not trained in mathematical or computational disciplines.

In contrast to system dynamics and discrete event simulation methodologies, ABM

focuses on modeling individuals, interactions between individuals, and in some cases,

interactions with a physical or influential surrounding environment [22]. That is,

compare with system-level model methods, an ABM is a more realistic modeling ap-

proach for many problems, especially problems in which there are multiple types of

actors that interact in different ways. For these cases, it is very straightforward to

model these actors as agents that have distinct sets of behaviors and characteristics,

and no systemic level assumption is needed. They are thus more explainable than

most SD and DES models because of their direct correlation to reality. This explain-

ability is an important factor in gaining the confidence of healthcare professionals

4



and ultimately having an impact. In addition, from the point view of the system as

a whole, few assumptions need to be made because system behavior is determined

by the activities at the individual level, i.e., no systemic abstraction needed. Nor-

mally, few assumptions to the model could bring high flexibility and adaptability.

The simulation users, either to develop new models based on existing ABM or to

conduct simulation experiments for prediction, could have more sufficient flexibility

to customize and more straightforwardly apply changes to the system.

As in all methodologies, there are disadvantages to ABM as well. ABMs can

become very complex when they incorporate a lot of details. When this happens, it

becomes difficult to separate the actual effect of each input parameter in the model

as well. In addition, ABMs can become computationally expensive, requiring exces-

sively long computer run times for executing model and analyzing simulation results.

Fortunately, this problem has been alleviated to some degree by high performance

computing techniques, but it demands additional developmental resources that are

not typically required by SD or DES models. In this study, agent-based modeling and

simulation techniques were used, the following subsection 1.2.3 will further introduces

its features and explain our reason of choosing agent-based modeling and simulation

method.

1.2.3 Agent-based modeling and simulation

Although, there is not a general accepted definition, it can be said that an ABM

(or "individual-based" modeling, as the approach is called in some fields) is a com-

putational model of a population of agents (the system’s components, agents and

system components are equally used in this thesis) and their interactions, as well as

the interaction of the former with the environment. This type of modeling methods

is commonly used to analyze complex systems that are difficult to be tackled by clas-

sical or formal methods [22] such as differential equations. Since ABM is a typical

bottom-up method, its direct simulation results are interaction information (i.e., in-

teraction records between agents and, agent with environment). These result can be

used to extract information to indicate system-level behavior. Having said that, an
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ABM is comprised of autonomous, decision making entities called agents that have

the ability to interact with each other and with the environment they stay in. Each

agent has a relatively simple set of rules for how it responds to its environment and

other agents. Thus, in the agent-based simulation, agents perform on behalves of

their actual person (or machine, group of person, department) to make decisions.

An agent-based model is commonly used to search for explanatory insight into

the collective behavior of agents that obeying simple rules and interacting in a shared

environment. [23]. This explainability could be useful to indicate the system bottle-

neck and insight root-cause of the bottleneck. Furthermore, an ABM also provides

flexibility for construction of models (or adding new feathers to an existing ABM) in

the absence of knowledge about the global interdependencies [24]. M. Gul, and A. F.

Guneri in Ref. [25] made a comprehensive review of ED simulation application stud-

ies, they stated that agent-based simulation (ABS) has a significant capability and is

becoming an emerging methodology for ED simulation applications. They also found

that the number of publications with ABS and ABS and others from 2011 to 2015

are steadily increasing compared to before 2011. Furthermore, the system analysis in

many application domains is not only about accuracy in prediction, interpretability

is also extremely important to have transparency in predictive modeling. That is,

domain experts do not tend to prefer "black box" predictive models. They would like

to understand how predictions are made, and possibly, prefer models that emulate

the way a human expert might make a decision [26]. Consequently, the agent-based

model is capable of answering questions such as "why the system behaves the way it

does".

In summary, agent-based modeling and simulation is a new approach to modeling

systems comprised of autonomous, interacting agents. Computational advances have

made possible to execute a growing number of ABMs across a variety of applica-

tion domains. As summarized in Ref. [27], applications range from modeling agent

behavior in the stock market, supply chains, and consumer markets, to predicting

the spread of epidemics, mitigating the threat of bio-warfare, and understanding the

factors that may be responsible for the fall of ancient civilizations [27]. We also be-
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lieve the imagination in Ref. [22] that in the future, virtually most of the computer

simulations will be in the form of agent-based simulations because of the natural way

that agent models can represent the actual system issues, and the close similarity

of agent modeling to the predominant computational paradigm of object-oriented

programming.

1.2.4 Work process

Starting from understanding how a real ED system work in reality, the process of

building a simulator to mimic the target system is shown in Figure 1-1, and explained

as followings:

Actual Emergency 
Department System

Conceptual Model Computational 
Model

§ Real Data Analysis
§ Meet with ED Staff
§ Questionnaire

§ Algorithm 
§ Agent-based Models
§ Programming

Real Data Simulation 
ResultsSimilar ?

Make 
Sense?
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ju
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Parameters
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Models

Simulator

N

Y
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N

Model Parameters 
Calibration

Real operation data 
from target system

Model Verification

Model Validation

Figure 1-1: The steps of modeling and simulating an emergency department system.

1. The first step is to build a conceptual model based on knowledge from inter-
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viewing ED staff and analyzing ED’s real operation data. The conceptual model

would clearly show how the system is operated in actual situation. Qualitative

predictions could be made according to the conceptual model (by our intuition).

To step ahead, algorithm and agent-based models of the system components

are built based upon the conceptual model. The algorithm and ABMs are the

"translation" of the conceptual model.

2. In the second step, agents’ models and algorithms could be implemented as a

computational model by using programming language. Then the computation

model could be executed to make quantitative prediction. Since there may be

unreasonable assumptions in building ABMs and mistakes in implementation,

the computational model should be verified before stepping ahead. The verifica-

tion will be done via comparing simulation results with analytical results from

the conceptual model. Since the conceptual model could not carry out quan-

titative predictions, the comparison result is "make sense" or not (as shown in

Figure 1-1). For example, more patients should cause longer patients’ length of

stay. The goal of verification is to ascertain whether the model implements the

assumptions correctly.

3. After verification, the computational model could represent the general behav-

ior/pattern of the ED system. However, actual systems are very different from

each other, the computational model still needs parameters to set up for a target

ED. The adjustment of parameters according to the comparison of simulation

and actual data is known as model parameter calibration (A.K.A. tuning). If

the actual data is not enough to set up all the model parameters, i.e., data

scarcity, the calibration need to be applied to "search" the optimum value for

parameters. In the end, if the similarity of simulation results and the actual

data is close enough (i.e., the assumptions which have been made are reasonable

with respect to the real system), the computational model can then be used as

a tool to represent/mimic the target system.

The following chapters will detail all of these steps, and a validated simulator for a
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typical Spanish ED will be shown in the end. By using the simulator, some demos

will be presented to show its potential use in reality.

1.3 Motivation

1.3.1 Operations management

Prediction, explanation & optimization are challenging for a complex system like

healthcare systems. Here, a complex system is made up of an interconnected set of

relationships between individuals, organizations and groups, and all of which have

unique aims, motivations, beliefs and cultures. Given this complexity, it is very dif-

ficult to evaluate the cost and benefit of a major policy change through unilateral

research or consultation processes, and efficient management of the system also be-

comes a big challenge. In the field of engineering, simulation can be used for dynamic

as opposed to static analysis of healthcare system. Hence the first motivation is

to build accurate models for representing healthcare systems, with the purpose of

supporting decisions for efficient healthcare operations management.

Moving forward, since one motivation of modeling and simulating healthcare sys-

tem is to support making better management decisions. Considering the fact that

healthcare systems are large, dynamic, complex environment. In this circumstance,

not only accuracy in prediction, interpretability is also extremely important to have

transparency in predictive modeling. Therefore, different with conventional math-

ematic models or data-driven models, we are working on building a transparency

model of the complex healthcare system to predict the system-level behavior from

micro-level interactions, so as to see the forest through the trees, i.e., prediction and

explanation.

1.3.2 A platform for studying healthcare-related problems

Since an ED is the main entrance to a healthcare system and it faces uncertainty

everyday. Its efficiency and quality of service in ED have big influence on the whole
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healthcare system. Thus, due to the flexibility, adaptability and customizability an

ABM could provide, the emergency department model could be used as a platform

to study emergency department related problems, like bacteria propagation in ED.

As the fact that humans have difficulty in understanding the complexities caused by

the dynamic and systematic nature of certain problem [28, 29]. The bottom-up ED

model could also be used to study disordered system behavior based on integration

of first-principles model and data-driven model (based upon real operation data).

Moreover, the demographic development resulting shows that the population dis-

tribution has already changed considerably and will further change over the next

decades. That is, the number of older people with chronic conditions will increase

intensively. This expected increase of older people in society poses an immense chal-

lenge to the public health care system. The integrated care could be a promising

concept in redesigning care to tackle this. However, changing from conventional pub-

lic healthcare policy to integrated care requires a lot of feasibility studies, and major

health policy changes often have wide-ranging impacts on our community. The evi-

dence of process redesign interventions regarding their ability to improve quality of

care must be interpretable for populations. Therefore, this simulation study could

judge the feasibility and ideality of using agent-based model & simulation techniques

to study healthcare system. Then, the developed framework could be used as a step

towards building a full model of integrated care system. The final model will be

able to represent a comprehensive tool to quantitatively evaluate prospective planned

changes to the integrated care system for decision making, and open a wide field of

possible simulation scenarios for a better understanding of the complex integrated

care system.

1.3.3 The ultimate goal

In summary, the ultimate objective of this work is to propose an accurate model of

EDs and design accessory tools to make the model accessible (as a platform) for ED

related researchers. This model will be used to predict behavior of EDs under various

conditions such as staffing change, physical resources resize and influx of patients
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(e.g., in influenza season). In summary, the presented work is from a long-term

project which aims to develop a generic ABM of EDs for the purpose:

1. In the management of ED, the simulator can work as parts of decision support

system to quantitively evaluate effects of proposals.

2. Make the ED simulator work as a platform to study ED related problems,

for example, one of our researchers is using the presented simulator to study

Methicillin-resistant Staphylococcus aureus (MRSA) transmission in ED.

3. Use the simulator to study disordered system behavior based on integration of

first-principles model and data-driven model (based upon real operation data).

There is a researcher in our group uses the presented simulator and novel ana-

lytical methods to discover hidden knowledge of the ED.

4. Prove the feasibility and ideality of using agent-based modeling and simulation

to study healthcare system. Then, build a full model of public healthcare system

with the framework developed in simulating ED. A researcher in our group is

dedicating to using the framework developed in this study to build a full model

of integrated care system.

5. Enrich the simulation-based healthcare study ecosystem. Provide series of tools

to simplify the study of healthcare systems by using simulation techniques. For

example, model and simulation framework, optimization methods and the inte-

gration of simulation and optimization, model parameters calibration method-

ology and model validation tools.

1.4 Thesis Contributions

The two main contributions of this thesis are: (1) a general agent-based model for

simulating Spanish type emergency department, and (2) a systematic method for

calibrating model parameters to simulate a specific emergency department with data

scarcity.
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1.4.1 A general agent-based emergency department model

Based upon some previous studies in our research group [30, 31, 32] which simulated

an area in ED for non-urgent patients, this thesis presented a full simulation model

for EDs (focused on Spanish type). As shown in Figure 1-1, start from understanding

operation of actual systems, and end with a simulator for a specific ED. The ED

model is developed to enhance understanding of ED’s complexity, completely eval-

uate "what-if" scenarios and perform experiment with the system prior to making

significant changes. The ED managers can use it to quantify the impact of proposed

decisions on patient flow as well as system efficiency prior to implementation. This

research was devised in close collaboration with experienced ED staff in the Hospital

Universitari Parc Taulí (a University tertiary level hospital in Barcelona, Spain that

provides care service to a catchment area of 500, 000 people, and attends more than

160,000 patients per year in the ED). With the flexibility and customizability the

simulator provides, the presented model has been used by other researchers to study

the Methicillin-resistant Staphylococcus aureus (MRSA) transmission in EDs in Ref.

[33, 34], and as a sensor of EDs to provide data for knowledge discovery in Ref. [35].

Some case studies and demo applications carried out by using this simulator have

been presented in Ref. [36, 37].

1.4.2 A systematic method for calibrating model parameters

Data scarcity is a common problem in setting up a general model to simulate a target

system. For example, the duration of healthcare staff’s service time is among the

most common missing pieces of information because it is out of the scope of the

information system. Therefore, we developed a systematic method to automatically

calibrate a general ED model with incomplete data. The proposed calibration method

enables simulation users to calibrate the general model for simulating their system

without the involvement of model developers. With a few expectations, the proposed

systematic method has been proved to be able to find the parameters for fitting

the duration of service, with which the simulated results and the actual data were
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consistent. We believe that an automatic calibration tool released with a general ED

model is promising for promoting the application of simulation in ED-related studies.

Furthermore, a framework that integrates the simulation model and optimization

method was developed for calibrating model parameters. Although it is originally

designed to search optimal values for model parameters with incomplete real data,

the framework could also be used for systematic performance optimization (with

customized objective function and variable constraints).

1.5 Thesis Outline

This thesis, that gathers the work carried out by the author in the last three years of

research, is composed by: (1) a general agent-based model of Spanish type EDs. (2)

a systematic method to automatically calibrate a general ED model with incomplete

data for simulating a target ED and, (3) several case studies carried out with the

developed ED simulator to show potential use of the tool. This thesis interpolates

material from several publications by the author. The chapter 3 is based on Reference

[38] and one paper currently under peer-review. The chapter 4 is heavily based

on another paper by the author which is currently under peer-review. Meanwhile,

chapter 5 uses material from References [36], chapter 6 uses case studies in Reference

[37]. Some material from each of these papers has also been incorporated into this

introductory chapter 1 and literature review chapter 2. Furthermore, while I wrote

the text of the thesis, naturally not all of the ideas and work presented are my

own. Besides the presented background material, many of the results and ideas in

this thesis have been developed through collaboration with various colleagues and

former colleagues, in particular my supervisor Dr. Emilio Luque. The outline of this

dissertation is illustrated in Figure 1-2 and detailed as follows.

The chapter 2 gives the state-of-the-art of the emergency department simulation

and its application, commonly used modeling and simulation approaches, and model

parameters calibration methods.

In chapter 3 our attention is focused on the development of a general ABM for
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Figure 1-2: Thesis outline.
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simulating EDs in Spain. In which, the section 3.1 describes the conceptual model

of ED observed via analyzing real operation data and meeting with experienced ED

staff. The full agent-based ED model is detailed in section 3.3. It contains two parts,

subsection 3.3.1 describes the model of agents considered in ED, and subsection 3.3.2

describes the interaction model among agents as well as agents with the environment.

The section 3.4 formulates the agent models into algorithm and implemented with

programming language so that can be executed to emerge systemic behavior. When

getting the computational model, in section 3.5 we present the methods to design

experiments as well as efficiently execute the model for predicting and discovering

hidden features. The simulation results that validated the model are presented in

section 3.6.

In chapter 4, we proposed an automatic calibration tool for calibrating model

parameters with incomplete real data from target system. Basically, data scarcity

for setting up a model of complex system is common because many of the data (e.g.,

time of each interaction between patient and service-provider) is out the scope of the

information system to monitor in real situation. The simulation-based optimization

was used to find the optimal values of parameters with carefully proposed object

function. The simulation-based optimization was conducted by using the APPSPACK

[39, 40, 41] developed by Sandia National Laboratory. According to the practical

requirements of evaluating a simulation-based objective function, an initial distance-

based lookup mechanism was proposed to further accelerate the optimization process.

In chapter 5 and chapter 6 we give some case studies carried out by using the ED

simulator in order to show its potential usage. Where, chapter 5 gives a process of

using the simulator for decision support to deal with continuously increasing number

of patient attending at ED (overcrowding). In which, the simulator shows its ability

to clearly identify and quantify the bottleneck of the system. With a simulator, the

proposed solutions by a policy makers could be evaluated with the simulator before

implementing to the system. These evaluations could avoid improper changes to the

system and putting patients in risk situation. In chapter 6, we give two examples on

knowledge discovery with the purpose of better understanding the complex system.
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Finally, chapter 7 closes the thesis with our conclusions and potential future con-

tributions.
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Chapter 2

Literature review

"If I have seen further it is by standing on the shoulders of Giants."

- Isaac Newton

High demand of healthcare services due to changes in population demography, tech-

nological and medical advancements, budget limitations has direct effect on medical

staff and medical organizations in particularly hospitals [42]. In this chapter, concepts

about what modeling & simulation is, its application on studying healthcare system,

and characteristics are outlined. In particular, the state-of-the-art of modeling and

simulation for Emergency Department (ED) is described.

2.1 Emergency Department Simulation

Modeling and simulation provides a quantitive way to analyze the behavior and pre-

dict the performance of an ED under designed scenarios. There have been fruitful

efforts in developing simulation models for solving healthcare operations management

problems [43], [44], [45]. Historically, the complexity of models was often limited by

mathematical tractability [46]. That is: when differential calculus was the only ap-

proach we had for modeling, we had to keep models simple enough to "solve" math-

ematically and so, we were often need highly abstract concepts to keep a complex
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system as simple as possible or limited to modeling quite simple problems. Conven-

tional simulation methods, for example the empirical data based queuing model and

Markov chain, can provide the overall behavior of ED, e.g. [47] and [48]. However,

the conventional simulation methods mostly focus on compute systemic key perfor-

mance indicators. These systemic key performance indicators are either difficult to be

comprehensive or require professional knowledge on mathematic, statistics and simu-

lation to understand. Thus, conventional methods lack ability on explaining how the

predictions are made and explainability is often important than sheer number.

With respect to the importance of interaction information that details how the

system components behave over time. Boudreaux et al.[49] reviewed literatures on

patient satisfaction study in ED. Contrary to popular belief, research has repeatedly

shown that the systemic performance indicators such as actual waiting times and

overall length of stay are relatively unimportant in determining satisfaction. What

does seem to be important, however, is the patient’s subjective experience of the wait-

ing time. This means how satisfied the patient is with interpersonal interactions with

ED physicians and nurses. Therefore, the detailed interaction information is more

important to evaluate policies for improving Quality of Service (QoS). One technique

that shows considerable promise for this requirement is agent-based modeling.

Simulation has long been used in healthcare system operation research, Rising

et al. [50] are among one of the earliest publications on using computer modeling

and simulation for improving healthcare service. The authors use the Monte Carlo

simulation model for analyzing effects of alternative decision rules for scheduling

appointment periods during the day to increase patient throughput and physician

utilization. Hancock et al. [51] developed a computer-based simulator of hospital

systems, which is used for predicting the size of nursing staff configurations under

different scenarios.

Concerning the development of the computational model of ED, Paulussen et

al. [52] describe a multi-agent based approach for patient scheduling in hospitals.

In such a system, patients and hospital resources are implemented as autonomous

agents in which the resource agents view the patients as entities to be treated, and
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the patient agents view the medical actions as tasks that need to be performed. The

coordination of patients is achieved through a market mechanism. Patient agents

negotiate with each other over scarce hospital resources, using state health dependent

cost functions to compute bid and ask prices for time slots. Within this concept,

stochastic processing times and variable pathways are considered. Unfortunately,

the system does not take into consideration patient variety or the different kinds of

healthcare staff. But in fact, the variety of patients and staff has great influence on

the performance of ED.

As the use of modeling and simulation for studying EDs, Badri and Hollingsworth

[53] developed an Emergency Room (ER) simulation model incorporating the major

activities. The model allows the evaluation of "what if?" questions through chang-

ing the values of the variables. The ER simulation model determines the effects of

changes in the scheduling practices, allocation of scarce resources, patient demand

patterns, and priority rules for serving patients. In the study of Gove and Hewett

[54], they examined the problem of capacity in hospitals and proved that: due to

the complexity of the hospital and its departments, simulation was an ideal choice to

study. Moreover, Diefenbach et al. [55] found that varying the number of beds, phys-

ical layouts, access to radiology and pathology services in the ED has an exponential

effect on expression of the system. The simulation result under the change of sys-

tem configurations can provide valuable reference for management decision making.

Kuljis et al. [56] compared the healthcare system with business and manufacturing,

and provided the feasibility of using modeling and simulation methods to improve

the QoS in healthcare system. Shin et al. [57] addressed the resource allocation and

scheduling problems by creating discrete-event simulations based on detailed models

of system processes, and detailed models of resource characteristics and constraints.

Their simulation model can help the operations manager at the department to find

the best proposal via analyzing different "what-if" scenarios before implementation.

This could help to enhance the quality of service that the ED is providing (e.g. re-

duce waiting times) since the manpower and resources can be well-allocated, and

more patients are expected to be treated as a consequence.
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Regarding the application of agent-based modeling & simulation (ABMS) ap-

proach for simulating EDs, Macal et al. [58] gave a tutorial on creating an agent-

based model for the complex system, and they suggested that ABMS promises to

have far-reaching effects in the future on how to use computers to support decision

making. As for the reason for chosing ABMS approach for simulating ED, Escudero-

Marin et al. [59] gave the reason why ABMS is better for modeling EDs than others.

They also provided a general description of the possible potential use of ABMS in

healthcare application. Laskowski and Mukhi [60] developed an agent-based model

to simulate a number of EDs in an area, through which one can extract patient data

from EDs of a city to examine patient diversion policies. Jones and Evans in Ref.

[61] described the development of an agent based simulation tool that was designed

to evaluate the impact of various physician staffing configurations on patient waiting

times in the ED. The feasibility of their tool was evaluate at a single real hospital

ED.

In relation to the difficulty arising from complexity and uncertainty in managing

a big critical healthcare system, P. Barach et al. proposed a microsystem framework

as a design concept in Ref. [62]. More specifically, they designed the microsystem

framework for the role of understanding and supporting process in designing and

redesigning clinical care. The microsystem in their work is a group of clinicians and

staff, working together with shared clinical purpose to provide care for population

of patients. There are several micro-systems co-existing within a larger organization

such as a hospital. Thus, the challenge for the management of the large system is

transferred to the management of several relatively independent micro-systems. In

this way, the behavior of the large system will be the aggregate of these micro-systems.

Their work highlighted the issues of managing a complex system due to the difficulty

in understanding complexities as well as the decentralized solution.

Considering the importance of modeling and simulating the interaction between

physicians and delegates in ED, M. Lim et al. compared two models with and without

the consideration of agents interacting in an ED [63]. In their hospital ED model,

comparisons between the approach with interaction and without showed physician
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utilization increase from 23% to 41% and delegate utilization increase from 56% to

71%. They stated that neglecting these relationships could lead to inefficient resource

allocation due to inaccurate estimates of physician and delegate time spent on patient

related activities and length of stay. Their work strengthens the importance of ac-

curately modeling physician relationships and the roles in which they treat patients.

Furthermore, [64] also discussed several reasons for using an agent-based modeling

technique, especially compared to traditional approaches to modeling economic sys-

tems.

The previous studies in our research group (High Performance Computing for

Efficient Applications and Simulation) at Universitat Autónoma de Barcelona mainly

included creating the simulator of an area in ED [32] for non-urgent patients (labeled

as area B in Figure 3-2), balancing between the budget and QoS, finding the optimal

and sub-optimal resource configurations of ED to achieve better QoS with limited

budget by using K-means methods and pipeline scheme [31][30]. Unlike the area for

non-urgent patient, area A (as shown in Figure 3-2) is dedicated to critical patients.

It is more complex and quite different with area B mainly because patients in this

area usually have more complicated conditions and they cannot move by themselves.

Consequently, the doctor, nurse and other auxiliary staff need move around ED to

attend patients in the carebox. These cases lead to a greater amount of restrictions

and interactions between the patients, healthcare staff and environment.

In summary, compare with reviewed literatures and previous studies in our group,

the main improvements and contributions of the ED model include: considered some

more system components, introduced a new way to define and simulate the interac-

tions between agents and state transition of the agents, and provided an easy-tuning

general model to simulate Spanish type EDs. Moreover, with the motivation to pro-

mote the utilization of simulation for studying ED related problems, this study also

thoroughly investigated the model parameters calibration issues for a general agent-

based ED model.
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2.2 Modeling Approach

For simulation purpose, there are two different possible fundamental ways to describe

a system: black-box model (e.g., data-driven model) and white-box model (e.g., first-

principle model). The black-box model ignores the actual mechanism of a system

while investigating relationships between input and output parameters. For example,

these relationships can be replicated by artificial neural network models which can

be trained to replicate the behavior of the original system without a prior knowl-

edge of the system. Bibi et al. [65] concentrated on the prediction of the effect of

atmospheric changes, including pollutants, on ED visits via an artificial neural net-

work with a back-propagation training algorithm and genetic algorithm optimization.

With enough historical reference data to cover the dynamics of the target system, the

artificial neural network model could be trained to represent the system behavior for

interpolation prediction. But, it is not an extrapolation method and gaining insight

into a black-box is a difficult undertaking.

However, the first-principles model, more specifically behavioral-driven approaches

in this study, utilizes reengineering methods to capture details of system behavior

from the interaction of system components. It is not as quick and easy to build, but

they have many advantages. In terms of simulation, first-principle models provide

extrapolation in addition to the interpolation provided by data-driven models. They

also can be used for prediction, explanation and optimization.

Simulating healthcare processes is a sophisticated endeavor. Treatment processes

and patient arrival patterns differ significantly in their statistical attributes and impli-

cate a high degree of variability. In addition, there are several types of interconnected

processes of medical staff involved that accompany a patient’s journey through the

healthcare facility. To deal with the challenge of model this sophisticate process, M.

Thorwarth and A. Arisha [66] introduced a framework which delivers an algorithm

that allows to implement multiple participant pathway modeling under the consider-

ation of flexible resource allocation. But, that framework is designed specifically for

an Irish ED.
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In summary, as reviewed in section 2.1, there are massive Operational Research

(OR) results in the reviewed literatures achieved by using a simulation approach.

According to the comprehensive review in Ref. [17], System Dynamics (SD), Dis-

crete Event Simulation (DES) and Agent-Based Simulation (ABS) are three most

widely used simulation methods in operational research community. The main differ-

ences among these three simulation methods is the level of perspective [17]. SD is a

top-down approach from the macro-level perspective; The DES is a process-oriented

approach focused on workflow simulation and the ABS is a bottom-up one from an

individual level. At the 2010 OR Society Simulation Workshop, there was a lively

panel discussion [67]. From the discussion, we can see that actually both DES and

ABS are widely used now. Neither have the absolute substituting capability in all

application fields. The same workshop in 2011, as well as Ref. [68] discussed the chal-

lenges of DES and several typical features of a system with which the ABS is more

appropriate [69]. There is no fixed rule to select a suitable approach for studying a

specific system, a proper combination may halve the work with double the results.

Based on this idea, [70] presented a multi-paradigm simulation method by using SD

for simulations at a high abstraction level and ABS/DES at an individual level in a

common simulation environment. Two examples were shown on how the new innova-

tive technology can evaluate the "what-if" problems prospectively and how new ideas

can be derived by parameter variations. Combining the reviewed discussions and

simulation studies with our experience and objective, ABS was selected to simulate

the EDs, the reason will be given in section 3.2.

2.3 Model Parameters Calibration

Model calibration is the task of adjusting an existing (general) model to a target

system. M. Hofmann [71] introduced a formal approach to model calibration, within

the frame of the presented formalism it is shown that the computational complexity

of model calibration is NP-complete. The author addressed that, for huge model

federations the complexity of parameter calibration could draw a serious line with
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respect to the validation of the federation and its cost-benefit ratio. This is mostly

because in huge model of complex system, no single person has an overview of the

whole simulation, and the interpretation of unexpected results is extremely difficult.

The model parameter calibration process can be easily formed as a simulation-

based optimization process. Due to the complex behavior of the objective function,

Evolutionary Algorithms (EAs) are often used to efficiently explore large parameter

spaces. However, EA still takes a considerable amount of time because it requires

a large number of simulation runs, and each run takes considerable length of time

in simulation. To this end, M. Wagner et al. [72] proposed the use of complexifica-

tion as it emulates the natural way of evolution, to improve the performance of EAs.

This method has been used for parameter estimation of multi-agent based models. J.

Zhong et al.[73] proposed an evolutionary framework to automate the crowd model

calibration process. In the proposed framework, a density-based matching scheme

is introduced. By using the dynamic density of the crowd over time, and a weight

landscape to emphasize important spatial regions, the proposed matching scheme

provides a generally applicable way to evaluate the simulated crowd behaviors. Be-

sides, the authors also proposed a hybrid search mechanism based on differential

evolution to efficiently tune parameters of crowd models. In Ref [74], J. Zhong et

al. proposed another novel evolutionary algorithm named differential evolution with

sensitivity analysis and the Powell’s method (DESAP) for model calibration. The

proposed DESAP firstly applies an entropy-based sensitivity analysis operation to

dynamically identify important parameters of the model. Then, Powell’s method is

performed periodically to fine-tune the important parameters of the best individual

in the population. Finally, in each generation, the evolutionary operators are per-

formed on a small number of better individuals in the population. Their new search

mechanisms are integrated into the differential evolution framework to improve search

efficiency. However, all of these developed algorithms are mostly focused on solving

agent-based crowd behavior model calibration problem with complete data, in which

the system metrics and objective function are different from the requirement of tuning

an agent-based ED model.
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In contrast to traditional black box search methods which only consider the input

and output of simulation model, M. Fehler et al. [75, 76] proposed a promising white

box calibration approach, which uses the knowledge of the agent-based model to

improve the tuning process. In which, the idea is to reduce the parameter space by

breaking down the model into smaller sub-models. Each of the sub-models is then

calibrated before merging them back to form the model. Thus, the main focus was

put on the sensible introduction of heterogeneity into the model and the analysis

of bottom-up model designs, to overcome the often infeasible trial and error step

of parameter and micro level structure refinement. However, in this method, the

division and fusion operations are difficult steps, and require additional knowledge

about the model, and these knowledge may not be available for simulation users (non-

developer). Moreover, the fusion operation has to merge calibrated sub-models into

a calibrated higher model, which is not automatic.

In summary, although parameter calibration is critical and one of the key steps

in modeling & simulation work and it can be easily formalized as a simulation-based

optimization problem, to the best of our knowledge, such model parameter calibration

problems under data scarcity have not been explicitly addressed in the literature. No

literature was found providing an automatic calibration tool for simulation users

to calibrate the general model for a new system without the involvement of model

developers. Since model calibration is carried out via simulation-based optimization,

model evaluation is computation expensive. High performance computing techniques

were used in our work in order to search the robust and optimal model parameters

in an acceptable time frame.

2.4 Summary and Opportunities

It can be seen from the review of literatures that modeling and simulation has been

applied successfully to several applications of healthcare operations management.

Among these modeling approaches, ABM provides new insight to problems by mod-

eling individuals and the interactions between them. This perspective has facilitated
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analysis at both the individual and system levels, which is not typically possible by

using other methods or without the support of high performance computing tech-

niques.

However, most of these simulation based studies are oriented by specific require-

ments. That is to say that the simulator becomes an appropriative tool for a specific

requirement and lacks scalability in application perspective. In addition, due to the

complexity and criticality of ED systems, knowledge for full insight into the dynamics

of the system would provide a great deal of help to efficient and optimum manage-

ment. However, there is little work on knowledge discovery through simulation. Since

ABM represents details of the system at individual level, discovering from micro-level

interaction information is a way to gain insight into the emergent behavior of complex

systems, and indicate the root-cause of disordered system behaviors.

Due to the nature of agent-based models, computationally expensive and complex-

ity on model parameter calibration are two main challenges of using ABM. Nowadays,

we are armed with the ability to execute compute-intensive models and analyze mas-

sive datasets. As indicated by Douglas A. Samuelson and Charles M. Macal, the age

of agent-based model & simulation is coming [77].

26



Chapter 3

The model of emergency departments

Essentially, all models are wrong, but some are useful.

- George Edward Pelham Box

Hospital based emergency departments (EDs) are highly integrated service units

to primarily handle the needs of the patients arriving without prior appointment,

and with uncertain conditions. In this context, analysis and management of patient

flows play a key role in developing policies and decision tools for overall performance

improvement of the system. However, patient flows in EDs are considered to be

very complex because of the different pathways patients may take and the inherent

uncertainty and variability of healthcare processes. The agent-based model provides

a flexible platform for studying ED operations as it predicts the system-level behavior

from micro-level interactions, so as to see the forest through the trees. In this way,

policies such as staffing could be changed and the effect on parameters such as waiting

times and throughput could be quantified. The overall goal of this chapter 3 is to

develop models to better understand the complexity, evaluate policy and improve

efficiencies of ED units. This chapter details a general agent-based ED model for

simulating Spanish ED. The presented model will be calibrated to emulate a real

ED in chapter 4, simulation results have proven the feasibility and ideality of using

agent-based model & simulation techniques to study ED system.

This chapter is structured as follows: section 3.1 describes the conceptual model
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of ED observed from real operation data and the involvement of expertise ED staff. In

section 3.2, we further (in particular for ED system) describe the modeling approach

we used in this study. The full agent-based model of ED is detailed in section 3.3,

which contains two parts, subsection 3.3.1 describes the model of agents considered

in ED, and subsection 3.3.2 describes the interaction model among agents as well

as agents with the environment. The section 3.4 formulates the agent models into

algorithm and implemented with programming language that can be executed to

emerge systemic behavior, i.e., from conceptual model to computational model. Then,

section 3.5 presents the way to design experiments as well as execute the model for

predicting and discovering hidden features.

3.1 Conceptual model of emergency departments

Typical EDs have common interacting elements such as doctors (physicians), nurses,

technicians, receptionists, beds, medical devices that are interconnected via flows of

information and processes (registration, triage, diagnostic, discharge). All of these

elements methodically interact with each other to produce diagnoses, treatments, and

information. The ED studied in this research is focused on Spanish type. However,

we are confident that the proposed methods as well as the simulation framework can

be used for other EDs.

The conceptual model will be discussed with an order of patient arrival, flow in

ED and discharge. This conceptual model was carried out by analyzing 4-year histor-

ical data provided by a typical ED, and conducting interviews with experienced ED

staff. The analysis of historical operation data determines the nature of distributions

followed by patient arrivals, service times, and related parameters to determine tran-

sition probabilities. Meanwhile, the participation of experienced ED staff helped us to

establish a comprehensive understanding of the hospital ED and focus on considering

significant features of ED in modeling & simulation.
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3.1.1 Patient arrival

Patient arrival is the input of the ED model, which has direct influence on the system

behavior. As discussed in section 1.3, The simulator is not only designed to imitate

real situation but also for studying system response under unexperienced scenarios

(i.e., extrapolation). Therefore, a precision and customizable patient arrival model

which could reflect patients’ arrival characteristic is crucial for the accuracy of im-

itating and predicting. Specifically, the model should reflect the general pattern of

patient arrival, and it should be easy for users to customize for specific scenarios. In

this study, the patient arrival model is composed of two parts: the arrival rate defined

as number of patients arrive at ED per hour, and arrival patients’ key characteristics

(age and severity measured by acuity level (AL)).

With respect to arrival rate, after synthesized various opinions of expert ED staff,

on-site observation, and four-year’s actual data from the information system database

of the Hospital Universitari Parc Taulí. We found that the arrival rate fluctuated sig-

nificantly through the day, and the number of daily arrival patients was influenced

by day of week and season. For instance, EDs get fewer patients in August, patient

arrival reaches a maximum on Monday and minimum on Saturday in one week. Conse-

quently, we modeled the patient arrival rate in a time interval of one week. The arrival

rate model includes a table of normalized (proportion of weekly arrival) hourly arrival

rate 𝑅𝑎𝑟[ℎ𝑜𝑢𝑟, 𝑑𝑎𝑦] in one week and the number of weekly patient arrives 𝑁𝑎𝑟[𝑤𝑒𝑒𝑘].

Accordingly, for a given ℎ𝑜𝑢𝑟 in 𝑑𝑎𝑦 and 𝑤𝑒𝑒𝑘, the number of patient arrival in a

specific hour (𝑅ℎ𝑜𝑢𝑟) can be computed with 𝑅ℎ𝑜𝑢𝑟 = 𝑁𝑎𝑟[𝑤𝑒𝑒𝑘]×𝑅𝑎𝑟[ℎ𝑜𝑢𝑟, 𝑑𝑎𝑦]. Sub-

sequently, the arrival process in one hour was fitted by a non-homogenous Poisson

process [78]. The probability density function of patient inter-arrival time can be

expressed as follows, and a detailed emulation algorithm is shown in Algorithm 1:

𝑓 (𝑘;𝜆) =
𝜆𝑘𝑒−𝜆

𝑘!
(𝑘 ≥ 0) (3.1)

𝜆 =
60

𝑁𝑎𝑟[𝑤𝑒𝑒𝑘]×𝑅𝑎𝑟[ℎ𝑜𝑢𝑟, 𝑑𝑎𝑦]
(3.2)
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Where, 𝑒 is Euler’s number, 𝑘! is the factorial of 𝑘, 𝑘 denotes the inter-arrival

time between the 𝑛th patient and the (𝑛+ 1)th, and 𝜆 denotes the inverse of average

arrival rate (number of patients per minute). Regarding implementation, in the first

minute of each hour ℎ (0 ≤ ℎ ≤ 23), we generate a random number 𝑘1 from the Poisson

distribution 𝑋 ∼ 𝑃𝑜𝑖(𝜆) with parameter 𝜆 computed with Equation 3.2. The value

of 𝑘1 represents that the first patient will arrival at time ℎ : 𝑘1 : 00. Subsequently,

when simulation time is up to ℎ : 𝑘1 : 00, a new agent will be created and send to

registration waiting room. At the same time, we generate another random number 𝑘2

which represents that the second patient will arrive at time ℎ : (𝑘1 + 𝑘2) : 00. In this

way, the 𝑛th patient will arrive at time ℎ : (
∑︀𝑛

𝑖=1 𝑘𝑖) : 00 (0 ≤∑︀𝑛
𝑖=1 𝑘𝑖 ≤ 59). The

flow of patient arrival model is shown in Algorithm 1, this procedure will be called at

every simulation time-step (iteration).

Algorithm 1 Patient arrival model algorithm
1: procedure patientArrival
2: static 𝑘 ← 0 ◁ define 𝑘 as a static variable
3: if 𝑛𝑜𝑤.𝑚𝑖𝑛𝑢𝑡𝑒 == 0 and 𝑛𝑜𝑤.𝑠𝑒𝑐𝑜𝑛𝑑 == 0 then
4: 𝜆← call 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐿𝑎𝑚𝑏𝑑𝑎(𝑑𝑎𝑡𝑒𝑡𝑖𝑚𝑒.𝑛𝑜𝑤()) ◁ implementation of

Equation (2)
5: 𝑘 ← 𝑟𝑎𝑛𝑑𝑜𝑚.𝑝𝑜𝑖𝑠𝑠𝑜𝑛(𝜆) ◁ arrival time of the first patient in this hour
6: end if
7: if 𝑛𝑜𝑤.𝑚𝑖𝑛𝑢𝑡𝑒 == 𝑘 and 𝑛𝑜𝑤.𝑠𝑒𝑐𝑜𝑛𝑑 == 0 then ◁ arrive at time hour:k:00
8: call 𝑐𝑟𝑒𝑎𝑡𝑒𝑃𝑎𝑡𝑖𝑒𝑛𝑡() ◁ create patient; characteristics will be set
9: 𝑘 ← 𝑘 + 𝑟𝑎𝑛𝑑𝑜𝑚.𝑝𝑜𝑖𝑠𝑠𝑜𝑛(𝜆) ◁ arrival time of the next patient

10: end if
11: end procedure

With the above descried patient arrival model and real operation data of 2014,

Figure 3-1a shows 12-month simulated results compared with actual data (broken

versus solid lines). It is cleat that the simulation result is very close to actual data

at an hourly rate. The weekly arrival (the sum of hourly arrival), simulation: 1829

versus actual: 1826 is close to the actual as well.

Regarding arrival patients’ key characteristics, we considered their age and severity

(measured by acuity level). Observing from actual data, we found that the severity

of arrival patients also fluctuates significantly through the day but no significant
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Figure 3-1: Patient arrival model: hourly arrival rate (quantified by percentage of
weekly arrival rate), simulation vs. actual (average in 12 months), and arrival pa-
tients’ acuity level distribution (extracted from 12-month actual data, 2014).
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effects were found in longer time periods. The data illustrated in Figure 3-1b was

retrieved from 12-month actual data of year 2014. Then in simulation, a Gibbs

sampler (a Markov chain Monte Carlo algorithm) was used to obtain a sequence

of values to represent patients’ severity. With enough samples, these values will

be able to approximate the distribution data shown in Figure 3-1b. Similarly, the

age distribution was extracted firstly from actual data and then fitted with a Gibbs

sampler from the distribution in simulation. In short, the model describes the pattern

of patients’ arrival, the parameters for characterizing actual behavior should be related

with simulation scenarios, and simulation users can customize all the parameters.

3.1.2 Process in ED

This section gives a brief overview of the patient flow in ED. Typically, a patient

enters the EDs through one of two ways: by themselves or by ambulance (as shown

in Figure 3-2). Upon arrival, walk-in patients need to walk to the registration window

and briefly give their personal information to the registration staff. After that, they

have to stay in a waiting room wait for triage. Then they will go to the triage box

and interact with the nurse once the information system assigns a triage nurse to

the patient. Triage consists of a brief assessment of the patient’s body condition and

an acuity level will be assigned to the patient according to their severity afterwards.

After triage, patients will wait in another waiting room before entering the diagnosis

& treatment area. For those patients who arrive by ambulance, they are registered

and triaged in the ambulance and could go to the second waiting room directly.

The Spanish scale of triage is very similar to the worldwide Canadian Emergency

Department Triage and Acuity Scale [79, 80]. The scale consists of 5 levels, with

1 being the most critical (resuscitation), and 5 being the least critical (non-urgent).

The triage process also determines the order and priority with which the patient must

be attended and the treatment area where they will be treated. The registration and

triage service are first-come, first-served (FCFS) for all the patients, whereas entering

the diagnosis & treatment area is acuity-level-dependent FCFS (patients with AL 1

have the highest priority).
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Figure 3-2: The emergency department operation process as well as interactions
among its components. The group of two parallel lines with arrow stands for inter-
action. Patient flow is managed by emergency department information system, the
whole process can be seen as a multi-class queuing system with probabilistic routing.
That is, there are queues for each interaction because service providers are not always
prepared to accept new patient (providers’ service capability is not infinite).

With regard to the treatment area, in most Spanish EDs, there are two treatment

areas (labeled as A and B in this study, see Figure 3-2) which operate independently

to provide the diagnosis & treatment service. Area A is for those patients with acuity

levels 1, 2 and 3, while area B, also called fast track, in the ED is a dedicated stream of

resources to process lower acuity patients with levels 4 and 5 more quickly. Occupied

by the most urgent patients, the area A is made up of careboxes. A carebox is a

small room contains essential medical equipment and supplies that could be used for

patients’ treatment. Patients attended in area A will stay in their own carebox during

all the diagnosis & treatment phase, transporting will be done by auxiliary staff if

necessary. In area B, there are several attention boxes in which doctors and nurses

interact with patients, and a large waiting room in which all patients will remain

while not having interaction with the ED staff.

The patient flow as well as interactions (the group of two parallel lines) in general

EDs are demonstrated in Figure 3-2. It is worth noting that the process in Figure 3-2
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is a generic routing from all patients. Every patient who comes through the door is an

unknown, with a condition that unfolds over time in a functionally non-deterministic

way. Theoretically speaking, no two paths through this "system" are the same for

any two patients. It can be seen as a multi-class queuing system with probabilistic

routing. Accordingly, from a patient’s perspective, he/she is either receiving service

(interacting) or waiting for resources (healthcare staff or physical resources like beds,

testing equipment) becoming available.

With respect to the movement and spatial constraint, such as in area A, when

a medical imaging test is assigned (e.g., X-rays, CT-scan, MRI-scan.), the auxiliary

technician will transfer the patient to the facility area and accompany the patient

throughout the test process. However, in area B, patients will move to the corre-

sponding places by themselves when get notified by information system.

3.1.3 Discharge

Normally, there are four possible destinations when patients finish their treatment:

admission to hospital, going back home, being transferred to another hospital or

death. If a patient is admitted to hospital and there is no bed available in the hospital,

they have to stay in ED keep occupying all the service. That is, patients admitted

to hospital often occupy ED beds (also referred as ‘access block’ or boarding) due

to the unavailability of beds in hospital. As a consequence, hospital bed occupancy

will strongly affect patients’ length of stay (LoS) and throughput (the number of

attended patients per day) of ED. The results in Ref. [81] show that increased hospital

occupancy is strongly associated with ED LoS for admitted patients. It prevents EDs

from serving new patients in a timely manner and results in longer LoS as well as a

percentage of patients who left without being seen. Moreover, patient discharge is

often delayed because staff are tied up with more urgent patients [82]. This indicates

that staffing and scheduling have a widespread effect on all areas of the ED. Therefore,

although our work was focused on modeling EDs, the model of bed availability in

the hospital should be carefully considered as well. Based on the actual historical

boarding time from the database of ED information system, a Poisson distribution is
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used to fit the bed availability pattern in hospital.

Similarly, for those patients who will go home or transfer to another hospital, some

of them will request the ambulance service. Since the ambulance service is provided

by a service center, it is common that there is a delay from requesting until becoming

available.The same as bed occupancy in hospital, the response time of the ambulance

service also affects ED’s behavior because patients keep using physical resources of

the ED during waiting. Having said that, it is also necessary to include the model of

ambulance response time as part of the ED model to analyze the degree of the impact

on an ED. Based upon 4-year’s real data, a Gamma distribution 𝑋 ∼ Γ(𝑘, 𝜃) was

used to fit the length of response time. A detailed ambulance response time model

can be found in Ref. [36].

In short, patients that have been discharged from the ED either leave immedi-

ately or undergo another waiting phase: boarding. While patients remain blocked or

boarded in an ED bed, they prevent other patients from starting treatment, which

might lead to ED overcrowding. Therefore, discharge behavior should be carefully

considered in an ED simulation.

3.1.4 Door-to-doctor time and Leave Without Being Seen

Regarding to length of waiting before seeing a doctor (also known as door-to-doctor

time), according to the public healthcare regulations in Spain [79], for those patients

triaged as AL-1, 98% of them should be attended immediately, 85% of the patients

with AL-2 must be attended immediately by a nurse and within 7 minutes by a

doctor, and for AL-3, 80%, within 15 minutes; AL-4, 75%, within 30 minutes; AL-

5, 70%, within 40 minutes [79]. If there is no free space for upcoming patients,

they will be attended in the corridor temporarily (considered as a virtual carebox in

this model). However, the service capability of the healthcare staff is limited, some

patients, especially those triaged as low acuity level may face long waiting time and

they may leave without being seen (LWBS). According to Ref. [83], it is common to

see patient LWBS rates above 6% due to physician unavailability. Accordingly, we

consider LWBS as a system performance indicator in evaluating proposed changes to
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the system.

Patient leaving without being seen is a crucial metric for efficiency and effective-

ness of public EDs. As investigated in Ref. [84] and [85], a patient’s decision to

LWBS is influenced by many factors. In this model, we assume that each patient’s

decision to LWBS only depends on their waiting time length. Thus, after some ques-

tionnaires and on-site interview, we use an acuity-level-dependent Triangular distri-

bution (𝑋 ∼ 𝑇𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟(𝑎, 𝑏, 𝑐)) to fit the length of time that patients stated they

were willing to wait before LWBS, the parameters 𝑎, 𝑏 and 𝑐 are related with patient’s

age, acuity level and gender. The simulator implementation also provides interface

to simulation users to define a sub-model for patients’ tolerance of waiting.

3.1.5 Healthcare Staff Behavior

Healthcare staff in an ED are service providers, admission staff and triage nurses

are easy to model because they provide service to patient one by one with First-

Come-First-Serve (FCFS) order. Doctors and nurses in the treatment zone are more

complicated because they need to take care of several patients simultaneously with

considering patients’ acuity level, and for each patient, they need to provide different

services under different physical conditions of a patient. Modeling these services is

almost equivalent to model these different interactions.

In real situations, the Information System(IS) drives the patient flow in ED, it

works as a central task dispatcher. For example, when a doctor assigns a test ser-

vice for a patient, the IS will allocate one auxiliary to help the patient move to the

corresponding test room, when finished, the auxiliary sends the patient back to their

carebox. When the test service provider gets the test result, they will send the result

to IS, and IS will forward to the corresponding doctor’s task-list. The doctor will

perform the task according to predefined order rules. The central IS helps to coop-

erate these multitasks which drive all the healthcare staff forward. The model of the

healthcare staff can be abstracted as a passive task executor as shown in Figure 3-3,

i.e., each healthcare staff has a task-list and the IS post tasks to their task-list.
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Figure 3-3: Model of service providers. Same as their work in real ED. The ser-
vice providers were modeled with a task list, the information system detaches and
pushes tasks to the corresponding list. Service providers keep checking their own list,
whenever the list has task, they pop, move to corresponding place and perform it.

3.2 Modeling approach

Conducting a valid simulation is both an art and a science. One of the main challenges

when developing a general simulation model is to keep a model as simple as possible

whilst including all the key system information to achieve the objectives of simulation.

One feasible way to do this is through the following three steps: (1) survey multitude

real models; (2) analyze the concept structures of these real models; and (3) abstract

and generalize from these real models to develop a reusable generic pattern model.

Regarding modeling approaches, as we reviewed in section 2.2, Discrete Event

Simulation (DES), System Dynamics (SD) and ABMS are the three main approaches

used when simulating a complex system such as ED. There is a large body of literature

describing the use of DES models in ED studies, whilst there is considerably less

literature on the use of ABMS for this purpose. As healthcare systems are based on

human actions and interactions, combined with our experience and requirement, it

can be more properly to model with ABMS [59]. ABMS models can offer ways to

provide a deep insight view and to generate hypotheses about system behavior by

representing this as a result of the interaction between the agents.
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At the heart of the difficulty to manage a complex system is the fact that hu-

mans have difficulty in understanding the complexities caused by the dynamic and

systemic nature of certain problems [62, 28]. When we face with a complex system,

it is difficult to model all its functionality directly at systematic-level because there

are large number of factors that can affect the result and need to consider. A good

way to model is by using a bottom-up-modeling approach. Starting from the bottom

system components (model of system components’ behavior, interactions between

components), the execution of the simulator will cause a large amount of interactions

between these agents, and then these interactions will emerge the functionality of

the ED indirectly. As shown in Figure 3-4, it works by modeling the agents, their
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Figure 3-4: Bottom up modeling approach. Systemic level behaviors are re-
flected/emerged from the execution of bottom level simulation models.

behaviors and interactions between them. Then, when executing the model, the state

of agents will be changed by their interactions, and the queue for the interactions

and their length of time on interacting will emerge, by such analogy, the functional-

ity of the ED will emerge indirectly through the execution of bottom level models.

Furthermore, the quality of service can be evaluated through the results of different

simulation scenarios.
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Agent-based simulation is an approach to model systems comprised of individual,

autonomous, interacting "agents". The interacting is a key characteristic since that

is the smallest element which would emerge the functionality of the system. Such

interaction data has incredible potential to address complex features and dynamics of

the objective system. Agent-based modeling offers ways to model individual behaviors

more easily and to see how behaviors affect others in ways that have not been available

before [68]. It is commonly used to study complex systems since it shows behavior

more like our idea of how the real system works, and such models can be constructed

even if we do not understand the systematic behavior. That is, we only need to

know how an individual agent behaves in system and how it interacts with others,

then we can set the model to an initial configuration and watch it evolve over time

[86]. Furthermore, in the micro-level, the spatial agent-based simulator is not a

design for any specified application. Instead, it is a behavior simulator to simulate

interaction among the smallest components of the ED system. Thus, it is customizable

and adaptable in nature for different ED simulation requirements. Therefore, with

respect to simulation model reusability, further characteristics can be easily added

to the agent models to study additional problems, such as disease transmission and

bacterial infections in EDs.

In summary, the reasons why ABS was selected to model an ED in this study

include: (1) in an ED system, agents have dynamic relationships with other agents.

For example, patients have dynamic relationships with sanitary staff, doctors have

dynamic relationships with nurses and medical test rooms. These dynamic relation-

ships are important to consider and, by their nature, well suited to be modeled as part

of agent-based model. (2) The agents have a spatial component to their behaviors

and interactions, i.e., most of the agents in ED need to move around and the spatial

location is one of the key states which determines their potential interacting object

and state transferring. (3) A large numbers of agents, agent interactions and agent

states are important for information extraction. In an ED, services are provided via

multiple interactions, patients pass through ED with a series of non-deterministic

interactions. These interactions can deeply reflect the functionality of the target sys-
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tem. (4) Model reusability. Agent-based model directly represents behavior of the

system components, so it can provide the all-side meta-data needed for analyzing the

macro-level behavior of the system.

3.3 Agent-based model of emergency departments

The section 3.1 gives an overview of the process in ED. It is clear that the care ser-

vices in ED are carried out by interactions between patient and components of ED

(human and material resources). As Carmen et al. indicated in Ref. [87]: "EDs are

highly complex environments: patient arrival rates vary over time, patient care paths

depend on urgency and pathology, resources may or may not be suitable for treating

all patient types, urgent patients typically get priority over (and may even preempt

resources from) non-urgent patients, patients who need to be admitted often occupy

ED beds." [87]. However, the study of complex systems poses unique challenges: some

of our most powerful mathematical tools, particularly methods involving fixed points

and attractors are of limited help in understanding the development of complex sys-

tem [88]. The conceptual model described in section 3.1 provides a brief understand of

the complex operations in EDs. With this understanding, qualitative predictions can

be yielded via intuition. Since quantified performance measurement and evaluation

of system are more important for continual improvements in the system, the con-

ceptual model must be formulated into algorithm and implemented by programming

languages. Then the model can be executed to quantify predictions and discover the

hidden features.

As the reason of choosing agent-based modeling & simulation for studying ED

system given in section 3.2. The Agent-Based Models (ABMs) are a class of com-

putational models for simulating actions and interactions of agents (individual or

collective entities such as medical imaging test-room) with a view to assessing their

effects on the system as a whole. ABMs arise in computer experiments, in which each

agent is guided by a set of programmed rules with proper transition probability, and

capable of acting independently. In the case of studying EDs, the bottom-up method
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is a good choice because healthcare staff relies heavily on the interaction with patients

[6], and the bottom-up method is straightforward on exploring these interactions. In

addition, the individual based simulation approaches are capable of gaining insight

into the complex care process to understand the root cause of phenomena. An ABM

is composed of behavior model of agents and interaction model among agents. An

ABM of ED will be discussed in subsection 3.3.1 and subsection 3.3.2.

3.3.1 Design of Agent Models

To formally study complex systems with agent-based modeling and simulation tech-

niques, a way to precisely define the agents and their interactions must be provided

first [88]. The actions of agents usually depend on the signals they receive. That

is, the agents could be formulated as an IF/THEN structure: IF [signal vector 𝑥 is

present] THEN [execute act 𝑦] [88]. If an agent is busy with an interaction while a

signal is being presented, the presented signal will be pushed into its task queue. This

behavior model structure is: (1) easy to abstract from agents’ actual behavior in the

real system, (2) in accord with KISS principle (keep it simple, stupid), and (3) easy

to be converted to programming language. The following sub-sections 3.3.1 - 3.3.1

will detail the behavior rule of all the agents in ED in the IF/THEN structure. For

convenience, we defined notations in Table 3.1 to represent a specific group of agents.

Table 3.1: Notations used in this model.

Notations Description
𝑖 ID of agent, it is an unique ID among all the agents in the model.
𝑁𝐶𝐵

𝑖 a set of careboxes under responsibly of nurse 𝑖.
𝑁𝑃

𝑖 a set of patients (mainly for patients in area B) under responsibly of
nurse 𝑖.

𝐷𝑃
𝑖 a set of patients under responsibly of doctor 𝑖.

𝐼𝑆 The information system in ED, a system for communicating and coor-
dinating among staff, patient and test-room, also treated as an agent
in this model.
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Patients

As the leading role of an ED, patients in ED are guided by information system (IS),

i.e., going to the corresponding place when they get notified. During all the process

in ED, the patient alternates between two states: receiving treatment or waiting (i.e.,

waiting for a doctor, nurse, medical testing service/result). A patient’s behavior is the

same in all stage except diagnosis & treatment in area A. The patients in area A are

solely guided by service providers, i.e., doctors, nurses and auxiliaries. They will stay

in their carebox when there is no interaction with service providers. Therefore, the

LoS in ED is the sum of all activities (meeting with doctor, medical tests, and having

rest to wait for drug therapies to take effect) they have to attend to, and time on

waiting for resources (including test rooms, doctors, nurses and auxiliaries) to become

available. The behavior rule of patient is given in Table 3.2. It is worth noting that

the time to wait until drug therapies take effect (𝑡𝑑𝑟𝑢𝑔) is significant because it is

usually the longest part of LoS. In this study, we fitted the 𝑡𝑑𝑟𝑢𝑔 with acuity level

dependent random distributions. The parameters of the distributions depend upon

patient’s acuity level and will be calibrated in model tuning process.

Table 3.2: Behavior rules of patients.

IF THEN
notified by IS (before entering treatment
area).

go to the corresponding place in the no-
tification.

no requests from IS (before entering
treatment area).

keep staying in waiting room.

no interaction requested by healthcare
staff (nurse, doctor or auxiliary).

keep staying in carebox (for patients in
area A).

no requests from IS or healthcare staff. keep staying in waiting room (for pa-
tients in area B).

notified by IS (in area B). go to diagnosis room or medical image
test-room as indicated in the notifica-
tion.

needs additional help. ask nurse through IS (the IS will notify
the corresponding nurse).
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Registration staff and triage nurse

The abstract behavior of triage nurses and registration staff are similar, we describe

their model together in this section. The service time duration for triage nurses and

registration staff is not significant with different patients. In our model, we considered

the duration of service time simply on the basis of the experience (junior or senior) of

registration staff and triage nurse. The behavior rule of registration staff and triage

nurse are detailed in Table 3.3.

Table 3.3: Behavior rules of registration staff / triage nurse.

IF THEN
time to work. interact with colleague in previous shift,

take over materials from them.
no patient in front of the desk/window. keep waiting for patient (IDLE).
one patient is waiting in front of the
desk.

interact with patient for registra-
tion/triage.

shifting of duty time is up. accomplish work at hand, interact with
colleague in following shift, hand over re-
quested material.

Doctor

As service provider, doctors in different areas behave differently. The distinct differ-

ence is the movement requirement for interaction. Doctors in area A have to walk

around the area in order to interact with their patients in careboxes because patients

in area A are not allowed to move by themselves. The duration of time it takes for the

doctor to move (𝑡𝑚𝑜𝑣𝑒) is important to consider as it is not constant and significant

when regarding system efficiency. However, doctors in area B sit in their office waite

for patient to come in. Considering that the waiting room is not far from doctor’s

room in area B, the time it takes for the patient to move is constant and negligible.

Detailed behavior rules of doctors are shown in Table 3.4.

Similarly, doctors in area B have the same behavior rules except moving to the

corresponding careboxes. Regarding the duration of time for each interaction (service

time), it depends on many factors. According to the real behavioral data and findings
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Table 3.4: Behavior rules of doctors, rules specified with in area A means doctors in
area A, otherwise applies to area A and B.

IF THEN
time to work. interact with doctor in previous shift,

take over patients from them.
no task assigned by IS (task queue is
empty).

stay in their office (IDLE).

IS notifies a new patients in carebox 𝑖
(in area A) / A new patient comes into
office (in area B).

move to carebox 𝑖 (in area A), perform
first-interaction, make treatment plan.

IS notifies: the test report for one of the
patients in set 𝐷𝑃

𝑖 is ready to review.
review medical test report, walk to the
carebox (in area A) if necessary, and
make follow-up treatment plan (do more
test, drug therapy, discharge or admit to
hospital).

scheduled drug therapy time of any pa-
tient in set 𝐷𝑃

𝑖 is up.
walk to the carebox (in area A), check
effect of drug therapy, and make follow-
up treatment plan.

shifting of duty time is up. accomplish work at hand, interact with
doctors in following shift, hand over all
the patients in 𝐷𝑃

𝑖 .

in queue theory [89], the duration of service time for a specific worker could be

fitted with exponential distribution (𝐸𝑥𝑝(𝜆𝑠𝑡)). The parameter 𝜆𝑠𝑡 is acuity level-,

service type- and service provider’s experience- dependent in this model. Equation 3.3

expresses the sub-model of service time.

𝑇𝑠𝑡 = 𝐸𝑥𝑝(𝜆𝑠𝑡) + 𝑡𝑚𝑜𝑣𝑒, 𝜆𝑠𝑡 = 𝛾𝑛 · 𝑓(𝑠, 𝑠𝑝, 𝑎𝑙) (3.3)

Where, 𝑇𝑠𝑡 is the service time for one interaction, 𝑠 denotes the type of service

(purpose of interaction), 𝑠𝑝 is the experience of the service provider (doctor, nurse,

test-room), say, junior or senior; 𝑎𝑙 represents the acuity level of patients; 𝑡𝑚𝑜𝑣𝑒 is the

time takes on movement which depends on the location of the patient’s carebox. 𝑡𝑚𝑜𝑣𝑒

is set as zero in area B. Some on-site interviews and staff experience show that the

first meeting with a patient takes significantly longer time than follow-ups and most

patients (especially in area A) need several meetings with their doctor. Therefore,

from a doctor’s perspective, it is better to consider the service time model separately
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for the first interaction and follow-ups. To avoid an over-complex model, we added

a proportionality coefficient parameter (𝛾𝑛) for the service time in Equation 3.3, i.e.,

same statistical model, different scale. The 𝛾𝑛 thus represents the proportionality

coefficient for the first meeting with patient and follow-ups (e.g., 1.0 for first meeting

and 0.7 for follow-ups). The function is identified and calibrated with real operation

records of the target ED. Note that the service model described by Equation 3.3

is also applied for nurses but with different parameter values. It can be seen that

the duration of time for interaction is determined by the service provider, yet with

patient’s characteristic used as parameters. Regarding the treatment plan made by

the doctor, it is based on the routing probabilities retrieved from ED patient records,

and depends on the patient’s characters.

Nurse

Similar to doctors, the nurses in area A have to move to patient’s carebox to provide

service and the duration of time on moving is crucial to be considered. Regarding

the service time of nurse, we use the same model as shown in Equation 3.3 but with

different parameters. The IF/THEN behavior rules of nurse are detailed in Table 3.5.

It can be seen from Table 3.5 that all the behaviors are driven by the information

system, and we assume that nurses always behave according to the rules. Thus, the

uncertainties of nurses’ behavior are mainly due to the uncertainties of the patients’

condition.

Auxiliary technician

Auxiliary technicians work in area A to assist patients to move around for medical

testing. The behavior of auxiliary technicians is simple but crucial to consider because

their behavior also has significant impact on system performance. For example, a

shortage of technicians will result in delays in patients’ tests, and further affects the

efficiency of test-rooms. This chain reaction will finally affects the throughput of the

ED system. Different from doctors and nurses, all the technicians share one task

queue, i.e., when there is a request and if there are idle technicians, one of them will
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Table 3.5: Behavior rules of nurses, rules specified with in area A means nurses in
area A, otherwise applies to area A and B..

IF THEN
time to work. interact with nurse in previous shift,

take over patients from them.
no task assigned by IS (task queue is
empty).

stay in the nurse room.

doctor assigned laboratory test to one of
the patients in set 𝑁𝑃

𝑖 .
walk to the patient (to carebox 𝑁𝐶𝐵

𝑖 in
area A), taking sample from patient.

drug therapy assigned to one of the pa-
tients in set 𝑁𝑃

𝑖 by doctor.
go to the pharmacy, take pill and then
walk to the place of patient for treat-
ment.

𝐼𝑆 notifies an additional-help call from
patient in set 𝑁𝑃

𝑖 .
go to the patient (to carebox 𝑁𝐶𝐵

𝑖 in
area A).

Periodic checking time is up. Check every patient’s body condition in
set 𝑁𝑃

𝑖 .
doctor discharged one patient in set 𝑁𝑃

𝑖 . help patient leaving ED.
shifting of duty time is up. accomplish task at hand, interact with

nurses in following shift, hand over all
the patients in set 𝑁𝑃

𝑖 .

take the task, otherwise, the task will be pushed into the technician group’s task

queue. Therefore, they have only one IF/THEN behavior rule, i.e., going to perform

the task when get notified by IS.

Medical image test-room

Medical imaging is the service and process of creating visual representations of the

interior of a body for clinical analysis and medical intervention, as well as visual rep-

resentation of the function of some organs or tissues. Although the medical image

test-room is comprised of equipment and technicians, we model this unit as a sin-

gle agent to ignore unnecessary complexity. These agents will interact with patients

and auxiliary technicians. There are several kinds of medical imaging services, such

as CT-scan, B-scan ultrasonography, X-Ray and MRI-scan. Since the processes are

similar, the significant difference is the service time from point view of modeling and

simulation. The type of test was determined by doctor based on patient’s character

(acuity level, previous test). In our model, the service time model was fitted with
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exponential distributions based upon real data analysis and findings in queue the-

ory [89]. The IF/THEN behavior rule of medical imaging test-room is described in

Table 3.6.

Table 3.6: Behavior rules of medical image test-room.

IF THEN
no patient waiting outside. waiting for patient (IDLE).
patient with auxiliary staff waiting out-
side, and test-room is ready.

interact with patient and accompanied
auxiliary staff.

physical test finished. process test results, and send to the cor-
responding doctor through IS.

Laboratory test-room

The laboratory test-rooms receive patients’ samples (e.g., blood) taken by a nurse,

and analyze one by one by machine on a FCFS policy. Normally, there are several

machines which can process samples simultaneously. Here, each of the machines is

considered as a whole as an agent. The type of processing is a parameter of the agents

customized by simulation users. For each machine, a maintenance service is required

every 24 hours, and this process takes up to one hour, during which samples cannot

be processed.

Regarding process time of different kinds of analyses, similar as medical image

test in section 3.3.1, they are separately fitted with exponential distribution. The

parameters of the distribution are based on the specification of machines and carefully

calibrated based upon real data. The behavior rules are detailed in Table 3.7.

3.3.2 Interaction Model

The functional behavior of any system can be specified by a state machine (also

called an object) [90]. In this research, to model the interactions between the agents

and their states, the Finite State Machine (FSM) was used. The subsection 3.3.1

describes all the model of agents in ED. Once they are interconnected by information

flow, they fulfill the purpose of providing healthcare service. Hence, agent modeling
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Table 3.7: Behavior rules of laboratory test-room.

IF THEN
no sample in the queue. waiting for sample (IDLE).
new sample(s) waiting in the queue, and
there are free analyzing machine(s).

detach sample(s) to free machine(s).

machine(s) completed the analysis. catch results and send to the correspond-
ing doctor through IS.

daily machine maintenance time is up. start maintaining when machine com-
pletes current task.

is just one side of an agent-based model & simulation system, the interaction model

which connects all agents to form a vivid system is another side. Although human

behavior and interactions among people are among the most complex systems that

exist, hospitals have strict behavior policies. It is thus reasonable to assume that all

the agents in EDs behave regularly in reality. The interaction happens among agents

was illustrated in Figure 3-2 (the group of two parallel lines with arrow between

two agents). There are one-to-one interactions (e.g., doctor with patient), one-to-n

interactions (like information system with patients), and triangular interactions (e.g.,

test-room, patient and auxiliary staff). From the point view of simulation which

uses time as key indicator of the system, the duration of the time it takes for an

interaction is significant. The model for fitting the time duration of interactions has

been described in the agents’ model.

The state of agents are presented by the value of their state variables and each

state variable has a set of possible values. Based on the actual situation, the transition

of agents’ state is caused by interaction with other agents or in some cases with time

elapse. Thus, the value of the state variables are changed by one of their behaviors

or time elapsing (as illustrated in Equation 3.4):

𝑌𝐾𝑖
= 𝑓(𝐵𝑗, 𝑇 )(0 ≤ 𝑖 ≤ 𝑚, 0 ≤ 𝑗 ≤ 𝑛) (3.4)

where 𝐵𝑗 represents the corresponding behavior with other agents, it is an element

of the behavior set 𝐵. 𝑇 represents the elapsing of the time because sometimes the

state of the agents, e.g., patients’ body condition after medicating, can change with
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time goes on without any interactions.

As shown in Figure 3-5, the state machine accepts commands and produces out-

puts, which means that when the agents interact with other agents and/or with the

time elapsing (accept input), the value of one or several variables will be changed

(because of the outputs produced). Any one of the variables’ value changing will

represent the state transition.

Agent(Patient):
Variables:
    acuity level

    age

    body condition

    location

    …

   

State transition when interact with other 

agents or with time elapsing

Interacting
State variables 

changed

State 

transition

I/O I/O

I/O

Figure 3-5: A typical patient’s conceptual state transfer model.

Therefore, the set of one kind of agents’ states is the cartesian produce of each

state variable’s possible value set 𝑉𝑖 (see (Equation 3.5)). The state set of a specific

agent in this type is a subset of 𝑆, which is determined by the specific configuration

of the agent.

𝑆 = {𝑆0, 𝑆1, 𝑆2, . . . , 𝑆𝑡} = {𝑉1 × 𝑉2 × 𝑉3 × . . .× 𝑉𝑛}

(0 ≤ 𝑡 ≤
𝑛∏︁

𝑖=1

𝐾𝑖)
(3.5)

The models of agents described in subsection 3.3.1 are defined from single agent’s
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Table 3.8: A part of a patient’s interaction log.

State Source State Destination state Input
. . . . . . . . . . . .
𝑆𝑡 Waiting for service

(free carebox).
Waiting for service
(Doctor’s diagnosis).

Notice from IS with a
free care box.

𝑆𝑡+1 Waiting for service
(doctor’s diagnosis).

Accepting Ser-
vice(meet with doc-
tor).

Doctor arrive at pa-
tient’s carebox.

𝑆𝑡+2 Accepting Ser-
vice(meet with doc-
tor).

Waiting for service (X-
Ray test service).

Doctor order X-Ray
test for patient.

𝑆𝑡+3 Waiting for service (X-
Ray test service).

Accepting Service(X-
Ray test service).

X-Ray service avail-
able.

𝑆𝑡+4 Accepting Service(X-
Ray test service).

Waiting for service
(Doctor’s review of the
test result).

X-Ray service finished.

. . . . . . . . . . . .

perspective. To accurately represent a "live" agent in simulation, besides behavior

rules, each agent has its own state variables for determining their current state. Al-

though the IF/THEN behavior rules of an agent are generalized and do not represent

specific actions with their interaction objects, the combination of the value of their

state variables and the generalized behavior could specify the real action. For exam-

ple, if the value of patient’s state variable indicates that a patient stays in the first

waiting room (i.e., location = 1st waiting room), it is sure that they are waiting for

triage service instead of other services. Table 3.8 gives a part of one patient’s state

transition, although several states are the same as Waiting for service, the value of

its state variables will determine the specific service the patient is waiting for.

Above all, it is feasible to deal with huge amount of agent states by means of defin-

ing agents through state variables. At the same time, it will be easy to add/remove

states simply by adding/removing elements in the set of state variables and their

corresponding behavior. For the study of other ED related problems, for example,

the study of MRSA propagation in ED, some new state variables and their possible

values could be easily added to gain insights on how the parameters evolve over time

(e.g., routes of bacteria transmission). With the same approach, further functionality
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of the research object will emerge from these new states.

3.4 Model Implementation, data collection and in-

formation extraction

3.4.1 Model Implementation

Above section 3.3 details agent models as well as their interaction. However, the

nonlinearities and interactions among agents over time and space can lead to such

complexity that it is only possible to understand through simulation [91]. The full

model has been implemented in NetLogo [92] simulation environment, which is an

agent-based programming language and integrated modeling environment. The same

as it in reality, in the implementation, when one interaction is accomplished, agent

will return to an inactive state and check their task list (enqueue by 𝐼𝑆). The

next task will be chosen from the list according to the priority policy. With this

mechanism, agent models described in subsection 3.3.1 can be easily translated to

NetLogo programming language with a state machine structure. Since the systemic

key performance indicators (KPIs) are extracted from detailed interaction information

among all the agents, a proper way to collect these atomic interacting data should be

carefully designed.

3.4.2 Atomic Data Collecting

An agent-based model is comprised of individual components of the system as well

as their interactions. The simulation results generated directly by simulation are

atomic data about the state and interaction among agents. This atomic data is the

source of knowledge for a better understanding of the complex system. Therefore,

simulation output from the agent-based simulator is subjected to extract the system-

level behavior information. However, one reason why emergent behavior of a complex

system is hard to predict is that the number of interactions between components

increases exponentially with the number of components. The interaction data and
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the state information of the system are thus massive. In the data collection process

of a real system, we tend to collect more data than needed in order to cover as much

information as possible. Whereas in simulation, data monitoring should be focused on

the goal of analyzing because the simulation process is reproducible (using the same

model configuration and random seed). To this end, we designed a customizable data

monitoring layer between the micro-level behavior simulator and the data processing

layer from a point view of "sensor". Through this customizable layer simulation users

could customize their data collecting according to their analysis requirements without

accessing to the source code. Moreover, some of the sensors also provide simple data

processing methods (filter or reducer) to carry out basic analysis (e.g., maximum,

minimum, average, median value, standard deviation) in order to reduce the size

of micro-level simulation results without affecting final knowledge discovery (e.g., in

cross-scenario analysis cases). In summary, we designed "sensors" along with agents.

These "sensor" can monitor all the behavior of agents and the user can enable/disable

these "sensors" according to their analysis requirement to avoid collecting redundant

data which are not interested to the user.

This customizable data monitoring layer is implemented in two parts: an inde-

pendent application with graphical user interface which enables simulation users to

customize data-collecting behavior (shown in Figure 3-6), and a data-collection pro-

gram along with the simulator to record and write data to comma-separated values

(.csv) files. The two parts communicate through a configuration file before simulat-

ing. Since this layer is considered as a set of sensors to monitor states of agents and

environment (e.g., waiting room), all of which are customizable, e.g., enable/disable,

sampling frequency (for continuously monitoring passive agents’ state such as the

test-room occupancy).

Regarding the nature of an agent-based simulator, we classified the raw simu-

lation data in two categories: environment state and interaction information. The

state information, e.g., test-room occupancy and number of patients in waiting room,

are sampled in a given time interval (sample frequency, e.g., output the length of

test-room queue every 5 minutes for indicating its occupancy). The interaction in-
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Interaction information 
monitoring configuration

State information 
monitoring configuration

Figure 3-6: Interface of application for configuring the micro-level interaction infor-
mation monitoring.

formation contains records of all the interaction among agents and this information

is recorded as five Ws (Who, What, When, Where, Why) and one H (How long it

takes). Figure 3-7 shows part of the interaction records.

Figure 3-7: Agent interaction records.

The interaction data is the most basic information on reflecting system behavior.

They are obtained through putting a device ("sensor") on each of the individuals

in the ED, and these "sensors" could monitor individual’s activities as deep as a

user required. Although these data are massive, theoretically all indicators about the

system behavior could be retrieved. Different with blackbox simulation models, these

basic interaction information not only emerges interesting KPIs but also explains the
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root-cause of the simulation scenario (e.g., case in subsection 6.2.1).

3.5 Experiment design and model execution

3.5.1 Scenario Design

The term "scenario" in this thesis represents a set of parameter value which speci-

fies an ED. In our simulator, only the model (agent model and interaction model)

was implemented in NetLogo, the value of parameters which characterize the model

are in configuration files. Therefore, simulation users could design their experiments

in a form of configuration files without accessing the source code. Thus in a de-

cision support process, users could analyze their requirement in macro-level, then

design experiments in micro-level (parameters to specify agents’ model). Finally the

macro-level systemic KPIs predicted by simulation will be extracted from micro-level

interaction data. The basic principle is thus to propose different scenarios and then

predict the behavior of ED under scenarios by using the individual behavior simu-

lator. The state of the ED is then assessed by using selected KPIs retrieved from

the simulation data. If the ED reaches or is in a degraded or critical state, corrective

solutions are proposed, and then new simulations will be performed to verify the effec-

tiveness of solutions. This process is repeated until the ED returns to a normal state

as expected. In this case, the corrective solutions are listed and allow the formulation

of the corrective rules associated with each situation.

3.5.2 Model Execution in Cluster

Armed with powerful computation and memory resources, the ability to test a large

number of scenarios for "what-if" analysis in a short time period has made simula-

tion a widespread tool in decision supporting and operation research. Agent-based

simulation is computationally expensive. This sub-section describes a framework to

efficiently execute the model that was implemented in NetLogo environment. Due

to the inherent nature of patient flow with characteristics such as stochastic arrivals,
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stochastic service times, and uncertainties in patient routings, the agent-based ED

model has stochastic characteristics by nature. Consequently, results from a single

execution may not be statistically reliable, so repeating one scenario with different

random seeds becomes necessary and challenging as well. High performance comput-

ing techniques are prominent means of leveraging the complex simulation power of

ABMs. Since there is no data dependency among difference scenarios or repetitions

of the same scenario, master-worker execution model becomes a good choice. How-

ever, execution time of different scenarios or even repetitions of the same scenario

are different, load balance should be carefully considered. Given this, we designed an

execution engine to launch and execute the agent-based model on cluster with Net-

Logo. Master-worker mechanism was used to achieve load balance. The execution

model is illustrated in Figure 3-8, in which MPI (Message Passing Interface ) is used

to manage and communicate among master and worker processes.

MPI Process 0

ED Model
+

Idle

Load Scenario

Simulate

Python 
post-processing 

module

Job Allocation
(scenario)

Results 
&

Request Job

MPI Process 1 - n

n = total number of cores

Scenario

Jobs

Exit

Worker i (1 < i < n)

Workers

Master

Emergent  behavior 
indicators

Out

In

NetLogo

Exit Msg 

Valid Scenario

Figure 3-8: The master-worker execution framework for agent-based models on a
cluster. Atomic data will be analyzed natively in the same node, and only systemic
information will be send back to master. NetLogo controlling API (released alone
with NetLogo) was used to invoke NetLogo and initialize the agent-based model so
as to avoid loading NetLogo for each execution.

As the meaningful information (systemic behavior indicators) is extracted from

interaction records. In addition that the size of interaction data increases exponen-

tially with the number of agents, it is better to process data in the same computing

node which simulates the scenario to avoid network crowding. More specifically, as
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illustrated in Figure 3-8, the number of workers is equal with the total number of CPU

cores, and the master will be assigned to one of the nodes. When one scenario finishes

its execution, the data analysis program will be launched to analyze the simulation

data locally on the same computing node. Then the processed macro-level KPIs will

be sent back to the master. Considering that the launch of NetLogo takes around 30

seconds, the NetLogo controlling API (comes with NetLogo.jar from released version)

was used to invoke and control NetLogo. That is, when a new execution is assigned

by the master, instead of reload the NetLogo environment, the controlling API will

initialize the model as well as NetLogo environment with parameters in the scenario.

Thus, NetLogo will only need to be launched once for each worker. Specifically, MPI

library and C programming language were used to distribute and balance simulation

task, Java was used to take full control of NetLogo (via controlling API), and Python

was used for simulation data analysis. Furthermore, this model execution framework

is one way of addressing the computational complexity of such systems, which is also

useful for model parameter calibration and simulation based optimization. Although

the presented framework was designed to speed up our simulation study, we are confi-

dent that it also has the potential to be used by for other ABMs that are implemented

with NetLogo.

3.5.3 Warm-up Simulation

The simulation model of ED is a typical steady-state system that neither has obvious

starting events nor requires stopping at a certain time during the simulation process.

In order to remove the initial bias, we preset a period of warm-up time to be the

transient period. To determine the proper length for warming up, we first used

the linear regression approach suggested by [93] to identify the end of transient state.

This approach uses the least-squares method to determine if the linear regression slope

coefficient is close enough to zero for a specific range of observations, i.e., the transient

state finishes when the slope is close to zero. Then based upon the transient period

length (normally less than 100 hours), the system has been set at a big margin of one-

week (168 hours) as warm-up period. The data collecting layer will start to record
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all the requested atomic data (i.e., enable sensors according to user’s configuration)

after warm-up period.

3.5.4 Replication

In view of the agent-based model, agents’ behavior is fitted with probability distribu-

tions and most of the KPIs, e.g., LoS, door-to-doctor time are statistical indicators.

Therefore, to make KPIs statistically reliable, a minimum sample size should be guar-

anteed. Here, we use LoS as an example to illustrate the method for computing the

minimum sample size.

In probability theory, Chebyshev’s inequality guarantees that in any probability

distribution, "nearly all" values are close to the mean [78] . Specifically, let 𝑋 be a

random variable with finite mean 𝜇 and variance 𝜎2, then for any given positive 𝜖 we

have:

𝑃𝑟 (|𝑋 − 𝜇| ≤ 𝜖) ≥ 1− 𝜎2

𝜖2
= 1− 𝜎𝑟

2

𝑛𝜖2
(3.6)

Where, 𝑋 is the random variable, 𝜎2 is the variance 𝑣𝑎𝑟(𝑋), 𝜇 = 𝐸(𝑋) represents

the expectation of 𝑋, 𝜖 denotes the absolute error, 𝜎𝑟
2 is the theoretical variance

extract from real data, and 𝑛 is the sample size. More specifically, if we want to

convince that the probability of the average value lies inside the interval (𝜇− 𝜖, 𝜇+ 𝜖)

is no less than 𝛼 (confidence greater than 𝛼), so as to use average of samples to

represent 𝜇. The minimum size of sample 𝑛 could be calculated by Equation 3.6 with

given 𝜎 and 𝜖. Take the evaluation of patients’ LoS as an example, with the patient

arrival model described in subsection 3.1.1, 10% absolute error, 95% confidence, the

minimum sample size as well as simulation time are shown in Table 3.9 by category

of patients with the same acuity level. The statistical information (𝜎𝑟
2) was retrieved

from about 100,000 valid patient records in 2014.

In order to meet the sample size requirement, if the simulation time for actual

analysis is greater than the minimum request, it is reasonable to simulate once with-

out repetition. Meanwhile, if actual analysis requires shorter simulation time period,
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Table 3.9: Minimum sample size to evaluate patient’s length of stay (LoS, Relative
error: 10%, confidence: 95%.). The statistical information was retrieved from about
100,000 valid patient records in year 2014.
``````````````̀Items

Acuity Level 1 2 3 4 5

Mean (LoS, minute) 520.27 437.39 617.96 166.43 116.40
Standard Deviation 493.88 734.57 806.79 182.055 94.24
Minimal sample size (number
of patient)

901 2820 1704 1196 655

Percentage of patients arrival 0.55 7.10 31.00 49.30 12.05
Min. simulation time (day) 410 99 13 6 13

repetition the same scenario with different random seed is a must. The actual repe-

tition times can be computed with minimum sample size requirement divided by the

total arrival patients in the scenario separately for each acuity level and get the maxi-

mum times. It is clear to see from Table 3.9 that, evaluating behavior of patients with

acuity level 1 requires the longest simulation time because the proportion of patients

arrive with acuity level 1 is fairly small (about 0.55 %). While for patients with acuity

level 4, which makes up the largest proportions, requires the shortest simulation time.

Having said that, if we want to evaluate LoS for patients with acuity level 1 to 5, we

have to simulate at least 410 days (the maximum in five acuity levels). If the actual

simulation time (𝑡𝑠𝑖𝑚𝑢) is shorter than 410 days, we should repeat the same scenario

with different random seeds for at least ⌈410/𝑡𝑠𝑖𝑚𝑢⌉ times. However, if only assess

LoS of patients with acuity level 4 and 5 (the area B), simulating for 13 days would

be enough for the minimum sample size requirements. To evaluate other KPIs, e.g.,

occupancy of sanitary staff and medical test equipment, the same procedure can be

used to compute the sample size requirement.

3.6 Simulation Results

The model described above has been calibrated based on real data of 2009 - 2011. This

section will illustrate the cross-validation results. That is, parameters for specifying

patient arrival model (described in subsection 3.1.1) are retrieved from real data (in
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2014), weekly arrival rates throughout the year are shown in Figure 3-9.
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Figure 3-9: Patient weekly arrival rate, extracted from one-year actual data of the
Hospital Universitari Parc Taulí. To emulate the ED of the Hospital Universitari Parc
Taulí for model validation, this data will be used as (input) parameters to specify
patient arrival pattern described in subsection 3.1.1.

The ED resource configuration, which includes human resources (as well as their

shift), equipment, beds (as well as its layout) are specified as the same as real system.

With patient arrival data shown in Figure 3-9 as input, we simulate to imitate the real

operation in 2014. The patients’ LoS, which can represent overall behavior of patient

as well as EDs, was used as the main indicator of the system behavior. According to

Table 3.9, two repetitions were applied to this scenario (the simulation scenario has

365 days). The simulation was carried out on an 8-node cluster with total number

of 512 AMD OpteronTM Processor 6262 HE cores, and 2TB RAM. Since there are

only one scenario with two repetitions, only three CPU cores (one for master and

two workers) are used. To validate simulation results, the LoS retrieved from real

data and emergent behavior of simulation models are compared in statistical way

(histogram). The comparison results are illustrated in Figure 3-10, in which each

figure represents LoS distribution of patients with the same acuity level. The results

for validating patient arrival model were demonstrated previously in Figure 3-1a. It

is clear that the proposed patient arrival model could fit well with the actual patient

arrival.

It can be seen from Figure 3-10 that, as a result of the small number of patients

attending with acuity level 1 and 2 in real situation (about 0.55 % and 7.1 % re-
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Figure 3-10: A set of simulation results about distribution of patients’ LoS with each
acuity level; each figure is the comparison of histogram of patients’ LoS extracted from
real data against simulation results. The statistical interval widths are: 30 minutes
for acuity level 1, 2 and 3; 10 and 5 minutes for acuity level 4 and 5 respectively.
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spectively), the fitness for these two levels are not as good as others. Based on the

correlation coefficient quantitive index, simulation results and statistical characteris-

tics of empirical data are very close.

3.7 Discussion

The Emergency Department (ED) is a complex, stochastic environment which has

time-dependent behavior. Making changes to an ED’s resources is a challenging

activity since it has significant impact on its performance. Incorrect decisions may

lead to serious consequences on the quality of service and cause unnecessary deaths.

Simulation enables organizations to make better decisions by letting them see the

impact of changes before implementing.

This chapter presented an agent-based model of EDs which could be used to

settle problems such as prolonged waiting times, inefficient use of ED resources, and

unbalanced staff scheduling. This is useful for designing empirically grounded agent-

based simulations, and for gaining direct insight into observed dynamic processes. In

this model, policies such as staffing, human factors such as sanitary staff behavior,

inexperienced cases such as a flu outbreak could be set up and their effects on system

performance such as waiting time and throughput could be quantified. With the

amount of adjustable parameters, the simulator is customizable to simulate a variety

of scenarios. The presented simulator is currently working as a platform to study

Methicillin-resistant Staphylococcus Aureus (MRSA) transmission in EDs and as an

experimental platform of EDs to provide data under various scenarios for knowledge

discovery.

Furthermore, starting from simulating the EDs, our efforts proved the feasibil-

ity and ideality of using an agent based modeling & simulation techniques to study

healthcare systems. The cross-validation results showed that the developed ED sim-

ulator can accurately represent the emergent behavior of the complex ED system.

Some demo application results previously presented in conferences proved that the

simulator is ready to work as part of decision support system (in Ref. [37, 36]). The
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framework developed in our work is a step towards building a full model of integrated

care system. It opens a wide field of possible simulation scenarios for a better un-

derstanding of the integrated complex system. These simulation scenarios are crucial

prerequisites for improving the coordination and integration of care and increasing

the efficiency of resource allocation. In addition, more healthcare subsystem, such as

EDs in an area, out-patient service unit, and in-patient unit could be simulated and

connected together to allow for the assessment of ambulance and patient redirection

policies.

A precise model of ED is the base for further study, another work direction could

be to combine the simulation model with optimization algorithms to find the optimal

(and sub-optimal) of design parameters to optimize the performance of the simulated

system.
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Chapter 4

Model Calibration

The First Rule of Program Optimization: Don’t do it. The Second

Rule of Program Optimization – For experts only: Don’t do it yet.

- Michael A. Jackson

To tackle the problem of efficiently managing increasingly complex systems, sim-

ulation models have been widely used. This is because simulation is safer, less expen-

sive, and faster than field implementation and testing. To achieve high fidelity and

credibility in conducting prediction, explanation and exploration of the actual system

with simulation models, a rigorous calibration and validation procedure should firstly

be applied. However, one of the key issues in calibration is the acquisition of valid

source information from the target system.

The aim of this chapter is to develop a systematic method to automatically cali-

brate a general emergency department (ED) model with incomplete data. The pro-

posed calibration method enables simulation users to calibrate the general model for

simulating their system without the involvement of model developers. High perfor-

mance computing techniques were used to efficiently search for the optimal set of

parameters. The case study indicates that the proposed method appears to be ca-

pable of properly calibrating and validating the simulation model with incomplete

data.
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4.1 Introduction

With the rapid growth of computational techniques, computational thinking brings

researchers and practitioners into a new dimension to traditional modeling and sim-

ulation tasks. That is, the computational science transforms observed complex phe-

nomena into conceptual models. Then the models are formulated into algorithms

that can be executed to yield predictions and estimate hidden parameters. These

predictions can be compared to the observations, revealing to what extent the model

is an accurate description. Although data-driven simulation are mostly designed for

prediction, the simulator should firstly be able to imitate the real system. Generally,

a simulator of a specific system is comprised of the following: input (𝑋), the model

or transformation function (𝑓(𝑋)), and output (𝑌 ). For an accurate simulator, when

we put the same input as it in a real system, the output of simulator should be close

enough to the output of the actual system. Since 𝑓(𝑋) is based on abstractions,

idealization, and many disputable assumptions, the model must be fine-tuned ac-

cording to some historical input-output samples from the target system in order to

get trustworthy simulation results.

The ED is a typical complex system, which serves essential needs in society, deliv-

ering emergency health care and simultaneously acting as a safety net provider [94].

In recent years, simulation has emerged as an increasingly effective tool to study ED

related problems and support making decisions to efficiently manage the complex ED

system. While these simulation models can be advantageous to engineers, the models

must be calibrated and validated, i.e., the model should first be able to accurately

imitate the real system. Advances in computational technology, along with the in-

creased complexity of system design and management have created an environment in

which microscopic simulation models have become useful tools for managing complex

system. Among which, the Agent-based Model (ABM) is one of the most important

tools for exploring emergent behavior (a phenomenon that describes the behavior of a

system, which cannot be explained alone by the sum of its parts [72]) mostly because

it can provide a way to see the forest through the trees and, insight is often more
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important than sheer numbers [23, 26, 25].

As described in chapter 3, the agent-based simulation models encompass numerous

independent parameters to describe individual behavior of the system components.

Reliable and complete real data from target system is obviously the precondition for

setting up an accurate simulator. Unfortunately, many of the parameters are either

unavailable in historical data or difficult to measure in real situation, yet they can

have a substantial impact on the model accuracy. Thus, when existing real data was

incomplete to allow direct estimation of the model parameters, a calibration process

(also known as tuning) has to be conducted to indirectly estimate proper values for

those unknown parameters. However, the calibration of model parameters for an

ABM is a big challenge for standard calibration techniques, due to the large param-

eter search-space, long simulation run times, uncertainties in the structural model

design and different observation levels upon which the model needs to be calibrated

[75]. Given this, the model parameter calibration problem can be formulated as a

stochastic programming problem whose objective function is an associated measure-

ment of an experimental simulation. Nevertheless, the objective function is typically

(a) subject to various levels of randomness, (b) not necessarily differentiable, and (c)

computationally expensive to evaluate due to the complexity of the model. To the

best of our knowledge, limited research has been conducted on this thorny and critical

problem of estimation in the face of data scarcity.

Accordingly, conventional calibration, which is done manually by using the trial-

and-error method, is time consuming and tedious. A systematic method to automat-

ically search for the optimal value of model parameters is promising. The simulation-

based optimization is an emerging field which integrates optimization techniques into

simulation analysis. The primary goal of simulation-based optimization is to optimize

the performance of a system through simulation. More specifically, it is a way to find

the optimal set of parameters for a given criterion. Then the optimal parameter set

will enable the model to achieve a specific function optimally or that the results of

the simulation are close enough to actual data. Therefore, if we set the model input

the same as reality, consider the unknown model parameters as variables, and the
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similarity between simulation output and actual system output as objective, the op-

timization is a model calibration process. When some of the model parameters are

missing and impossible to get from real system, this optimization process will be able

to find the optimal values for setting up the model. Thus, the precondition for the

calibration process is a set of reliable input-output pairs from the target system.

In this chapter, we will address a critical step in simulating a complex system -

the systematic model calibration and validation in the face of data scarcity. More

specifically, calibrate a general agent-based model of ED to simulate the ED of the

Hospital Universitari Parc Taulí (a university tertiary level hospital in Barcelona,

Spain) with incomplete data (missing duration of key services). The simulation-

based optimization was conducted by using an existing tool [39, 40, 41] developed by

Sandia National Laboratory. According to the practical requirements of evaluating a

simulation-based objective function, an initial distance-based lookup mechanism was

proposed to further speed up the optimization. The rest of this chapter is structured

as follows: an overview of the EDs as well as the general model (detailed in chapter 3)

will be described in section 4.2. The section 4.3 details the proposed automatic

calibration method and the results we got in the case study. At last, section 4.4

draws the conclusions.

4.2 The Agent-based Emergency Department Model

Typical EDs have common interacting elements such as doctors (physicians), nurses,

technicians, receptionists, beds, medical devices that are interconnected via flows of

patients, information and processes (registration, triage, diagnostic, discharge). The

EDs studied in this research are focused on the Spanish type. This section gives the

brief introduction of the system as well as the general model. Firstly, subsection 4.2.1

gives a brief introduction of the system and model, it is a summary of the model

presented in chapter 3 in particular for explaining model parameters calibration.

Then subsection 4.2.2 describes the parameters which are impossible to get from real

data and need to be calibrated.
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4.2.1 General process and model overview

As shown in Figure 4-1, typically, a patient enters the ED through one of two ways:

by themselves or by ambulance. Upon arrival, walk-in patients need to walk to the

registration window, briefly give their personal information to the registration staff.

After that, they have to stay in a waiting room until triage. Once the information

system assigns a triage nurse to the patient, they will go to the corresponding triage

box and interact with the nurse. Triage consists of a brief assessment of the patient’s

body condition and an acuity level will be assigned to the patient according to their

severity. Then, patients will wait in the second waiting room before entering the

diagnosis & treatment area. For those patients who arrive by ambulance, they are

registered and triaged in the ambulance, and thus go to the second waiting room

directly. As described in subsection 3.1.2, the Spanish scale of triage is very similar

to the worldwide Canadian Emergency Department Triage and Acuity Scale [79, 80].

The scale consists of 5 levels, with 1 being the most critical (resuscitation), and 5

being the least critical (non-urgent). The triage process also determines the order and

priority with which the patient will be attended and the treatment area where they

will be treated. The registration and triage service are first-come, first-served (FCFS)

for all the patients, whereas entering the diagnosis & treatment area is acuity-level-

dependent FCFS (patients with acuity level 1 have the highest priority).

With regard to the treatment area, as shown in Figure 4-1, in most Spanish

EDs, there are two treatment areas (labeled as A and B in this study), which operate

independently to provide a diagnosis & treatment service. Area A is for those patients

with acuity levels 1, 2 and 3, while area B is a dedicated stream of resources to process

lower acuity patients with levels 4 and 5 more quickly. Area A is made up of careboxes,

a carebox is a small room which contains essential medical equipment and supplies

that could be used for patients’ treatment. Patients attended in area A will stay

in their own carebox throughout the diagnosis & treatment phase, and transporting

should be done by auxiliary staff. In area B, there are several attention boxes in

which doctors and nurses interact with patients, and a large waiting room in which
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Figure 4-1: Diagram of patient flow through the emergency departments. Eight
service processes, marked by the circled number, drive all aspects of patient flow.
Most of the services are interdependent, the duration of service is different for each
service. Note: Area A and area B are designed for urgent and non-urgent patients
separately, they have different groups of staff and work independently.

all patients will remain while not having interaction with the ED staff. Note that

the doctors and nurses are specified for different areas, their behavior is different, but

medical image test-room and laboratory testing services are shared by area A and B.

In the diagnosis & treatment phase, once the patient has got a free space in the

treatment area, the doctor will have an interaction with the patient, then the doctor

makes one of the following decisions: (1) a patient needs to receive an imaging test

(e.g., X-ray, B ultrasound); (2) assign laboratory tests (e.g., blood test, urinalysis); (3)

discharge the patient and; (4) make a drug therapy plan. If testing was assigned, and

when the results become available, the patient needs to have an interaction with the

same doctor who conducted the consultation in order to receive a reassessment with

their test results. Notably, as shown in Figure 4-1, some patients need to repeat the

consultation-test-reassessment/treatment more than once. In summary, as marked

by circled number in Figure 4-1, there are 8 different types of service (provided by

different providers). As described in chapter 3 and previous studies in Ref. [38, 36, 37],

the ED was modeled as a pure spatial agent-based model. It is formed entirely from

the rules governing the behavior of the individual agents which populate the system,
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no higher-level behavior is modeled. Thus, the system behavior emerges as a result

of micro-level actions and interactions. The full model has been implemented in the

NetLogo [92] simulation environment, which is an agent-based programming language

and an integrated modeling environment. The work proposed in this chapter, on

calibrating the general model to imitate a real ED, was challenged by the fact that

the parameters for characterizing the service-time distributions (eight in total marked

by circled number in Figure 4-1) are not directly obtainable from historical data or a

real system.

4.2.2 Model parameters

In this study, Hospital Universitari Parc Taulí in Catalonia, is the target system to

imitate. It is a university tertiary level hospital in Spain that provides care service to a

catchment area of 500,000 people, and attends more than 160,000 patients per year in

the ED. In order to calibrate our general model to imitate the Hospital Universitari

Parc Taulí, we requested 12 months (Jan. 1st, 2014 - Dec. 31st, 2014) historical

operation data from the information system’s database. The missing values and

invalid records has been carefully handled. Regarding that August is holiday period,

lots of people go on vacation, accordingly the configuration of ED is different (e.g.,

fewer staff or fewer senior staff), operation records of August is discarded for this

calibration study.

The ABM requires numerous parameters to characterize the behavior and features

of each agent. Some of them can be retrieved directly from actual operation data of the

target ED system, such as the patients’ features, the number of medical testing, the

number of treatment processes and the number of doctor interactions with one patient.

However, the service time information was not recorded by the information system

(out the scope of an information system). Thus, the parameter for the entire service-

time models could not be determined directly with the real data. As illustrated in

Figure 4-1, there are 8 service processes (marked by a circled number), all the service

are carried out by interacting between agents. According to the research findings in

queue theory [89], exponential distribution is typically used to make mathematically
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simplifying assumptions. Given this and empirical data from ED staff, an exponential

distribution was used to fit the duration of each type of service, but the parameters

for these distributions should be calibrated in accordance with the target system.

More specifically, the service time is defined as the interval spent actually on

receiving service (i.e., the time differences when the services started and ended).

Note that, in the agent-based ED model, the duration of the service mentioned in

this chapter only represents the time spent actually on interacting, waiting time is

excluded because the waiting time is an emergent property of the system. In principle,

the time for medical imaging test is composed of two parts, the interaction between

patient and the test-room technicians, and time for processing testing results. Given

that the second part is determinable, the key is to calibrate the duration for the

interaction. Similar to a laboratory test, which is composed of two parts, taking

samples by nurse and analyzing samples by machine. The second part is easy to

obtain from the machine’s specification thus only the duration of interaction for taking

sample needs calibration.

Accordingly, we have the model input (arrival patient and their features), output

(systemic performance indicator such as length of stay), and part of the model pa-

rameters retrieved directly from real data. With respect to the unknown parameters,

empirical information such as boundary constraints, typical value can be obtained

from experienced staff. Although the empirical information is not accurate, it can

dramatically reduce search space-size. Table 4.1 lists all the parameters to be cal-

ibrated, as well as their boundary constraints. Thus the task is to search for an

optimum set of parameters which can lead to good (acceptable) fitness between the

simulation results and actual data.

In summary, due to data scarcity, although the distribution of specific service dura-

tion cannot be fitted by such standard techniques as maximum likelihood estimation,

we had some other time stamps which enable us to derive an indirect approach to

estimate the service-time distribution parameters.
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Table 4.1: The parameters to be calibrated for the general agent-based model of
emergency departments, in order to imitate the emergency department of Hospital
Universitari Parc Taulí. Note: LB and UB denotes Lower and Upper Boundary
respectively, TV represents the Typical Value; all the units of time are in minutes.
The Identity column corresponds to the circled numbers in Figure 4-1 denote the
type of service.

ID Notation Description LB UB TV
1 𝑇 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟

𝑠𝑒𝑟𝑣𝑖𝑐𝑒 the parameter for registration service-time distribu-
tion model.

2 15 5

2 𝑇 𝑡𝑟𝑖𝑎𝑔𝑒
𝑠𝑒𝑟𝑣𝑖𝑐𝑒 the parameter for triage service-time distribution

model.
5 20 10

3 𝑇 𝑛𝑢𝑟𝑠𝑒𝐴
𝑠𝑒𝑟𝑣𝑖𝑐𝑒 the average duration of service of nurses in area A. 8 30 16

4 𝑇 𝑑𝑜𝑐𝑡𝑜𝑟𝐴
𝑠𝑒𝑟𝑣𝑖𝑐𝑒 the average duration of service of doctors in area A. 8 30 18

5 𝑇 𝑛𝑢𝑟𝑠𝑒𝐵
𝑠𝑒𝑟𝑣𝑖𝑐𝑒 the average duration of service of nurses in area B. 5 20 12

6 𝑇 𝑑𝑜𝑐𝑡𝑜𝑟𝐵
𝑠𝑒𝑟𝑣𝑖𝑐𝑒 the average duration of service of doctors in area B. 5 20 15

7 𝑇 𝑖𝑚𝑎𝑔𝑖𝑛𝑔
𝑠𝑒𝑟𝑣𝑖𝑐𝑒 the average duration for taking medical imaging. 20 40 25

8 𝑇 𝑙𝑎𝑏
𝑠𝑒𝑟𝑣𝑖𝑐𝑒 the average duration for taking laboratory test sam-

ple.
10 30 15

4.3 Calibrating Model Parameters Under Data Scarcity

Calibration traditionally conceptualized as an step in model validation. It involves

systematic adjustment of model parameters so that model outputs can accurately

reflect the actual system behavior. To calibrate a model, three important issues

need to be addressed. The first issue is to select significant metrics to represent the

emergent behavior of the target system, and specify a general and effective fitness

function to measure the distance between a simulated scenario and the real situation.

The second issue is to reduce the computation time because exhaustive search in

parameter space is expensive (exponential growth with the number of parameters).

The third issue is to obtain robust solutions for avoiding the over-fitting problem.

That is, the calibrated model is not only able to fit historical dataset (dataset for

calibration), but also able to predict reliable result with new input data. Due to

the fact that all the services in an ED are interdependent, it is unreasonable to

characterize parameters one-by-one or evaluate fitness process-by-process. To address

this issue, one way is to consider all unknown parameters as a set, then simulate with
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the set and evaluate the similarity of system metrics as a whole. That is to say, a full

simulation has to be carried out to evaluate one set of parameters, changes to any of

the parameters will result in one new simulation scenario. The following subsections

4.3.1 - 4.3.5 will detail all the issues and processes on calibrating the model parameters

under data scarcity. The calibration results and discussion are given in subsection

4.3.6.

4.3.1 Problem formulation

The goal of simulation is to imitate the behavior of a real system so as to accurately

predict system behavior under unknown scenarios. Due to data scarcity, some of

the model parameters are difficult to obtain directly from actual data, we thus have

to tune these parameters indirectly with the goal of producing similar macroscopic

behaviors as it in real situation. Thus, the calibration process of agent-based model

of ED is defined as: Given an agent-based model, a setting of parameter 𝑋 to be

calibrated, the task is to find the global optimal 𝑋* that minimizes the fitness function.

From an optimization point of view, the calibration can simply be expressed as:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 (𝑝1, 𝑝2, · · · , 𝑝𝑛) = 𝐾 (𝑎𝑐𝑡𝑢𝑎𝑙, 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛)

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 :

𝑝1, 𝑝2, · · · , 𝑝𝑛 make sense in real situation

Where, 𝐾 (𝑎𝑐𝑡𝑢𝑎𝑙, 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛) is a function to evaluate the similarity between sim-

ulation results and actual data. The {𝑝1, 𝑝2, · · · , 𝑝𝑛} is the set of parameter values

(also called scenario in this study). In this study, the value of parameters represent

the ratio to the typical value in Table 4.1. However, there are two main challenges

in solving this global optimization problem. One is that the condition – make sense

is difficult to describe in the optimization model because these parameters represent

the behavior of a physical system (rather than sheer numbers). The other challenge

is that the fitness function is non-convex, it has a very complex response surface, and

it is computationally expensive to evaluate. However, if we decompose the condition,
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i.e., only consider the lower/upper bounds of the parameters (main part of the condi-

tion), though the optimization process is not an absolute global optimization problem

because the best fitness parameters may not make sense in reality, it becomes solvable.

Therefore, a solution gives the best of both worlds is: searching for the local minimum

points under boundary condition, then manually checking if the solution makes sense

in reality. Considering the over-fitting problem and model validation, a systematic

method to calibrate and validate a general model is illustrated in Figure 4-2.

(Input-Output)

Historical data 
from the database 
of target system.

Empirical data 
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Figure 4-2: The systematic model calibration and validation process. The 𝑘2 and 𝑘3
is what left after applying threshold selection on test and validation datasets sepa-
rately. The cache checking modular is designed to avoid duplicate optimization from
close starting points. The manual selection is designed for experienced ED staff, to
eliminate some solutions that could result in good fitness but makes less sense in
reality.

It is worth noting that, the proposed method was focused on solving the prac-

tical problem. The method is based on the assumption that the calibration result

is acceptable with a certain margin of error. That is, the proposed method cannot

guarantee finding the theoretical global optimum point, but it can find an acceptable

point in a practical application. As shown in Figure 4-2, the reference data (actual

input-output pair) was divided into three parts for training, test and validating re-

spectively. The key difference between test and validation processing is the feedback,

i.e., simulator performance on validation tests will not affect the calibration process,

while performance on test sets will affect the adjustment of parameter set and the
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Monte Carlo scheme (e.g., boundary constraints). The Monte Carlo method (under

the boundary constraint shown in Table 4.1) is used to generate initial value for the

optimization solver. To make the calibration process more automatic, the proposed

method will try to find a certain number of local minimum points, then gradually

eliminate on test and validation datasets, and only provide several candidates to do

manually checking. Thus, the simulation users only need to be involved in the cali-

bration at the end. More specifically, the 𝑘1 local optimum points will be evaluated

on testing and validation datasets in sequence, a fitness threshold should be fulfilled

and top 𝑘𝑖(𝑖 = 2, 3) candidates will be selected, if there are more than one candidate

left after evaluating on validation datasets, the top 𝑘3 candidates will be manually

checked by experienced ED staff and one which makes the best sense in reality will

be chosen as the final solution. If any of {𝑘2, 𝑘3, 𝑘4} is zero (none can pass the thresh-

old or does not make sense in reality), the calibration process will either return to

Monte Carlo to search more local minimum or re-divide the historical datasets for

training and testing, and start over again. This depends on 𝑘1 and overlap ratio of

optimum points (assessed with inter-distance detailed in subsection 4.3.4, as shown

in Figure 4-5a).

4.3.2 Evaluation metrics

As an agent-based model, the individual’s behaviors, e.g., behaviors of a single patient,

are highly dynamic and stochastic, matching these behaviors individually is usually

unfeasible and unnecessary. Namely, the similarity between simulator and actual ED

should be evaluated in a systematic manner rather than get entangled in each of the

agents. Thus, to compare behavior of two complex system, the selection of system

key performance indicators (KPIs) is crucial, and two issues must be addressed. On

the one hand, the selected KPIs should be able to significantly reflect the macroscopic

behavior of the target system. On the other hand, it should be possible to retrieve

from historical data, and the historical data should be convincing for the KPIs. Ref.

[95] and [96] listed various metrics by which ED operations can be measured. Among

which, the LoS (length of stay), LWBS (percentage of patients who leave without
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being seen), door-to-diagnostic evaluation by a qualified medical professional (arrival

time to provider contact time, also known as “door-to-doctor" time) and ambulance

diversion (amount of time ambulances are diverted away from the ED) are commonly

used. All of those metrics are possible to extract from the agent-based simulator.

Given this, and considering that patient-centered records are the real data we have,

the records include the time stamp of patients’ arrival and discharge, thus the patients’

length of stay in the ED could be retrieved. Moreover, the LoS is comprised of all the

time on service and waiting/pending. It is one of the composite indicators which is

able to indicate patients’ flow as well as the system’s efficiency. Thus LoS was used

as the setting of metrics for system performance in this work.

Furthermore, patients’ LoS is one of the aggregate behaviors of the ED system,

when comparing simulated LoS with actual LoS, the absolute difference of their aver-

age cannot fully represent their differences because the same average may come from

quite different distributions (e.g., uniform versus exponential distribution). In view

of this, we analyze the actual LoS distribution by using a histogram. For each of the

simulation outputs, we perform the same analysis. Thus, we will get two distributions

and the goal is to measure the similarity between them, and the similarity will be

used to evaluate the similarity between actual system and simulation results.

4.3.3 Fitness function

In view of the above–mentioned facts, a proper method has to be applied to mea-

sure the similarity between actual LoS distribution and the simulated one. It is

about comparing statistical characteristics of empirical data against emergent behav-

ior of simulation models. In probability theory and statistics, the Jensen–Shannon

Divergence (JSD) is a popular method of measuring the similarity between two prob-

ability distributions [97, 98, 99]. Considering that patients in ED are classified in

five categories (acuity level, also known as emergency severity index) according to

their severity. Patients with different acuity levels have different routes and priority

in receiving service. Their LoS are quite different on average. Accordingly, it is more

reasonable to evaluate patients’ LoS separately due to their acuity level. Moreover,

75



the number of patients with different acuity level is quite different, it is about 1 %, 8

%, 32 %, 44 % and 15 % respectively from acuity level 1 to 5. According to the law of

large numbers, when sample size is not big enough, the statistical information would

be less accurate. Given this, as defined in Equation 4.1, we used a weighted average to

calculate the overall fitness with JSD of the 5 categories of patients. Proper weights

could be determined by sample size and the standard deviation of actual LoS.

𝑓𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =
5∑︁

𝑗=1

𝑊𝑗𝐷
𝑗
𝐽𝑆 (4.1)

𝐷𝑗
𝐽𝑆 =

1

2
𝐷𝐾𝐿 (𝑃 ||𝑄) +

1

2
𝐷𝐾𝐿 (𝑄||𝑃 ) (4.2)

Where, 𝐷𝑗
𝐽𝑆 represents the Jensen–Shannon Divergence (JSD) similarity on LoS of

patients with acuity level 𝑗, 𝑊𝑗 is the weights according to patient category (acuity

level) and
∑︀5

𝑗=1𝑊𝑗 = 5 (there are five patient categories), and 𝐷𝐾𝐿 denotes the

Kullback–Leibler divergence (𝐷𝐾𝐿), which is defined as:

𝐷𝐾𝐿 (𝑃 ||𝑄) =
𝑛∑︁

𝑖=1

𝑃 (𝑖) log2

𝑃 (𝑖)

𝑄 (𝑖)
, 𝐷𝐾𝐿 (𝑄||𝑃 ) =

𝑛∑︁
𝑖=1

𝑄 (𝑖) log2

𝑄 (𝑖)

𝑃 (𝑖)
(4.3)

Where, 𝑄(𝑖) is the frequency/probability of LoS located in 𝑖th interval extract from

simulation results, and 𝑃 (𝑖) denotes the same information extracted from real data.

Having shown that, the range of 𝑓𝑓𝑖𝑡𝑛𝑒𝑠𝑠 function value will be 0.0 to 5.0, The lower

it is, the closer the difference between simulation and actual will be.

As described in subsection 4.2.2, parameter constraint is defined by boundaries,

although each of the parameters is guaranteed to fulfill the boundaries constraint,

the combination of parameters may become unreasonable for the model. This case

may occur either in the initial value set generated by the Monte Carlo method, or an

evaluation scenario requested by the optimization solver. According to our primary

experiments, some parameter sets created by optimization algorithm may cause ED

saturation, i.e., patients waiting in any of the waiting room increases day-by-day. For

example, the number of patients waiting to enter the treatment area is greater than
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daily arrival. These scenarios cannot result in good fitness because it is not a valid

case. Since the complexity of an agent-based model is proportional to the number of

agents in the simulation environment, system saturation will result in much longer

simulation time. Give this, when the system is saturated, it is better to terminate

the simulation evaluation and return the worst fitness evaluation as a penalty.

Furthermore, the patient leaving-without-being-seen (LWBS) is a common phe-

nomenon and a crucial metric to EDs, which has been carefully considered as a

possible decision patients may take in the model [83, 84, 85] . As the real data does

not include the LWBS records, the final tuned simulator should not have patients

who LWBS (equivalent to those patients did not go to ED). However, our primary

results showed that some of the parameter set (either generated by Monte Carlo or

created by optimization solver) resulted in LWBS. Instead of discarding the evalua-

tions that has LWBS, which may result in lots of failure in optimization and waste

lots of computing time, we added LWBS to the objective function as a part of the

penalty (i.e., the optimization solver should be allowed to make mistakes). Our final

experiments indicated the effectiveness of considering LWBS in fitness function. As

shown in Figure 4-4, most of the initial values that lead to LWBS could converge in

less than ten iterations. In summary, the final fitness function could be defined as:

𝐹𝑓𝑖𝑡𝑛𝑒𝑠𝑠 (𝑃 ) =

⎧⎪⎨⎪⎩𝑓𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑃 ) + 𝜆𝑅𝑙𝑤𝑏𝑠 (simulation succeed)

𝐹𝑚𝑎𝑥 (system saturated)

(4.4)

Where, 𝑃 = {𝑝1, 𝑝2, · · · , 𝑝8} denotes a parameter set from the Monte Carlo method or

the optimization solver, 𝑅𝑙𝑤𝑏𝑠 is the ratio of patients leave-without-been-seen (range

from 0 to 1.0), 𝜆 is an adjustable parameter which represent the weight of LWBS.

𝐹𝑚𝑎𝑥 is the maximum penalty to the solver, which is the maximum of 𝐹𝑓𝑖𝑡𝑛𝑒𝑠𝑠 in the

first case (simulation succeed). Given this, if we set 𝜆 as 5.0, that is to say, the 𝐷𝐽𝑆

similarity and LWBS have the same weight on the fitness evaluation, the value of

𝐹𝑓𝑖𝑡𝑛𝑒𝑠𝑠 will be between 0 to 10. The lower it is, the closer it will be to actual data.
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4.3.4 Optimization method

As described in subsection 4.3.1, the calibration process can be formulated as a se-

ries of local minimum searching problems. There are many ready-made methods for

searching local minimum value of a given fitness function. However, as explained in

section 4.1, different from a pure mathematic problem, the simulation is just such a

problem for which it is hard to formulate the relationship between inputs and out-

puts. Thus the objective function has some special character, e.g, non-convex, non-

differentiable, computationally expensive. There are also some optimization methods

for finding the minimum of a function of several variables without calculating deriva-

tives. For example, Powell’s method [100], which is an algorithm proposed by Michael

J. D. Powell for finding a local minimum of a function. The function need not be

differentiable, and no derivatives are taken. However, due to the nature of Powell’s

method, it is almost impossible to parallelize (parallel asynchronous versions [101]

have strict condition to objective function). Since each of the fitness function eval-

uations needs considerable computation time, Powell’s method results in very long

computation time. According to our tests, it takes around 50 hours to find the clos-

est local minimum point with a given initial value. It is fairly unacceptable for our

calibration because it needs to find a considerable number of local minimum points.

Given this, a parallel optimization method is crucial for our requirement. The

APPSPACK [39, 40, 41], developed by Sandia National Laboratories, implements

an asynchronous parallel pattern search method that has been specifically designed

for problems characterized by expensive function evaluations. The framework enables

parallel operations using Message Passing Interface (MPI), and allows multiple solvers

to run simultaneously and interact to find solution points. While considering our

practical requirements and initial experiments, further optimization could still be

conducted to speed up the calibration process. Given that the parameters to be

calibrated represent the behavior of a practical agent, it is reasonable to assume that

slight changes to parameters would not lead to a big difference in outputs. Considering

that searching for local minimum is computationally expensive (hours for one process),
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we cached the initial values by Monte Carlo, as well as the local minimum found by

APPSPACK as a pair (initial-optimum pair) to collection 𝐶𝑝 = {(𝑖𝑛𝑖𝑡, 𝑜𝑝𝑡)𝑖}, thus

when Monte Carlo generates a new set of initial values for finding other local minimum

points, we firstly check the distance (𝑑) between the new initial value and each of the

initial values in collection 𝐶𝑝 (as shown in Figure 4-2, the Inquire Cache step). The

process is explained as follows:

𝑖𝑓 ∃𝑃 ∘ ∈ 𝐶𝑝 : 𝑑 =

⎯⎸⎸⎷ 𝑛∑︁
𝑖=1

|𝑃 *
𝑖 − 𝑃 ∘

𝑖 |2/𝑛 < 𝜀 𝑡ℎ𝑒𝑛 : 𝑓 (𝑃 *) := 𝑓 (𝑃 ∘) (4.5)

Where, 𝑃 ∘ is the initial value sets of one pair (initial-optimum) in collection 𝐶𝑝. 𝑃 *

is the new initial value generated by the Monte Carlo method, 𝑛 is the number of

parameters in 𝑝𝑖, and 𝜀 is the tolerance. Therefore, as shown in Equation 4.5, if the

new initial value set is close to any of the solved pair (overlapped), it will be dis-

carded and call Monte Carlo to generate a new initial set. If there are considerable

number of overlapped initial value sets found (searching space is well covered), 𝑘1

in Figure 4-2 should be considered as reduced. This mechanism could avoid some

duplicated optimization, especially in small search-space. A similar cache mechanism

is also applied for fitness function evaluation (each one takes around 15 minutes),

all the scenario (a set of parameter values) to fitness pair (scenario - fitness pair)

among all the optimization processes (which start with different initial value) were

cached to a collection 𝐶𝑠 = {(𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜, 𝑓𝑖𝑡𝑛𝑒𝑠𝑠)𝑘}. Thus, for a new scenario created

by APPSPACK, procedure 4.5 (in 𝐶𝑠 instead of 𝐶𝑝) is performed before invoking

simulation. If the new scenario is close to any of the scenario that has been evaluated

before, then the function returns the fitness directly, thus no simulation need to be

invoked. Since there are several repetitions for one evaluation process, and generally

there are hundreds of evaluations per each optimization, and many independent op-

timization processes needed for the calibration, this global cache mechanism could

save considerable time. The experiments showed that around 10 % of fitness function

evaluations were from cached value.
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4.3.5 Design of experiment

As illustrated in Figure 4-2, the real dataset was divided into three subsets for training,

testing and validating separately. To this end, the 11-month historical data from the

ED information system database (Jan. - Dec. 2014, excluding August) has been

randomly divided into three parts. More specifically, six months for training (training

set), three months for testing (test set), and two months for validation.

Considering that the patients’ LoS are statistics on patients who attended the

ED. Due to the statistical nature of this model, the sample size should be guaranteed

in order to provide reliable LoS. The minimum number of patients for retrieving

LoS depends on deviation of LoS, confidence interval as well as margin of error, and

could be determined by Chebyshev’s inequality [78]. Therefore, multiple runs must

be conducted for each scenario in order to reduce stochastic variability and average

performance metrics will be used for evaluating the fitness by Equation 4.4. More

specifically, the number of simulation replications are determined by deviation of LoS

from the real dataset, and the simulation time. Namely, shorter time simulation will

require more replications in order to meet the sample size requirements. In this study,

according to the statistic characteristics of LoS in real dataset, 4 random seeded runs

were performed for each scenario in training dataset, 8 replications were performed

for each scenario on testing dataset, and 12 replications for validation dataset.

The calibration was carried out on an 8-node cluster with total number of 512

AMD OpteronTM Processor 6262 HE cores, and 2TB RAM. All the nodes works in

master/worker way, i.e., each one of the node (worker) runs the parallel version of

APPSPACK to find the local minimum start from an initial value given by the mas-

ter. The APPSPACK evaluators, which takes input (the parameter set) and returns

fitness, was implemented with Python programming language. In the evaluator, the

NetLogo controlling API (comes with NetLogo.jar from released version) was used to

invoke and control NetLogo by another Java program running on the Java Virtual

Machine. That is, for one fitness evaluation, the Python program will first read the

value of variables and invoke several processes (the same as number of repetitions)
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to evaluate fitness with the same parameter but different random seeds, then each of

the processes will call a Java program via system call with parameters as arguments.

At the last step, the Java program will initiate the model in NetLogo via NetLogo

controlling API and start the simulation. When all the simulations with the same

parameter have finished, the program will return to Python, and a post-processing

function will be called to analyze the system metrics in order to calculate the fitness

value (via Equation 4.4). The data flow of the fitness function optimization with

initial value given by Monte Carlo was shown in Figure 4-3.

APPSPACK Evaluator
(Python)

File I/O
Java

System Call

Netlogo

Simulation 
Results (.csv file)

Controlling 
API

metrics, fitness 
function

Fitness

Post
process

Post process

Figure 4-3: Data flow in optimization experiments.

4.3.6 Results and discussion

Use Equation 4.4 as fitness function, the iterations of optimization on training dataset

with different initial value is shown in Figure 4-4.

Figure 4-4: Fitness optimization on training dataset with different initial value, fitness
values versus iterations. One broken line represents one optimization process with a
given starting point from boundary constrained Monte Carlo.
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It is clear to see from Figure 4-4 that different initial values resulted in a dif-

ferent number of iterations. Most optimums (the converged fitness values) are in

the same level (i.e., no significant global minimum). Some initial values have caused

high LWBS, i.e., their initial fitness is greater than 5 (maximum of 𝑓𝑓𝑖𝑡𝑛𝑒𝑠𝑠 part in

Equation 4.4 is 5.0), and drop to normal after several iterations. Most optimiza-

tion processes completed in less than 20 iterations. To analyze the location of local

optimum points we found, Figure 4-5a shows the distribution of Euclidean distance

between optimums points (there are 𝑘1 (𝑘1 − 1) /2 distance, where 𝑘1 is the total

number of local optimum points found, the same 𝑘1 as it in Figure 4-2).
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Figure 4-5: Training process analysis. The distribution of the number of fitness
evaluations needed in finding local minimum points starting from different initial
values, and the distribution analysis of distance between optimal points.

From Figure 4-5a, it is clear that most optimum parameter sets (note that in

order to make all the parameter value for APPSPACK on a similar scale, here the

parameter values represent the ratio to the typical values in Table 4.1) are far from

each other (due to the initial value control by Equation 4.5), while there are some

optimums, carried out by different initial values, converged to the same point (distance

could not be zero because of the random nature of the simulator and the tolerance

setting in APPSPACK). According to the search scheme of APPSPACK [39], each

iteration requires many fitness function evaluations in several directions, the number

of fitness evaluations has direct influence on optimization time. Figure 4-5b shows

the distribution of the number of fitness evaluations. It is worth noting that, in each
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function evaluation, there are several replications on simulation with different random

seeds, i.e., 4, 8, 12 for training, testing and validation separately. In this study, when

𝑘1 = 30, 𝑘2 = 10, 𝑘3 = 5, 𝑘4 = 1, the total time taken on the calibration is about

60 hours with the above-mentioned cluster. By following the process illustrated in

Figure 4-2, one set of parameter value was selected manually from the 𝑘3 candidates.

With the selected parameter set and input (patient arrival) from validation dataset,

the comparison (actual data versus simulation) of patients’ LoS distribution, classified

by patient’s acuity level, are illustrated in Figure 4-6. Considering that the validation

dataset is composed of two-month’s real data and, there are very few patients (less

than 1 %, about 160 patients in two months) triaged with acuity level 1, the sample

size is not enough for statistical comparison, thus the LoS distribution of patients

with acuity level 1 was not shown in Figure 4-6.
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Figure 4-6: The comparison of model prediction results (patient length of stay distri-
bution) on the validation dataset. Results about patients with acuity level 1 is not
illustrated here because very few patients (less than 1 %) attend to ED with acuity
level 1, the sample size (in two months) is not enough for statistical comparison.
The 𝐽𝑆𝐷 denotes Jensen-Shannon Divergence. Note: the statistical interval widths
are: 30 minutes for acuity level 2 and 3; 10 and 5 minutes for acuity level 4 and 5
respectively.

Simulation results in Figure 4-6 demonstrate that the proposed framework is ef-

fective to calibrate the model parameters. As a result of the small number of patients

attend with acuity level 2, the fitness (the 𝐷𝑗
𝐽𝑆 in Equation 4.2) of patients with

acuity level 2 (Figure 4-6a, 𝐷2
𝐽𝑆 = 0.0925) is not as good as the others. Since calibra-

tion process happens only once in the simulation, 60 hours is acceptable and further

speedup can be reached via executing on cluster with more computing nodes.

4.4 Discussion

An Emergency Department (ED) is a complex, stochastic environment, which has

time-dependent behavior. Advances in computational technology give us the ability
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to simulate complex models and analyze massive datasets. Given this, simulation has

become an effective method to improve policies on operational, tactical and strategic

decisions for EDs. However, the difficulty in collecting reliable and complete data can

subsequently lead to invalid simulation results. To this end, this chapter proposed

a systemic method to calibrate and validate a general model to imitate an actual

ED under data scarcity (missing duration of service). Our final results indicated

that the proposed approach can find the model parameters accurately within an

acceptable time frame. With the parameter value we found, the general agent-based

model of EDs can carry out accurate predictions. Although our work was focused on

calibrating an ED model, we are confident that the proposed method could also make

some contribution to calibrating other computationally expensive simulation models.

There are a number of limitations to our study, including the use of exponential

distribution for fitting all the duration of service. Although it was commonly used

in the conventional queue theory method, further research should be carried out to

consider in more detail about the features of service type. Another limitation is the

selection of system KPIs for calculating fitness. In our method, we only considered

two indicators, i.e., patients’ length of stay and leave-without-being-seen. Although

both are commonly used in emergency medicine literature, further indicators such

as door-to-doctor time and patients’ length of waiting time should be investigated

in future improvements. Furthermore, the proposed method has only been tested in

one institution though no institution-specific assumption has been made, one of our

future studies will apply the method on another ED.

In summary, with a few expectations, the proposed systematic method has been

proved to be able to find the parameters for fitting the duration of service, with which

the simulated results and the actual data were consistent. The duration of healthcare

staff’s service time is among the most common missing pieces of information because

it is out of the scope of the information system. Moreover, an automatic calibration

tool released with a general ED model is promising for promoting the application

of simulation in ED studies. This tool will enable the simulation users, e.g., ED

manager, to calibrate parameters for their own ED system without the involvement
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of model developers.

Furthermore, the integration of the ED simulator and optimization techniques

(shown in subsection 4.3.4 and subsection 4.3.5) could also be used for systematic

performance optimization. For example, with constraints (budget, place or quality of

service guarantees) and design parameters, the proposed simulation-based optimiza-

tion workflow could be used to find the optimal (and suboptimal) design parameters

to achieve best system performance.
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Chapter 5

Case Study: Decision Support

The best time to plant a tree was 20 years ago. The second best time

is now.

- Chinese Proverb

Concerning the capability of an emergency department (ED) simulator, we considered

two aspects. On the one hand, a well designed simulation model allows ED managers

to answer important "what-if?" questions without making physical changes to the

system and potentially putting patients in danger. On the other hand, the simula-

tion model can provide more detailed information about the ED behavior to better

understand the root-cause of system performance, i.e., explainability. In this chapter,

we demonstrate two case studies on decision supporting by using the ED simulator to

deal with ED system overcrowding. The first overcrowding problem is caused by the

increasing patient arrival, e.g., flu pandemic. In the second case study, we tried to

solve an overcrowding problem from investigating the effects of a connection with ED,

i.e., ambulance service for discharging. The explainability of the simulation model

will be discussed in chapter 6 with two case studies.
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5.1 Experimental Condition

In this chapter, some experiments were designed to show the capability of an ED

simulator of which information can provide. We simulate one scenario for 720 hours

(about one month), the simulation was allowed a warm-up period of 168 hours (dis-

cussed in subsection 3.5.3), then observations were made during the following 720

hours. To make the results statistically reliable, this study require the execution of a

big amount of parametric simulations (same model, different parameter value config-

uration), a 10-node cluster was used for model execution and, the execution task was

assigned as one core for one scenario. The scenario organization and the execution

framework were described in section 3.5.

5.2 ED Resources Configuration

As a service provider, the ED is characterized by resource (human and equipment)

configuration. Table 5.1 lists all the value of the parameters for characterizing the

resource of an ED to be simulated in this chapter. It is the current configuration of

the ED, that will be used as baseline of the proposed changes to the system to solve

overcrowding problem.

Table 5.1: Quantitative representation of the simulated emergency department. An-
notation: 𝑛 represents number of items

Label Interpretation 𝑛 Label Interpretation 𝑛

𝑗𝐴 junior admission 3 𝑠𝐷𝐴 senior doctor in area A 4
𝑠𝐴 senior admission 2 𝑗𝐷𝐵 junior doctor in area B 2
𝑗𝑇 junior triage nurse 3 𝑠𝐷𝐵 senior doctor in area B 5
𝑠𝑇 senior triage nurse 2 𝑗𝐷𝐴 junior doctor in area A 2
𝑗𝑁𝐴 junior nurse in area A 5 𝑇𝑟𝑖𝑛 internal test room 6
𝑠𝑁𝐴 senior nurse in area A 5 𝑇𝑟𝑙𝑎𝑏 laboratory test room 4
𝑗𝑁𝐵 junior nurse in area B 4 𝐶𝑏 carebox of area A 60
𝑠𝑁𝐵 senior nurse in area B 4 𝐶𝐵 chair of area B(capacity) 60
𝐴𝑢𝑥𝑖 auxiliary nursing staff 3
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5.3 Experimental Input

In subsection 3.1.1 we described a data-driven patient arrival model in ED. In the

first case study simulations , we will keep the distribution of patient’s characters

as the same as shown in subsection 3.1.1, whereas increase 𝑁𝑎𝑟[𝑤𝑒𝑒𝑘] (via adding

daily arrival) in an interval as a case study of flu pandemic to study ED’s toler-

ance/robustness. In the second case study, the complete model shown in subsec-

tion 3.1.1 will be used.

5.4 Case study of decision support to deal with steady

increase patients

As for the capability of a simulator for supporting decision making, from the point

view of an ED operations manager, this subsection provides a case study to solve an

overcrowding problem arises when the number of arrival patients continues to increase

(say a flu in its coverage area). The original ED resources configuration was shown

in Table 5.1, i.e., baseline. By using the simulator, one possible process for an ED

manager to make decisions to deal with increasing patient arrival is shown in Figure 5-

1. More specifically, based on some prediction (e.g., number of patients will attend

in the next couple of days), the manager can quantitively predict the ED’s perfor-

mance via simulation. Then, Key Performance Indicators (KPI) represent systemic

behavior could be predicted and system bottleneck could be indicated. With this

bottleneck information, the manager can propose several alternative decision rules,

and the manager can verify and evaluate these solutions via simulation. Through this

way, the decision makers can quantitatively find the bottleneck and know the benefit

and cost of a proposal solution without the commitment of any physical resources or

interruption of the system.

According to the operation data from Hospital Universitari Parc Taulí, the normal

arrival patient is about 329 per day (𝑁𝑎𝑟[𝑤𝑒𝑒𝑘] = 2, 303). Here we designed some

experiments to investigate the system behavior. Specifically, we keep patient arrival
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Figure 5-1: Simulation supported decision making process, quantify the cost and
benefit of proposal without a real deployment.

model the same as it shown in subsection 3.1.1 whereas increase daily arrival number.

The patients’ average LoS and some key state information of the ED was shown in

Table 5.2. It is worth to note that, we used resource occupancy/utilization (defined as

the percentage of time that an agent actually spend on providing service) as indicator

to explore the system’s bottleneck, Table 5.2 - Table 5.4 only list the potential bottle-

neck. Theoretically speaking, behavior of any system components could be retrieved

from the simulation data because the model was built from the individual level and

simulates all the interactions.

Table 5.2: LoS and ED resources utilization with increasing daily arrival patient

Arrival Average LoS by acuity level(hour) ED resources utilization(%)
1 2 3 4 5 𝑇𝑟𝑙𝑎𝑏 𝑁𝐴 𝐷𝐴 𝐷𝐵 𝑁𝐵

361 10.83 10.30 9.79 3.01 2.81 70.51 40.57 67.94 53.95 43.68
397 10.84 10.90 10.41 3.43 3.81 81.39 46.31 78.29 62.05 50.27
416 11.66 11.28 10.69 3.59 4.12 83.64 48.01 80.59 64.23 52.16
436 11.87 11.73 11.31 3.78 5.28 86.75 50.01 84.50 66.84 54.17
456 11.71 12.09 11.85 3.98 8.94 91.32 51.85 87.19 69.80 56.27

It can be seen from Table 5.2 that, with an increasing number of arrival patients,

some of the resource utilization increases dramatically. When daily arrival patients

increases to 456 (140 % of normal) per day, the ED becomes saturated and faces

serious overcrowding problem in area B. The LoS of patient increases a lot, especially
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patients with acuity level 5 in area B (more than three times to normal). The resource

utilization could clearly show the bottleneck. By exploring the resource occupancy,

it is clear that the laboratory test service becomes the bottleneck with the increasing

number of patients arrival at ED. This is because the laboratory test service is sat-

urated and patients with acuity level 5 have the lowest priority to get the resources.

In this case, one of the most straightforward solution is to add laboratory test service

capability. Here we assume that the ED manager proposes a solution to add two more

technicians to the laboratory test room (i.e., a new scenario with 𝑇𝑟𝑙𝑎𝑏 = 6). To test

and evaluate this proposal, we simulate this new resource configuration by modifying

the ED resources configuration in Table 5.1, the result was shown in Table 5.3 (the

first row).

Table 5.3: LoS and ED resources utilization with two more laboratory technicians.

Arrival Average LoS by acuity level(hour) ED resources utilization(%)
1 2 3 4 5 𝑇𝑟𝑙𝑎𝑏 𝑁𝐴 𝐷𝐴 𝐷𝐵 𝑁𝐵

456 11.58 11.90 11.70 3.65 3.17 60.67 51.99 87.19 69.47 56.65
476 12.54 12.70 14.33 3.80 3.57 64.19 55.04 92.30 73.01 59.42
496 13.23 12.90 33.93 4.02 4.16 66.37 56.90 96.06 76.32 62.25

From Table 5.3, we can see that after adding two more technicians to the labora-

tory test room, the laboratory utilization decreased dramatically and LoS of type 5

patient reduced to normal. But when the patient arrival rate keep rising, say 150%

times of normal rate, patients with acuity level 3 in area A were seriously saturated

because they have the lowest priority to get access to resources. Through resource

utilization information, it is easy to find the bottleneck, i.e., the doctors in area A

were saturated. Having said that, one of the straightforward solutions should be to

assign more doctors to area A. Then the decision maker could simulate this proposal

solution (e.g., 𝑇𝑟𝑙𝑎𝑏 = 6, 𝑠𝐷𝐴 = 5, and 𝑗𝐷𝐴 = 3) to evaluate its effect. The simulation

results were shown in Table 5.4.

Through simulating the proposal solution, we can see that the solution can solve

the overcrowding problem a certain degree. Moreover, as shown in Table 5.4, if the

patient arrival keeps increasing, the doctor in area B may become the next latent
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Table 5.4: LoS and ED resources utilization with two more doctors added to area A

Arrival Average LoS by acuity level(hour) ED resources utilization(%)
1 2 3 4 5 𝑇𝑟𝑙𝑎𝑏 𝑁𝐴 𝐷𝐴 𝐷𝐵 𝑁𝐵

496 10.89 11.01 11.07 3.98 4.15 66.73 57.50 71.84 75.79 61.58
516 11.12 10.86 11.20 4.13 4.79 68.75 58.67 72.99 78.80 64.30
535 11.26 11.31 12.54 4.36 5.82 71.39 60.65 76.00 82.52 67.14

bottleneck.

In summary, with an ED simulator, operations managers could clearly identify

the system bottleneck and quantify the cost and benefit their proposal without the

commitment of any physical resources or interruption of the system

5.5 Case Study of the Influence of the Response Time

of Ambulance Service

5.5.1 Ambulance for departure

There are four typical destinations when a patients is discharged: (1) go home, (2) to

hospital, (3) transferred to another hospital or (4) may even die. In reality, there are

some patients who need an ambulance to leave ED, especially those patients in area

A who will go home or be transferred to another hospital. The ambulance is provided

by a service center, it is common that there is a delay from requesting until it becomes

available. So, the problem is the response time of the ambulance service because the

patients keep occupying the physical resource of ED during the waiting time (also

known as discharge pending). This may cause or worsen overcrowding because the

extra waiting time was caused by other factors (neither ED nor patient). Therefore,

not only the service efficiency in ED, but also the way of departure can affect the

ED throughput (defined as the rate of patients leaving ED after all the care service).

Having said that, it is necessary to include the model of ambulance response time as

part of ED model to analyze the degree of the impact on an ED.

Considering that the ambulance response time depends on lots of uncertainties and
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it is possible to obtain enough samples from the ED information system. We used

a data-driven model to fit the behavior of ambulance’s response. After analyzing

the response time recorded from Hospital Universitari Parc Taulí, we find that the

response time is not a constant time and it has significant distribution shape. One of

the commonly used methods for modeling a source of randomness when relative data

are available is to fit a theoretical probability distribution to the data [102]. In order

to choose a proper empirical distribution, a histogram of the data is one of the most

useful tools for determining the shape of the underlying density function. Because

the histogram is an essential graphical estimate of the density. After a histogram

analysis, some estimation methods (e.g., maximum likelihood estimation, method of

moments) can be used to estimate the parameters of the selected distribution.

More specifically, we analyzed the real data of 2011 from the Hospital Universitari

Parc Taulí, following the tutorial of Law, A. in Ref. [102], the summary statistics

information was shown in Table 5.5. According to this information, we chose gamma

distribution 𝑋 ∼ Γ(𝑘, 𝜃) to fit the real data, and Maximum Likelihood Estimation

(MLE) was used to estimate the shape parameter 𝑘 and scale parameter 𝜃. The

estimated value of 𝑘 was 1.6740, and 𝜃 was 37.9326. Density-histogram plot of the

fitted gamma distribution and the real data was shown in Figure 5-2. Similar to the

patient arrival model, the simulation users could define their own model or modify

the parameter of the existing model to satisfy their own requirement.

Table 5.5: Summary statistics of the real ambulance’s response time.

Summary statistic Value
Mean 63.5
Median 49
Variance 2629
Coefficient of Variation 0.81
Skewness 1.56
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Figure 5-2: Density-histogram plot for the fitted gamma distribution and the real
data.

5.5.2 Simulation

As shown in subsection 5.5.1, when a patient asked the ambulance service for depar-

ture, the patient continue to use the treatment place during the ambulance’s response

time period. Moving on from here, the ambulance’s response time has some influence

on the behavior of ED, for example, causing overcrowding or worsting overcrowding.

The LoS of their following patients (patient who is awaiting a free bed) will also be in-

creased because they have to wait longer for a free treatment place. To quantitatively

analyze the influence, we simulate two more scenarios based on the saturated scenario

in Table 5.3. In this saturated scenario, when daily arrival increased to 496 (150%

of normal value), the ED meets serious overcrowding even with two more technicians

have been added to the laboratory test room. Here, we simulate and consider the

influence of ambulance response time for departure. In the first scenario, we use half

of the actual ambulance response time described in subsection 5.5.1. In the second

scenario, we assume the response time is zero (the ambulance service always becomes

available immediately after requesting). Then, we simulated to see if the response

time of ambulance can alleviate the overcrowding problem. The simulation results,
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i.e., patients’ LoS under these two scenarios are shown in Table 5.6. It it clear that the

overcrowding problem has been lessened with decrease of the ambulances’ response

time.

Table 5.6: Influence of ambulance response time to LoS.

Ambulance response time model Average LoS by acuity level(hour)
1 2 3 4 5

current actual delay(𝑚𝑒𝑎𝑛=63 minutes) 13.23 12.90 33.93 4.02 4.16
50% of actual delay(𝑚𝑒𝑎𝑛=31 minutes) 12.70 12.60 17.96 3.94 4.03
without delay 12.04 12.51 15.53 3.86 3.86

In Table 5.6, we can see how the response time of ambulance affects the ED

behavior (LoS as indicator). The effects are due to the fact that the patient continue

to occupy the treatment place (carebox in area A or chair in area B) during the

waiting period. The overcrowding problem, especially for patients with level 3, has

been lessened when ambulance response time decreases to half of normal. Compare

with totally no waiting (i.e., the ambulance service are always available to use), the

improvement of cutting response time to the half of current situation is much more

significant. Therefore, if constrained by budget, partially improve the ambulance

response time still has significant benefit on solving ED’s overcrowding problem. From

the point of view of ED operation managers, this may provide alternative ways to

optimize changes to the system with budget constraints.

5.6 Discussion

This chapter presents two case studies to show two of the possible uses of an ED sim-

ulator. The first case study is about dealing with the increasing patient arrival caused

overcrowding problem, and the second is a quantitative analysis of the influence of

ambulance (for departure) response time over the ED behavior.

We can see from the two case studies that the flexibility and adaptability features

of this model provide a way for ED simulation users (e.g., operations managers) to

accommodate different scenarios without significant modification of the underlying
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model. It enables the simulation researchers to focus their effort on the understanding

of ED behavior rather than developing a theoretical model each time. Due to the

massive computational resources and big-data processing capacity provided by high

performance computing techniques, the simulator could execute a large number of

simulations in aa acceptable period of time. Then, applying data mining techniques

on such model output data allows the decision makers to gain new insights into the

complexity of the interrelated variables and, quantify the effect of changes on the

overall performance of the ED.
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Chapter 6

Case Study: Discover Macro-Level

Features From Micro-Level Behaviors

Precise knowledge of self and precise knowledge of the threat leads to

victory.

- Sunzi’s Art of War

6.1 Knowledge discovery

Means and methods to obtain knowledge about the inherent uncertainties and com-

plexities of a system to support learning, problem solving, decision making, and policy

formulation have attracted a great deal of research attention. In the analysis of com-

plex system, the singularity is defined as a point near which the system exhibits

extreme behavior. As demonstrated in Figure 6-1, the system behaves normally (lin-

early) to variables before some values, after that it behaves quite differently. That

is to say, according considerable amount of actual system behavior records, it is rea-

sonable to make some extrapolation. However, extrapolation may fail after a point

(i.e., singularity). The singularity is normally difficult to predict, and the system be-

havior after the singularity also is very difficult to quantify with an analytical model

or data-driven model. For a critical system like emergency department (ED), the
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estimation error may lead to wrong decision and further results in serious operations

management problem.

Actual behavior

analytical 
prediction

Actual behavior Extrapolation

Error

Singularity

Va
lue

Variables
Figure 6-1: A demonstration of singularity.

Like a first-principle kinematic model of a physical system, one benefit of simulat-

ing the micro-level behavior (i.e., interactions between agents in this study) is that

it provides a potential to know the root cause of macro-level features. That is, for

an existing macroscopic phenomenon, it is possible to trace back to the micro-level

behavior that accounts for it. Since an agent-based ED model simulates the indi-

vidual behavior of system components and their interactions directly at individual

level, if fine tuned, it is capable to quantify the system behavior after the singularity

(extrapolation).

For a complex system like an ED, the macro-level features of the system emerge

from the corresponding micro-level interactions. However, the interaction data gener-

ated from the agent simulator is massive and unreadable without being analyzed. To

meet the massive simulation data generated by micro-level simulator as well as con-

stantly changing requirement, we designed a layer architecture to simulate, monitor

and discover knowledge for full insight into the complex system (see Figure 6-2).

As shown in Figure 6-2, the core of the knowledge discovery system is an agent-
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Figure 6-2: Layer architecture of application framework for knowledge discovering
from micro-level behavior simulator. The micro-level simulator generates interaction
information among the system components, configurable monitoring layer records all
the needed interaction information and state information in a given format for the
upper processing layer.

based micro-level behavior simulator. It can provide detailed interaction information

among the smallest components of the ED as well as state information of the simulated

environment. This information is the source of knowledge to understand behavior of

the entire system. However, not all the data is required for specific analysis, the

monitoring layer is designed to provide the flexibility on micro-level data collecting

and processing (detailed in subsection 3.4.2).

Moreover, the simulation scenario is defined as a set of parameters for characteriz-

ing the agent-based model and environment (as shown in section 3.5). Therefore, from

the perspective of the simulator users, the whole system is a macro-level features sim-

ulator because what the users will get is the macro-level information extracted from

the micro-level data. However, different as a macro-level simulator, the simulation

scenarios are directly designed in micro level without abstraction. This feature could

simplify the use of simulation (straightforward to users). Moreover, it also provides

better adaptivity, and capable with identify the root-cause (i.e., explain why the

system behaves like predictions), i.e., transparent prediction.
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6.2 Case studies

Decision making in the field of healthcare service management assessment is not a

simple task and it is important for different stakeholders. For example, patients are

expecting efficient services, insurers are aiming for cost-effectiveness and the health

industry is primarily interested in yield maximization. Understanding the complexity

of such a system requires more than experience and intuition alone. In this chapter,

we will demonstrate two case studies. The first one (subsection 6.2.1) is about ED

resource configuration. The second one (subsection 6.2.2) is about the influence of

micro-level behavior on macro-level functionality. The base configuration of the sim-

ulated ED, such as number of doctors, nurses as well as average attention time are

specified in Table 6.1.

Table 6.1: Configuration of the emergency department (environment) and individual
behavior model.

Resource Number Avg. Service Time (ST, minute) ST Dist.day night first-interaction follow-up
𝑗𝐴 3 2 5 - Gamma
𝑠𝐴 2 0 3 - Gamma
𝑗𝑇𝑁 3 1 8 - Gamma
𝑠𝑇𝑁 2 1 6 - Gamma
𝑗𝐷𝐴 2 20 15 exponential
𝑠𝐷𝐴 4 15 13 exponential
𝑗𝑁𝐴 5 25 18 exponential
𝑠𝑁𝐴 5 20 14 exponential
𝑗𝐷𝐵 2 8 7 exponential
𝑠𝐷𝐵 5 6 5 exponential
𝑗𝑁𝐵 4 11 7 exponential
𝑠𝑁𝐵 4 7 5 exponential
𝑇𝑟𝑖𝑚𝑔 5 2 45 - Beta
𝑇𝑟𝑙𝑎𝑏 4 2 30 - Beta
𝐴𝐶𝐵 50 - -
𝐵𝑐ℎ𝑎𝑖𝑟 60 - -
𝐴𝑢𝑥𝑖 3 15 exponential

In these case studies, as the staff work shifts, we consider that the medical test

technicians, admission staff and triage nurse group run on two shifts and the number

of staff is different during the day (6:30 - 18:30) and night (18:30 - 6:30) because
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the patients arrival rates are quite different. The rest of the staff work on one shift

by turns. We simulate one scenario for 1608 hours, to avoid initialization bias, the

simulation allowed a warm-up period of 168 hours, then monitoring was carried out

during the following 1440 hours.

6.2.1 Influence of Capacity in Area A

ED overcrowding is defined as a situation where the demand for emergency services

exceeds the ability of an ED to provide quality care within appropriate time frames.

By observing more than 20 million patient visits to EDs over five years, Ref. [103] de-

termined that the risk of death and hospital readmission increases with the degree of

crowding in the ED. When an ED meets an overcrowding problem, usually there are

many patients waiting in the waiting room or even receiving attention in a corridor.

From intuition, when there are many patients waiting to enter the treatment zone,

one of the most straightforward way to solve this problem is by expanding the ca-

pacity. In this case study, a cross-scenario analysis was used to discover the influence

of additional careboxes in area A with the goal of solving the overcrowding prob-

lem. Regarding this requirement, "sensor" to monitor patient’s behavior and carebox

utilization are enabled via the user interactive application shown in Figure 3-6.

As one of an important KPIs of an ED, the patient’s length of stay (LoS) is the time

when a patient arrives at the ED to the time they depart from the ED. From the point

view of the patient’s state, the LoS consists of two parts: the total length of waiting

time (LoW, total length of time on waiting for services) and the length of attention

time (LoAt, total length of time on interacting), i.e., 𝐿𝑜𝑆 = 𝐿𝑜𝑊 + 𝐿𝑜𝐴𝑡. Since the

arrival patients keep the same in this case study and we assumed that the service a

patient needs is determined entirely by properties of patient, i.e., the average 𝐿𝑜𝐴𝑡

will keep no change among scenarios, the 𝐿𝑜𝑆 differences among different scenarios are

the length of waiting (𝐿𝑜𝑊 ) time. The influence of area A capacity (carebox number)

from the point of view of 𝐿𝑜𝑆 is visualized in Figure 6-3. Due to the randomness,

slightly small changes may somewhat result in inconsistent change, linear fit was used

to demonstrate the trend in Figure 6-3a and Figure 6-3b.
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(b) Length of waiting time.
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(c) Door-to-doctor time.

Figure 6-3: The influence of additional carebox on patients’ behavior. (note: the
scale of vertical coordinates are different.)

In this case study, the start point is an overcrowding scenario, i.e., when the

number of careboxes is 50, the studied ED is facing with overcrowding. Since patients

with acuity 3 have the lowest priority to be assigned a free carebox in area A, they will

be delayed first. From Figure 6-3a, it is clear to see that additional careboxes provides

good results in patients with acuity level 3, the overcrowding problem is solved.

However, different from what we would expect, patients with higher acuity meet bad

influence because their LoS increased. As shown in Figure 6-3b, all the patients met

increasingly longer waiting times for service with additional carebox. Therefore, the

root cause is: after adding more careboxes, as the number of corresponding nurses

and doctors did not increase accordingly, they cannot provide service to patient as

instantly as before, so the patients need to wait more for their doctor and nurse

(Figure 6-3b), which finally results in the increased LoS.

Additionally, a resource with a high occupation rate will be more sensitive to

fluctuations in its arrival process than a resource with a lower occupation rate. Tracing

back to the micro-level indicator by single scenario analysis, the average occupancy of

doctors in area A (percentage of scheduled time spent on patient related activities) is

89.9%, and average occupancy of nurses is 92.3%. However, as shown in Figure 6-3c,

one benefit of additional careboxes is the reduced length of "door-to-doctor" time

(i.e., the number of minutes from patient arrival until seeing a doctor). That is to

say, the patients can enter the treatment zone earlier and they may feel happier than

waiting helplessly in the waiting room. Furthermore, as shown in Figure 6-3a, an

102



additional 12 careboxes (i.e., 62 in total) in the ED may be a good choice for current

staff configuration if there is no cost constraint, because the patients with acuity level

3 (about 30% of arrival) meet with the shortest 𝐿𝑜𝑆. Further studies could be done

to find the tradeoff between patient satisfaction and cost constraint.

6.2.2 Behavior of Doctor in Area B

Identifying the primary causes of overcrowding in an ED is a critical step in knowing

how to increase throughput. In this case study, the quantitive association between

a doctors’ micro-level behavior and macro-level patients’ average LoS was discovered

via cross-scenario analysis.

Attention time, also known as service time, is the length of time for one inter-

action. The length is determined by service provider drawn from an exponential

distribution. Taking the interaction among doctor and patient as an example, it is

different in terms of doctors’ expertise, the patients’ condition (patient’s acuity level,

age) and interaction times (fist interaction or follow-up). The initial average value

for the exponential distribution was shown in Table 5.1. As we assumed that the

relationship between the patients and doctors is always static, only when doctors

change shifts do they detach their patients to other doctors on the next shift. In ad-

dition, according to empirical data, the first interaction with a patient always takes

longer. Thus, there are two values for the attention time model of a doctor and this

will result in four for the group of doctors (consisting of junior and senior) in area

B. Therefore, to study the overall influence of doctor group in area B, in scenarios’

design step, we change the average length of attention time of doctor in area B by

percentage independently. As micro-level data monitor configuration, only a "sensor"

for recording patients’ behavior was enabled through the separate application shown

in Figure 3-6. The effects of doctors’ behavior on LoS and "door-to-doctor" time are

illustrated in Figure 6-4.

Figure 6-4a clearly shows the significant impact of doctors’ behavior on systemic

functionality. With the increasing length of doctors’ attention time (e.g., working

with lower efficiency or more carefully diagnose), average patient LoS increased dra-
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(b) Door-to-doctor time.

80 90 100 110 120 130
Doctors' average attention time(%)

0

100

200

300

400

500

600

700

800

A
vg

. 
L

e
n

g
th

 o
f 

W
a
it

in
g

 t
im

e
(m

in
u

te
s)

acuity level 4

acuity level 5

(c) Length of waiting time.

Figure 6-4: The effect of length of doctors’ attention time on macro-level LoS and the
root cause identification. The horizontal axis is the percentage against the normal
configuration show in Table 5.1. (note: the vertical coordinate scale of (b) is quite
different as (a) and (c).)

matically in area B. After analyzing the "door-to-dctor" time (Figure 6-4b), we find

that the patients enter the treatment area after a very short waiting time, which

means that the increased LoS is not because of "door-to-doctor" time. Thus, the

patient spent most of their LoS in the treatment area. Moving on from here, we

analyzed the length of waiting time in treatment phrase (Figure 6-4c). It is clear that

waiting for doctors’ attention is the root cause of the increasing LoS. Furthermore,

Figure 6-4a also provides the singularity of this micro-to-macro association, that is to

say, if doctor’s attention increases more than 125%, patients’ LoS will increase very

fast. This information is useful for managers to avoid mistake in intuitive thinking. In

summary, this case study quantifies the effects of micro-level behavior on macro-level

LoS, further study can be done to balance the quality of service and efficiency of ED

system under specific situations.

6.3 Discussion

Due to the massive computational resources and big-data processing capacity pro-

vided by high performance computing techniques, the simulator could execute a large

number of simulation scenarios in an acceptable time period. Then, applying data

mining techniques on such model output data allows decision makers to gain new

insights into the complexity of the interrelated variables and the effect of changes on
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the systematic performance of the ED.

This chapter presents an approach to discover knowledge of emergency depart-

ment through simulating individual behavior of its components (discover knowledge

via "playing" with the simulator). The behavior simulation model (described in chap-

ter 3) can generate interaction information under various configuration scenarios. An-

alyzing this interaction information thoroughly enables knowledge discovery towards

a better understanding of the complex systemic behavior. This makes it possible to

explore association between micro-level behaviors of individuals and macro-level pat-

terns that emerge from their interactions, thus assisting users to better understand a

system’s behavior under various conditions. Additionally, a layer-based architecture

was used to achieve flexibility and configurability. This proposed framework can be

used to promote learning, hypothesis testing, decision making support, and policy for-

mulation after being properly validated, offering the user and organization the ability

to understand the complexity of healthcare systems and to facilitate the redesign of

optimal outcomes.
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Chapter 7

Conclusion and Future Work

It seems that perfection is attained not when there is nothing more to

add, but when there is nothing more to remove.

- Antoine de Saint Exupéry

7.1 Conclusion

Hospital based emergency departments (EDs) are highly integrated service units to

primarily handle the needs of the patients arriving without prior appointment, and

with uncertain conditions. Due to the complexity of the ED system and uncertainties

to the ED system, efficient management becomes a big challenge. Incorrect decisions

may lead to serious consequences on the quality of service and cause unnecessary

deaths.

Prediction, explanation & optimization are challenging for a complex system like

emergency department. A precise ED simulator enables managers to make better

decisions by letting them see the impact of changes before implementing them. This

article presented an agent-based model of EDs which could be used to settle prob-

lems such as prolonged waiting times, inefficient use of ED resources, and unbalanced

staff scheduling. The model was built from bottom up, i.e., the systemic behav-

iors were emerged from the simulation of all system components. More specifically
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in this model, policies such as staffing, human factors such as sanitary staff behav-

ior, new cases such as a flu outbreak could be set up and their effects on system

performance such as waiting time and throughput could be quantified. With the

amount of adjustable parameters, the simulator is customizable to simulate a variety

of scenarios. The presented simulator is currently working as a platform to study

Methicillin-resistant Staphylococcus Aureus (MRSA) transmission in EDs and as an

experimental platform of EDs to provide data under various scenarios for knowledge

discovery.

To achieve high fidelity and credibility in conducting prediction, explanation and

exploration of the actual system with simulation models, a rigorous calibration and

validation procedure should firstly be applied. However, one of the key issues in cal-

ibration is the acquisition of valid source information from the target system. This

thesis also developed a simulation-and-optimization based systematic method to au-

tomatically calibrate a general emergency department model with incomplete data.

The proposed calibration method enables simulation users to calibrate the general

model for simulating their system without the involvement of model developers. We

believe that it is promising for promoting the application of simulation in ED-related

studies. In addition, the integration of the ED simulator and optimization techniques

originally developed for model parameters calibration could also be used for system-

atic performance optimization, i.e., by changing the objective function and variable

constraints. For example, with constraints (budget, place or quality of service guar-

antees) and design parameters, the proposed simulation-based optimization workflow

could be used to find the optimal (and suboptimal) design parameters to achieve best

system performance.

In summary, starting from simulating the EDs, our efforts proved the feasibil-

ity and ideality of using an agent based modeling & simulation techniques to study

healthcare systems. The cross-validation results showed that the developed ED sim-

ulator can accurately represent the emergent behavior of the complex ED system.

Some demo applications proved that the simulator is ready to work as part of deci-

sion support system.
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Although this work was focused on the ED, the model methods and framework

developed in this thesis could most likely be applied to many other healthcare enti-

ties, such as an intensive care unit, a comprehensive full service hospital, a managed

care organization, or a vertically integrated system of primary care providers, and

outpatient services.

7.2 Future Research Directions

∙ Do statistical sensitivity analysis of the variables of the emergency department

simulator. The variable sensitivity information could be used to build a knowl-

edge base or a metamodel (model of a model) of EDs.

∙ Connect the emergency department simulator with the hospital to study dis-

ordered system behavior based on the integration of first-principles model and

data-driven model (with real operation data).

∙ Calibrate the general model for all emergency departments in a regional area

and, connect these simulators together for short-term (several hours) occupancy

prediction. Then, a load balancing scheme of the incoming patients could be

designed based on these future occupancy predictions.

∙ The framework developed in our work could be used to build a full model of

integrated care system. A full model of integrated care system will be able to

represent a comprehensive tool to quantitatively evaluate prospective planned

changes to the integrated care system for decision making, and open a wide field

of possible simulation scenarios for a better understanding of the integrated care

complex system.

7.3 List of Publications

The research presented in this thesis has been published in the following papers:
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