Topsoil depth substantially influences the responses to drought of the foliar metabolomes of 1 2 **Mediterranean forests** 3 Albert Rivas-Ubach^{1,2,3}, Adrià Barbeta^{2,3}, Jordi Sardans^{2,3}, Alex Guenther⁴, Romà Ogaya^{2,3}, 4 5 Michal Oravec⁵, Otmar Urban⁵, Josep Peñuelas^{2,3} 6 7 1. Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 8 USA, 99354 2. CREAF, Global Ecology Unit CRAF-CSIC-UAB, Cerdanyola del Vallès, 08913 Catalonia, Spain 9 10 3. CSIC, Global Ecology Unit CREAF-CSIC-UAB, Cerdanyola del Vallès, 08913 Catalonia, Spain 11 4. Department of Earth System Science, University of California, Irvine, CA, USA 92697 5. Global Change Research Centre, Academy of Sciences of the Czech Republic, Bělidla 4a, CZ-603 00 12 13 Brno, Czech Republic 14 15 Author e-mail addresses: Albert Rivas-Ubach: albert.rivas.ubach@gmail.com 16 Adrià Barbeta: a.barbeta@creaf.uab.cat 17 18 Jordi Sardans: j.sardans@creaf.uab.cat 19 Alex Guenther: alex.guenther@uci.edu 20 Romà Ogava: r.ogava@creaf.uab.cat 21 Michal Oravec: oravec.m@czechglobe.cz 22 Otmar Urban: urban.o@czechglobe.cz 23 Josep Peñuelas: josep.penuelas@uab.cat 24 25 26 Corresponding Author: 27 Albert Rivas-Ubach 28 Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 29 30 Richland, WA, USA, 99354 31 Telf: +1 509 371 7319 32 e-mail: albert.rivas.ubach@gmail.com 33 34 Abbreviations 35 H-Forest: Forest with high canopies 36 L-Forest: Forest with low canopies 37 VS: Vegetation structure 38 DUSL: Depth of upper soil layers 39 D50: Diameter at 50 cm from soil 40 SEM: Structural Equation Model

- 41 LC-MS: Liquid chromatography coupled to mass spectrometry
- 42
- 43
- 44

45 Abstract

46	The upper soil provides support, water, and nutrients to terrestrial plants and is therefore
47	crucial for forest dynamics. We hypothesised that a tree's metabolic activity (and therefore its
48	metabolome; the total set of metabolites) would be affected by both the depth of upper soil
49	layers and water availability. We sampled leaves for stoichiometric and metabolomic analyses
50	once per season from differently sized Quercus ilex trees under natural and experimental
51	drought conditions representing the likely conditions in the coming decades). Although the
52	metabolomes varied according to tree size, smaller trees did not show higher concentrations
53	of biomarker metabolites related to drought stress. However, the effect of the drought
54	treatment on the metabolomes was greatest for small trees growing in shallow soils. Our
55	results suggest that tree size is more dependent on the depth of the upper soil, which
56	indirectly affects a tree's metabolome, rather than on the moisture content in the upper soil.
57	Metabolomic profiling of <i>Q. ilex</i> supports our finding that water availability in the upper soil is
58	not necessarily correlated with tree size. The higher impact of drought on trees growing in
59	shallower soils nevertheless indicates that any increase in the frequency, intensity, and
60	duration of drought - as has been projected for the Mediterranean Basin and other areas -
61	would affect small trees most. Metabolomics has proved to be a useful means for investigating
62	the links between plant metabolism and environmental conditions.
63	
64	Keywords: Vegetation structure soil denth soil moisture metabolomics <i>Quercus iley</i>
01	
65	
66	
67	
68	
69	
70	
71 F	
72	This is the author's version of a work that was accepted for publication in Perspectives in plant ecology and evolution (Ed. Elsevier). Changes resulting from the publishing
73	process, such as peer review, editing, corrections, structural formatting, and other
74	quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was
75	subsequently published in Rivas, A. et al "Topsoil depth substantially influences the
76	responses to drought of the foliar metabolomes of Mediterranean forests" in Perspectives in plant ecology, evolution and systematics, vol. 21 (Aug. 2016). p. 41-54.
77	DOI 10 1016/i ppees 2016 06 001

78 Introduction

112

79 Soil provides a physical support system and a reservoir of water for terrestrial primary 80 producers (Montheith, 1981). A scarcity of soil resources, particularly water, is often 81 associated with restricted development of plant-soil systems and reduced biomass (Huxman et 82 al., 2004; Knapp and Smith, 2001; Orwig and Abrams, 1997). Soil biological activity and tree 83 growth can be limited by several factors such as nutrients (Bowman et al., 1993; Sardans and 84 Peñuelas, 2015; Sardans et al., 2012a, 2012b), light (Poorter, 1999), temperature (Epstein et al., 1997), or water (Huxman et al., 2004; Rosenzweig, 1968; Sala et al., 1988). Topographic 85 86 factors such as slope variation and/or soil texture also play important roles in the retention 87 and storage of soil water (Farahani et 88 al., 1998; Fernandez-Illescas et al., 2001) and can influence soil enzymatic activity (Bastida et 89 al., 2008) and erosion (Kinnell and Cummings, 1993). Soil depth is tightly linked with the 90 physiology and respiration rates of tree roots (Pregitzer et al., 1998), the composition of 91 microbial communities (Fierer et al., 2003), and even plant biodiversity (Fuhlendorf and 92 Smeins, 1998). Most of the biological activity and nutrient recycling in soil occurs in the upper 93 topsoil layers, so water availability in these layers is crucial to forests (Jobbagy and Jackson, 94 2000; Wardle et al., 2004). Hydraulic lift, mainly the transport of water from deep to shallower 95 soil layers through roots to maintain physiological activity (Canadell et al., 1996; Nepstad et al., 1994; Schulze et al., 1996), is common in several plant species (Caldwell and Richards, 1989; 96 97 Caldwell et al., 1998; Peñuelas and Filella, 2003; Prieto et al., 2012; Wan et al., 2000). Plants also intensely influence soil; interdependence between changes in plant communities and in 98 soil properties, such as fertility, has been observed in the Mediterranean Basin, especially in 99 100 dry areas (Ruiz-Sinoga et al., 2011). For example, increased plant cover had a direct effect on 101 soil porosity by increasing water infiltration and decreasing runoff (Garcia-Estringana et al., 102 2010; Goberna et al., 2007; Johnson-Maynard et al., 2002). The enhancement of soil quality by 103 plant cover thus improves fertility (Gallardo et al., 2000) and enzymatic activity (Garcia et al., 104 2002), which in turn have positive effects on plant metabolism and growth (Ruiz-Sinoga et al., 105 2011; Sadaka and Ponge, 2003). The depth and texture of the topsoil, amongst other 106 topographic factors, and the link between vegetation and soil are thus fundamental to the 107 availability of water and nutrients for plants and may further play crucial roles in determining 108 plant cover, habitat fragmentation, landscape patchiness, and changes in biodiversity (Fahrig, 109 2003; Sardans and Peñuelas, 2014; Allen and Breshears, 1998). 110 Mediterranean and other arid and semi-arid ecosystems have marked seasonality, with

111 hot and dry summers (Aschmann 1973; Schwinning et al., 2004). Soil depth can play a critical

role in these ecosystems, because summer drought is an important factor limiting the growth

113 of plants (Ogaya et al., 2003) and determining tree mortality (Barbeta et al., 2013). High 114 temperatures and the absence of precipitation during summer deplete moisture in the upper 115 soil layers, so plant activity can only be sustained where enough moisture is available in deep soil layers (Barbeta et al., 2015). Mortality and crown damage caused by extreme droughts are 116 117 usually minimised where soil is deep (Lloret et al., 2012). The most recent climatic models 118 project more frequent and severe droughts in Mediterranean ecosystems (IPCC, 2007). The 119 effects of the increased drought conditions have already been observed during the last two decades affecting forest communities by increasing crown defoliation and tree mortality (Allen 120 121 et al., 2010; Bigler et al., 2006; Carnicer et al., 2011; Galiano et al., 2011, 2010; McDowell et al., 2008; Poyatos et al., 2013; Rebetez and Dobbertin, 2004). The effects of drought on plant 122 123 fitness and performance may also trigger important cascade effects through various trophic 124 levels (Harrison, 2001; Kuske et al., 2003), thus producing important changes to entire 125 ecosystems. A future exacerbation of drought in Mediterranean and other arid and semi-arid 126 ecosystems may thus potentially affect, in a more intense or different way, the metabolism of trees growing in shallow soils with low capacities to store water, thereby leading to landscape 127 128 patchiness and desertification (Sardans and Peñuelas, 2014). Forest decline and/or large 129 changes in the structure of the vegetation and habitat are thus more likely in areas with 130 shallower soil that are more susceptible to extreme drought (Galiano et al., 2012; Lloret et al., 2004). 131 132 Plants can adjust their metabolisms to maintain homeostasis under marked seasonality 133 (Bertram et al., 2010; Falasca et al., 2013; Rivas-Ubach et al., 2014, 2012). Extreme droughts can cause drastic vegetation shifts, especially in Mediterranean, semi-arid, and arid 134 135 ecosystems (Allen and Breshears, 1998; Hanson and Weltzin, 2000; Mueller et al., 2005), so 136 the study of plant metabolomes can contribute to our understanding of how plants can 137 metabolically cope with intense drought stress. Plants under drought conditions can adjust 138 their chemistry to maintain physiological functions by, for example, increasing foliar 139 concentrations of K (Cakmak and Engels, 1999; Sardans and Peñuelas, 2015), proline (Tymms and Gaff, 1979; Yamada et al., 2005), antioxidants (Rivas-Ubach et al., 2014), sugars (Ingram 140 141 and Bartels, 1996; Porcel and Ruiz-Lozano, 2004; Rivas-Ubach et al., 2014), and/or other species-specific compounds (Sardans et al., 2011). 142 143 The metabolome, the chemical phenotype of an organism, is the total set of low molecular 144 weight metabolites (typically <1200 Da) present in an organism at a particular moment (Fiehn, 2002). The metabolome, includes thus amino acids, sugars, and nucleotides from primary 145 146 plant metabolism and many secondary metabolites such as phenolics and terpenes 147

148 homeostasis and function. The first functional responses of an organism facing abiotic and 149 biotic stressors are typically at the metabolomic level (Peñuelas and Sardans, 2009). 150 Metabolomics represents thus a powerful tool for ecological studies (ecometabolomics) to 151 identify the main changes in organisms directly associated with metabolism and performance 152 (Sardans et al., 2011). Metabolomics allows us to understand the metabolic variation of 153 organisms under stressful environmental conditions, including the complete set of metabolites 154 and not just single compounds or families of metabolites (Fiehn, 2002; Bundy et al., 2008; 155 Sardans et al., 2011). The study of the metabolomic changes of wild plant species helps to 156 comprehend the mechanisms behind plant physiological responses to natural or experimental 157 stressors. Metabolomic techniques can also assess the plasticity of specific metabolomes and 158 detect and quantify the metabolic biomarkers linked with specific environmental stressors 159 (Bundy et al., 2008; Sardans et al., 2011; Rivas-Ubach et al., 2016a). Ecometabolomics has 160 advanced our understanding of the natural variability and flexibility of the metabolomes of 161 wild organisms under climatic stressors (Gargallo-Garriga et al., 2014; Rivas-Ubach et al., 162 2014), amongst seasons (Rivas-Ubach et al., 2012), and under attack from folivorous insects 163 (Rivas-Ubach et al., 2016b). Ecometabolomics is thus valuable for exploring the organism-164 environment interaction by detecting and quantifying the final phenotypic response of an 165 organism to environmental changes. The physiological response to drought of Quercus ilex L., an evergreen sclerophyllous tree 166 167 species widely distributed in the Mediterranean Basin (Barbero et al., 1992), has been 168 extensively studied (Filella et al., 1998; Nardini et al., 2000; Ogaya and Peñuelas, 2003; Peñuelas et al., 2000; Sala and Tenhunen, 1996). Q. ilex is a keystone species in many 169 170 Mediterranean ecosystems and is currently expanding its dominance by recolonising 171 abandoned cropland and pastures and by out-competing Mediterranean conifers that are 172 more sensitive to rising temperatures (Carnicer et al., 2013). Drought-induced declines in Q. 173 ilex forests have been reported (Galiano et al., 2012, Camarero et al., 2015), but this tree 174 possesses an array of functional and morphological traits (such as an extensive root system) for surviving periods of drought. Ecometabolomic studies of *Q. ilex* could thus identify the key 175 176 metabolites involved in drought tolerance and resistance as well as measure how flexible are 177 the individual metabolomes under stress conditions. We sampled once per season the leaves 178 of differently sized mature Q. ilex trees of the same age from a forest exposed to a moderate 179 experimental drought and analysed the elemental stoichiometries and metabolomes. We 180 discuss three important issues of Q. ilex metabolic responses to environmental variables or 181 factors by multivariate approximations: (i) we hypothesise that the depth of the upper soil layers (DUSL, typically the A + B horizons), where most of the biological activity and water 182

- 183 uptake occur, may determine vegetation structure (VS) and overall metabolomic composition;
- ii) we evaluate how different VSs, with special attention to trees growing in shallower soils,
- 185 respond to the marked seasonality of the Mediterranean Basin and to experimental drought
- 186 stress; and iii) we apply the results of this study to illustrate the crucial necessity in
- 187 ecometabolomic studies of controlling the factors potentially able to produce large
- 188 metabolomic shifts in plants.
- 189

190 Material & Methods

191 Study site

- 192 This study was carried out in a natural Q. ilex forest in the Prades Mountains in southern
- 193 Catalonia, Spain (41°21'N, 1°2'E). The climate is mesic-Mediterranean, with a marked three-
- 194 month summer drought. The average annual rainfall is 658 mm, and the average temperature
- 195 is 12 °C. The forest canopy is dominated by Q. ilex, followed by Phillyrea latifolia and Arbutus
- 196 *unedo*, with average trunk basal areas at 50 cm of 20.8, 7.7, and 6.9 m² ha⁻¹, respectively.
- 197 Other species adapted to drought conditions are Juniperus oxycedruys, Erica arborea, and
- 198 *Cistus albidus*, with sporadic individuals of deciduous species such as *Acer monspesulanum* and
- 199 Sorbus torminalis.
- 200 Tree size in the forest is naturally variable, so VS is also variable. We categorised the VSs by
- 201 designating the areas dominated by taller trees and higher canopies as H-Forest and the areas
- 202 dominated by smaller trees and lower canopies as L-Forest. The average trunk diameters at 50
- 203 cm above the soil (D50s) of the trees of H- and L-Forests were 41.2 and 27.8 cm, respectively.
- 204

205 Experimental design

206 Eight plots (15×10 m) were established in March 1999 at the same altitude (930 m a.s.l.) on a 207 25% mountain slope facing south-southeast (Ogaya et al., 2003). Four plots were established in 208 each of H- and L-Forest areas to represent the natural variation of the VS of the Q. ilex forest. Two randomly chosen plots for each VS received a drought treatment, and the other two 209 210 served as control plots. The plots were separated by a minimum of 15 m and were located 211 along the same slope position. The drought treatment consisted of covering approximately 212 30% of the soil surface with 14×1 m PVC strips from the top to the bottom edges of the plots 213 at 0.5-0.8 m above the soil, which partially excluded throughfall. Upslope runoff was 214 intercepted by ditches 0.8-1 m deep dug along the entire top edges of the treatment plots. All 215 water intercepted by the strips and ditches was channelled to the bottom edges of the 216 drought plots.

218 Measurement of plot parameters

219	Soil depth was measured by inserting a 1.5-m metallic corer with a pneumatic hammer 0.7-1 m
220	from the trunk of each sampled tree. The depths of the A and B horizons (upper soil layers;
221	DUSL) were measured in situ, and soil samples were collected for calculating the proportion of
222	fine soil (% <2mm). The samples were dried for 72 h at 60 $^\circ C$ and were then sieved through a
223	2-mm mesh, and the fine-soil and stony fractions were weighed. The density of each horizon
224	was calculated. Stone density was considered to be 2.65 g cm ⁻³ (Chepil, 1950). The proportions
225	of fine soil and stones were thus calculated at the tree level. The moisture content of the
226	upper soil was measured during each campaign by time-domain reflectometry (Tektronix
227	1502C, Beaverton, USA) (Gray and Spies, 1995; Zegelin et al., 1989). Three stainless-steel
228	cylindrical rods 25 cm long were vertically installed in the upper 25 cm of the soil at four
229	randomly selected locations in each plot. The time-domain reflectometer was manually
230	attached to the ends of the rods for each measurement.
231	The aboveground biomass (AB) in the plots was estimated by allometric relationships
232	between tree AB and D50. Twelve Q. ilex trees were harvested outside the plots, their
233	circumferences at a height of 50 cm were measured, and their ABs were weighed after drying
234	in an oven to constant weight. We used the calculated allometric relationships to estimate the
235	AB (InAB = 4.9 + 2.3 InD50; <i>R</i> ² = 0.98; n = 12; <i>P</i> < 0.001).
236	Moisture content of the upper soil layers and precipitation were monitored every 30 min in all
237	plots (see Ogaya and Peñuelas (2006) for details). Fig. 1a shows the seasonal accumulated
238	annual precipitation in the study area for 1999-2009. Fig. 1b shows the differences of soil
239	moisture amongst the plots and VSs for each season for 2004-2009 (5 years prior to sampling).
240	
241	Sampling and processing of leaves
242	We randomly selected five Q. ilex individuals from each plot as study cases. Leaves were
243	sampled once per season February in winter, May in spring, August in summer, and November
244	in autumn. A small sunlit branch was cut from each tree with a pole, and a fraction of the
245	youngest leaves was immediately frozen in liquid nitrogen for the stoichiometric and
246	metabolomic analyses. The youngest leaves were always sampled to standardise the cohort
247	and control any ontogenic shift with season (see Rivas-Ubach et al. (2014) for details). The
248	leaves were collected within a short period between 11:00 and 14:00 to avoid large temporal
249	metabolomic variation (Rivas-Ubach et al., 2013).
250	The leaves were processed as described in detail by Rivas-Ubach et al. (2013). Briefly, the
251	frozen leaves were lyophilised, placed in plastic cans, and stored at -20 °C until ground with a
252	ball mill at 1600 rpm for 6 min (Mikrodismembrator-U, B. Braun Biotech International,

ball mill at 1600 rpm for 6 min (Mikrodismembrator-U, B. Braun Biotech International,

- 253 Melsungen, Germany) to produce a fine powder for each sample. All samples were then stored
- 254 in hermetic cans at -80 °C until preparation for metabolite extraction.
- 255

256 Metabolite extraction for LC-MS

- 257 Metabolites were extracted as described by t'Kindt et al. (2008) with some modifications. Two
- sets of 2-mL tubes were labelled (A and B). Set A was used for the extractions, and the extracts
- 259 were transferred to set B. One hundred milligrams of powder of each foliar sample were
- $\label{eq:260} introduced into a tube of set A. One millilitre of MeOH/H_2O (80:20) was added to each tube.$
- 261 The tubes were vortexed for 15 min and sonicated for 5 min at room temperature (22 $^{\circ}$ C) and
- were then centrifuged at $23000 \times g$ for 5 min, and 0.6 mL of supernatant was collected from
- 263 each tube and transferred to the corresponding tube of set B. This procedure was repeated to
- 264 perform two extractions of each sample. The tubes of set B were then centrifuged at $23000 \times g$
- $265 \qquad \mbox{for 5 min. The supernatants were collected by crystal syringes, filtered with 0.22-\mu m \ pore$
- 266 microfilters, and transferred to a labelled set of HPLC vials. The vials were stored at -80 °C until
- 267 LC-MS analysis.
- 268

269 Elemental analysis

- 270 For the C and N analyses, 1.4 mg of powder were transferred to a tin microcapsule. C and N
- 271 concentrations were determined by elemental analysis using combustion coupled to gas
- 272 chromatography with a CHNS-O Elemental Analyser (EuroVector, Milan, Italy).
- 273 P and K concentrations were determined using acid digestion in a microwave at high
- 274 pressure and temperature (Sardans et al., 2010); 250 mg of powder were weighed in a Teflon
- 275 tube, and 5 mL of 65% nitric acid and 2 mL of H_2O_2 were added. The sample was then digested
- 276 in a MARSXpress microwave (CEM, Mattheus, USA). All digested contents were added to a 50-
- 277 mL flask and dissolved with Milli-Q water to 50 mL. P and K concentrations were determined
- 278 by ICP-OES (Optic Emission Spectrometry with Inductively Coupled Plasma) (The Perkin-Elmer
- 279 Corporation, Norwalk, USA).
- 280

281 <u>LC-MS analyses</u>

- 282 LC-MS chromatograms were obtained using a Dionex Ultimate 3000 HPLC system (Thermo
- 283 Fisher Scientific/Dionex RSLC, Dionex, Waltham, USA) coupled to an LTQ Orbitrap XL high-
- 284 resolution mass spectrometer (Thermo Fisher Scientific, Waltham, USA) equipped with an HESI
- 285 II (heated electrospray ionisation) source. Chromatography was performed on a reversed-
- 286 phase C18 Hypersil gold column (150 \times 2.1 mm, 3 μ m particle size; Thermo Scientific,
- 287 Waltham, USA) at 30 °C. The mobile phases consisted of acetonitrile (A) and 0.1% acetic acid

288 (B). Both mobile phases were filtered and degassed for 10 min in an ultrasonic bath prior to 289 use. The elution gradient began at 10% A (90% B) at a flow rate of 0.3 mL min⁻¹ and was 290 maintained for 5 min, then changed linearly to 10% B (90% A) for the next 15 min. The initial 291 proportions (10% A, 90% B) were gradually recovered over the next 5 min, and the column was 292 then washed and stabilised for 5 min before injection of the next sample. The injection volume 293 of the samples was 5 µL. All samples were injected twice, once with the HESI operating in 294 negative ionisation mode (-H) and once in positive ionisation mode (+H). The Orbitrap mass 295 spectrometer was operated in FTMS (Fourier Transform Mass Spectrometry) full-scan mode with a mass range of 50-1000 m/z and high-mass resolution (60000). The resolution and 296 297 sensitivity of the spectrometer were monitored by injecting a caffeine standard after every 10 298 samples, and the resolution was further monitored with lock masses (phthalates). Blank 299 samples were also analysed during the sequence (see Rivas-Ubach et al., 2016b for more 300 details of the instrumentation parameters). 301 302 Processing of LC-MS chromatograms 303 The raw data files from the Orbitrap were processed by MZmine 2.12 (Pluskal et al., 2010). 304 Chromatograms were baseline corrected, deconvoluted, aligned, and autoassigned (see Table 305 A.1 for details). Metabolomic variables were assigned by the exact mass and retention time of our metabolite library performed by the injection of over 200 standards representing several 306 307 common metabolites of both primary and secondary metabolism (see Table A.2 for 308 assignations). Numerical data sets were exported to CSV and posteriorly filtered; outliers and variables present in fewer than six individuals were removed from the data set. Outlier 309 variables were defined as measurements 3-fold higher than the 3rd quartile or 3-fold lower 310 311 than the 1st quartile of each cell factor. The areas under the peaks of the deconvoluted 312 chromatograms do not reflect the real concentration as weight of metabolite per weight of the 313 sample but are directly correlated with the concentration of the corresponding variable. The 314 areas are thus suitable for metabolomic comparative analyses, as demonstrated in several metabolomic studies (Gargallo-Garriga et al., 2014; Lee and Fiehn, 2013; Leiss et al., 2013; 315 Mari et al., 2013; Rivas-Ubach et al., 2014, 2016a, 2016b). We use the term concentration to 316 317 refer to the relative concentration of a metabolite. 318 319 Statistical analyses 320 The data set consisted of three categorical independent variables, season (winter, spring,

- 321 summer, and autumn), VS (H-Forest and L-Forest), and treatment (control and drought), and
- 322 2784 dependent continuous variables, ten of which were elemental concentrations and

stoichiometric variables (C, N, P, and K concentrations and C/N, N/P, C/P, C/K, N/K, and K/P
ratios) and 2774 of which were metabolomic variables, including 35 identified by our plant
library.

326 The D50 and DUSL of all trees and the AB of the plots were subjected to one-way ANOVAs 327 with VS as a factor to test for differences between H- and L-Forests (Fig. A.1). Shapiro and 328 Levene's tests were used on all metabolomic and stoichiometric variables to assess the 329 normality and homogeneity of the variances, respectively. All known variables were normally 330 distributed, and the variances of the groups were homogeneous. Any unidentified 331 metabolomic variable that was not normally distributed or for which the variance of the group was not homogeneous was removed from the data set before statistical analysis to comply 332 333 with the assumptions of the tests (0.64% of the variables were removed from the data set). 334 The entire data set, including all stoichiometric and metabolomic variables of the Q. ilex 335 leaves (2784 variables), were first subjected to a PERMANOVA analysis using the Bray Curtis 336 distance to test for differences in elemental stoichiometries and metabolomes between seasons, in the experimental drought treatment, and in VS (L-Forest/H-Forest). The number of 337 338 permutations was set at 10000 (Table 1). The same data set was also subjected to a principal 339 component analysis (PCA) (Fig. 2) to determine the natural variability amongst samples. The 340 coordinates of cases of the PCA plot were subjected to a one-way ANOVA to identify statistical 341 differences between the analysed groups (See Rivas-Ubach et al. (2013) for details). 342 The Euclidian distances for each Q. ilex individual between control and droughted trees of 343 both H-Forest and L-Forest (HFC vs HFD and LFC vs. LFD, respectively) and between H-Forest and L-Forest controls (HFC. vs. LFC) were calculated using the coordinates of the first 15 PCs of 344 345 the PCA, which explained the 54.7% of the total variance. The explained variation of each PC was used for the calculation of the Euclidian distance (PC1 (9.7%); PC2 (6.5%); PC3 (6.1%); PC4 346 (5.0%); PC5 (4.5%); PC6 (3.8%); PC7 (3.4%); PC8 (2.8%); PC9 (2.2%); PC10 (2.1%); PC11 (2.0%); 347 348 PC12 (1.8%); PC13 (1.7%); PC14 (1.6%); PC15 (1.5%)). The distances between groups were then 349 submitted to one-way ANOVAs (Fig. 3). 350 PLS-DAs (partial least squares discriminant analyses) and PCAs were also performed for 351 each season for the elemental and stoichiometric data and the foliar metabolomic fingerprints of the Q. ilex (Figs. 4 and A.2, respectively). The PLS-DAs were performed to clearly identify the 352 353 variables that could discriminate the various factors studied. The PLS-DAs were represented in bi-plots, and case distribution in multidimensional space was represented by different colours. 354

355 Individual cases of the PLS-DAs are presented in Fig. A.3.

PC2 of the PCA clearly separated the metabolomes of H- and L-Forests (Fig. 2), so we used
a structural equation model (SEM) to detect the overall relationships (total, direct, and

358 indirect) of the soil data (DUSL, texture, and moisture) and the experimental drought on D50 359 and the metabolomic variation along PC2 of the PCA of the stoichiometric and metabolomic 360 data from all seasons (Fig. 5; Table 2). We selected the variation along PC2 of the seasonal PCA 361 (Fig. 2) because it clearly separated H- and L-Forests. The data for soil humidity of the SEM 362 corresponded to the seasonal average for 2004-2009. All cases for each season were included 363 in the model, so each Q. ilex tree in each plot and season had a corresponding measure of soil 364 humidity. We incorporated the experimental treatment (categorical variable) into the model 365 by transforming it into a *dummy* variable (control = 1, drought = 0). Standard errors and the 366 significance levels (P values) of the direct, indirect, and total effects were calculated with bootstrapping (with 1200 repetitions) (Davison et al., 1986). We ran the model with various 367 368 stipulated relationships and chose the simplest model explaining the most variance of PC2 369 (metabolomic variance) (Fig. 5). The initial model is shown in Fig. A.4, and the total, direct, and 370 indirect effects are shown in Table A.6. Plant metabolomes can vary considerably in response 371 to small environmental shifts, so the SEM model was also performed using the soil humidity of 372 the sampled year (2009-2010), but the overall results were consistent with the seasonal 373 averaged data for 2004-2009. We finally used the 5 year averaged data (2004-2009) of soil 374 moisture for the SEM, because it is a better proxy of tree size than the soil moisture of the 375 sampling year. A heat map of all assigned variables was plotted for all control trees in all seasons to identify the main metabolite shifts amongst seasons and VSs. The relative 376 377 concentrations for each variable were scaled to the same level before plotting the heat map 378 (Fig. 6). All statistical analyses were performed with R (R Core Team, 2013). The Shapiro tests and 379 380 ANOVAs were performed with the *shapiro.test* and *aov* functions, respectively, in the "R stats" 381 package (R Core Team, 2013). Levene's test was performed with the levene Test function in the 382 "car" package (Fox and Weisberg, 2011). The PERMANOVA analysis was conducted with the 383 adonis function in the "vegan" package (Oksanen et al., 2013). The PCAs and PLS-DAs were 384 performed by the pca and plsda functions, respectively, of the R "mixOmics" package (Le Cao et al., 2015). The SEM was performed with the sem function of the "sem" package (Fox et al., 385 386 2015). The heat map was constructed with the heatmap.2 function in "gplots" package 387 (Warnes et al., 2015). Post-hoc tests were conducted with the HSD.test function in "agricolae" 388 package (de Mendiburu 2015). 389

390 Results

391D50, DUSL, and AB were higher in H-Forest than in L-Forest (F = 17.7, P < 0.001; F = 11.1, P392< 0.01; and F = 60.1, P < 0.0001; respectively) (Fig. A.1). Spring was the wettest season, as

393 expected, followed by winter, autumn, and summer (F = 10.45; P < 0.0001) (Fig. 1a). Autumn 394 was drier than winter from 1999 to 2009, but the difference was not statistically significant (P 395 > 0.05). A factorial ANOVA of soil moisture, including all categorical factors, was significant for season (F = 108.2; P < 0.0001), VS (F = 6.4; P < 0.05), and treatment (F = 13.1; P < 0.001), but 396 397 none of the interactions were significant. Soil moisture was significantly higher in winter and 398 spring than in summer and autumn (Fig. 1b). The PERMANOVA clearly identified significant 399 differences in the elemental concentrations, stoichiometric ratios, and metabolomes for the Q. 400 ilex leaves between seasons (Pseudo-F = 31.04, P < 0.0001), between VS types (Pseudo-F = 401 3.31, P < 0.05), between experimental treatments (Pseudo-F = 3.98, P < 0.05), and in the 402 VS×treatment interaction (Pseudo-F = 9.07, P < 0.001). The season×VS and season×treatment 403 interactions were not significant (P > 0.05) (Table 1). 404 The one-way ANOVA of case coordinates of the seasonal PCA identified significant 405 differences amongst seasons along PC1 (F = 10.9, P < 0.0001) and marginal differences along 406 PC2 (F = 2.27, P = 0.08) (marginal differences are not indicated in the graph), but the case plot 407 did not clearly cluster cases for each season (Fig. 2b). The cases, however, were better 408 separated between the two VSs in the annual PCA in both PCs, but especially in PC2 (F = 7.48, P 409 < 0.01 for PC1 and F = 351, P < 0.0001 for PC2) (Fig. 2c). The experimental drought treatment produced significant separation along PC1 when excluding VS (F = 15.5, P < 0.001). The 410 411 significance of the drought treatment, however, was extended to PC2 within each VS (H-412 Forest: *F* = 7.75, *P* < 0.01 for PC1 and *F* = 5.89, *P* < 0.05 for PC2; L-Forest: *F* = 58.9, *P* < 0.0001 413 for PC1 and F = 6.71, P < 0.05 for PC2) (Fig. 2c). The metabolomes of the leaves shifted most 414 strongly across seasons, but VS and the experimental drought also had significant effects 415 (Table 1). 416 One-way ANOVAs of the metabolomic distances (Euclidian distances) calculated with the 417 first 15 PCs of the PCA showed that the HFC vs. HFD distance in each of the seasons was smaller than the HFC vs. LFC distance. The LFC vs. LFD and HFC vs. LFC distances, however, did 418 419 not differ for summer, autumn, or winter, and the LFC vs. LFD distance was even larger in 420 spring (Fig. 3). The LFC vs. LFD distance was largest in winter and spring, the wetter seasons. 421 The factorial ANOVAs of all known variables, excluding the effects of seasonality (seasons 422 taken together because the treatment×season and VS×season interactions were not significant 423 in the PERMANOVA, see Table 1), identified several variables with a significant VS×treatment 424 effect, suggesting that the drought treatment affected each VS differently (Table A.3). All 425 elemental and stoichiometric variables, except C concentrations, and metabolites such as 426 pentoses, valine, arginine, malic acid, epigallocatechin, homoorientin, chlorogenic acid, α - 427 humulene, caryophyllene, and pyridoxine responded significantly to the VS×treatment interaction (P < 0.05). The factorial ANOVAs of all individual variables for the VS×treatment 428 429 interaction for each season separately did not have many common responses with VS and treatment for specific variables amongst the seasons (Table A.4). The PLS-DA, however, clearly 430 431 indicated some common responses of VS and treatment with the seasons (Fig. 4). The changes 432 amongst VS and the treatments were not significant for all seasons, but L-Forest under the 433 drought treatment generally had higher concentrations of P, N, α-humulene, caryophyllene, 434 disaccharides, pentoses, hexoses, leucine, succininc acid, lactic acid, chlorogenic acid, and 435 catechin and higher N/K and C/K ratios (Fig. 4). The PLS-DAs, as expected, identified larger 436 metabolomic differences along components 1 and 2 of the case plot between the control and 437 droughted plants in L-Forest than in H-Forest in all seasons (Figs 4 and A.2). 438 The SEM indicated that the proportion of fine soil was not correlated with the moisture content of the upper soil, and DUSL did not influence the soil texture; soil texture was thus not 439 included in the final model. All included variables (drought treatment, upper soil moisture, 440 441 DUSL, and D50) had significant direct or indirect effects on the metabolomes of the leaves 442 along PC2, explaining 38.4% of its total variation. D50 explained most of the variation, followed by the indirect effect of DUSL (Fig. 5; Table 2). DUSL and the effect of the experimental drought 443 444 explained 48.8% of the variance of the D50 of the Q. ilex trees, with DUSL the most significant 445 factor ($R^2 = 0.59$, P < 0.00001). Of the variables included in the model, only the drought 446 treatment had a significant effect on upper soil moisture, explaining 3.5% of the total variance 447 (Fig. 5; Table 2). 448 The factorial ANOVAs of all known variables for the control trees, with season and VS as 449 categorical factors, indicated that several of the variables shifted significantly amongst seasons 450 and VSs (Fig. 6). Biomarkers of drought and oxidative stress, i.e. epigallocatechin, epicatechin, catechin, gallic acid, quinic acid, kaempferol, rhamnetin, proline, and quercitin, did not differ 451 452 significantly between VSs. Concentrations of quinic acid were higher in summer. The N:P ratio 453 was generally lowest and the concentrations of some amino acids were generally higher in 454 trees in spring, although not significantly (Fig. 6). 455

456 Discussion

457 Metabolomic variation, VS, and drought.

- 458 The drought treatment significantly affected the metabolomes and stoichiometries of the
- 459 natural populations of *Q. ilex* (Table 1), as also reported for other plant species (Gargallo-
- 460 Garriga et al., 2014; Rivas-Ubach et al., 2012; J. Sardans et al., 2012c; Sardans et al., 2011 and
- 461 citations therein; Urano et al., 2009). The effects of the drought treatment on the foliar

462 metabolomes and stoichiometries differed in the L- and H-Forests, as shown by the 463 PERMANOVA (Table 1) and the case plot of the seasonal PCA, with the two VSs clearly 464 separated along PC2 (Fig. 2c). Interestingly, the metabolomic distance in all seasons was 465 smaller between the control and droughted trees in H-Forest (HFC vs HFD) than between the 466 control trees of H-Forest and L-Forest (HFC vs LFC) (Fig. 3), indicating that tree metabolism was 467 affected more by VS than by the experimental drought treatment. The distance between the 468 control and droughted trees, however, was significantly larger in all seasons in L-Forest than in 469 H-Forest and this distance was larger in winter and spring, the wetter seasons, than in summer 470 and autumn (Fig. 3). Moreover, case clustering in the PLS-DAs identified larger differences 471 between the control and droughted trees in L-Forest than in H-Forest (Fig. 4). These results 472 demonstrated a higher metabolomic sensitivity to drought of trees in shallower soils (L-Forest), 473 supporting the importance of VS to the response to drought. In fact, shallower soil should be 474 an important factor in VS evolution from continuous to patchy vegetation cover under 475 increasingly arid conditions in desertified areas of the Mediterranean (Sardans and Peñuelas, 476 2014). In this scenario, areas with deeper soils would be more likely to remain covered. The 477 large difference in the tree metabolomes between the two VSs exposed to the same 478 experimental stress demonstrated the necessity of including VS as an important factor when 479 designing experiments, especially metabolomic studies, in natural ecosystems. Most plants require well-balanced soil humidity to maintain physiological homeostasis, fitness, and growth. 480 481 The SEM, however, indicated that the moisture content of the upper soil did not explain the 482 variation in D50 of the plots (Fig. 5), in contrast to the results of previous studies (Huxman et al., 2004; Knapp and Smith, 2001; Orwig and Abrams, 1997). Other Mediterranean trees also 483 484 depend on water stored in deep soil layers or in rock fractures to cope with summer drought 485 (Barbeta et al., 2015, Voltas et al., 2015). The upper soil layers are typically very dry during summer (Fig. 1), so growth is determined more by the availability of deep water pools that 486 487 may allow trees to reduce the period of growth cessation than by the amount of moisture in 488 the upper layers (Lempereur et al., 2015). The effect of the drought treatment on soil moisture was noticeable in all seasons, including winter, when deep-water pools are replenished 489 490 (Brooks et al., 2010). The effect the treatment on growth and mortality rates has been dampened over time by the larger reductions in density in the drought plots (Barbeta et al., 491 492 2013), but extremely dry summers still affect the drought plots more negatively (Barbeta et al., 493 2015). The negative effect of the drought treatment on D50 may thus be mediated by the 494 depletion of deep-water pools caused by a chronically lower replenishment during cold 495 seasons (Barbeta et al., 2015).

496 Interestingly, the moisture content of the upper soil was nevertheless significantly 497 correlated with the metabolomic variation of Q. ilex L-Forest along PC2 (Fig. 5), which 498 separated not only the VSs but also the experimental drought treatment within each VS (Fig. 499 2). The treatment, however, was not correlated with PC2, probably due the larger separation 500 of VSs than the drought treatment along PC2. The significant relationship between soil 501 moisture and PC2 potentially illustrates the effects of water availability on the metabolomes of 502 plants, as has been reported in other metabolomic studies (Gargallo-Garriga et al., 2014; 503 Griesser et al., 2015; Rivas-Ubach et al., 2012, 2014; Sardans et al., 2011 and citations therein; 504 Sun et al., 2014; Zhang et al., 2014). DUSL was not correlated with the moisture content of the 505 upper soil, as expected, but was highly correlated with D50, which together with the effects of 506 the experimental drought explained 48.6% of the D50 variance (Fig. 5). Hydraulic lift has been 507 described in Q. ilex (David et al., 2007), but the SEM suggested that tree size (D50) and 508 therefore VS were more dependent on the changes in DUSL than on upper soil moisture, 509 indicating that upper soil moisture alone could not exclusively account for the VSs. The large metabolomic distance between the control and droughted trees (Figs. 2 and 3) and the 510 significant VS×treatment interaction (Table 1), however, suggest that moisture content of the 511 512 upper soil still played an important role in determining the physiology and homeostasis of the trees (Huxman et al., 2004; Rosenzweig, 1968; Sala et al., 1988), especially those under the 513 514 effects of drought and in shallower soils (L-Forest). 515 Seasonality had a large effect on the *Q. ilex* metabolomes, in accordance with previous 516 metabolomic studies (Rivas-Ubach et al., 2012, 2014), but the effect varied significantly between VSs (Fig. 6). The smaller distance between the control and droughted trees of L-517 Forest in summer and autumn, the driest seasons (Fig. 1), suggest that the control trees 518 519 experienced some level of natural drought stress in those seasons (Figs. 1 and 3). This seasonal 520 trend, however, was not significant in H-Forest. The significant shift with season in 521 metabolomic distance between the control and droughted trees in L-Forest, largest in winter and spring and smallest in summer and autumn (Fig. 3), indicated that the responses of Q. ilex 522 523 to drought in shallower soils were tightly linked with seasonality. This variable response of VS 524 to seasonality also suggests that Q. ilex trees in shallower soils are more sensitive to the 525 typically large natural environmental changes in Mediterranean ecosystems. Drivers of global change such as drought can lead to long-term changes in VS by reducing the growth of trees 526 527 (Barber et al., 2000; Bréda et al., 2006), which may consequently negatively impact soil fertility 528 (Gallardo et al., 2000) and enzymatic activity (Garcia et al., 2002) and may increase runoff 529 (Garcia-Estringana et al., 2010; Goberna et al., 2007; Johnson-Maynard et al., 2002), thereby 530 reducing soil depth. Shallower soils can generally have negative feedbacks on plants (Ruiz531 Sinoga et al., 2011; Sadaka and Ponge, 2003), which may result in a higher vulnerability to

532 increases in the intensity, frequency, and duration of drought forecasted for the coming

- 533 decades, especially in the Mediterranean Basin (IPCC, 2007).
- 534
- 535

536 Foliar chemical changes, drought, and VS.

537 Foliar K concentrations were similar in the two VSs and in the droughted and control trees (Fig. 4; Table A.4). K concentrations, however, interestingly varied significantly amongst seasons, 538 539 with the highest concentrations in summer, the driest season (Figs. 2 and 3). Several plant 540 species allocate large amounts of K to leaves during the driest season, especially in 541 Mediterranean evergreen and dry tropical forests (Milla et al., 2005; Rivas-Ubach et al., 2012; 542 Sardans and Peñuelas 2015). K is involved in several plant mechanisms that mitigate drought 543 stress (Sardans and Peñuelas, 2015), for example the maintenance of cellular turgor and 544 osmotic pressure (Ashraf et al., 2002; Levi et al., 2011), the control of transpiration and water 545 conductance (Arquero et al., 2006; Benlloch-González et al., 2010; Harvey and van den 546 Driessche, 1999), the control of stomata (Benlloch-González et al., 2010; Talbott and Zeiger, 547 1996), and the maintenance of transmembrane potentials (Su et al., 2001; Waraich et al., 548 2011). K can even act as an osmolyte (Babita et al., 2010; Levi et al., 2011) and can thus improve the capacity to retain water (Nandwal et al., 1998). K concentrations were not higher 549 550 in the droughted trees but were higher in all trees in the driest season, as reported in other 551 studies (Sardans and Peñuelas 2015 and citations therein), suggesting that increases in foliar K concentration are a programmed phenological response of plants to cope with the driest 552 553 season. 554 Oxidative stress is expected to increase in plants under conditions of drought, especially in 555 water-limited ecosystems such as those in the Mediterranean Basin (Price et al., 1989; Dat et 556 al., 2000; Munné-Bosch & Peñuelas, 2004; Peñuelas et al., 2004). The concentrations of 557 antioxidants has been reported to increase in water-stressed plants for coping with oxidative stress, so these compounds are excellent biomarkers of drought stress (Farooq et al., 2009; 558 559 Reddy et al., 2004; Wang et al., 2003). Their role as electron donors and the ability to alter 560 peroxidation kinetics are the main properties that provide their strong antioxidant activity 561 (Rice-Evans et al., 1997). The concentrations of most of the antioxidants identified in our study 562 (epigallocatechin, epicatechin, catechin, gallic acid, quinic acid, kaempferol, rhamnetin, and 563 quercitin) did not differ significantly between VSs (Figs. 4 and 6). Additionally, the 564 concentration of proline, a well-known multifunctional amino acid that typically acts as 565 osmoregulator under drought conditions (Szabados and Savouré, 2010), was not significantly

566 higher in L-Forest than in H-Forest (Figs. 4 and 6; Tables A.3 and A.4), suggesting that L-Forest 567 trees, even growing in shallower soils, were not necessarily more water-stressed than H-Forest 568 trees. The levels of most antioxidant compounds were not significantly higher in summer (Fig. 569 6), but flavonoid concentrations have been reported to be generally higher in summer in H-570 Forest trees (Rivas-Ubach et al., 2014). The concentration of quinic acid was higher in summer, 571 in accordance with previous studies (Rivas-Ubach et al., 2012, 2014), especially in L-Forest 572 trees (Fig. 6). Several flavonoids are synthesised from quinic acid, tyrosine, and phenylalanine 573 by the shikimic acid pathway (Draths et al., 1999; Harborne 1988), suggesting a potential 574 activation of this metabolic route in summer to cope with oxidative stress. The metabolism of amino acids is complex; each amino acid is involved in several metabolic pathways, which 575 576 complicates the interpretation of changes in their concentrations. The concentrations of 577 several amino acids, however, were higher in spring, especially when compared to summer 578 (Fig. 6). 579 Spring is the principal growing season in Mediterranean ecosystems, and the higher 580 concentrations of several amino acids in spring may have been associated with higher growth 581 rates (Rivas-Ubach et al., 2012). N:P ratios were also generally lowest in spring, and the

582 tendency of lower N:P ratios in H-Forest trees than L-Forest trees potentially indicates the 583 higher growth rate in spring in H-Forest than L-Forest according to the growth rate hypothesis (Elser et al., 1996). The concentrations of malic, pyruvic, and citric acids also tended to be 584 585 higher in H-Forest trees, which may also account for the higher growth than in L-Forest trees 586 (Fig. 6). The increase in carbohydrates in droughted plants is a common strategy to cope with drought stress. Carbohydrates can act as osmolytes, improving the hydric potential and thus 587 588 maintaining cellular turgor (Ingram and Bartels, 1996; Leprince et al., 1993; Porcel and Ruiz-Lozano, 2004; Rivas-Ubach et al., 2014). The concentrations of carbohydrates were higher in 589 590 our droughted L-Forest trees than in the other plots, including the H-Forest droughted plants 591 (Figs. 2 and 4), which potentially indicates a higher drought stress in the droughted L-Forest 592 trees.

We have reported some clues indicating drought stress in droughted Q. ilex trees, but 593 594 plants can use various metabolic pathways to cope with drought depending on the intensity of the stress. Such responses are also typically species-specific, so some plant species may use 595 596 proportionally higher concentrations of metabolites than others for osmoprotection (Leprince 597 et al., 1993; Ingram and Bartels, 1996). The acumulation of carbohydrates in leaves, however, 598 may also be due to the impairment of growth as drought progresses. The C-loading of trees is 599 higher during periods of zero growth, such as the summer cessation of growth in Holm oak forests (Lemepreur et al., 2015), because source activity (photosynthesis) exceeds sink activity 600

601 (growth) (Estiarte and Peñuelas 1999; Körner, 2003; Peñuelas and Estiarte 1998). The

- 602 accumulation of carbohydrates can consequently be an acclimative mechanism, but it may also
- 603 be a passive process indicating the impairment of sink activities at the individual level (Estiarte

and Peñuelas 1999; Peñuelas and Estiarte 1998).

The synthesis of terpenes is typically associated with attacks by folivores and pathogens

- and is one of the main induced defensive chemical mechanisms in plants (Achotegui-Castells et
 al., 2013; Huang et al., 2012; Köpke et al., 2010; Mumm and Hilker, 2006; Pare and Tumlinson,
- 608 1997). L-Forest droughted trees tended to have higher foliar concentrations of caryophyllene
- and α -humulene (Fig. 4), suggesting a higher herbivory pressure in L- than H-Forest trees
- 610 during drought. The synthesis of caryophyllene, an indirect defensive compound that attracts
- 611 predators and parasitoids of the herbivore (Köllner et al., 2008; Rasmann et al., 2005), is
- 612 increased under folivory (Gouinguené et al., 2001; Rivas-Ubach et al., 2016b). Rivas-Ubach et
- al. (2014) suggested that droughted H-Forest *Q. ilex* trees had significantly higher levels of
- 614 folivory associated with the foliar concentrations of carbohydrates and antioxidants due
- 615 drought stress. The higher foliar terpene concentrations in the droughted L-Forest trees found
- 616 in our study, in addition to the increased drought stress, provide clues for the potentially
- higher susceptibility of these trees to herbivory and/or pathogenic stress (Gaylord et al., 2013;
- 618 Rivas-Ubach et al., 2014; Rouault et al., 2006; Desprez-Loustau et al., 2006).
- 619

620 Metabolomics in natural ecosystems.

- 621 This study has demonstrated that metabolomic techniques are excellent tools for identifying 622 metabolic shifts in plants and other organisms under conditions of stress (Sardans et al., 2011; 623 Shulaev et al., 2008). These techniques are sufficiently sensitive to detect small shifts in the 624 metabolomes of plants over seasons (Rivas-Ubach et al., 2012); under experimental drought 625 treatments (Urano et al., 2009) and herbivorous attack (Rivas-Ubach et al., 2016a, 2016b); with 626 salinity (Sanchez et al., 2008), warming (Gargallo-Garriga et al., 2015; Rivas-Ubach et al., 2012), 627 nutrient toxicity (Navascués et al., 2012), and ultraviolet light (Broeckling et al., 2005); and 628 amongst other stressors or environmental gradients (Sardans et al., 2011 and citations 629 therein). Plant metabolomes can vary widely amongst individuals of the same species, even 630 under the same environmental conditions (Gargallo-Garriga et al., 2015, 2014; Rivas-Ubach et 631 al., 2014, 2012), which is indicative of their high plasticity. The metabolomic shifts detected in 632 response to each of the factors in this study (season, treatment, and VS) are likely to have 633 different directions, which prevents a clear clustering of cases from the same groups in the 634 PCA and complicates the interpretation of the results for each of the factors (Figs. 2 and 6). It is
- also clear in the PERMANOVA showing the significance of the VS×treatment interaction

636 suggesting that the effects of the drought treatment vary between VSs (Table 1). The large 637 metabolomic variation between H- and L-Forests in our analyses (see Figs. 2, 3, 4 and 6) 638 compelled us to include VS as another significant independent factor, which is not often 639 included in ecophysiological field studies. The high sensitivity of metabolomics for detecting 640 significant differences of slight metabolic shifts requires an awareness of any environmental 641 factor that could potentially affect the composition of the metabolomes. 642 Our results have thus demonstrated the necessity of identifying and including in 643 metabolomic studies any factor that may produce large metabolomic variation amongst 644 individuals within the same group level of the primary factors studied (seasons and drought 645 treatment in our study). Any uncontrolled and/or unknown environmental factor causing 646 substantial shifts in the metabolomes could lead to inconclusive or even incorrect 647 interpretations of the results for the primary factors. All ecometabolomic studies should thus 648 pay special attention to including any factor in the experimental design that may significantly 649 affect the metabolomes of plants. 650 651 652 Conclusions 653 · The metabolome of Q. ilex trees was highly dependent on the vegetation structure defined by 654 tree size (H-Forest, L-Forest). 655 · The depth rather than the moisture content of the upper soil layers was correlated with 656 vegetation structure, suggesting that shallow soils may not be able to sustain large Q. ilex 657 trees. 658 • The effects of drought on the metabolomes of Q. ilex trees were stronger in trees in 659 shallower soils (L-Forest). The depth of the upper soil layers is thus a potential factor 660 determining the future of tree populations under drought conditions and possible further 661 desertification, especially in Mediterranean ecosystems. 662 · Potassium concentrations were higher in summer, as in other studies, but were not higher in 663 trees growing in shallower soils nor in droughted trees, supporting our hypothesis that the 664 increase in K concentrations is a programmed phenological response of plants to cope with dry 665 seasons. 666 Metabolomics is a very sensitive technique for detecting shifts in metabolomes amongst 667 individuals and for improving our understanding of the relationships of metabolomes with 668 environmental variables. This high sensitivity indicates the necessity of identifying and 669 analysing any component able to strongly affect the metabolomes of individuals within the 670 same group.

671		
672		
673		
674		
675		
676		
677		
678		
679	Acknowledgements	(
680	The authors thank Sara Férez, Gemma Montalban, and Laia Mateu-Castell for their field and	
681	laboratory support. ARU appreciates the financial support of the research fellowship (JAE)	
682	from the CSIC, and AB acknowledges an FPI predoctoral fellowship from the Ministry of	
683	Economy and Competitiveness of Spain. This research was supported by the European	
684	Research Council Synergy grant SyG-2013-610028 IMBALANCE-P, the Spanish Government	
685	projects CGL2013-48074-P and OAPN 022/2008 (PROPINOL), and the Catalan Government	
686	project SGR 2014-274. A portion of the research was performed using EMSL, a DOE Office of	
687	Science User Facility sponsored by the Office of Biological and Environmental Research at the	
688	Pacific Northwest National Laboratory. MO and OU were supported by the grant projects	
689	M200871201 (AS CR), CZ.1.07/2.3.00/20.0246 (MSMT), and LO1415 (MSMT).	
690		
691		
692		
693		
694		
695		
696		
697		
698		
699		
700		
701		
702		
703		
704		
705		

Formatat: Cap

706	
707	
708	
700	
709	
710	
711	
712	
713	
714	Defense list
/14	Reference list
/15	Achotegui-Castells, A., Llusia, J., Hodar, J.A., Penuelas, J., 2013. Needle terpene concentrations
/16	and emissions of two coexisting subspecies of Scots pine attacked by the pine
717	processionary moth (<i>Thaumetopoea pityocampa</i>). Acta Physiol. Plant. 35, 3047–3058.
718	Allen C.D. Breshears, D.D. 1998. Drought-induced shift of a forest-woodland ecotone: Banid
719	landscape response to climate variation. Proc. Natl. Acad. Sci. 95, 14839–14842
715	
720	Allen, C.D., Macalady, A.K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M.,
721	Kitzberger, T., Rigling, A., Breshears, D.D., Hogg, E.H. (Ted), Gonzalez, P., Fensham, R.,
722	Zhang, Z., Castro, J., Demidova, N., Lim, JH., Allard, G., Running, S.W., Semerci, A., Cobb,
723	N. 2010. A global overview of drought and heat-induced tree mortality reveals emerging
724	climate change risks for forests. For. Ecol. Manage. 259, 660–684.
725	Arquero, O., Barranco, D., Benlloch, M., 2006. Potassium Starvation Increases Stomatal
726	Conductance in Olive Trees. HortScience 41, 433–436.
727	
728	Ashraf, M., Ashfaq, M., Ashraf, M.Y., 2002. Effects of Increased Supply of Potassium on Growth
729	and Nutrient Content in Pearl Millet under Water Stress. Biol. Plant. 45, 141–144.
730	
731	Aschmann, H., 1973. Distribution and Peculiarity of Mediterranean Ecosystems. Mediterranean
732	Type Ecosystems 7, 11-19.
733	
734	Babita, M., Maheswari, M., Rao, L.M., Shanker, A.K., Rao, D.G., 2010. Osmotic adjustment,
735	drought tolerance and yield in castor (Ricinus communis L.) hybrids. Environ. Exp. Bot. 69,
736	243–249.
727	Parker VA Juday C.D. Einney P.D. 2000 Reduced growth of Alection white environing the
13/	barber, v.A., Juday, G.P., Filliney, B.P., 2000. Reduced growth of Alaskan white spruce in the
738	twentieth century from temperature-induced drought stress. Nature 405, 668–73.
739	Darbara M. Laisal D. Outral D. 1002 Diagonarrative scalars and history of Madiferration
740	Barbero, IVI., Loisei, K., Quezei, P., 1992. Biogeography, ecology and history of Mediterranean
741	Quercus nex ecosystems. vegetatio 99, 19-34.
742	Parketa A. Orava D. Dañvalas I. 2012. Domanting effects of lang target averaging whet
743	drought on grouth and mortality rates of a Usim and forest. Clab. Chang. Birl 40, 2422
744 775	AA
745 776	44 .
740	

747 748 749 750	Barbeta, A., Mejía-Chang, M., Ogaya, R., Voltas, J., Dawson, T.E., Peñuelas, J., 2015. The combined effects of a long-term experimental drought and an extreme drought on the use of plant-water sources in a Mediterranean forest. Glob. Chang. Biol. 12, 1213-1225.
751 752 753	Bastida, F., Barberá, G.G., García, C., Hernández, T., 2008. Influence of orientation, vegetation and season on soil microbial and biochemical characteristics under semiarid conditions. Appl. Soil Ecol. 38, 62–70.
754 755 756 757	Benlloch-González, M., Romera, J., Cristescu, S., Harren, F., Fournier, J.M., Benlloch, M., 2010. K+ starvation inhibits water-stress-induced stomatal closure via ethylene synthesis in sunflower plants. J. Exp. Bot. 61, 1139–45.
758 759 760 761	Bertram, H.C., Weisbjerg, M.R., Jensen, C.S., Pedersen, M.G., Didion, T., Petersen, B.O., Duus, J.Ø., Larsen, M.K., Nielsen, J.H., 2010. Seasonal changes in the metabolic fingerprint of 21 grass and legume cultivars studied by nuclear magnetic resonance-based metabolomics. J. Agric. Food Chem. 58, 4336–41.
762 763	Bigler, C., Bräker, O.U., Bugmann, H., Dobbertin, M., Rigling, A., 2006. Drought as an Inciting Mortality Factor in Scots Pine Stands of the Valais, Switzerland. Ecosystems 9, 330–343.
764 765 766	Bowman, W.D., Theodose, T.A., Schardt, J.C., Conant, R.T., 1993. Constraints of nutrient availability on primary production in two alpine tundra communities. Ecology 74, 2085- 2097.
767 768 769	Bréda, N., Huc, R., Granier, A., Dreyer, E., 2006. Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann. For. Sci. 63, 625–644.
770 771 772 773	Broeckling, C.D., Huhman, D. V, Farag, M.A., Smith, J.T., May, G.D., Mendes, P., Dixon, R.A., Sumner, L.W., 2005. Metabolic profiling of Medicago truncatula cell cultures reveals the effects of biotic and abiotic elicitors on metabolism. J. Exp. Bot. 56, 323–36.
775 776	Brooks, J.R., Barnard, H.R., Coulombe, R., McDonnell, J.J., 2010. Ecohydrologic separation of water between trees and streams in a Mediterranean climate. Nat. Geosc. 3, 100-104.
777 778	Bundy, J.G., Davey, M.P., Viant, M.R., 2008. Environmental metabolomics: a critical review and future perspectives. Metabolomics 5, 3–21.
779 780 781 782	Cakmak, I., Engels, C., 1999. Role of mineral nutrients in photosynthesis and yield formation, in: Rengel, Z. (Ed.), Mineral Nutrition of Crops: Mechanisms and Implications. The Haworth Press, New York, NY, pp. 141–168.
783 784 785	Caldwell, M.M., Dawson, T.E., Richards, J.H., 1998. Hydraulic lift: consequences of water efflux from the roots of plants. Oecologia 113, 151–161.
786 787 788	Caldwell, M.M., Richards, J.H., 1989. Hydraulic lift: water efflux from upper roots improves effectiveness of water uptake by deep roots. Oecologia 79, 1–5.
789 790	Camarero, J.J., Sangüesa-Barreda, G. and Vergarechea, M. 2015. Prior height, growth, and wood anatomy differently predispose to drought-induced dieback in two Mediterranean

wood anatomy differently predispose to drought-induced dieback in two Mediterranean oak species. Ann. For. Sci.. DOI 10.1007/s13595-015-0523-4.

792	
793	Canadell, J., Jackson, R.B., Ehleringer, J.B., Mooney, H.A., Sala, O.E., Schulze, ED., 1996.
794	Maximum rooting depth of vegetation types at the global scale. Oecologia 108, 583–595.
795	
796	Carnicer, J., Coll, M., Ninyerola, M., Pons, X., Sánchez, G., Peñuelas, J., 2011. Widespread
797	crown condition decline, food web disruption, and amplified tree mortality with
798	increased climate change-type drought. Proc. Natl. Acad. Sci. U. S. A. 108, 1474–8.
799	
800	Carnicer, J., Barbeta, A., Sperlich, D., Coll, M., Peñuelas, J., 2013. Constrasting trait syndromes
801	in angiosperms and conifers are associated with different responses of tree growth to
802	temperature on a large scale. Front. Plant Sci. 4:409.
803	
804	Chepil, W., 1950. Methods of estimating apparent density of discrete soil grains and
805	aggregates. Soil Sci. 70, 351–362.
806	David, T.S., Henriques, M.O., Kurz-Besson, C., Nunes, J., Valente, F., Vaz, M., Pereira, J.S.,
807	Siegwolf, R., Chaves, M.M., Gazarini, L.C., David, J.S., 2007. Water-use strategies in two
808	co-occurring Mediterranean evergreen oaks: surviving the summer drought. Tree Physiol.
809	27, 793–803.
810	Davison, A.C., Hinkley, D. V., Schechtman, E., 1986. Efficient Bootstrap Simulation. Biometrika
811	73, 555.
812	
813	de Mendiburu, F., 2015. Agricolae: Statistical Procedures for Agricultural Research. R package
814	version 1.2-3.
815	
816	Desprez-Loustau, ML., Marçais, B., Nageleisen, LM., Piou, D., Vannini, A., 2006. Interactive
817	effects of drought and pathogens in forest trees. Ann. For. Sci. 63, 597–612.
818	
819	Draths, K.M., Knop, R.D., Frost, J.W., 1999. Shikimic acid and wuinic acid: Replacing isolation
820	from plant sources with recombinant microbial biocatalysis. J. Am. Chem. Soc. 121, 1603-
821	1604.
822	
823 824	Elser, J.J., Dobbertuhl, D.R., Mackay, N.A., Schampel, J.H., 1996. Organism size, life history and N:P stoichiometry. BioScience 46, 674-684.
825	Epstein, H.E., Lauenroth, W.K., Burke, I.C., 1997. Effects of temperature and soil texture on
826	anpp in the u.s. great plains. Ecology 78, 2628–2631.
827	······································
828	Estiarte, M., Peñuelas, J., 1999. Excess carbon: the relationship with phenotypical plasticity in
829	storage and defense functions of plants. Orsis 14, 159-203.
830	Fahrig, L., 2003. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Svst.
831	34, 487–515.
832	Falasca, A., Melck, D., Paris, D., Saviano, G., Motta, A., Iorizzi, M., 2013. Seasonal changes in
833	the metabolic fingerprint of Juniperus communis L. berry extracts by 1H NMR-based

834 metabolomics. Metabolomics 10, 165-174.

835 836 837	Farahani, H.J., Peterson, G.A., Westfall, D.G., Sherrod, L.A., Ahuja, L.R., 1998. Soil Water Storage in Dryland Cropping Systems: The Significance of Cropping Intensification. Soil Sci. Soc. Am. J. 62, 984.
838 839	Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., Basra, S.M.A., 2009. Plant drought stress: effects, mechanisms and management. Agron. Sustain. Dev. 29, 185–212.
840 841 842	Fernandez-Illescas, C.P., Porporato, A., Laio, F., Rodriguez-Iturbe, I., 2001. The ecohydrological role of soil texture in a water-limited ecosystem. Water Resour. Res. 37, 2863–2872.
843 844 845	Fiehn, O., 2002. Metabolomics - the link between genotypes and phenotypes. Plant Mol. Biol. 48, 155–171.
846 847	Fierer, N., Schimel, J.P., Holden, P.A., 2003. Variations in microbial community composition through two soil depth profiles. Soil Biol. Biochem. 35, 167–176.
848 849 850	Filella, I., Llusià, J., Piñol, J., Peñuelas, J., 1998. Leaf gas exchange and fluorescence of <i>Phillyrea</i> <i>latifolia</i> , <i>Pistacia lentiscus</i> and <i>Quercus ilex</i> saplings in severe drought and high temperature conditions. Environ. Exp. Bot. 39, 213–220.
851 852	Fox, J., Nie, Z., Byrnes, J., 2015. SEM: Structural Equation Models. R Package. version 3.1-6.
853 854	Fox, J., Weisberg, S., 2011. An {R} Companion to Applied Regression. R package.
855 856 857	Fuhlendorf, S.D., Smeins, F.E., 1998. The influence of soil depth on plant species response to grazing within a semi-arid savanna. Plant Ecol. 138, 89–96.
858 859 860 861	Galiano, L., Martínez-Vilalta, J., Lloret, F., 2010. Drought-Induced Multifactor Decline of Scots Pine in the Pyrenees and Potential Vegetation Change by the Expansion of Co-occurring Oak Species. Ecosystems 13, 978–991.
862 863 864	Galiano, L., Martínez-Vilalta, J., Lloret, F., 2011. Carbon reserves and canopy defoliation determine the recovery of Scots pine 4 yr after a drought episode. New Phytol. 190, 750–9
865 866 867 868	Galiano, L., Martínez-Vilalta, J., Sabaté, S., Lloret, F., 2012. Determinants of drought effects on crown condition and their relationship with depletion of carbon reserves in a Mediterranean holm oak forest. Tree Physiol. 32, 478–89.
869 870 871	Gallardo, A., Rodríguez-Saucedo, J.J., Covelo, F., Fernández-Alés, R., 2000. Soil nitrogen heterogeneity in a Dehesa ecosystem. Plant Soil 222, 71–82.
872 873 874 875	Garcia, C., Hernandez, T., Roldan, A., Martin, A., 2002. Effect of plant cover decline on chemical and microbiological parameters under Mediterranean climate. Soil Biol. Biochem. 34, 635–642.
876 877 878 879	Garcia-Estringana, P., Alonso-Blázquez, N., Marques, M.J., Bienes, R., Alegre, J., 2010. Direct and indirect effects of Mediterranean vegetation on runoff and soil loss. Eur. J. Soil Sci. 61, 174–185.
880 881	Gargallo-Garriga, A., Sardans, J., Pérez-Trujillo, M., Oravec, M., Urban, O., Jentsch, A., Kreyling, J., Beierkuhnlein, C., Parella, T., Peñuelas, J., 2015. Warming differentially influences the

882 883	effects of drought on stoichiometry and metabolomics in shoots and roots. New Phytol. 207, 591–603.	
884 885 886 887 888	Gargallo-Garriga, A., Sardans, J., Pérez-Trujillo, M., Rivas-Ubach, A., Oravec, M., Vecerova, K., Urban, O., Jentsch, A., Kreyling, J., Beierkuhnlein, C., 2014. Opposite metabolic responses of shoots and roots to drought. Sci. Rep. 4.	
889 890 891 892	Gaylord, M.L., Kolb, T.E., Pockman, W.T., Plaut, J.A., Yepez, E.A., Macalady, A.K., Pangle, R.E., McDowell, N.G., 2013. Drought predisposes piñon-juniper woodlands to insect attacks and mortality. New Phytol. 198, 567–78.	
893 894 895	Goberna, M., Sánchez, J., Pascual, J.A., García, C., 2007. Pinus halepensis Mill. plantations did not restore organic carbon, microbial biomass and activity levels in a semi-arid Mediterranean soil. Appl. Soil Ecol. 36, 107–115.	
896 897 898	Gouinguené, S., Degen, T., Turlings, T.C.J., 2001. Variability in herbivore-induced odour emissions among maize cultivars and their wild ancestors (teosinte). Chemoecology 11, 9–16.	
899 900 901	Gray, A.N., Spies, T.A., 1995. Water content measurement in forest soils and decayed wood using time domain reflectometry. Can. J. For. Res. 25, 376–385.	
902 903 904 905	Griesser, M., Weingart, G., Schoedl-Hummel, K., Neumann, N., Becker, M., Varmuza, K., Liebner, F., Schuhmacher, R., Forneck, A., 2015. Severe drought stress is affecting selected primary metabolites, polyphenols, and volatile metabolites in grapevine leaves (<i>Vitis vinifera</i> cv. <i>Pinot noir</i>). Plant Physiol. Biochem. 88, 17–26.	
906 907 908	Hanson, P.J., Weltzin, J.F., 2000. Drought disturbance from climate change: response of United States forests. Sci. Total Environ. 262, 205–220.	
909 910 911	Harborne, J.B., 1988. <i>The Flavonoids: Advances in Research Since 1986,</i> Chapman & Hall, New York, pp 23–54.	
912 913 914	Harrison, R.D., 2001. Drought and the consequences of El Niño in Borneo: a case study of figs. Popul. Ecol. 43, 63–75.	
915 916	Harvey, H.P., van den Driessche, R., 1999. Nitrogen and potassium effects on xylem cavitation and water-use efficiency in poplars. Tree Physiol. 19, 943–950.	
917 918 919 920	Huang, M., Sanchez-Moreiras, A.M., Abel, C., Sohrabi, R., Lee, S., Gershenzon, J., Tholl, D., 2012. The major volatile organic compound emitted from <i>Arabidopsis thaliana</i> flowers, the sesquiterpene (E)-β-caryophyllene, is a defense against a bacterial pathogen. New Phytol. 193, 997–1008.	
922 923 924 925 926	Huxman, T.E., Smith, M.D., Fay, P.A., Knapp, A.K., Shaw, M.R., Loik, M.E., Smith, S.D., Tissue, D.T., Zak, J.C., Weltzin, J.F., Pockman, W.T., Sala, O.E., Haddad, B.M., Harte, J., Koch, G.W., Schwinning, S., Small, E.E., Williams, D.G., 2004. Convergence across biomes to a common rain-use efficiency. Nature 429, 651–4.	
920 927 928	Ingram, J., Bartels, D., 1996. The molecular basis of dehydration tolerance in plants. Annu. Rev. Plant Biol. 47, 377–403.	

929	
930	IPCC. 2007. Core Writing Team, Pachauri RK, Reisinger A. Fourth Assessment Report: Climate
931	change 2007 (AR4) Contribution of Working Groups I, II and III to the Fourth Assessment
932	Report of the Intergovernmental Panel on Climate Change, Geneva, Switzerland; IPCC.
933	······································
222	Johnson F.G. Jackson P.B. 2000 The Vertical Distribution of Soil Organic Carbon and Its
934 025	Jobbagy, L.G., Jackson, K.B., 2000. The vertical Distribution of Son Organic Carbon and its
935	Relation to Climate and Vegetation. Ecol. Appl. 10, 423.
936	
937	Johnson-Maynard, J., Graham, R., Wu, L., Shouse, P., 2002. Modification of soil structural and
938	hydraulic properties after 50 years of imposed chaparral and pine vegetation. Geoderma
939	110, 227–240.
940	
941	Kinnell, P.I.A., Cummings, D., 1993. Soil/slope gradient interactions in erosion by rain-impacted
942	flow. Trans. ASAE. 36. 381-387.
943	
910	Knann A.K. Smith M.D. 2001 Variation among biomes in temporal dynamics of above ground
045	primary production. Science 201, 491, 4
945	primary production. Science 291, 481–4.
046	Källeer T.C. Hald M. Leel, C. Hiltradd I. Turlings T.C.I. Combannes, I. Deserbandt I.
946	Koliner, T.G., Heid, M., Lenk, C., Hiltpold, I., Turlings, T.C.J., Gersnenzon, J., Degennardt, J.,
947	2008. A maize (E)-beta-caryophyllene synthase implicated in indirect defense responses
948	against herbivores is not expressed in most American maize varieties. Plant Cell 20, 482–
949	94.
950	
951	Köpke, D., Beyaert, I., Gershenzon, J., Hilker, M., Schmidt, A., 2010. Species-specific responses
952	of pine sesquiterpene synthases to sawfly oviposition. Phytochemistry 71, 909–17.
953	Köpke, D., Beyaert, I., Gershenzon, J., Hilker, M., Schmidt, A., 2010. Species-specific responses
954	of pine sesquiterpene synthases to sawfly oviposition. Phytochemistry 71, 909–17.
955	
956	Körner, C. 2003. Carbon limitation in trees. J. of Ecol. 91. 4–17.
	, , , , , , , , , , , , , , , , , , , ,
957	Kuske, C.R., Ticknor, L.O., Busch, I.D., Gehring, C.A., Whitham, T.G., 2003. The pinyon
958	rhizosphere plant stress and herhivory affect the abundance of microhial decomposers
050	in colls Microb Ecol 45, 240–52
939	III SOIIS. IMICIOD. LCOI. 43, 340–32.
960	Le Cao, L-A., Gonzalez, L., Deiean, S., 2015, mixOmics: Omics Data Integration Project, R
061	nockage version 5.2.0
901	package version 5.2.0.
962	
963	Lee, D.Y., Fiehn, O., 2013. Metabolomic response of <i>Chlamydomonas reinhardtii</i> to the
964	inhibition of target of rapamycin (TOR) by rapamycin. J. Microbiol. Biotechnol. 23, 923–
965	31.
966	
967	Leiss, K.A., Cristofori, G., van Steenis, R., Verpoorte, R., Klinkhamer, P.G.L., 2013. An eco-
968	metabolomic study of host plant resistance to Western flower thrips in cultivated,
969	biofortified and wild carrots. Phytochemistry 93. 63–70.
970	
971	Lempereur, M. Martin-StPaul, N.K. Damesin, C. Joffre, R. Ourcival I.M. Rocheteau, A
972	Rambal S 2015 Growth duration is a batter predictor of stem increment than carbon
072	supply in a Modiferranean oak forest implications for accessing forest and utility and a
973	supply in a mediterranean oak forest; implications for assessing forest productivity under
974	climate change. New Phytol. 207, 579-590.

975 976 977	Leprince, O., Hendry, G.A.F., McKersie, B.D., 1993. The mechanisms of desiccation tolerance in developing seeds. Seed Sci. Res. 3, 231–246.
978	Levi, A., Paterson, A.H., Cakmak, I., Saranga, Y., 2011. Metabolite and mineral analyses of
979 980	cotton near-isogenic lines introgressed with QTLs for productivity and drought-related traits. Physiol. Plant. 141, 265–75.
981 982	Lloret, F., Siscart, D., Dalmases, C., 2004. Canopy recovery after drought dieback in holm-oak Mediterranean forests of Catalonia (NE Spain). Glob. Chang. Biol. 10, 2092–2099.
983 984 985	Lloret, F., Escudero, A., Iriondo, J.M., Martínez-Vilalta, J., Valladares, F., 2012. Extreme climatic events and vegetation: the role of stabilizing processes. Glob. Chang. Biol. 18, 797-805.
986 987	Mari, A., Lyon, D., Fragner, L., Montoro, P., Piacente, S., Wienkoop, S., Egelhofer, V.,
988 989 990	Weckwerth, W., 2013. Phytochemical composition of <i>Potentilla anserina</i> L. analyzed by an integrative GC-MS and LC-MS metabolomics platform. Metabolomics 9, 599–607.
991 992 993 994	McDowell, N., Pockman, W.T., Allen, C.D., Breshears, D.D., Cobb, N., Kolb, T., Plaut, J., Sperry, J., West, A., Williams, D.G., Yepez, E.A., 2008. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol. 178, 719–39.
995 996 997 998	Milla, R., Castro-Díez, P., Maestro-Martínez, M., Montserrat-Martí, G., 2005. Relationships between phenology and the remobilization of nitrogen, phosphorus and potassium in branches of eight Mediterranean evergreens. New Phytol. 168, 167–78.
999 1000	Montheith, J., 1981. Soil Water and Nitrogen in Mediterranean-type Environments. London.
1001 1002 1003 1004	Mueller, R.C., Scudder, C.M., Porter, M.E., Talbot Trotter, R., Gehring, C.A., Whitham, T.G., 2005. Differential tree mortality in response to severe drought: evidence for long-term vegetation shifts. J. Ecol. 93, 1085–1093.
1005 1006	Mumm, R., Hilker, M., 2006. Direct and indirect chemical defence of pine against folivorous insects. Trends Plant Sci. 11, 351–8.
1007 1008 1009 1010	Nandwal, A.S., Hooda, A., Datta, D., 1998. Effect of Substrate Moisture and Potassium on Water Relations and C, N and K Distribution in Vigna Radiata. Biol. Plant. 41, 149–153.
1011 1012	Nardini, A., Salleo, S., Gullo, M.A. Lo, Pitt, F., 2000. Different responses to drought and freeze stress of <i>Quercus ilex</i> L. growing along a latitudinal gradient. Plant Ecol. 148, 139–147.
1013 1014 1015	Navascués, J., Pérez-Rontomé, C., Sánchez, D.H., Staudinger, C., Wienkoop, S., Rellán-Álvarez, R., Becana, M., 2012. Oxidative stress is a consequence, not a cause, of aluminum toxicity in the forage legume <i>Latus corniculatus</i> . New Phytol. 193, 625–36
1015 1016 1017	Nenstad D.C. de Carvalho, C.R. Davidson, F.A. Jinn, P.H. Lefebyre, P.A. Negreiros, G.H. da
1018	Silva, E.D., Stone, T.A., Trumbore, S.E., Vieira, S., 1994. The role of deep roots in the
1019	hydrological and carbon cycles of Amazonian forests and pastures. Nature 372, 666–669.
1020 1021	Ogaya, R., Peñuelas, J., 2003. Comparative field study of <i>Quercus ilex</i> and <i>Phillyrea latifolia</i> : photosynthetic response to experimental drought conditions. Environ. Exp. Bot. 50, 137–

1022	148.

1023 1024 1025	Ogaya, R., Peñuelas, J., 2006. Tree growth, mortality, and above-ground biomass accumulation in a holm oak forest under a five-year experimental field drought. Plant Ecol. 189, 291– 299.
1026 1027 1028 1029	Ogaya, R., Peñuelas, J., Martínez-Vilalta, J., Mangirón, M., 2003. Effect of drought on diameter increment of <i>Quercus ilex</i> , <i>Phillyrea latifolia</i> , and <i>Arbutus unedo</i> in a holm oak forest of NE Spain. For. Ecol. Manage. 180, 175–184.
1030 1031 1032	Oksanen, J., Guillaume-Blanchet, F., Kindt, R., Legendre, P., Minchin, P., O'Hara, R., Simpson, G., Solymos, P., Stevens, M., Wagner, H., 2013. vegan: Community Ecology Package.
1033 1034 1035	Orwig, D.A., Abrams, M.D., 1997. Variation in radial growth responses to drought among species, site, and canopy strata. Trees 11, 474.
1036 1037 1038	Pare, P.W., Tumlinson, J.H., 1997. De Novo Biosynthesis of Volatiles Induced by Insect Herbivory in Cotton Plants. Plant Physiol. 114, 1161–1167.
1039 1040 1041	Peñuelas, J., Esitarte., 1998. Can elevated CO2 affect secondary metabolism and ecosystem function? Trends. Ecol. Evol. 13, 20-24.
1041 1042 1043 1044	Peñuelas, J., Filella, I., 2003. Deuterium labelling of roots provides evidence of deep water access and hydraulic lift by <i>Pinus nigra</i> in a Mediterranean forest of NE Spain. Environ. Exp. Bot. 49, 201–208.
1045 1046	Peñuelas, J., Filella, I., Lloret, F., Piñol, J., Siscart, D., 2000. Effects of a Severe Drought on Water and Nitrogen Use by <i>Quercus ilex</i> and <i>Phyllyrea latifolia</i> . Biol. Plant. 43, 47–53.
1047 1048	Peñuelas, J., Sardans, J., 2009. Ecological metabolomics. Chem. Ecol. 25, 305–309.
1049 1050 1051	Pluskal, T., Castillo, S., Villar-Briones, A., Orešič, M., 2010. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 11, 395.
1052 1053	Poorter, L., 1999. Growth responses of 15 rain-forest tree species to a light gradient: the relative importance of morphological and physiological traits. Funct. Ecol. 13, 396–410.
1054 1055 1056 1057	Porcel, R., Ruiz-Lozano, J.M., 2004. Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. J. Exp. Bot. 55, 1743–50.
1059 1059 1060 1061	Poyatos, R., Aguadé, D., Galiano, L., Mencuccini, M., Martínez-Vilalta, J., 2013. Drought- induced defoliation and long periods of near-zero gas exchange play a key role in accentuating metabolic decline of Scots pine. New Phytol. 200, 388–401.
1062 1063 1064	Pregitzer, K.S., Laskowski, M.J., Burton, A.J., Lessard, V.C., Zak, D.R., 1998. Variation in sugar maple root respiration with root diameter and soil depth. Tree Physiol. 18, 665–670.
1065 1066 1067	Prieto, I., Armas, C., Pugnaire, F.I., 2012. Water release through plant roots: new insights into its consequences at the plant and ecosystem level. New Phytol. 193, 830–41.

1068 R Core Team, 2013. R: A language and environment for statistical computing.

1069 1070 1071	Rasmann, S., Köllner, T.G., Degenhardt, J., Hiltpold, I., Toepfer, S., Kuhlmann, U., Gershenzon, J., Turlings, T.C.J., 2005. Recruitment of entomopathogenic nematodes by insect- damaged maize roots. Nature 434, 732–7.
1072 1073	Rebetez, M., Dobbertin, M., 2004. Climate change may already threaten Scots pine stands in the Swiss Alps. Theor. Appl. Climatol. 79, 1–9.
1074 1075 1076 1077	Reddy, A.R., Chaitanya, K.V., Vivekanandan, M., 2004. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J. Plant Physiol. 161, 1189–1202.
1078 1079	Rice-Evans, C., Miller, N., Paganga, G., 1997. Antioxidant properties of phenolic compounds. Trends Plant Sci. 2, 152–159.
1080 1081 1082 1083	Rivas-Ubach, A., Gargallo-Garriga, A., Sardans, J., Oravec, M., Mateu-Castell, L., Pérez-Trujillo, M., Parella, T., Ogaya, R., Urban, O., Peñuelas, J., 2014. Drought enhances folivory by shifting foliar metabolomes in <i>Quercus ilex</i> trees. New Phytol. 202, 874–885.
1084 1085 1086	Rivas-Ubach, A., Pérez-Trujillo, M., Sardans, J., Gargallo-Garriga, A., Parella, T., Peñuelas, J., 2013. Ecometabolomics: optimized NMR-based method. Methods Ecol. Evol. 4, 464–473.
1087 1088 1089 1090 1091	Rivas-Ubach, A., Hódar, J.A., Sardans, J., Kyle, J., Kim, Y-M., Oravec, M., Urban, O., Guenther, A., Peñuelas, J., 2016a. Are the metabolomic responses to folivory of closely related plant species linked to macroevolutionary and plant-folivory coevolutionary processes? Ecol. Evol. Doi: 10.1002/ece3.2206
1092 1093 1094 1095 1096	Rivas-Ubach, A., Sardans, J., Hódar J.A., Garcia-Porta, J., Guenther, A., Oravec, M., Urban, O., Peñuelas, J., 2016b. Similar local but different systemic metabolomic responses of closely related pine subspecies to folivory by caterpillars of the processionary moth. Plant Biol. 18, 484-494.
1097 1098 1099 1100	Rivas-Ubach, A., Sardans, J., Pérez-Trujillo, M., Estiarte, M., Peñuelas, J., 2012. Strong relationship between elemental stoichiometry and metabolome in plants. Proc. Natl. Acad. Sci. 109, 4181–4186.
1101 1102 1103	Rosenzweig, M.L., 1968. Net Primary Productivity of Terrestrial Communities: Prediction from Climatological Data. Am. Nat. 102, 67.
1104 1105 1106 1107	Rouault, G., Candau, JN., Lieutier, F., Nageleisen, LM., Martin, JC., Warzée, N., 2006. Effects of drought and heat on forest insect populations in relation to the 2003 drought in Western Europe. Ann. For. Sci. 63, 613–624.
1108 1109 1110 1111	Ruiz-Sinoga, J.D., Gabarrón Galeote, M.A., Martinez Murillo, J.F., Garcia Marín, R., 2011. Vegetation strategies for soil water consumption along a pluviometric gradient in southern Spain. CATENA 84, 12–20.
1112 1113 1114	Sadaka, N., Ponge, J.F., 2003. Climatic effects on soil trophic networks and the resulting humus profiles in holm oak (<i>Quercus rotundifolia</i>) forests in the High Atlas of Morocco as revealed by correspondence analysis. Eur. J. Soil Sci. 54, 767–777.

1115 1116 1117	 Sala, A., Tenhunen, J.D., 1996. Simulations of canopy net photosynthesis and transpiration in <i>Quercus ilex</i> L. under the influence of seasonal drought. Agric. For. Meteorol. 78, 203–222.
1118 1119 1120	Sala, O.E., Parton, W.J., Joyce, L.A., Lauenroth, W.K., 1988. Primary Production of the Central Grassland Region of the United States. Ecology 69, 40-45.
1121 1122 1123 1124	Sanchez, D.H., Siahpoosh, M.R., Roessner, U., Udvardi, M., Kopka, J., 2008. Plant metabolomics reveals conserved and divergent metabolic responses to salinity. Physiol. Plant. 132, 209– 19.
1125 1126 1127 1128	Sardans, J., Montes, F., Peñuelas, J., 2010. Determination of As, Cd, Cu, Hg and Pb in biological samples by modern electrothermal atomic absorption spectrometry. Spectrochim. Acta Part B At. Spectrosc. 65, 97–112.
1129 1130 1131	Sardans, J., Peñuelas, J., 2014. Hydraulic redistribution by plants and nutrient stoichiometry: Shifts under global change. Ecohydrology 7, 1–20.
1132 1133 1134	Sardans, J., Peñuelas, J., 2015. Potassium: a neglected nutrient in global change. Glob. Ecol. Biogeogr. 24, 261-275.
1135 1135 1136 1137 1138	Sardans, J., Peñuelas, J., Coll, M., Vayreda, J., Rivas-Ubach, A., 2012a. Stoichiometry of potassium is largely determined by water availability and growth in Catalonian forests. Funct. Ecol. 26, 1077–1089.
1139 1140	Sardans, J., Peñuelas, J., Rivas-Ubach, A., 2011. Ecological metabolomics: overview of current developments and future challenges. Chemoecology 21, 191–225.
1141 1142 1143 1144	Sardans, J., Rivas-Ubach, A., Peñuelas, J., 2012c. The C:N:P stoichiometry of organisms and ecosystems in a changing world: A review and perspectives. Perspect. Plant Ecol. Evol. Syst. 14, 33–47.
1145 1146 1147 1148	Sardans, J., Rivas-Ubach, A., Peñuelas, J., 2012b. The elemental stoichiometry of aquatic and terrestrial ecosystems and its relationships with organismic lifestyle and ecosystem structure and function: a review and perspectives. Biogeochemistry 111, 1–39.
1149 1150 1151 1152	Schulze, ED., Mooney, H.A., Sala, O.E., Jobbagy, E., Buchmann, N., Bauer, G., Canadell, J., Jackson, R.B., Loreti, J., Oesterheld, M., Ehleringer, J.R., 1996. Rooting depth, water availability, and vegetation cover along an aridity gradient in Patagonia. Oecologia 108, 503–511.
1153 1154 1155	Schwinning, S., Sala, O.E., Loik, M.E., Ehleringer, J.R., 2004. Thresholds, memory, and seasonality: understanding pulse dynamics in arid/semi-arid ecosystems. Oecologia 141, 191–3.
1156 1157	Shulaev, V., Cortes, D., Miller, G., Mittler, R., 2008. Metabolomics for plant stress response. Physiol. Plant. 132, 199–208.
1158 1159	Su, H., Golldack, D., Katsuhara, M., Zhao, C., Bohnert, H.J., 2001. Expression and stress- dependent induction of potassium channel transcripts in the common ice plant. Plant

- 1160 Physiol. 125, 604–14.
- Sun, C., Gao, X., Fu, J., Zhou, J., Wu, X., 2014. Metabolic response of maize (*Zea mays* L.) plants
 to combined drought and salt stress. Plant Soil 388, 99–117.
- 1163Szabados, L., Savouré, A., 2010. Proline: a multifunctional amino acid. Trends Plant Sci. 15, 89–116497.
- t'Kindt, R., De Veylder, L., Storme, M., Deforce, D., Van Bocxlaer, J., 2008. LC-MS metabolic
 profiling of *Arabidopsis thaliana* plant leaves and cell cultures: optimization of pre-LC-MS
 procedure parameters. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 871, 37–43.
- Talbott, L.D., Zeiger, E., 1996. Central Roles for Potassium and Sucrose in Guard-Cell
 Osmoregulation. Plant Physiol. 111, 1051–1057.
- Tymms, M.J., Gaff, D.F., 1979. Proline Accumulation during Water Stress in Resurrection Plants.
 J. Exp. Bot. 30, 165–168.
- 1173 Urano, K., Maruyama, K., Ogata, Y., Morishita, Y., Takeda, M., Sakurai, N., Suzuki, H., Saito, K.,
 1174 Shibata, D., Kobayashi, M., Yamaguchi-Shinozaki, K., Shinozaki, K., 2009. Characterization
 1175 of the ABA-regulated global responses to dehydration in Arabidopsis by metabolomics.
 1176 Plant J. 57, 1065–78.
- 1178 Voltas, J., Lucabaugh, D., Chambel, M.R., Ferrio, J.P., 2015. Intraspecific variation in the use of
 1179 water sources by the circum-Mediterranean conifer *Pinus halepensis*. 208, 1031-1041.
- 1181 Wan, C., Xu, W., Sosebee, R.E., Machado, S., Archer, T., 2000. Hydraulic lift in drought-tolerant
 and -susceptible maize hybrids. Plant Soil 219, 117–126.
- 1183 Wang, W., Vinocur, B., Altman, A., 2003. Plant responses to drought, salinity and extreme
 1184 temperatures: towards genetic engineering for stress tolerance. Planta 218, 1–14.
 1185
- Waraich, E.A., Ahmad, R., Ashraf, M., 2011. Role of Mineral Nutrition in Alleviation of Drought
 Stress in Plants. Aust. J. Crop Sci. 5, 764.
- 1188 Wardle, D.A., Bardgett, R.D., Klironomos, J.N., Setälä, H., van der Putten, W.H., Wall, D.H.,
 1189 2004. Ecological linkages between aboveground and belowground biota. Science 304,
 1190 1629–33.
- Warnes, G.R., Bolker, B., Bonebakker, L., Gentleman, R., Huber W., Liaw, A., Lumley, T.,
 Maechler, M., Magnusson, A., Moeller, S., Schwartz, M., Venables, B., 2015.
 gplots: Various R Programming Tools for Plotting Data. R package version 2.17.0.
- Yamada, M., Morishita, H., Urano, K., Shiozaki, N., Yamaguchi-Shinozaki, K., Shinozaki, K.,
 Yoshiba, Y., 2005. Effects of free proline accumulation in petunias under drought stress. J.
 Exp. Bot. 56, 1975–81.
- 1199 Zegelin, S.J., White, I., Jenkins, D.R., 1989. Improved field probes for soil water content and
 1200 electrical conductivity measurement using time domain reflectometry. Water Resour.
 1201 Res. 25, 2367–2376.
- 1202

1172

1177

1203	Zhang, JY., Cruz DE Carvalho, M.H., Torres-Jerez, I., Kang, Y., Allen, S.N., Huhman, D. V, Tang,
1204	Y., Murray, J., Sumner, L.W., Udvardi, M.K., 2014. Global reprogramming of transcription
1205	and metabolism in Medicago truncatula during progressive drought and after rewatering.
1206	Plant. Cell Environ. 37, 2553–76.
1207	
1208	
1200	
1209	
1210	
1211	
1212	
1712	
1215	
1214	Table 1. Full factorial PERMANOVA model (excluding the triple interaction) of the complete
1215	metabolomic and stoichiometric data set: season, vegetation structure (VS), drought
1216	treatment, season $\times VS$, season $\times drought$ treatment, and VS $\times drought$ treatment. Bold type
1217	indicate significant effects.

	Degrees				
	of	Sum of	Mean of		
	freedom	squares	squares	Pseudo-F	Ρ
Season	3	4.06	1.35	31.0	0.00001
Vegetation structure (VS)	1	0.14	0.14	3.31	0.044
Drought treatment	1	0.17	0.17	3.98	0.025
Season×VS	3	0.12	0.04	0.90	0.47
Season×Treatment	3	0.17	0.06	1.33	0.24
VS×Treatment	1	0.40	0.40	9.07	0.0005
Residuals	147	6.40	0.04	0.56	
Total	159	11.5	1.00		

1224	
1225	
1226	
1227	
1228	
1229	
1230	
1231	
1232	
1233	
1234	
1235	Table 2. Correlation coefficients (R^2) and the corresponding P values for the total, direct, and
1236	indirect effects of the simplified structural equation model (SEM) with tree diameter (D50),
1237	moisture content of the upper soil, and metabolomic variation (PC2) as endogenous variables
1238	and drought treatment, moisture content of the upper soil, depth of the upper soil layers
1239	(DUSL), and D50 as exogenous variables. The model is described in Figure 5.

TOTAL EFFE	CTS			
	Drought treatment	Upper soil moisture	DUSL	D50
D50	0.39 (<i>P</i> < 0.001)		0.64 (<i>P</i> < 0.001)	
Upper soil moisture	0.19 (<i>P</i> < 0.001)			
PC2	0.25 (<i>P</i> < 0.001)	0.24 (<i>P</i> < 0.001)	0.34 (<i>P</i> < 0.001)	0.53 (<i>P</i> < 0.001)
DIRECT EFFE	CTS			
	Drought treatment	Upper soil moisture	DUSL	D50
D50	0.39 (<i>P</i> < 0.001)		0.64 (<i>P</i> < 0.001)	
Upper soil moisture	0.19 (<i>P</i> < 0.001)			
PC2		0.24 (<i>P</i> < 0.001)		0.53 (<i>P</i> < 0.001)
INDIRECT EF	FECTS			
	Drought treatment	Upper soil moisture	DUSL	D50

	D50			
	Upper soil moisture			
	PC2	0.25 (<i>P</i> < 0.001)	0.34 (<i>P</i> < 0.001)	
1241	-			
1242				
1243				

1247 Figure Captions.

12481249Figure 1. Box plots indicating the medians and distributions of a) seasonal precipitation (mm)1250for 1999-2009 and b) seasonal soil moisture (v/v.) in the upper soil layers for each control and1251drought plot from H-Forest and L-Forest for 2004-2009. Black and white circles indicate the1252medians for the control and drought plots, respectively. H- and L-Forest boxes are white and1253grey, respectively. Different letters denote statistical differences after Tukey's post-hoc tests (P1254< 0.05).</td>1255

1263	
1264	
1265	
1266	
1267	
1268	
1269	
1270	
1271	
1272	
1273	
1274	
1275	Figure 2. Principal component (PC) 1 vs. PC2 of the principal component analysis (PCA) of the
1276	metabolomic and stoichiometric variables over four seasons for the leaves of Q. ilex. (a)
1277	Carbon (C), nitrogen (N), phosphorus (P), and potassium (K) ratios are shown in red.
1278	Metabolomic families are indicated by different colours: blue, sugars; green, amino acids;
1279	cyan, nucleotides; orange, organic acids of the tricarboxylic acid cycle; yellow, phenolics; dark
1280	red, other metabolites; violet, terpenes. Unassigned metabolomic variables are not
1281	represented in the graph. Metabolite abbreviations: Disacch (disaccharides), Hex (hexoses),
1282	Pent (pentoses), Ala (alanine), Arg (arginine), Asp (aspartic acid), Glu (glutamic acid), Leu
1283	(leucine), Phe (phenylalanine), Pro (proline), Trp (tryptophan), Tyr (tyrosine), Val (valine), Cit.ac
1284	(citric acid), Mal.ac (malic acid), Succ.ac (succinic acid), Pyr (pyruvate), Lac.ac (lactic acid), Cat
1285	(catechin), Chlo.ac (chlorogenic acid), Hom (homoorientin), Epi (epicatechin), Epigallo
1286	(epigallocatechin), Gall.ac (gallic acid), Kaemp (kaempferol), Lut (luteolin), Rham (rhamnetin),
1287	aHum (α -humulene), Cary (caryophyllene), Quer (quercetin), Qui.ac (quinic acid), and Pyrid
1288	(pyridoxine). (b) Case plot representing the cases by season (blue for winter, green for spring,
1289	red for summer, and orange for autumn). The coloured arrows indicate the means for PC1 of
1290	the corresponding season. (c) Case plot representing the cases by vegetation structure and
1291	experimental drought treatment. Black arrows indicate the means for the PC1 and PC2 of the
1292	corresponding vegetation structure (L-Forest or H-Forest). The coloured arrows indicate the
1293	means for PC1 and PC2 of the corresponding treatment (control or drought) in each vegetation
1294	structure. Different letters by the arrows indicate significant differences between seasons,
1295	vegetation structures, or experimental treatments ($P < 0.05$).
1296	

- 1311 Figure 3. Metabolomic distance (based on Euclidian distances) for each season of the paired
- 1312 groups of samples H-Forest-Control vs H-Forest-Drought (HFC vs HFC, squares), L-Forest-
- 1313 Control vs L-Forest-Drought (LFC vs LFD, circles), and H-Forest-Control vs L-Forest-Control (HFC
- 1314 vs LFC, triangles). Different letters denote statistical significance amongst all distances after
- 1315 Tukey's post-hoc tests (P<0.05).

Formatat: Centrada

- Figure 4. Bi-plots of component 2 vs. component 1 of the partial least squares discriminant 1334
- analysis of the metabolomic and stoichiometric variables for the leaves of Q. Ilex for (a) winter, 1335
- (b) spring, (c) summer, and (d) autumn. The variables in the plots are the same as in Figure 2 1336
- 1337 and have the same codes. The areas of distribution of the cases are coloured by vegetation
- 1338 structure and experimental treatment: light green for H-forest controls, dark green for H-
- Forest droughted trees, orange for L-Forest controls, and red for L-Forest droughted trees. The 1339
- original representations of the cases are shown in Figure A.3. 1340
- 1341

- 1347 Figure 5. Simplified structural equation model including the moisture content of the upper soil,
- 1348 tree diameter (D50), and metabolomic variation (PC2) as endogenous variables and depth of
- 1349 the upper soil layers (DUSL) and experimental drought treatment as exogenous variables. The
- 1350 model coefficient (R^2) and the corresponding *P* value for each relationship are shown between
- 1351 the variables. Total, direct, and indirect effects are shown in Table 2.

- Figure 6. P values of factorial ANOVAs for each known variable with season and vegetation 1367 1368 structure (VS) as categorical factors (a). Significant and marginally significant P values are shown in red and blue, respectively. Heat map (hierarchical variable relationship) of the known 1369 1370 variables for each season (winter, spring, summer, and autumn) and vegetation structure (H-1371 Forest (H-F) and L-Forest (L-F)) (b). The colours represent the relative metabolite concentration 1372 amongst each of the groups. Red represents the highest concentration, and greater colour 1373 differences for each variable indicate larger differences amongst the groups. Different letters 1374 indicate statistically significance after HSD post-hoc test (P < 0.05).
- 1375

-				6		Rela	tive con	centrati	on			
a				D								
		P values				0		· · · ·	ighest			
	Facto	rial ANC	VAs			U			ignest			
			Season	Wi	nter	Sp	ring	Sum	mer	Auto	umn	
	Season	VS	× VS	H-F	L-F	H-F	L-F	H-F	L-F	H-F	L-F	
Tyrosine	0.0000	0.0005	0.0077	bcd	bc	d	cd	b	а	bcd	bcd	-
Pyridoxine	0.0028	0.0000	0.0203	С	ab	с	bc	bc	а	с	а	
Tryptophan	0.0000	0.1830	0.6750	а	а	b	b	b	b	b	b	
a-Humulene	0.0221	0.0000	0.0477	а	bc	ab	С	bc	С	abc	с	n hh
Arginine	0.3949	0.0000	0.0817	а	е	ab	bcde	abcd	cde	abc	de	
Valine	0.0000	0.0000	0.0264	а	b	а	а	b	b	b	b	
Adenine	0.3680	0.6130	0.0540									-h []
Glutamic ac.	0.0000	0.3441	0.0147	bc	С	ab	а	bc	с	bc	ab	- Ľ
Aspartic ac.	0.0000	0.0058	0.0598	bc	bc	b	а	с	с	bc	b	Γμ
Caryophyllene	0.0027	0.7355	0.0548	а	ab	ab	а	b	b	ab	ab	
Leucine	0.0000	0.9030	0.9410	а	а	b	b	b	b	b	b	
Hexoses	0.0000	0.6297	0.0225	ab	а	с	С	bc	С	С	С	
Proline	0.0000	0.0550	0.0343	bc	а	а	ab	С	С	С	bc	-ľ l
Phenylalanine	0.0000	0.0001	0.5600	bc	а	bc	ab	d	cd	cd	cd	-1'
Disaccharides	0.0000	0.0000	0.0009	bc	а	b	а	d	d	С	bc	1
Chlorogenic ac.	0.2510	0.2534	0.0021	ab	b	ab	b	ab	а	ab	ab	
Epicatechin	0.1570	0.4340	0.2560									h l
Citric ac.	0.0000	0.0000	0.0568	bc	bc	b	cd	bc	d	а	ab	- "I
Pyruvate	0.0001	0.0000	0.9910	ab	bcd	bcd	cd	bcd	d	а	abc	L
Luteolin	0.1012	0.0674	0.0292	С	abc	ab	bc	а	abc	abc	abc	
Adenosine	0.0053	0.0502	0.9085	b	ab	ab	ab	ab	а	b	ab	ъμн
K/P	0.0001	0.2260	0.2010	b	b	b	b	ab	а	b	b	-1
Alanine	0.0002	0.5009	0.1551	abc	bc	abc	а	ab	abc	с	bc	
Choline	0.0076	0.7954	0.6559	ab	ab	ab	ab	а	ab	b	ab	
Gallic ac.	0.2620	0.8980	0.3180									ъЦ
Quinic ac.	0.0000	0.0579	0.2168	d	d	bcd	cd	ab	а	bcd	abc	1 di
К	0.0000	0.6630	0.4080	b	b	b	b	ab	а	ab	ab	1
Kaempferol	0.6326	0.0941	0.2929									
Epigallocatechin	0.4911	0.0322	0.8215									-111
Rhamnetin	0.9302	0.0595	0.8413									
Succininc ac.	0.1001	0.0025	0.1296	b	а	ab	ab	ab	ab	b	ab	2
Homoorientin	0.9580	0.0000	0.4190	С	ab	bc	ab	abc	abc	С	а	ЧF
Pentoses	0.0020	0.6432	0.8432	а	ab	ab	b	ab	b	ab	ab	
N/K	0.0000	0.5610	0.6560	а	а	abc	ab	bc	С	abc	abc	ปไ
C/K	0.0000	0.7640	0.8480	ab	а	abc	abc	cd	d	abcd	bcd	1
C	0.0756	0.0090	0.3742	ab	а	ab	ab	b	ab	ab	а	7
C/P	0.0002	0.0089	0.4356	ab	ab	bc	ab	abc	а	С	bc	ป
N/P	0.0480	0.0000	0.7590	abc	а	С	abc	abc	а	bc	ab	1
Quercitin	0.7670	0.2360	0.9010									ημ
Р	0.0000	0.0116	0.3767	bc	bc	ab	bc	bc	с	а	ab	-1
N	0.0000	0.0013	0.8616	С	abc	С	bc	С	bc	ab	а	1
Malic ac.	0.0024	0.4819	0.5783	ab	b	а	а	ab	ab	ab	ab	1
Lactic ac.	0.1290	0.5480	0.7560									1
Catechin	0.0440	0.5370	0.6840									1
C/N	0.0002	0.0045	0.9219	а	ab	а	а	а	а	ab	b	1

1377	Appendix A
1378	Topsoil depth substantially influences the tree metabolomes of Mediterranean forests.
1379	Rivas-Ubach et al., 2015
1380	
1381	
1382	
1383	
1384	
1385	
1386	
1387	
1388	
1389	
1390	
1391	
1392	
1393	
1394	
1395	
1396	
1397	
1398	
1399	
1400	
1401	
1402	
1403	
1405	
1406	
1407	
1408	
1409	
1400	

Table A.1. LC-MS chromatogram processing. Chromatograms were obtained by LC-MS and

1411 processed by MZmine 2.12. The following table summarizes the processes and parameters

1412 applied to the *Q. ilex* foliar metabolomic chromatograms.

		(+H) Chromatograms	(-H) Chromatograms
1	Baseline correction		
	Chromatogram type	<u>TIC</u>	TIC
	MS level	<u>1</u>	<u>1</u>
	Smoothing	<u>10E7</u>	<u>10E7</u>
	Asymmetry	<u>0.001</u>	<u>0.001</u>
2	Mass detection (exact Mass)		
	Noise level	5×10^5	4×10^5
<u>3</u>	Chromatogram builder		
	Minimum time span	0.05	0.05
	Minimum height	25000	25000
	m/z tolerance	0.002	0.002
4	Smoothing		
	Filter width	5	5
<u>5</u>	Chromatogram deconvolution		
T_	(local minimum search)		
1	Chromatographic threshold	<u>65%</u>	<u>65%</u>
1	Search minimum in RT range	<u>0.1</u>	<u>0.1</u>
	<u>(min)</u>		
	Minimum relative height	<u>5.0%</u>	<u>5.0%</u>
	Minimum absolute height	<u>30000</u>	<u>30000</u>
	Minimum ratio of peak top/edge	2	2
	Peak duration range	<u>0.0-2.0</u>	<u>0.0-2.0</u>
<u>6</u>	Chromatogram alignment (join		
	alignment)	0.001	0.001
	<u>m/z tolerance</u>	0.001	0.001
	Weight for m/z	80	80
	<u>RT tolerance</u>	0.15	0.2
_	Weight for RT	20	<u>20</u>
<u>7</u>	Gap filling (Peak Finder)		
	Intensity tolerance	20%	20%
	<u>m/z tolerance</u>	<u>0.001</u>	<u>0.001</u>
	Retention time tolerance	<u>0.1</u>	<u>0.1</u>
	RT correction	marked	marked
<u>8</u>	Filtering		
	Minimum peaks in a row	<u>8</u>	<u>8</u>
<u>9</u>	Metabolite Assignation		
	m/z tolerance	0.0005	0.0005
	RT tolerance	0.25	0.25
	Ions excluded from database	<u><75</u>	<u><85</u>
		<u>83.05</u> 102.05	<u>119.035</u>
		$\frac{102.05}{114.09}$	<u>223.082</u> 391.196
		227.17	159.25
1		607.29	186.186
		Between 0.0 and 1 min	Between 0.0 and 1.1 min
1		Between 28.5 and 30 min	Detween 27.0 and 30 mm

1413 RT, retention time; m/z, mass to charge ratio

Table A.2. Metabolite assignment by LC-MS. The assignment of the metabolites was based on

1415 the standards. The following table summarizes the retention time (RT) and mass to charge

1416 ratio (m/z) of the assigned metabolites in both positive and negative ionization modes.

<u>Mode</u>	Compound	<u>RT (min)</u>	<u>m/z</u>
<u>Negative</u>	Catechin	<u>3.44</u>	<u>289.0718</u>
<u>Negative</u>	Chlorogenic acid	<u>3.11</u>	<u>353.0873</u>
<u>Negative</u>	Citric acid	<u>1.77</u>	<u>191.0196</u>
Negative	Deoxyhexose	<u>1.42</u>	<u>163.0618</u>
<u>Negative</u>	Disaccharides	<u>1.43</u>	<u>341.108</u>
Negative	Epicatechin	<u>4.93 - 5.2</u>	<u>289.0713</u>
Negative	Epigallocatechin	<u>1.54 - 2.64</u>	<u>305.0667</u>
Negative	Gallic acid	<u>1.55 - 1.83</u>	<u>169.0147</u>
<u>Negative</u>	<u>Hexose</u>	<u>1.44</u>	<u>179.056</u>
Negative	Homoorientin	<u>9.45</u>	<u>447.0923</u>
Negative	Kaempferol	<u>14.82</u>	285.0404
Negative	Lactic acid	1.52; 1.75	89.0245
Negative	Malic acid	<u>1.51; 1.78</u>	<u>133.0143</u>
Negative	Pentose	<u>1.43</u>	<u>149.0456</u>
Negative	<u>Pyruvate</u>	<u>1.65</u>	<u>87.0089</u>
Negative	Quercetin	<u>13.72</u>	301.0355
Negative	Quinic acid	1.47	191.056
Negative	Rhamnetin	<u>15.98</u>	315.0509
Negative	Sodium salicylate	<u>10.51</u>	<u>137.0245</u>
Negative	Succinic acid	<u>1.74; 1.78</u>	<u>117.0194</u>
Positive	Adenine	<u>1.42; 1.77</u>	136.0614
Positive	Adenosine	1.49; 1.75	268.1038
Positive	<u>a-Humulene</u>	20.27	205.1949
Positive	Alanine	<u>1.43</u>	90.054
Positive	Arginine	<u>1.34</u>	<u>175.119</u>
Positive	Aspartic acid	<u>1.5</u>	<u>134.044</u>
Positive	Caryophyllene	21.46	<u>221.1899</u>
<u>Positive</u>	Catechin	<u>3.44</u>	<u>291.0863</u>
Positive	Chlorogenic acid	<u>3.11</u>	355.084
Positive	Epigallocatechin	<u>1.54 - 2.64</u>	<u>307.0812</u>
Positive	Glutamic acid	<u>1.41</u>	148.0604
Positive	Glutamine	<u>1.46</u>	<u>147.076</u>
<u>Positive</u>	Kaempferol	<u>14.82</u>	<u>287.0552</u>
Positive	Leucine	<u>1.76</u>	<u>132.101</u>
Positive	Luteolin	<u>13.68</u>	<u>287.0551</u>
<u>Positive</u>	Phenylalanine	<u>1.91</u>	<u>166.086</u>
<u>Positive</u>	Proline	<u>1.49</u>	<u>116.07</u>
<u>Positive</u>	Pyridoxine	<u>1.38</u>	<u>170.0812</u>
Positive	Quercetin	13.72	303.0498
Positive	Rhamnetin	15.95	317.0653
Positive	Tryptophan	2.49	205.097
	The second second	1 5 4 1 77	102 001
<u>Positive</u>	Tyrosine	1.54 - 1.77	182.081

1423 Table A.3. Results of the factorial ANOVAs of all stoichiometries and assigned meta

1424 extracted from *Q. ilex* leaves with vegetation structure (VS) and experimental drought

1425 treatment as factors for all seasons combined. The whole factorial model and the decomposed

1426 model are shown in the table for each of the known variables. Statistical significance (*P* < 0.05)

1427 <u>is shown in red.</u>

	Whole model			Deco	omposed model	
	vvnc	<u>Die model</u>		<u>VS</u>	<u>Treatment</u>	VS×treatment
<u>C/N</u>	<u>F</u>	<u>14.81</u>	<u>F</u>	<u>37.94</u>	<u>0.56</u>	<u>5.94</u>
	(<u>P)</u>	(0.00000)	(<u>P)</u>	(0.00000)	(0.45658)	(0.01594)
<u>N/P</u>	<u>F</u>	<u>15.36</u>	<u>E</u>	<u>6.78</u>	<u>28.28</u>	<u>11.03</u>
	(<u>P)</u>	(0.00000)	(<u>P)</u>	(0.01012)	(0.00000)	(0.00112)
<u>С/Р</u>	<u>F</u>	<u>13.43</u>	<u>F</u>	<u>1.98</u>	<u>18.55</u>	<u>19.76</u>
	(<u>P)</u>	(0.00000)	(<u>P)</u>	(0.16178)	(0.00003)	(0.00002)
<u>С/К</u>	<u>F</u>	<u>4.64</u>	<u>F</u>	<u>4.52</u>	<u>3.27</u>	<u>6.14</u>
	(<u>P)</u>	(0.00389)	(<u>P)</u>	(0.03510)	(0.07269)	(0.01429)
<u>К/Р</u>	<u>E</u>	<u>9.92</u>	<u>E</u>	<u>5.20</u>	<u>9.25</u>	<u>15.30</u>
	(<u>P)</u>	(0.00001)	(<u>P)</u>	(0.02400)	(0.00276)	(0.00014)
<u>N/K</u>	<u>E</u>	<u>10.30</u>	<u>E</u>	<u>15.94</u>	<u>3.80</u>	<u>11.15</u>
	(<u>P)</u>	(0.00000)	(<u>P)</u>	(0.00010)	(0.05300)	(0.00105)
<u>[N]</u>	<u>E</u>	<u>15.44</u>	<u>E</u>	<u>41.17</u>	<u>0.02</u>	<u>5.13</u>
	(<u>P)</u>	(0.00000)	(<u>P)</u>	(0.00000)	(0.88056)	(0.02487)
<u>[P]</u>	<u>F</u>	<u>15.42</u>	<u>F</u>	<u>3.37</u>	<u>24.19</u>	<u>18.69</u>
	(<u>P)</u>	(0.00000)	(<u>P</u>)	(0.06831)	(0.00000)	(0.00003)
<u>[K]</u>	<u>F</u>	<u>4.57</u>	<u>F</u>	<u>4.45</u>	<u>2.18</u>	<u>7.08</u>
	(<u>P)</u>	(0.00426)	(<u>P</u>)	(0.03640)	(0.14197)	(0.00863)
<u>[C]</u>	<u>F</u>	<u>5.67</u>	<u>F</u>	<u>4.91</u>	<u>10.74</u>	<u>1.35</u>
	(<u>P)</u>	(0.00104)	(<u>P)</u>	(0.02821)	(0.00129)	(0.24648)
<u>Hexoses</u>	<u>E</u>	<u>3.00</u>	<u>E</u>	<u>0.00</u>	<u>8.76</u>	<u>0.23</u>
	(<u>P)</u>	(0.03254)	(<u>P)</u>	(0.96126)	(0.00357)	(0.63114)
<u>Pentoses</u>	<u>E</u>	<u>8.26</u>	<u>E</u>	<u>6.03</u>	<u>10.03</u>	<u>8.73</u>
	(<u>P)</u>	(0.00004)	(<u>P)</u>	(0.01515)	(0.00185)	(0.00362)
Disaccharides	<u>F</u>	<u>6.85</u>	<u>E</u>	<u>20.10</u>	<u>0.02</u>	<u>0.43</u>
	(<u>P)</u>	(0.00023)	(<u>P)</u>	(0.00001)	(0.88967)	(0.51054)
<u>Alanine</u>	<u>F</u>	<u>3.83</u>	<u>F</u>	<u>7.53</u>	<u>0.19</u>	<u>3.78</u>
	(<u>P)</u>	(0.01104)	(<u>P)</u>	(0.00677)	(0.66749)	(0.05362)
<u>Aspartic acid</u>	<u>F</u>	<u>4.14</u>	<u>E</u>	<u>7.18</u>	<u>4.98</u>	<u>0.26</u>
	(<u>P)</u>	(0.00745)	(<u>P)</u>	(0.00818)	(0.02713)	(0.61018)
Glutamic acid	<u>E</u>	<u>1.77</u>	<u>E</u>	<u>3.81</u>	<u>0.51</u>	<u>1.00</u>
	(<u>P)</u>	(0.15486)	(<u>P)</u>	(0.05271)	(0.47805)	(0.31933)
<u>Valine</u>	<u>E</u>	<u>4.69</u>	<u>E</u>	<u>2.02</u>	<u>1.83</u>	<u>10.21</u>
	(<u>P)</u>	(0.00366)	(<u>P)</u>	(0.15730)	(0.17776)	(0.00169)
<u>Leucine</u>	<u>F</u>	<u>2.88</u>	<u>F</u>	<u>1.30</u>	<u>5.82</u>	<u>1.51</u>
	(<u>P)</u>	(0.03801)	(<u>P)</u>	(0.25584)	(0.01702)	(0.22115)
<u>Phenylalanine</u>	<u>F</u>	<u>3.22</u>	<u>F</u>	<u>6.02</u>	<u>0.68</u>	<u>2.96</u>
	(<u>P)</u>	(0.02439)	(<u>P)</u>	(0.01528)	(0.40935)	(0.08737)
Proline	<u>F</u>	<u>1.31</u>	<u>F</u>	<u>3.43</u>	<u>0.22</u>	<u>0.27</u>
	(<u>P)</u>	(0.27473)	(<u>P)</u>	(0.06594)	(0.64043)	(0.60572)
Arginine	<u>E</u>	<u>13.45</u>	<u>E</u>	<u>20.43</u>	<u>0.41</u>	<u>19.50</u>
	(<u>P)</u>	(0.00000)	(<u>P)</u>	(0.00001)	(0.52359)	(0.00002)
Tryptophan	E	0.46	E	<u>0.12</u>	<u>0.85</u>	0.40

	<u>(P)</u>	<u>(0.71267)</u>	<u>(P)</u>	<u>(0.72664)</u>	<u>(0.35927)</u>	<u>(0.52639)</u>
Tyrosine	E (D)	<u>2.66</u>	E (D)	<u>6.50</u>	0.36	<u>1.10</u>
	(<u>P)</u>	<u>(0.05040)</u>	(<u>P)</u>	<u>(0.01174)</u>	(0.54711)	(0.29533)
<u>Adenine</u>	<u>E</u> (P)	<u>(0.00000)</u>	<u>E</u> (P)	<u>0.14</u> (0.70824)	<u>34.76</u> (0.00000)	<u>(0.96702)</u>
Adapasina	E	2.51	E	7.24	0.28	0.00
Adenosine	<u>(P)</u>	<u>(0.06096)</u>	<u>(P)</u>	<u>(0.00791)</u>	<u>(0.59435)</u>	<u>(0.97502)</u>
Succinic acid	<u>F</u>	<u>9.77</u>	<u>F</u>	$\frac{21.51}{(0.00001)}$	<u>6.54</u> (0.01140)	$\frac{1.26}{(0.25216)}$
	F	6.33	F	17.32	0.83	0.83
<u>Citric acid</u>	(<u>P)</u>	(0.00045)	(<u>P)</u>	(0.00005)	(0.36286)	<u>(0.36427)</u>
Malic acid	<u>E</u>	<u>7.07</u>	<u>E</u>	<u>12.41</u>	<u>2.30</u>	<u>6.50</u>
	(<u>P)</u>	<u>(0.00017)</u>	<u>(P)</u>	<u>(0.00056)</u>	<u>(0.13104)</u>	<u>(0.01175)</u>
<u>Pyruvate</u>	<u>+</u> (P)	<u>8.76</u> (0.00002)	<u>+</u> (P)	<u>23.92</u> (0.00000)	<u>1.57</u> (0.21232)	<u>0.79</u> (0.37513)
Lastic acid	Ē	1.66	E	0.31	4.57	0.09
	<u>(P)</u>	<u>(0.17840)</u>	<u>(P)</u>	<u>(0.57576)</u>	<u>(0.03416)</u>	<u>(0.76162)</u>
Catechin	<u>F</u>	<u>12.03</u>	<u>F</u>	$\frac{0.01}{0.01}$	<u>35.30</u>	$\frac{0.79}{(0.37538)}$
	(<u>P)</u>	<u>(0.00000)</u> 1.49	<u>(P)</u>	0.65	0.50	<u>(0.37528)</u> 3 31
<u>Epicatechin</u>	(<u>P)</u>	<u>(0.21979)</u>	<u>(P)</u>	<u>(0.42025)</u>	<u>(0.47949)</u>	<u>(0.07076)</u>
Enigallocatechin	<u>E</u>	<u>10.61</u>	E	<u>2.71</u>	<u>5.61</u>	<u>23.51</u>
	<u>(P)</u>	<u>(0.00000)</u>	<u>(P)</u>	<u>(0.10183)</u>	<u>(0.01909)</u>	<u>(0.0000)</u>
<u>Homoorientin</u>	<u>E</u> (P)	<u>9.80</u> (0.00001)	<u>E</u> (P)	<u>10.39</u> (0.00154)	<u>2.13</u> (0.14608)	<u>16.88</u> (0.0006)
	F	3.05	F	4.73	4.36	0.07
Kaempferol	<u>(P)</u>	<u>(0.03033)</u>	<u>(P)</u>	<u>(0.03122)</u>	<u>(0.03839)</u>	<u>(0.79761)</u>
Luteolin	<u>F</u>	<u>2.43</u>	<u>E</u>	<u>7.04</u>	<u>0.25</u>	0.00
	(<u>P)</u>	(0.06734)	<u>(P)</u>	(0.00880)	<u>(0.61678)</u>	<u>(0.98348)</u>
<u>Quercitin</u>	<u>r</u> (<u>P)</u>	<u>(0.00103)</u>	<u>r</u> (P)	<u>(0.00169)</u>	<u>5.91</u> (0.04968)	<u>2.89</u> (0.09140)
Phampatin	E	<u>5.90</u>	E	<u>15.56</u>	0.00	2.13
Manneun	<u>(P)</u>	<u>(0.00077)</u>	<u>(P)</u>	<u>(0.00012)</u>	<u>(0.97022)</u>	<u>(0.14638)</u>
Chlorogenic acid	<u>E</u> (P)	<u>8.85</u> (0.00002)	<u>E</u> (P)	<u>5.64</u> (0.01877)	<u>10.18</u> (0.00171)	<u>10.74</u> (0.00129)
	F	0.46	F	0.18	1.14	0.06
Gallic acid	(<u>P)</u>	(0.71304)	<u>(P)</u>	<u>(0.67443)</u>	<u>(0.28793)</u>	(0.81406)
α-Humulene	<u>F</u>	<u>11.56</u>	<u>F</u>	5.09	<u>18.43</u>	<u>11.17</u>
	(<u>P)</u>	(<u>U.UU0000)</u>	(<u>P)</u>	<u>(0.02549)</u>	<u>(0.00003)</u>	<u>(0.00104)</u>
<u>Caryophyllene</u>	<u>+</u> (<u>P)</u>	<u>8.27</u> (0.00004)	<u>⊢</u> (<u>P)</u>	<u>8.89</u> (0.00332)	<u>0.25</u> (0.01342)	<u>9.65</u> (0.00224)
Cholino	E	1.03	E	0.88	0.49	1.73
	<u>(P)</u>	<u>(0.38100)</u>	<u>(P)</u>	<u>(0.34980)</u>	<u>(0.48699)</u>	<u>(0.19094)</u>
<u>Pyridoxine</u>	<u>E</u> (P)	<u>29.10</u> (0.00000)	<u>E</u> (P)	<u>59.86</u> (0.0000)	<u>17.87</u> (0.00004)	<u>9.56</u> (0.00235)
	F	0.99	F	0.49	0.26	2.21
Quinic acid	(<u>P)</u>	(0.40146)	<u>(P)</u>	<u>(0.48713)</u>	(0.60927)	(0.13934)

				<u>SUMMER</u>			<u>AUTUMN</u>			<u>WINTER</u>			<u>SPRING</u>	
			TRT	<u>VS</u>	<u>VS×TRT</u>	TRT	<u>VS</u>	<u>VS×TRT</u>	TRT	<u>VS</u>	<u>VS×TRT</u>	TRT	<u>VS</u>	<u>VS×TRT</u>
	<u>C/N</u>	<u>E</u> (P)	<u>0.02</u> (0.90)	<u>5.29</u> (0.027)	<u>1.18</u> (0.28)	<u>1.67</u> (0.19968)	<u>21.29</u> (0.00002)	<u>4.42</u> (0.03882)	<u>0.08</u> (0.7747)	<u>12.56</u> (0.00111)	<u>0.54</u> (0.46681)	<u>0.06</u> (0.80691)	<u>22.21</u> (0.00004)	<u>7.92</u> (0.00786)
	<u>N/P</u>	<u>F</u> (P)	<u>5.37</u> (0.0263)	<u>0.70</u> (0.40846)	<u>3.56</u> (0.06719)	<u>9.14</u> (0.00342)	<u>5.23</u> (0.02495)	<u>6.71</u> (0.01151)	<u>20.38</u> (0.00007)	<u>1.54</u> (0.22312)	<u>0.94</u> (0.33774)	<u>3.75</u> (0.06079)	<u>1.95</u> (0.17120)	<u>5.96</u> (0.01972)
	<u>C/P</u>	<u>F</u> (P)	<u>5.22</u> (0.02832)	<u>0.20</u> (0.65922)	<u>6.06</u> (0.01875)	<u>3.32</u> (0.07236)	<u>0.83</u> (0.36569)	<u>14.06</u> (0.00034)	<u>19.93</u> (0.0008)	<u>1.77</u> (0.19220)	<u>1.57</u> (0.21794)	<u>3.34</u> (0.07582)	<u>2.46</u> (0.12584)	<u>17.08</u> (0.00020)
	<u>С/К</u>	<u>F</u> (P)	<u>0.65</u> (0.42694)	<u>0.46</u> (0.50328)	<u>5.52</u> (0.02435)	<u>2.78</u> (0.09955)	<u>2.95</u> (0.09006)	<u>3.26</u> (0.07514)	<u>0.90</u> (0.34991)	<u>2.53</u> (0.12025)	<u>1.47</u> (0.23280)	<u>1.56</u> (0.22035)	<u>0.72</u> (0.40140)	<u>0.38</u> (0.54178)
	<u>K/P</u>	<u>F</u> (P)	<u>3.45</u> (0.07139)	<u>0.37</u> (0.54952)	<u>12.87</u> (0.00099)	<u>4.43</u> (0.03852)	<u>4.53</u> (0.03650)	<u>8.40</u> (0.00491)	<u>4.80</u> (0.03508)	<u>3.64</u> (0.06436)	<u>0.75</u> (0.39353)	<u>4.14</u> (0.04935)	<u>3.33</u> (0.07645)	<u>5.84</u> (0.02082)
	<u>N/K</u>	<u>F</u> (P)	<u>1.41</u> (0.24226)	<u>2.11</u> (0.15485)	<u>7.66</u> (0.00885)	<u>2.62</u> (0.10945)	<u>12.90</u> (0.00058)	<u>8.30</u> (0.00514)	<u>1.38</u> (0.24788)	<u>6.87</u> (0.01279)	<u>2.23</u> (0.14365)	<u>2.66</u> (0.11182)	<u>6.82</u> (0.01306)	<u>3.41</u> (0.07291)
	<u>[N]</u>	<u>E</u> (P)	<u>0.18</u> (0.67769)	<u>5.99</u> (0.01935)	<u>0.81</u> (0.37346)	<u>0.79</u> (0.37622)	<u>23.16</u> (0.00001)	<u>4.41</u> (0.03912)	<u>0.44</u> (0.5119)	<u>13.86</u> (0.00067)	<u>0.37</u> (0.54567)	<u>0.60</u> (0.44463)	<u>25.02</u> (0.00001)	<u>9.81</u> (0.00344)
	<u>[P]</u>	<u>F</u> (P)	<u>6.48</u> (0.01534)	<u>1.06</u> (0.31024)	<u>5.62</u> (0.02326)	<u>6.48</u> (0.0129)	<u>0.88</u> (0.35117)	<u>12.23</u> (0.00079)	<u>20.80</u> (0.00006)	<u>2.60</u> (0.11552)	<u>1.84</u> (0.18338)	<u>6.26</u> (0.01704)	<u>2.86</u> (0.09928)	<u>14.17</u> (0.00060)
	<u>[K]</u>	<u>F</u> (P)	<u>0.49</u> (0.48791)	<u>0.39</u> (0.53847)	<u>7.87</u> (0.00807)	<u>1.69</u> (0.19754)	<u>3.62</u> (0.06097)	<u>2.53</u> (0.11613)	<u>0.70</u> (0.40799)	<u>2.65</u> (0.11229)	<u>0.68</u> (0.41592)	<u>1.51</u> (0.22754)	<u>1.51</u> (0.22683)	<u>0.22</u> (0.64182)
	<u>[C]</u>	<u>F</u> (P)	<u>1.81</u> (0.18711)	<u>2.88</u> (0.09852)	<u>2.99</u> (0.09238)	<u>7.93</u> (0.00619)	<u>2.00</u> (0.16113)	<u>0.13</u> (0.71668)	<u>2.08</u> (0.15787)	<u>0.79</u> (0.38043)	<u>1.34</u> (0.25426)	<u>3.55</u> (0.06752)	<u>0.36</u> (0.55210)	<u>0.16</u> (0.69474)
H	<u>exoses</u>	<u>F</u> (P)	<u>1.49</u> (0.22996)	<u>0.99</u> (0.32744)	<u>1.99</u> (0.16653)	<u>7.65</u> (0.00714)	<u>0.67</u> <u>(0.41543)</u>	<u>3.25</u> (0.07549)	<u>7.71</u> (0.00866)	<u>2.89</u> (0.09769)	<u>0.34</u> (0.56262)	<u>3.20</u> (0.08210)	<u>0.95</u> (0.33643)	<u>2.27</u> (0.14057)
Pe	entoses	<u>F</u> (P)	<u>1.49</u> (0.22947)	<u>0.59</u> (0.44667)	<u>3.75</u> (0.06074)	<u>7.95</u> (0.00613)	<u>4.34</u> (0.04070)	<u>3.87</u> (0.05290)	<u>1.96</u> (0.17037)	<u>1.81</u> (0.18696)	<u>2.21</u> (0.14572)	<u>16.04</u> (0.00030)	<u>6.02</u> (0.01912)	<u>7.45</u> (0.00976)
Disa	<u>ccharides</u>	<u></u> (P)	<u>0.00</u> (0.96174)	<u>0.86</u> (0.36043)	<u>4.35</u> (0.04408)	<u>0.00</u> (0.97119)	<u>17.95</u> (0.00006)	<u>0.77</u> (0.38258)	<u>0.34</u> (0.56569)	<u>43.34</u> (0.00000)	<u>0.89</u> (0.35220)	<u>0.12</u> (0.73313)	<u>26.81</u> (0.00001)	<u>2.22</u> (0.14482)
A	<u>lanine</u>	<u>F</u> (P)	<u>5.33</u> (0.02687)	<u>0.04</u> (0.83609)	<u>0.93</u> (0.34045)	<u>0.04</u> (0.85173)	<u>8.81</u> (0.00401)	<u>1.34</u> (0.25123)	<u>11.10</u> (0.002)	<u>0.80</u> (0.37662)	<u>4.05</u> <u>(0.05158)</u>	<u>0.08</u> (0.77374)	<u>8.30</u> (0.00664)	<u>1.16</u> (0.28883)
Asp	artic acid	E	<u>2.96</u>	<u>1.43</u>	0.00	<u>8.88</u>	<u>11.01</u>	<u>0.93</u>	<u>1.01</u>	<u>4.19</u>	<u>0.41</u>	<u>6.62</u>	<u>8.69</u>	<u>0.10</u>

Table A.4. Results of the decomposed models of the factorial ANOVAs of all stoichiometries and assigned metabolites extracted from *Q. ilex* leaves with vegetation structure (VS) and experimental drought treatment (TRT) as factors for each season. Statistical significance (*P* < 0.05) is shown in red.

	<u>(P)</u>	<u>(0.09395)</u>	<u>(0.23958)</u>	<u>(0.98786)</u>	<u>(0.00387)</u>	<u>(0.00139)</u>	<u>(0.33794)</u>	<u>(0.32121)</u>	<u>(0.04809)</u>	<u>(0.52525)</u>	<u>(0.01435)</u>	<u>(0.00560)</u>	<u>(0.75819)</u>
Glutamic acid	<u>E</u>	<u>3.80</u>	<u>3.85</u>	<u>0.48</u>	<u>0.36</u>	<u>13.12</u>	<u>0.38</u>	<u>1.23</u>	<u>0.35</u>	<u>1.26</u>	<u>0.00</u>	<u>11.29</u>	<u>0.66</u>
	(P)	(0.05923)	(0.05757)	(0.49307)	(0.54784)	(0.00052)	(0.54198)	(0.27546)	(0.55883)	(0.26969)	(0.99999)	(0.00186)	(0.42117)
<u>Valine</u>	<u>E</u>	<u>3.19</u>	<u>0.00</u>	<u>3.52</u>	<u>0.03</u>	<u>1.86</u>	<u>1.28</u>	<u>7.03</u>	<u>1.05</u>	<u>22.92</u>	<u>0.12</u>	<u>1.83</u>	<u>0.57</u>
	(P)	(0.08234)	(0.96725)	(0.06886)	(0.87114)	(0.17694)	(0.26058)	(0.01186)	(0.31208)	(0.00003)	(0.72827)	(0.18435)	(0.45378)
Leucine	<u>E</u>	<u>10.90</u>	<u>1.42</u>	<u>2.24</u>	<u>0.05</u>	<u>2.77</u>	<u>1.52</u>	<u>7.01</u>	<u>0.27</u>	<u>0.59</u>	<u>0.72</u>	<u>1.47</u>	<u>0.25</u>
	(P)	(0.00218)	(0.24189)	(0.14336)	(0.81675)	(0.10020)	(0.22127)	(0.01193)	(0.60653)	(0.44925)	(0.40108)	(0.23360)	(0.62315)
Phenylalanine	<u>F</u>	<u>0.04</u>	<u>5.14</u>	<u>0.69</u>	<u>0.02</u>	<u>1.47</u>	<u>2.67</u>	<u>3.84</u>	<u>6.43</u>	<u>1.51</u>	<u>0.70</u>	<u>0.22</u>	<u>2.35</u>
	(P)	(0.85115)	(0.02950)	(0.41204)	(0.88406)	(0.22951)	(0.1066)	(0.05795)	(0.01572)	(0.22641)	(0.40810)	(0.64427)	(0.13401)
Proline	<u>F</u>	<u>1.77</u>	<u>0.97</u>	<u>0.12</u>	<u>0.52</u>	<u>0.87</u>	<u>0.32</u>	<u>0.04</u>	<u>6.45</u>	<u>6.57</u>	<u>0.48</u>	<u>0.10</u>	<u>1.15</u>
	(P)	(0.19136)	(0.33127)	(0.72589)	(0.47378)	(0.35414)	(0.5743)	(0.83840)	(0.01553)	(0.01472)	(0.49218)	(0.75109)	(0.29162)
Arginine	<u>F</u>	<u>3.50</u>	<u>7.16</u>	<u>7.13</u>	<u>0.06</u>	<u>7.15</u>	<u>4.54</u>	<u>0.23</u>	<u>9.42</u>	<u>13.04</u>	<u>0.20</u>	<u>2.34</u>	<u>1.43</u>
	(P)	(0.06937)	(0.01117)	(0.01131)	(0.80970)	(0.00915)	(0.0364)	(0.63283)	(0.00407)	(0.00092)	(0.65685)	(0.13509)	(0.23999)
<u>Tryptophan</u>	<u>F</u>	<u>0.19</u>	<u>12.84</u>	<u>2.16</u>	<u>0.05</u>	<u>0.01</u>	<u>2.73</u>	<u>4.35</u>	<u>0.02</u>	<u>0.27</u>	<u>0.15</u>	<u>0.03</u>	<u>5.16</u>
	(P)	(0.66927)	(0.00100)	(0.15036)	(0.82535)	(0.92317)	(0.10244)	(0.04419)	(0.87845)	(0.60591)	(0.70002)	(0.85919)	(0.02920)
<u>Tyrosine</u>	<u>F</u>	<u>0.31</u>	<u>10.14</u>	<u>0.24</u>	<u>0.27</u>	<u>1.07</u>	<u>0.26</u>	<u>5.71</u>	<u>0.10</u>	<u>2.80</u>	<u>0.20</u>	<u>0.02</u>	<u>1.81</u>
	(P)	(0.5792)	(0.00299)	(0.62667)	(0.60408)	(0.30513)	(0.61135)	(0.02222)	(0.74873)	(0.10286)	(0.65685)	(0.89701)	(0.18666)
Adenine	<u>E</u>	<u>12.11</u>	<u>2.21</u>	<u>0.23</u>	<u>9.44</u>	<u>0.25</u>	<u>1.29</u>	<u>25.61</u>	<u>0.01</u>	<u>0.84</u>	<u>2.93</u>	<u>0.00</u>	<u>2.45</u>
	(P)	(0.00133)	(0.14616)	(0.63599)	(0.00295)	(0.61515)	(0.25893)	(0.00001)	(0.93598)	(0.36471)	(0.09548)	(0.95977)	(0.12620)
<u>Adenosine</u>	<u>F</u>	<u>1.21</u>	<u>0.99</u>	<u>0.06</u>	<u>0.06</u>	<u>3.64</u>	<u>0.00</u>	<u>0.36</u>	<u>4.13</u>	<u>0.15</u>	<u>0.68</u>	<u>1.32</u>	<u>0.00</u>
	(P)	(0.27862)	(0.32701)	(0.80169)	(0.81493)	(0.06028)	(0.98862)	(0.55060)	(0.04968)	(0.70189)	(0.41657)	(0.25839)	(0.96691)
Succinic acid	<u>E</u>	<u>2.38</u>	<u>4.79</u>	<u>4.56</u>	<u>4.55</u>	<u>8.37</u>	<u>0.37</u>	<u>0.12</u>	<u>14.06</u>	<u>2.38</u>	<u>8.64</u>	<u>3.47</u>	<u>0.68</u>
	(P)	(0.13169)	(0.03514)	(0.0396)	(0.03610)	(0.00497)	(0.54305)	(0.73180)	(0.00062)	(0.13139)	(0.00572)	(0.07068)	(0.41386)
<u>Citric acid</u>	<u>F</u>	<u>0.79</u>	<u>37.26</u>	<u>0.67</u>	<u>0.09</u>	<u>5.70</u>	<u>1.64</u>	<u>6.07</u>	<u>1.68</u>	<u>0.68</u>	<u>1.01</u>	<u>7.40</u>	<u>1.99</u>
	(P)	(0.37998)	(0.0000)	(0.41708)	(0.77076)	(0.01947)	(0.20441)	(0.01863)	(0.20303)	(0.41353)	(0.32186)	(0.01000)	(0.16697)
Malic acid	<u>F</u>	<u>0.03</u>	<u>15.92</u>	<u>3.63</u>	<u>1.83</u>	<u>5.16</u>	<u>8.41</u>	<u>1.37</u>	<u>1.58</u>	<u>0.14</u>	<u>2.06</u>	<u>9.58</u>	<u>6.96</u>
	(P)	(0.85751)	(0.00031)	(0.06484)	(0.18051)	(0.02596)	(0.00487)	(0.24945)	(0.21718)	(0.70657)	(0.15981)	(0.00380)	(0.01226)
<u>Pyruvate</u>	<u>F</u>	<u>0.47</u>	<u>13.26</u>	<u>0.00</u>	<u>0.27</u>	<u>7.02</u>	<u>0.94</u>	<u>1.88</u>	<u>9.56</u>	<u>0.06</u>	<u>2.07</u>	<u>4.50</u>	<u>0.46</u>
	(P)	(0.49817)	(0.00085)	(0.97975)	(0.60510)	(0.00980)	(0.3349)	(0.17902)	(0.00383)	(0.81333)	(0.15839)	(0.04095)	(0.50403)
Lactic acid	<u>F</u>	<u>1.39</u>	<u>0.11</u>	<u>0.22</u>	<u>0.58</u>	<u>0.13</u>	<u>0.22</u>	<u>4.23</u>	<u>0.07</u>	<u>0.39</u>	<u>1.37</u>	<u>0.00</u>	<u>0.07</u>
	(P)	(0.24690)	(0.73741)	(0.64378)	(0.44887)	(0.72193)	(0.63672)	(0.04703)	(0.79515)	(0.53534)	(0.24950)	(0.99999)	(0.78705)
Catechin	<u>F</u>	<u>18.55</u>	<u>1.53</u>	<u>0.00</u>	<u>11.15</u>	<u>0.03</u>	<u>0.43</u>	<u>10.86</u>	<u>1.45</u>	<u>0.74</u>	<u>4.06</u>	<u>1.22</u>	<u>0.00</u>
	(P)	(0.00012)	(0.22408)	(0.97594)	(0.00130)	(0.87445)	(0.51597)	(0.00222)	(0.23562)	(0.39602)	(0.05152)	(0.27626)	(0.97209)
Epicatechin	<u>E</u>	<u>0.96</u>	<u>0.28</u>	<u>5.19</u>	<u>0.75</u>	<u>0.75</u>	<u>0.57</u>	<u>3.94</u>	<u>0.01</u>	<u>0.07</u>	<u>0.17</u>	<u>2.18</u>	<u>0.19</u>
	(P)	(0.33376)	(0.59968)	(0.02870)	(0.39020)	(0.38936)	(0.45355)	(0.05470)	(0.90799)	(0.79156)	(0.67973)	(0.14821)	(0.66629)
Epigallocatechin	<u>E</u>	<u>0.96</u>	<u>0.43</u>	<u>6.01</u>	<u>5.87</u>	<u>0.87</u>	<u>14.02</u>	<u>0.02</u>	<u>1.78</u>	<u>3.13</u>	<u>4.46</u>	<u>1.06</u>	<u>13.15</u>
	(P)	(0.33300)	(0.51388)	(0.01917)	(0.01783)	(0.35406)	(0.00035)	(0.88314)	(0.19046)	(0.08516)	(0.04167)	(0.31109)	(0.00088)

<u>Homoorientin</u>	<u>E</u>	<u>0.28</u>	<u>0.45</u>	<u>1.44</u>	<u>1.30</u>	<u>6.55</u>	<u>8.99</u>	<u>0.52</u>	<u>4.09</u>	<u>7.13</u>	<u>0.44</u>	<u>3.11</u>	<u>3.38</u>
	(P)	(0.59892)	(0.50837)	(0.23747)	(0.25754)	(0.01245)	(0.00366)	(0.47592)	(0.05062)	(0.01128)	(0.51034)	(0.08617)	(0.07408)
<u>Kaempferol</u>	<u>E</u>	<u>1.89</u>	<u>5.23</u>	<u>0.90</u>	<u>0.61</u>	<u>1.77</u>	<u>0.03</u>	<u>3.05</u>	<u>0.04</u>	<u>0.42</u>	<u>2.60</u>	<u>2.28</u>	<u>0.15</u>
	(P)	(0.17805)	(0.02817)	(0.34784)	(0.43879)	(0.18797)	(0.87326)	(0.08908)	(0.84802)	(0.52110)	(0.11581)	(0.13947)	(0.69812)
<u>Luteolin</u>	<u>E</u>	<u>0.01</u>	<u>7.59</u>	<u>0.02</u>	<u>0.53</u>	<u>1.92</u>	<u>0.47</u>	<u>5.09</u>	<u>0.11</u>	<u>0.98</u>	<u>0.31</u>	<u>5.51</u>	<u>1.33</u>
	(P)	(0.91111)	(0.00915)	(0.89501)	(0.46851)	(0.16968)	(0.49321)	(0.03031)	(0.74737)	(0.32992)	(0.58000)	(0.02455)	(0.25554)
Quercitin	<u>F</u>	<u>0.31</u>	<u>5.31</u>	<u>0.95</u>	<u>2.21</u>	<u>2.81</u>	<u>1.60</u>	<u>1.58</u>	<u>2.58</u>	<u>0.36</u>	<u>2.80</u>	<u>1.30</u>	<u>0.77</u>
	(P)	(0.58009)	(0.02711)	(0.33678)	(0.14159)	(0.09775)	(0.20917)	(0.21712)	(0.11689)	(0.55452)	(0.10322)	(0.26168)	(0.38461)
<u>Rhamnetin</u>	<u>F</u>	<u>0.28</u>	<u>3.16</u>	<u>0.45</u>	<u>0.19</u>	<u>4.63</u>	<u>0.83</u>	<u>0.01</u>	<u>9.07</u>	<u>0.93</u>	<u>0.74</u>	<u>3.88</u>	<u>0.40</u>
	(P)	(0.59808)	(0.08386)	(0.50820)	(0.66677)	(0.03461)	(0.36510)	(0.91982)	(0.00473)	(0.34148)	(0.39516)	(0.05647)	(0.53296)
Chlorogenic acid	<u>F</u>	<u>6.74</u>	<u>7.18</u>	<u>1.64</u>	<u>0.34</u>	<u>0.69</u>	<u>18.53</u>	<u>16.22</u>	<u>0.05</u>	<u>2.77</u>	<u>3.24</u>	<u>0.78</u>	<u>18.13</u>
	(P)	(0.01356)	(0.01104)	(0.20889)	(0.56135)	(0.40882)	(0.00005)	(0.00028)	(0.82225)	(0.10468)	(0.08044)	(0.38193)	(0.00014)
Gallic acid	<u>F</u>	<u>0.54</u>	<u>0.94</u>	<u>0.10</u>	<u>0.82</u>	<u>0.09</u>	<u>0.45</u>	<u>0.00</u>	<u>0.62</u>	<u>0.00</u>	<u>0.39</u>	<u>3.45</u>	<u>0.17</u>
	(P)	(0.46657)	(0.33823)	(0.75092)	(0.36835)	(0.77082)	(0.50444)	(0.94698)	(0.43741)	(0.99585)	(0.53444)	(0.07164)	(0.68275)
<u>α-Humulene</u>	<u>E</u>	<u>3.05</u>	<u>0.35</u>	<u>0.16</u>	<u>8.00</u>	<u>3.75</u>	<u>9.25</u>	<u>15.56</u>	<u>3.42</u>	<u>6.28</u>	<u>6.21</u>	<u>4.10</u>	<u>7.54</u>
	(P)	(0.0892)	(0.55577)	(0.68974)	(0.00597)	(0.05660)	(0.00323)	(0.00035)	(0.07280)	(0.01690)	(0.01742)	(0.05041)	(0.00936)
<u>Caryophyllene</u>	<u>E</u>	<u>1.55</u>	<u>1.01</u>	<u>10.19</u>	<u>4.17</u>	<u>5.20</u>	<u>4.90</u>	<u>3.11</u>	<u>6.26</u>	<u>8.39</u>	<u>3.99</u>	<u>5.17</u>	<u>3.26</u>
	(P)	(0.22177)	(0.32231)	(0.00293)	(0.04450)	(0.02546)	(0.0298)	(0.08641)	(0.01704)	(0.00637)	(0.05348)	(0.02911)	(0.07937)
<u>Choline</u>	<u>E</u>	<u>4.99</u>	<u>1.08</u>	<u>0.10</u>	<u>7.83</u>	<u>0.00</u>	<u>2.38</u>	<u>0.01</u>	<u>0.61</u>	<u>0.05</u>	<u>2.85</u>	<u>0.45</u>	<u>4.54</u>
	(P)	(0.03176)	(0.30599)	(0.74929)	(0.00650)	(0.97177)	(0.12669)	(0.93255)	(0.44102)	(0.82079)	(0.09982)	(0.50573)	(0.04001)
<u>Pyridoxine</u>	<u>E</u>	<u>7.87</u>	<u>29.84</u>	<u>0.40</u>	<u>12.62</u>	<u>21.53</u>	<u>11.16</u>	<u>0.79</u>	<u>21.18</u>	<u>0.59</u>	<u>1.56</u>	<u>14.37</u>	<u>1.65</u>
	(P)	(0.00806)	(0.00000)	(0.53193)	(0.00066)	(0.00001)	(0.0013)	(0.38009)	(0.00005)	(0.44933)	(0.21996)	(0.00055)	(0.20772)
Quinic acid	<u>E</u>	<u>0.31</u>	<u>0.85</u>	<u>2.47</u>	<u>2.35</u>	<u>0.33</u>	<u>0.00</u>	<u>4.06</u>	<u>0.05</u>	<u>4.98</u>	<u>7.73</u>	<u>1.22</u>	<u>0.04</u>
	(P)	(0.57817)	(0.36174)	(0.12462)	(0.12978)	(0.56506)	(0.97309)	(0.05142)	(0.82288)	(0.03195)	(0.00858)	(0.27700)	(0.83896)

Table A.5. P values of the one-way ANOVAs of coordinates of cases along PC1 and PC2 of the

2 experimental drought treatment and the vegetation structure of the PCAs for each season (Fig.

3

1

4

<u>A.2).</u>

Season			PC axis	Р
		Treatment (Global)	<u>PC1</u>	<u>NS</u>
			<u>PC2</u>	<u>0.0097</u>
		Structure (Clobal)	<u>PC1</u>	<u>NS</u>
			<u>PC2</u>	<u>0.00001</u>
		For H Forest (Control vs. Drought)	<u>PC1</u>	<u>0.0399</u>
Winter	Treatment	FOR H-FOREST (CONTROLVS, Drought)	<u>PC2</u>	<u>0.0027</u>
winter	(within structure)	For L Forest (Control vs. Drought)	<u>PC1</u>	<u>0.00001</u>
		For L-Forest (Control VS. Drought)	<u>PC2</u>	<u>NS</u>
			<u>PC1</u>	<u>0.00000</u>
	Structure	For Control (H-Forest vs. L-Forest)	<u>PC2</u>	<u>0.00000</u>
	(within treatment)		<u>PC1</u>	<u>0.027</u>
		For Drought (H-Forest vs. L-Forest)	<u>PC2</u>	<u>0.00000</u>
		Treatment (Clobal)	<u>PC1</u>	<u>0.0065</u>
		Treatment (Global)	<u>PC2</u>	<u>NS</u>
			<u>PC1</u>	<u>NS</u>
		<u>Structure (Global)</u>	<u>PC2</u>	<u>0.00000</u>
	<u>Treatment</u> (within structure)	For U. Forest (Control up Drought)	<u>PC1</u>	<u>NS</u>
Contra 1		For H-Forest (Control Vs. Drought)	<u>PC2</u>	<u>NS</u>
Spring		For L Forget (Controluce Drought)	<u>PC1</u>	<u>0.00037</u>
		For L-Forest (Control VS. Drought)	<u>PC2</u>	<u>NS</u>
	<u>Structure</u> (within treatment)	For Control (H. Forostivs, J. Forost)	<u>PC1</u>	<u>0.00000</u>
		<u>FOI COILTOI (H-FOIEST VS. L-FOIEST)</u>	<u>PC2</u>	<u>0.00000</u>
		For Drought (H. Forestur, J. Forest)	<u>PC1</u>	<u>0.00000</u>
		FOI DIOUGHT (H-FOTEST VS. L-FOTEST)	<u>PC2</u>	<u>0.00000</u>
		Treatment (Clobal)	<u>PC1</u>	<u>NS</u>
		Treatment (Global)	<u>PC2</u>	<u>NS</u>
		Structure (Clobal)	<u>PC1</u>	<u>NS</u>
			<u>PC2</u>	<u>0.00000</u>
		For H Forest (Control vs. Drought)	<u>PC1</u>	<u>0.0267</u>
Summor	Treatment	roi n-rorest (control vs. brought)	<u>PC2</u>	<u>0.073 (MS)</u>
Summer	<u>(within structure)</u>	For L Forest (Control vs. Drought)	<u>PC1</u>	<u>0.0046</u>
			<u>PC2</u>	<u>NS</u>
		For Control (H Forest vs. L Forest)	<u>PC1</u>	<u>0.00014</u>
	Structure		<u>PC2</u>	<u>0.00000</u>
	(within treatment)	For Drought (H Forest vs. L Forest)	<u>PC1</u>	<u>0.098 (MS)</u>
		Tor Drought (H=rolest vs. L=rolest)	<u>PC2</u>	0.00005
		Treatment (Global)	<u>PC1</u>	NS
			<u>PC2</u>	NS
<u>Autumn</u>		Structure (Global)	<u>PC1</u>	0.000051
			<u>PC2</u>	0.0033
	Treatment	For H-Forest (Control vs. Drought)	PC1	<u>NS</u>

		(within structure)		<u>PC2</u>	<u>0.0756 (MS)</u>
			For L-Forest (Control vs. Drought)	<u>PC1</u>	<u>0.0029</u>
				<u>PC2</u>	<u>NS</u>
			For Control (H-Forest vs. L-Forest)	<u>PC1</u>	<u>0.00000</u>
		Structure		<u>PC2</u>	<u>0.0886 (MS)</u>
		(within treatment)	For Drought (H-Forest vs. L-Forest)	<u>PC1</u>	<u>NS</u>
5	NS. not signific	cant: MS. marginally sign	nificant	<u>PC2</u>	0.0165
6					
/					
8					
9					
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					
21					
22					
23					
24					
25					
26					
27					
28					
29					
30					
31					
32					
33					

ъſ

Table A.6. R² coefficients and the corresponding P values for the total, direct, and indirect

effects of the structural equation model (SEM) with tree diameter (D50), upper soil moisture

content, soil texture, and metabolomic variation (PC2) as endogenous variables. The model is

described in Fig. A.4.

TOTAL EFFECTS					
	<u>Drought</u> <u>treatment</u>	Soil texture	<u>Upper soil</u> <u>moisture</u>	DUSL	<u>D50</u>
Upper soil moisture	<u>0.2</u> (P < 0.001)	<u>-0.015</u> (<u>P = 0.42)</u>		<u>0.056</u> <u>(P = 0.26)</u>	
<u>D50</u>	<u>0.39</u> (P < 0.0001)	<u>-0.00074</u> (<i>P</i> = 0.45)	<u>0.048</u> (P = 0.22)	<u>0.64</u> (P < 0.0001)	
<u>Soil</u> <u>texture</u>				<u>-0.097</u> (P = 0.1)	
<u>PC2</u>	<u>0.26</u> (P < 0.0001)	<u>-0.0041</u> (<u>P = 0.42)</u>	<u>0.27</u> (P < 0.00001)	<u>0.35</u> (P < 0.0001)	<u>0.52</u> <u>(P < 0.0001)</u>
DIRECT EFFECTS	5		1		n
	<u>Drought</u> <u>treatment</u>	Soil texture	Upper soil moisture	DUSL	<u>D50</u>
<u>Upper soil</u> <u>moisture</u>	<u>0.2</u> (P < 0.001)	<u>-0.015</u> (<u>P = 0.42)</u>		<u>0.054</u> (<u>P = 0.26)</u>	
<u>D50</u>	<u>0.38</u> (<u>P < 0.0001)</u>		<u>0.048</u> (<u>P = 0.21)</u>	<u>0.64</u> (<u>P < 0.0001)</u>	
<u>Soil</u> <u>texture</u>				<u>-0.097</u> (<u>P = 0.1)</u>	
<u>PC2</u>	<u>0.004</u> (P = 0.48)		<u>0.24</u> (P < 0.001)		<u>0.52</u> (P < 0.0001)
INDIRECT EFFEC	<u>. TS</u>				
	<u>Drought</u> <u>treatment</u>	Soil texture	Upper soil moisture	DUSL	<u>D50</u>
Upper soil moisture				<u>0.0015</u> (<i>P</i> = 0.44)	
<u>D50</u>	<u>0.0098</u> (P = 0.24)	<u>-0.00074</u> (<i>P</i> = 0.45)		<u>0.0027</u> (<u>P = 0.36)</u>	
<u>Soil</u> <u>texture</u>					
PC2	<u>0.26</u> (P < 0.0001)	<u>-0.0041</u> (<i>P</i> = 0.42)	<u>0.025</u> (<i>P</i> = 0.22)	<u>0.35</u> (P < 0.0001)	

66	Fig A.2. Principal component (PC) 1 vs. PC2 of the principal component analysis of the
67	metabolomic and stoichiometric variables for the Q. Ilex leaves for each season. Variable plots
68	for (a) winter, (b) spring, (c) summer, and (d) autumn, and case plots for (e) winter, (f) spring,
69	(g) summer, and (h) autumn. The variables in the variable plots are the same as in Figure 1 and
70	have the same codes. The case plots represent the cases by vegetation structure and
71	experimental drought treatment. Black arrows indicate the means for the PC1 and PC2 of the
72	corresponding vegetation structure (H-Forest or L-Forest) that differed significantly. Colored
73	arrows indicate the means for PC1 and PC2 of the corresponding treatment (control or
74	drought) in each vegetation structure that differed significantly. Different letters beside the
75	arrows indicate significant differences between seasons, vegetation structures, or

76 <u>experimental treatments (P < 0.05).</u>

