
ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi doctoral i la seva utilització ha de respectar els drets de la
persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials dʼinvestigació i
docència en els termes establerts a lʼart. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres
utilitzacions es requereix lʼautorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels
seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No
sʼautoritza la seva reproducció o altres formes dʼexplotació efectuades amb finalitats de lucre ni la seva comunicació
pública des dʼun lloc aliè al servei TDX. Tampoc sʼautoritza la presentació del seu contingut en una finestra o marc aliè
a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.

ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los derechos de la
persona autora. Puede ser utilizada para consulta o estudio personal, así como en actividades o materiales de
investigación y docencia en los términos establecidos en el art. 32 del Texto Refundido de la Ley de Propiedad
Intelectual (RDL 1/1996). Para otros usos se requiere la autorización previa y expresa de la persona autora. En
cualquier caso, en la utilización de sus contenidos se deberá indicar de forma clara el nombre y apellidos de la persona
autora y el título de la tesis doctoral. No se autoriza su reproducción u otras formas de explotación efectuadas con fines
lucrativos ni su comunicación pública desde un sitio ajeno al servicio TDR. Tampoco se autoriza la presentación de
su contenido en una ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al contenido de
la tesis como a sus resúmenes e índices.

WARNING. The access to the contents of this doctoral thesis and its use must respect the rights of the author. It can
be used for reference or private study, as well as research and learning activities or materials in the terms established
by the 32nd article of the Spanish Consolidated Copyright Act (RDL 1/1996). Express and previous authorization of the
author is required for any other uses. In any case, when using its content, full name of the author and title of the thesis
must be clearly indicated. Reproduction or other forms of for profit use or public communication from outside TDX
service is not allowed. Presentation of its content in a window or frame external to TDX (framing) is not authorized either.
These rights affect both the content of the thesis and its abstracts and indexes.

Universitat Autònoma de Barcelona

KU Leuven

Doctoral Thesis

Towards understanding privacy
risks in online social networks

Author:

Cristina Pérez-Solà

Supervisors:

Dr. Jordi Herrera-Joancomart́ı

Dr. Claudia Diaz

Dr. Bart Preneel

A thesis submitted in fulfilment of the requirements

for the degree of Doctor of Philosophy

(Doctorat en Informàtica / PhD in Engineering Science: Electrical Engineering)

in the

Departament d’Enginyeria de la Informació i les Comunicacions

Escola d’Enginyeria

and the

Computer Security and Industrial Cryptography research group (ESAT)

Faculty of Engineering Science

April 2016

http://www.uab.cat/
https://www.kuleuven.be/english
http://deic.uab.cat/~cperez/
http://www.deic.uab.cat/~jherrera/
http://homes.esat.kuleuven.be/~cdiaz/
http://homes.esat.kuleuven.be/~preneel/
http://deic.uab.cat/
https://www.uab.cat/enginyeria/
http://www.esat.kuleuven.be/cosic/
https://eng.kuleuven.be/english

ii

UNIVERSITAT AUTÒNOMA DE BARCELONA

KU LEUVEN

Abstract

Departament d’Enginyeria de la Informació i les Comunicacions

and

Computer Security and Industrial Cryptography research group (ESAT)

Doctor of Philosophy

Towards understanding privacy risks in online social networks

by Cristina Pérez-Solà

Online Social Networks (OSNs) are now one of the most popular services on the

Internet. When these lines were written, there were four OSN sites in the Alexa’s

top ten global ranking and the most used OSNs were having hundreds of millions

of daily active users.

People use OSNs to share all kinds of contents: from personal attributes (like

names, age, or gender), to location data, photos, or comments. Moreover, OSNs

are characterized by allowing its users to explictly form relationships (e.g. friend-

ship). Additionally, OSNs include not only information the users conscientiously

post about themselves, but also information that is generated from the interaction

of users in the platform.

Both the number of users and the volume of data shared make privacy in OSNs

critical. This thesis is focused on studying privacy related to OSNs in two differ-

ent contexts: crawling and learning. First, we study the relation between OSN

crawling and privacy, a topic that so far received limited attention. We find this

scenario interesting because it is affordable for even a low-budget attacker. Sec-

ond, we study how to extract information from the relationships OSN users form.

We then expand our findings to other graph-modeled problems.

http://www.uab.cat/
https://www.kuleuven.be/english
http://deic.uab.cat/
http://www.esat.kuleuven.be/cosic/

iv

Acknowledgements

En primer lloc i molt especialment, m’agradaria agrair a en Jordi Herrera el seu

suport constant durant tot el temps en què s’ha desenvolupat aquesta tesi, des

del seu naixement a partir de la feina feta com a un projecte final de carrera fins

avui. Moltes gràcies, no només per guiar aquesta aventura, sinó també per estar

sempre disposat a donar un cop de mà. De ben segur que l’ajuda i dedicació

ofertes van molt més enllà del que es demana d’un director de tesi.

Voldria donar les gràcies també a tots els companys amb qui he compartit la real-

ització d’aquest doctorat. Cristian, Rubén, Leandro, ha estat un plaer poder fer

aquest camı́ al vostre costat, i compartir tant els moments d’estrès per la prox-

imitat de deadlines com les estones de diversió. Ero, gràcies per totes les llargues

xerrades i discussions sobre els més diversos temes i pels road trips fotogràfics

pels voltants de Bèlgica. Michael, thanks for the long discussions and all the fun

during my stays at Leuven.

Realitzar aquesta tesi en dues universitats ha tingut com a conseqüència que

pogués rebre comentaris sobre el text abans de fer-ne el dipòsit final. Aix́ı,

m’agradaria agrair a en Joan Borrell, en Josep Domingo i en Vicenç Torra els

comentaris rebuts, que han permès acabar de polir aquest document.

Des del punt de vista més personal, vull expressar la meva gratitud a en Vı́ctor i

en Roger. Gràcies pels vostres ànims i suport incondicionals, i per haver aguantat

totes les conseqüències negatives que tenir algú fent una tesi a prop pot suposar.

Gràcies també a l’Aĺıcia i l’Enric, pel vostre recolzament i la vostra estima.

Finally, I would also like to thank Claudia Dı́az and Bart Preneel for the com-

ments on the first version of this document and for giving me the opportunity to

do this thesis also at KU Leuven. My visits to Leuven have allowed me to know

other ways of working and meet and work with very interesting people.

v

Contents

Abstract iii

Acknowledgements v

Contents vi

List of Figures xiii

List of Tables xv

Abbreviations xvii

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 3

1.3 Contributions . 4

1.4 Thesis outline . 6

2 Preliminary concepts 9

2.1 Graphs . 9

vii

Contents viii

2.1.1 Graph metrics . 11

2.1.2 Cohesive subgroups . 13

2.2 Online social networks . 15

2.2.1 Social graphs . 16

2.2.2 Online social network websites 17

2.3 Crawling online social networks . 19

2.3.1 Architecture of a web crawler 20

2.3.2 Scheduling algorithms for crawling OSNs 23

2.4 Classification for networked datasets 24

3 Related work 29

3.1 Online social network analysis . 29

3.1.1 OSN modeling . 30

3.1.2 Privacy in online social networks 32

3.1.2.1 Attacks on users’ privacy 32

3.1.2.2 Preserving users’ privacy 34

3.2 Crawling online social networks . 37

3.3 Classification for network datasets 40

3.4 Conclusions . 45

4 When multiple autonomous users disclose another individual’s

information 47

4.1 Proposed attack . 48

4.1.1 Attack scenario . 48

4.1.2 Retrieved information . 49

4.1.3 Attack description . 49

4.1.3.1 Scheduling algorithm 50

4.2 Experimental results . 50

4.2.1 Experimental set-up . 51

4.2.2 Data analysis . 52

4.3 Conclusions . 53

5 Crawler scheduling and its privacy implications 55

5.1 Privacy threats related to crawling activity 56

5.1.1 Scheduler implications on privacy 57

5.1.1.1 Breadth-First Search (BFS) 58

5.1.1.2 Depth-First Search (DFS) 59

Contents ix

5.1.1.3 Real-degree greedy 59

5.1.1.4 Explored-degree greedy 60

5.1.1.5 Unseen-degree greedy 60

5.1.1.6 Lottery . 61

5.2 Online Social Honeynets . 61

5.2.1 Definitions, assumptions, and goals 63

5.2.2 An online social honeynet to protect online social networks

from greedy schedulers . 65

5.2.3 Experimental results . 67

5.3 Conclusions . 69

6 OSN crawling schedulers and their implications on k-plexes de-

tection 71

6.1 Adversary model . 72

6.1.1 Adversary goals . 73

6.2 Experimental results . 75

6.2.1 Targeting the whole network 77

6.2.1.1 Number of k-plexes obtained 77

6.2.1.2 Maximum k-plex size 79

6.2.1.3 Number of nodes in any of the k-plexes 80

6.2.1.4 Efficiency . 82

6.2.2 Targeting one specific victim 83

6.2.2.1 Number of k-plexes where the victim belongs . . . 83

6.2.2.2 Maximum k-plex size where the victim belongs . . 84

6.2.2.3 Number of nodes in any of the k-plexes where the

victim belongs . 85

6.2.2.4 Efficiency with a victim node 86

6.3 Conclusions . 88

7 On improving classification of interlinked entities using only the

network structure 91

7.1 Problem definition and notation . 93

7.2 Building a relational classifier using only the network structure . . 93

7.2.1 Initial module . 94

7.2.2 Relational module . 96

7.2.3 Multiclass classification . 98

7.3 Experiments’ description . 98

Contents x

7.3.1 Datasets . 98

7.3.1.1 Datasets already used by the ML community . . . 99

7.3.1.2 New datasets . 99

7.3.2 Selecting attributes for the initial classifier 101

7.3.3 Netkit classification algorithms 102

7.3.4 Experimental setup . 103

7.3.5 A working example . 104

7.3.5.1 Initial module . 104

7.3.5.2 Relational module 106

7.3.5.3 Classification results 107

7.3.5.4 A further look into the iterative component 110

7.3.6 Experimental results . 113

7.4 Discussion of similar approaches 116

7.4.1 Our proposal as a semi-supervised learning algorithm . . . 116

7.4.2 K-Nearest Neighbor classification 118

7.5 Conclusions . 118

8 Improving relational classification using link prediction tech-

niques 121

8.1 Notation and problem definition 122

8.2 Experimental setup . 124

8.2.1 Datasets . 124

8.2.2 Classification algorithms . 125

8.2.3 Methodology . 125

8.3 Modifying edges’ weight to increase assortativity 126

8.3.1 Assortativity . 127

8.3.2 Scoring functions . 128

8.3.3 Modifying edges’ weight . 131

8.3.4 Experimental results . 131

8.3.4.1 Assortativity measurements 131

8.3.4.2 Correlation between assortativity and performance 134

8.3.4.3 Increasing classification performance 136

8.4 A new metric to improve edge selection 138

8.4.1 General overview . 138

8.4.2 Metric detailed description 139

8.4.3 Experimental results . 141

Contents xi

8.5 Conclusions . 143

9 Towards inferring communication patterns in online social net-

works 145

9.1 Communication inference on OSNs 147

9.1.1 A model of communication on OSNs 147

9.1.2 Evaluating the feasibility of communication inference on

OSNs . 148

9.2 A case study: Netlog . 150

9.2.1 The Netlog dataset . 151

9.2.2 Inferring private communication on Netlog 155

9.2.2.1 Messaging behavior based on features of the on-

line social network friendship graph 155

9.2.2.2 Messaging behavior based on posting behavior . . 158

9.3 Conclusions . 161

10 Conclusions 165

10.1 Conclusions . 165

10.2 Further work . 168

A OSN crawler implementation 171

A.1 The downloader . 172

A.2 The parsers . 172

A.3 The schedulers . 173

A.4 The storage device . 174

A.5 Other features . 175

Bibliography 177

List of Figures

2.1 A graph that contains cliques . 14

2.2 Crawler architecture . 21

2.3 Users from the crawler’s point of view 22

4.1 1-node neighborhood of u0 for last.fm network 52

4.2 1-node neighborhood of u0 for Flickr network 53

5.1 Online Social Honeynet (OShN) . 64

6.1 Results for Indicators 1a and 1b. Each line of the graph represents

a different seed . 78

6.2 Results for Indicators 1c and 1d. Each line of the graph represents

a different seed . 81

6.3 Results for Indicators 2a, 2b, and 2c. Each line of the graph rep-

resents a different seed . 84

6.4 Results for Indicator 2d . 87

7.1 Classifier modules scheme . 94

7.2 Scatter plot of node indegree and outdegree for users and compa-

nies (dataset 1) . 105

7.3 Relationship profile for users and companies (Twitter dataset, seed

1) . 106

7.4 Classification accuracy per iteration 111

xiii

List of Figures xiv

8.2 Number of common friends scoring function 129

8.3 Jaccard index scoring function . 129

8.4 Adamic-Adar scoring function . 130

8.5 Preferential attachment scoring function 130

8.6 Clustering coefficient scoring function 130

9.1 Dataset statistics . 152

9.2 P[¯̄VF (a)] . 152

9.3 Distributions of the number of people a user sends messages and

posts to . 152

9.4 Messages and posts Alice sends to Bob 153

9.5 Number of messages and posts Alice sends 153

9.6 Graph features . 154

9.7 Communication reciprocity . 155

9.8 Messages given number of friends 156

9.9 Messages exchanged given subnetwork graph 157

9.10 Messages sent given sent/received posts 158

9.11 Exchanged messages given posting friends 161

List of Tables

4.1 Values from crawled graphs obtained with BFS (seed u0) 51

7.1 Already existing datasets . 99

7.2 New datasets . 100

7.3 Transformation performed by the feature extraction module 106

7.4 Class vector . 107

7.5 Classification accuracy for the binary classification task on the

Twitter dataset (seed 1), competing classifiers use only the neigh-

bors’ class labels . 108

7.6 Classification accuracy for the binary classification task on the

Twitter dataset (seed 1), competing classifiers use both neighbors’

class labels and the extended feature set 109

7.7 Initial classifier accuracy analysis for the binary classification task

on the Twitter dataset (seed 1) . 113

7.8 Win counts: number of times our classifier outperforms the other

algorithms (over 40) . 114

7.9 Accuracy difference between our classifier’s and the best of all the

other algorithms . 115

8.1 Original datasets . 124

8.2 Edge assortativity . 132

8.3 Node assortativity . 133

xv

List of Tables xvi

8.4 Spearman’s rank correlation coefficient between error reduction

and assortativity (r=0.35) . 135

8.5 Kendall’s τ rank correlation coefficient between accuracy and each

of the metrics (r=0.35) . 142

8.6 A detailed example of the usage of Kendall’s τ coefficient using

Cora-cite dataset classified with cprior-wrn-it with r = 0.35 . . 143

9.1 Notation summary . 149

9.2 Description of the Netlog interaction dataset 151

9.3 Entropy of number of messages given number of friends 156

9.4 Entropy of messages exchanged given subnetwork graph 157

9.5 Entropy of Sent Messages Given Sent/Received Post 159

9.6 Conditional Entropies Given Posting Friends Sets 160

Abbreviations

AA Adamic-Adar

API Application Programming Interface

AT All Time

BFS Breadth-First Search

CC Clustering Coefficient

CDRN Class-Distribution Relational neighbor

CGI Common Gateway Interface

CI Collective Inference

CN Common Neighbors

cp classpriors

DFS Depth-First Search

fc full classifier

HTML Hyper Text Markup Language

IMDb Internet Movie Database

IP Internet Protocol

xvii

Abbreviations xviii

JI Jaccard Index

kNN k-Nearest Neighbor

LC Local Classifier

LD Label Dependent

LI Label Independent

MHRW Metropolis-Hasting Random Walk

NO Network Only

NSA National Security Agency

OShN Online Social Honeynet

OSN Online Social Network

PA Preferential Attachment

PCA Principal Component Analysis

PRN Probabilistic Relational Neighbor

RC Relational Classifier

RN Relational Neighbor

SVM Support Vector Machines

TSVM Transductive Support Vector Machines

unif uniform

URL Uniform Resource Locator

WVRN Weighted-Vote Relational Neighbor

Als meus pares

xix

CHAPTER 1

Introduction

This first chapter of the thesis starts with the motivation that drives our work

(Section 1.1). Then, Section 1.2 describes our goals and Section 1.3 details our

contributions. Finally Section 1.4 provides a description of the outline of the rest

of this document.

1.1 Motivation

The increasingly popularity of Online Social Networks (OSNs) has lead them to

become an important part of people’s everyday communication, changing both

the way humans communicate and think about the Internet. Nowadays, there

are more than 70 different OSN providers claiming that their networks have more

than a million users, four out of ten of the best ranked pages by Alexa are online

social network providers, and there exist OSNs specialized in almost anything

we can think of. Moreover, social networking sites have broken through the

1

Chapter 1. Introduction 2

entertainment circle and are now being used in a wide variety of contexts, from

companies to schools, charity organizations, or libraries. Furthermore, online

social networks are starting to infiltrate the traditional Web with all kinds of

widgets that allow users to share content and preferences. At the same time,

these widgets are able to collect huge amounts of data that reside outside the

OSN provider, together with users’ reading habits and browsing activities.

With millions of individuals who use OSNs to share all kinds of contents, privacy

concerns have arisen about how all this content is managed. On one hand, users

are able to share information about themselves on the network. For instance,

users may declare gender, age, and location; they may post little messages ex-

plaining what they are doing or thinking; they may upload photos and videos; or

even add accurate geolocalization information to any of the previous data. On

the other hand, the relational nature of OSNs makes them a huge source of infor-

mation about relationships. The most clear example is the explicit relationships

that users create on these networks, usually tagged by the words friendship or

follower. However, relational information in OSNs goes far beyond these explicit

relationships: visiting another user’s profile, sending him a message, favoriting

one of his photos, or recommending him a new game are just some examples of

actions that implicitly create relationships information.

When one goes a little bit further into analyzing OSN data, this distinction

between user attributes and relationships becomes blurred. Data that we may

consider belonging to a user may also be seen as relationships. For instance, a

user expressing that he likes a song may be seen as information about that user

only. However, when two users express they like the same song, a relationship be-

tween these two users arises, expressing similar musical preferences. The inverse

procedure may also happen: relationships can directly give us information about

user attributes. That is the case, for example, of relationships representing love

between people. Combining these relationships with the gender of those involved,

it may be possible to learn sexual orientation, which is an attribute of the user

itself.

However, even if all this information that users share and generate on an OSN was

not enough reason to be concerned, information that users do not share on the

network becomes also problematic. Given the community structure that human

networks present and the huge amount of information available, researchers have

Chapter 1. Introduction 3

demonstrated that it is possible to infer information about a user even when this

information is not available in the network [14].

OSN providers are one of the most powerful actors in this scenario. Having all

the information about their users, they are able to study, analyze, and use it at its

advantage with laws being almost the only limit. However, many other actors are

also into play: data can be sold to interested third parties, websites may include

social buttons from the OSN, games and applications are built inside the OSN,

and web crawlers may retrieve the publicly accessible part from the Internet.

In this context, the interest and importance of studying privacy in OSNs is more

than obvious. However, among the broad amount of topics that are involved

in OSN privacy, this thesis is focused on two different aspects: crawling and

learning. First, we study OSN crawling as we believe is the most affordable way

of obtaining OSN data. Becoming an OSN provider or buying data from one

may not be within reach of everyone, but coding a crawler or buying one is easy

and cheap. Moreover, privacy implications of OSN crawling have not received

much attention from the privacy research community. Then, once data has been

obtained, we focus on information that can be learned from this data. Specifically,

we planned to study how to learn information from relationships, which not only

do appear in huge amounts in OSN data but are also starting to be used to model

many other real life problems.

1.2 Objectives

This thesis is centered on the analysis of privacy risks arising from online social

networks. Specifically, it is focused on the relationships between users: we study

how these relationships can be discovered and what information can be extracted

from them. The main goals of this thesis are:

1. To examine the techniques and algorithms used to obtain OSN relationships

from data publicly available on the Internet.

2. To study how to infer information about users from the relationships they

form in OSNs.

Chapter 1. Introduction 4

3. To propose mechanisms that minimize the information that can be obtained

from OSNs by automatically querying their public interfaces.

1.3 Contributions

During the development of this thesis, we followed three main lines of work:

1. Crawling online social networks from a privacy perspective.

2. Classifying online social network users.

3. Making inferences on online social network data.

The first topic that we deal with is the problem of crawling OSNs from a privacy

perspective. Web crawling and privacy were two topics that had been intensively

studied in the past by numerous researchers, but when we started working on the

thesis there were just a few works that studied the privacy problems that arise

with OSN crawling. In this line of work, we made three main contributions:

1.1 In OSNs users are interlinked and privacy policies from different (inter-

linked) users may collide. This fact may be used by an attacker to ob-

tain private information from users with more restrictive policies than their

neighbors. We proposed a specific scheduling algorithm that an attacker

can use to take advantage of this fact to obtain private information about

an OSN user [1].

1.2 Web crawlers may be used to massively obtain information from OSN users.

We propose a mitigation technique, by designing what we call Online Social

Honeynets, an artificial set of users (and their connections) that attract web

crawlers and prevent them to retrieve data from licit users. We presented

the idea of OShN and a set of experiments that evaluate its performance [2].

1.3 Assuming that web crawlers are able to retrieve just a portion of the net-

work, an attacker may be interested in selecting the specific part that he is

going to retrieve. Depending on the goals of the attacker, different strate-

gies will optimize the crawling performance. We provided an analysis of

Chapter 1. Introduction 5

how different scheduling algorithms affect the part of the network retrieved

and how this relates to the specific goals of the adversary [3].

The second topic that we work on this thesis is classification of OSN users from the

social graph structure alone. That is, we deal with the problem of assigning labels

to OSN users and we use as the only information for this process the class labels of

other users in the network and the relationships that users create inside the OSN.

We do not use any other semantic information that may be available, and we show

that graph structure alone is enough to perform this task. This scenario, where

identifiers are removed from a dataset and no noise is introduced, resembles the

basic graph anonymization procedure, and is thus of special interest. Although

we started working on social graphs, we soon realized that some of the techniques

that we were proposing were also of use for performing classification in other kinds

of graphs. Therefore, some of our contributions apply to the general problem of

relational classification, and are not restricted to the specific case of social graphs.

Following this line of work, we provide four contributions:

2.1 Our first contribution is to design a classifier that is suited for the afore-

mentioned scenario, that is, an architecture able to classify users of OSNs

given just their connections with other users (and labels for a subset of

users of the network). We then generalize the problem and apply our ar-

chitecture to graphs coming from other domains. Finally, we provide a

systematic comparison of the performances obtained with our classifier and

the existing classifiers in the literature. We first presented the proposal [4]

and afterwards the experimental results of the comparison [5].

2.2 Some authors had pointed out in the past that the assortativity of a graph

is an indicator of the level of performance that a classifier is able to achieve.

We evaluated to what extent assortativity positively correlates with classi-

fication accuracy [6]. We then propose a technique to increase the assorta-

tivity of a graph by modifying the weights of its edges. This technique can

be applied before the classification task.

2.3 Sometimes we have a set of entities and many different sets of links that rep-

resent different kinds of relationships between these entities. For instance,

for a social network we can have relationships expressing friendship, mes-

saging over a public channel, private messaging, profile views, etc. For

Chapter 1. Introduction 6

these scenarios, we propose a metric that is able to select which kind of

relationship will lead to better accuracy for a given classification problem,

that is, a metric to perform automatic edge selection. We presented this

metric and experimental evaluation of its performance [7].

Finally, the third topic that is covered in this thesis is inferences that can be

made about communication in an OSN. This topic is closely related to classi-

fication, although the approach we followed was different. First, we do not try

to learn attributes from the users themselves, but to learn something about the

relationships between those users. Second, we are not assigning labels to users

(nor to relationships), but try to decide how much information about some vari-

able we can obtain from another variable, where variables quantify properties

about relationships between users. Third, we limit our study to analyze the in-

formation that one variable gives us about another variable, but we do not use

that information to make any predictions (as in the previous work). This study

is interesting from a privacy perspective because it presents a problem to the

current data disclosure paradigm in OSNs: if private information can be inferred

from other information that the user considers public and thus he openly shares

in the network, we should reconsider how data is disclosed in the OSN. The work

on this third topic was started during my master thesis at KU Leuven, and was

latter conducted together in collaboration with Ero Balsa.

3 Study communication pattern inferences on a real-world sized OSN dataset.

We analyze inferences that can be made from public information (friendship

relationships and public communication) about private information (private

messages and page visits). We presented our results of this study with the

Netlog dataset [8].

1.4 Thesis outline

The rest of this thesis is structured as follows.

First, the thesis includes work done by other researchers upon which the thesis is

built. Chapter 2 summarizes the preliminary concepts that conform the basis of

the thesis. After that, Chapter 3 reviews the state of the art of the main topics

Chapter 1. Introduction 7

covered by the thesis, that is, online social network analysis, crawling OSNs, and

classification for networked datasets.

Then, our contributions regarding crawling OSN and its relation with privacy are

presented. Chapter 4 presents an attack that demonstrates how the traditional

approach of configuring visibility preferences in the users profile may not be

effective to protect against information disclosure in OSN. After that, Chapter 5

analyzes how different scheduler algorithms affect the collected data and, in turn,

users’ privacy. The chapter also introduces the concept of online social honeynets

(OShN) and a proof-of-concept build for experimentation. Finally, Chapter 6

defines a set of adversary goals and quantifies how good the different scheduling

algorithms are in achieving these goals.

Afterwards, our contributions regarding classification of OSN users from the so-

cial graph structure are explained. Chapter 7 proposes an architecture for classi-

fying nodes and evaluates it with multiple datasets. Chapter 8 presents a method

to increase classification accuracy (applicable not only to our classifier but also to

other classification methods) and tackles the problem of automatic edge selection.

Next, Chapter 9 introduces our work regarding communication patterns in online

social networks. The chapter describes our evaluation framework and the analysis

over a real-sized OSN dataset.

Finally, Chapter 10 concludes the thesis and gives guidelines for future work.

CHAPTER 2

Preliminary concepts

This chapter explains some preliminary concepts that will be used through the

rest of the thesis. First, we review basic graph theoretic concepts. After that,

we introduce Online Social Networks (OSNs), their abstract representation using

graphs, and the specific OSNs used in the experimental parts of the thesis. Fi-

nally, an introduction of the two problems that conform the main lines of work

of the thesis is presented: OSN data collection via crawling and classification of

networked datasets.

2.1 Graphs

A graph G = (V,E) is defined as a non empty set V and a set E of unordered

pairs of different elements of V [15]. The elements of V are called nodes or

vertexes whereas the elements of E are known as edges. If e = (u, v) is an

edge, then we say that u and v are adjacent vertices and that the edge e is

9

Chapter 2. Preliminary concepts 10

incident to u and v. The concept of graph is often generalized, easing some of

the imposed restrictions. For this reason, we will refer to graphs that meet this

strict definition as simple undirected graphs.

Given a graph G = (V,E), if there exist two or more edges a, b ∈ E such that

a = (u, v) and b = (u, v) then we say that G is a multigraph.

The concept of digraph or directed graph is derived directly from the graph

definition, now requiring that the set E is formed by ordered pairs of different

elements of V . In this case, the elements of E are called arcs or directed edges.

A graph is weighted if its edges have an associated weight. Given two nodes

u, v ∈ V in a weighted graph, an edge between them is a triplet e = (u, v, w)

where w ∈ R is the weight assigned to that edge.

In an undirected graph, we denote by Γ(v) the set of adjacent nodes of v. In a

directed graph, we distinguish between successors Γ(v) and predecessors Γ−1(v)

of a node v. The set of successors of v is defined as Γ(v) = {u ∈ V | ∃ e ∈
E with e = (v, u)}. Similarly, we define the set of predecessors of v as Γ−1(v) =

{u ∈ V | ∃ e ∈ E with e = (u, v)}. We define the neighborhood of a node v as

the set of nodes N(v) = Γ(v) ∪ Γ−1(v).

The node degree is the size of the Γ(v) set (deg(v) = |Γ(v)|). In a directed graph,

a distinction is made between the outgoing degree, |Γ(v)|, and the incoming

degree, |Γ−1(v)|.

The order of a graph G = (V,E) is the number of vertices of G, namely, the

cardinality of V that we will denote with n = |V |. The size of G is the number

of edges of G, that is, |E|.

A path is a sequence of nodes such that each pair of consecutive nodes are

adjacent. If the path is finite, then it has a start vertex and an end vertex. A

path whose start and end vertices are the same is called a cycle. If a path does

not contain any repeated vertex, it is called a simple path. The length of a path

is the number of edges that it contains and the distance between any two vertices

d(u, v) is the length of the shortest path that connects them. The shortest path

between two vertices is also known as the geodesic path.

Chapter 2. Preliminary concepts 11

The adjacency matrix A of an unweighted simple graph G is a matrix with

ones in coordinates i, j such that ∃ e = (i, j) ∈ E and zeros otherwise. For a

weighted graph, the entries of the matrix contain the weight of the edge when it

exists and zero otherwise. The adjacency matrix of an undirected graph is always

symmetric.

The induced subgraph G′ for a vertex set V ′ ⊆ V is the subgraph G′ = (V ′, E′)

such that E′ = {(u, v) ∈ E | u, v ∈ V ′}.

The subjacent graph H of a directed graph G is the graph obtained when

working with G regardless of the orientation of the edges.

An undirected (directed) graph is said to be complete if it has all the possible

edges, that is, n(n− 1)/2 edges (respectively, n(n− 1)).

2.1.1 Graph metrics

The eccentricity of a vertex v ∈ V in a connected graph is the maximum

distance between v and any other vertex in V . Then, the maximum eccentricity

of all vertices in V is called the graph diameter while the minimum eccentricity

is known as graph radius. The diameter of a graph is also usually defined as the

size of the longest shortest path between any two vertices of the graph. In graphs

with small diameter all nodes can be reached from any node in the network in a

small number of hops.

The clustering coefficient is a measure of how well connected the neighborhood

of a node is. When the neighborhood of a node is fully connected, the clustering

coefficient is 1 whereas when there are no connections between one node’s neigh-

bors the clustering coefficient is 0. More precisely, the clustering coefficient of a

node v is defined as the number of connections between v’s neighbors divided by

the number of possible connections that could exist between them.

For undirected graphs, the clustering coefficient of a node v is:

cc(v) =
|{e = (u,w) ∈ E | u,w ∈ Γ(v)}|

|Γ(v)|(|Γ(v)|−1)
2

.

Chapter 2. Preliminary concepts 12

For directed graphs, the clustering coefficient of a node v is defined as:

cc(v) =
|{e = (u,w) ∈ E | u,w ∈ Γ(v)}|

|Γ(v)|(|Γ(v)| − 1)
.

Centrality metrics [16, 17] are measures applicable to nodes that allow us to deter-

mine their relative importance in a graph following a specific criterion. Centrality

is a very intuitive concept and centrality metrics were created in an attempt to

formalize this concept.

Degree centrality, CD(v0), is one of the most direct pieces of information that

can be extracted from a graph since it is defined immediately from the nodes’

degree:

CD(v0) = deg(v0) .

Besides node degree centrality, there are other centrality measures that try to

apprehend different notions of centrality. Betweenness centrality, CB(v0),

is based on the number of times that a node is found inside the geodesic that

interconnects another pair of nodes.

CB(v0) =

n−1∑
i,j=1
i6=j

σvivj (v0)

σvivj
,

where σvivj is the number of geodesics between vi and vj , and σvivj (v0) is the

number of shortest paths between vi and vj that pass through v0.

Closeness is another centrality measure which tries to capture how close a node

is from the other nodes of the graph. A node is closer to the other nodes of the

graph when the sum of all geodesic distances to them is smaller. For this reason,

closeness centrality, CC(v0), is defined as the inverse of the sum of all geodesic

distances from one node to all the other nodes of the graph:

CC(v0) =
1∑n−1

i=1 d(v0, vi)
.

Chapter 2. Preliminary concepts 13

2.1.2 Cohesive subgroups

One of the most common analyses performed on edge information in OSNs is

the detection of communities. Communities are groups of nodes within which

the network connections are dense, but between which they are sparser [18]. De-

tecting and identifying these communities is a usual procedure in social network

analysis, since communities facilitate the understanding of network data. Know-

ing which communities a user belongs to is an excellent way to gain information

about the user: family, friends, college, or work mates are subgroups that arise

from a social network and can be detected from the graph structure itself.

Although detecting and analyzing communities are interesting lines of work, we

do not deal with them in this thesis. However, relations between users can also be

used to detect cohesive subgroups of individuals in the graph, a topic on which

we do work in this thesis. Cohesive subgroups are subsets of nodes among

which there are relatively strong, direct, intense, or frequent ties [19].

In order to study the subgroups that arise within a network, several structures

are defined. The basic cohesive subgroup structure is known as clique.

A clique is a subset of nodes of the graph in which every possible pair of nodes

is directly connected by an edge and such that the clique is not contained in

any other clique [20]. In other terms, a clique is a maximal complete subgraph.

A restriction is added to this definition demanding that there must be at least

three nodes to form a clique, excluding dyads (two people groups) from the clique

definition. As it is pointed out by Balasundaram et al. [21], clique models capture

three important structural properties that are expected in a cohesive subgroup,

namely, familiarity (each vertex has many neighbors and only a few strangers in

the group), reachability (a low diameter, facilitating fast communication between

the group members), and robustness (high connectivity, making it difficult to

destroy the group by removing members).

The graph showed in Figure 2.1 contains two cliques: nodes {5, 6, 7} form a clique

of size three and nodes {1, 2, 3, 4} form a clique of size four. Nodes {1, 2, 3},
{1, 2, 4}, {2, 3, 4}, and {1, 3, 4} form four complete substructures that will not

be considered cliques under the aforementioned definition because they are not

maximal.

Chapter 2. Preliminary concepts 14

Figure 2.1: A graph that contains cliques

Cliques are a good starting point to analyze subgroups. However, they are very

restrictive structures, which are not very useful for analyzing group structure on

real data. A subgroup which only lacks one tie will not be considered a clique

and, therefore, will not be obtained when analyzing the network cliques. Hence

the importance of defining other structures that are able to capture groups of

nodes without these restrictions. Cliques also present an additional limitation:

requiring that all members must be connected to all other members makes them

indistinguishable from others in the same clique. For this reason, all nodes inside

a clique are structurally equal to each other and, therefore, can not be differen-

tiated.

In order to relax the restrictions of cliques, two approaches can be taken: to

allow connections other than direct between the nodes or to relax the number of

connections needed to be part of the group.

The first approach leads us to subgroup definitions based on reachability. Two

main structures are defined in these terms: n-cliques and n-clans [19]. An n-

clique is a set of nodes so that there exists a path of length n that connects

every pair of them. The n-clique definition does not require that these paths

remain within the subgroup. For this reason, n-cliques may present disconnected

components and may have diameter bigger than n. On the contrary, n-clans

solve this problem with the restriction that all permitted paths have to pass

through nodes that belong to the clan.

The second approach gives subgroup structures based on the number of ties

required to be part of the group. Two basic structures are defined in this case:

k-plexes and n-cores [19]. A k-plex is defined as a set of nodes in which each

node is adjacent to all except k of the other nodes (thus it is directly connected

to n−k other nodes with n the number of nodes of the k-plex). On the contrary,

Chapter 2. Preliminary concepts 15

an n-core is a set of nodes in which each node is adjacent to n other nodes. Note

that, by definition, a k-plex for k = 1 (a 1-plex) is exactly a clique.

2.2 Online social networks

A social network is a social structure made by entities which are tied by some

kind of interdependency or relation. Entities under study are usually individuals,

but organizations, groups of individuals, or societies may also be analyzed within

this perspective. The idea of social networks first appeared in the works of Émile

Durkheim and Ferdinand Tönnies back in the 1890s.

Although the study of social networks lays its foundations back in the late 1800s,

online social networks as we understand them today did not appear until 1997,

when sixdegrees.com was inaugurated. The original sixdegrees.com died long ago,

but many others that followed its steps are now capturing everyone’s attention.

Over time, OSNs functionalities have expanded incredibly, from simple places

to upload content and share it with friends to crucial media to communicate.

Games, chats, and photo albums were some of the elements quickly introduced

in general purpose OSNs. Lately, many other features are starting to popularize

inside these networks. For instance, location based services that make use of the

geographical position of a user (usually obtained through the usage of a mobile

device) to offer specific services. Moreover, some OSNs have also been gaining

power as real-time sources of updated information from peers, challenging the

traditional information flow model. Information can now be obtained from first

hand experiencers and almost instantaneously.

Online social networks are web services that allow users to create a public

(or partially public) profile describing some information about themselves and

share information with other users of the network [22]. Their most characteristic

feature is that they allow users to create explicit relationships between them in

the network.

In general terms, joining an OSN consists of two basic steps. In the first place,

users sign up by filling an online form with personal data that establishes the

user’s profile. The visibility of this profile depends mostly on the OSN and,

in second term, on users’ preferences. While some OSNs such as Tribe [23] or

Chapter 2. Preliminary concepts 16

Friendster [24] make profiles public by default and allow them to be indexed

by search engines, other networks such as Facebook [25] or Flickr [26] let users

configure their profiles’ visibility based on groups. Other OSNs like Last.fm [27]

allow users to change the visibility of some of the attributes that the network

stores while other OSNs like Twitter [28] do not provide such granularity and the

profile only admits two protection levels: visible or private.

Once the profile has been created, users can start to establish explicit relation-

ships with other users. There are many kinds of relations that a user can create

in an online social network. “Friend”, “fan”, “contact”, or “follower” are the

most popular ones. Apart from creating explicit relationships in the network,

OSNs usually allow users to communicate or interact with each other.

Graphs that are used to represent users and their relationships are called social

graphs; they have been widely used to analyze OSNs in a broad variety of studies.

2.2.1 Social graphs

A social graph is defined as a graph where nodes represent users in an OSN and

edges denote links between them. Node attributes are then information about

the user (such as age, gender, or sexual preferences) and edge attributes may

be used to describe relationships. Edges may also have an associated weight,

representing some quantity regarding the relationship. Depending on the kind of

relationship expressed, social graphs can be seen as directed or undirected graphs.

Social graphs are sometimes generalized so that nodes do not only represent users

but also content or other kinds of entities. In this thesis we do not follow this

approach, and model social graphs in the more traditional way.

Social graphs have some specific characteristics that distinguish them from other

graphs. One of the most outstanding one is the distribution of degrees in a power

law [29] such that the probability that a node has degree k is proportional to

k−α for some α > 1; α is called the power law exponent. Therefore, social graphs

have a few nodes with very high degree and a lot of nodes with small degrees.

OSNs tend to exhibit specific behaviors when studying some of the measures that

we have explained for graphs. For instance, social networks are known to exhibit

high clustering coefficients, much higher than those found in random graphs. High

Chapter 2. Preliminary concepts 17

clustering is easily understood when speaking about social connections. Take as

an example two adjacent nodes v and u (hence users v and u are, for instance,

friends), and a third node y which is also adjacent to v. It is more likely that y

will also be a friend of u than another randomly selected node of the graph.

Social graphs are also small-world networks [29]. In a small-world network almost

any node can be reached from every other node by a small number of hops. Mo-

rover, such networks present a community structure, with nodes highly connected

within the same community and poorly connected between different communities.

Centrality metrics applied to social graphs allow us to study the power of every

node in the network. For instance, nodes with high degree have many ties so

they are considered to have more alternatives to satisfy their needs. High degree

may also be an indicator of popularity. When dealing with directed graphs, it is

possible to distinguish between popularity (observed by the number of incoming

edges) and sociability (noted by the number of outgoing edges).

On the other hand, nodes with high closeness are more central to the extent that

they can avoid the control potential of others nodes [30]. In contrast, nodes with

low closeness values have to relay messages through others.

Finally, nodes with high betweenness centrality values are strategically located on

the communication paths between other nodes [31, 32]. This gives them the power

to influence others by distorting or withholding information that passes through

them. For this reason, it is said that nodes with high betweenness centrality

have the responsibility to maintain the communication [33] and coordinate group

processes [34].

2.2.2 Online social network websites

Nowadays, the number of OSNs is enormous and their diversity is very broad. In

this section, far from summarizing the OSNs available on the Internet, we present

a short summary of the networks whose data is used in this thesis.

Twitter is a famous microblogging service that allows users to publish messages

up to 140 characters. Twitter has gained popularity as an almost real-time source

of information and as a platform for organizing masses. On June 2015, Twitter

Chapter 2. Preliminary concepts 18

claimed to have more that 326 million monthly active users and 500 million

Tweets sent per day [35].

Messages in the Twitter network are called tweets. Users can subscribe to other

users’ updates so that they receive all their tweets, establishing in this way topo-

logical links between users. These relationships are not bidirectional, so Alice

can be following Bob’s updates while Bob may not be following Alice’s updates

at all.

Twitter is used with different purposes and, because of that, different uses are

given to each Twitter account. While behind some accounts there is only a single

non-famous person who comments on his topics of interest, entire multinationals

can be found behind other accounts. Even some of the news media companies

have their own Twitter account. This diversity of users is both enriching and

a challenge for anyone who deals with Twitter data, from its own engineers to

advertisers or external data analysts.

In 2009, Twitter introduced a new feature in their network: Twitter lists. This

feature allows users to create lists of Twitter accounts, so that it is possible to

organize both followed and not-followed users. Each Twitter list has its own view

that shows a stream of tweets from all the users included in that list. Moreover,

once a list has been created, any other user of the network can subscribe to it.

This feature considerably increases the functionality of Twitter lists by allowing

people to use lists of other users to enhance their experience in the network.

Flickr is an online photography sharing community. It is used by bloggers and

webmasters to store images that will be embedded in web pages as well as by

photographers who share and comment on creations. They claim to have more

than 10 billion images in their system and 92 million registered users.

In a similar way as Twitter, Flickr relationships are directed. Alice can declare

that Bob is her friend, while Bob may not say the same about Alice. Flickr shows

in the user profile the list of friends of a given user.

Users may posts comments to Flickr photos and are able to favorite a photo, an

action somehow similar to Facebook likes.

Chapter 2. Preliminary concepts 19

Flickr’s group functionality allows users to create communities with common

interests. Any user is able to create a group, which may be open to every other

user in the network or restricted to certain users by invitations.

Last.fm is a music recommendation system and an Internet radio streaming

service. It builds the user’s profile by analyzing his musical preferences based on

the music he listens to on last.fm radio stations. Last.fm system is also capable of

analyzing music that the user listens to on his own music player via some specific

plugins. Last.fm network has more than 58 million users [36].

Users can send friendship requests to other lastfm users. After accepting one of

such requests, two users become friends in the network. Users can see what their

friends are listening to and send them recommendations.

Netlog was a Belgian OSN website targeted at young people. In 2010, they

claimed to have over 94 million registered users.

Netlog allowed users to create a profile with photos and information from them-

selves. The network allowed users to write posts into other users pages and

contained also a private messaging system.

User friendships were bidirectional and were created through the classical request-

accept method.

2.3 Crawling online social networks

By browsing the Internet, users are able to visit websites and obtain the informa-

tion they contain. However, when the number of websites a user wants to visit

is too high, the need for automating the procedure of accessing these websites

arises. In this context, web crawlers (also known as spiders) are the programs

that allow this automatic collection of data from the Internet. The best known

use case for web crawlers is for building search engines.

Crawling OSNs resembles the problem of general web crawling in many facets.

The definitions and general architecture of a crawler are applicable to both web

crawling in general and to the specific problem of crawling OSNs. However, there

are some particularities of the OSN crawling problem that differ from generic

Chapter 2. Preliminary concepts 20

web crawling. For instance, for a web page it is usually not possible to know its

incoming links (which pages point to that particular page) and discovering its

outgoing links necessary implies to crawl the entire web page. On the contrary,

for many OSNs it is possible to query for the number of friends without actually

retrieving all the information available from the user. In this section, we first

review the architecture of a web crawler (which is analogous to that of an OSN

crawler). After that, we explain some algorithms that may be instantiated in

one of the modules of the crawler: the scheduler. Some of these algorithms

are valid for generic web crawling, but others make use of the aforementioned

particularities of OSNs that allow them to obtain information that won’t be

available when crawling web pages.

2.3.1 Architecture of a web crawler

Web crawlers are programs that automatically explore web pages in a methodi-

cal manner. Web crawlers start the search in one or more URLs, which are called

seeds, and explore them in order to find new URLs to search for, until they reach

a predefined termination condition. When used to crawl OSNs, web crawlers

start from an initial user, or list of users, and discover other users of the network

by following their social relationships.

Although the architecture of a web crawler is not fixed and different solutions

have been proposed to optimize the crawling process, the architecture of a web

crawler can be explained by defining its five essential modules (as depicted in

Figure 2.2):

1. The downloader is the interface between the Web (or the OSN that is

being explored) and the crawler. Its job is to download a web page and

pass it to the parser.

2. The parser is in charge of analyzing the page that has been downloaded

and extracting useful information and links to other pages.

3. The storage device keeps a record of the crawled information. When

crawling OSNs, the storage device keeps information about users (e.g. name,

location, or birth date) together with links to other pages that are, in fact,

links to other users’ profiles which define user relationships inside the OSN.

Chapter 2. Preliminary concepts 21

4. The queue contains all the links that have been found and that are waiting

to be visited. In OSN crawling, it usually contains links to other users’

profiles.

5. The scheduler is responsible for selecting which link from the queue will

be explored next and communicating its decision to the downloader, com-

pleting the crawling cycle.

Figure 2.2: Crawler architecture

The crawling cycle continues until the crawler has explored all the nodes in the

connected component where the seed belongs. However, sometimes it is interest-

ing to specify an explicit termination condition to restrict the crawler execution.

The number of crawled or discovered nodes, the maximum execution time, or

reaching a specific node are examples of termination conditions that can be used

by crawlers to restrict their execution. Note that, depending on the available re-

sources and the crawled network, sometimes setting a termination condition will

be necessary since it won’t be possible to obtain the whole connected component.

When a termination condition other than to keep crawling until there are no nodes

left in the queue is used, nodes of the network can be classified into three different

categories from the crawler’s point of view: crawled, discovered, or hidden. A

crawled node is one for which all its public information and all its (outgoing)

relationships are known to the crawler. A discovered node is one for which its

Chapter 2. Preliminary concepts 22

presence and at least one (incoming) relationship is noticed by the crawler, but

it is not a crawled node. Finally, a hidden node is one for which the crawler is

not even aware of its existence.

Based on this node classification, we define Vcrawl ⊆ V (Vdisc ⊆ V and Vhidd ⊆ V)

as the subset of crawled (respectively, discovered and hidden) nodes of the social

graph. Moreover, we also use G∗ = (V∗, E∗) to define the specific subgraph, with

V∗ the subset of nodes and E∗ the subset of edges such that E∗ = {e = (u, v) ∈
E | (u, v) ∈ G∗ ×G∗}.

We also use n∗ = |V∗| to denote the cardinality of each set.

Figure 2.3: Users from the crawler’s point of view

Figure 2.3 shows an example of a directed social graph crawled following just

outgoing links (OSN users are represented as nodes). Elements (nodes or edges)

known by the crawler are shown with a continuous line and elements unknown by

the crawler have discontinuous lines. We can observe that there are four users who

have been crawled, shown in the dark gray zone. Therefore, all relationships

between them are also known by the crawler. Following the outgoing links of

these users there is a set of discovered users, of which the crawler knows they

exist. However, relationships between these discovered users are hidden from the

crawler. Moreover, links from these discovered users to crawled users are also

Chapter 2. Preliminary concepts 23

hidden. There are also a set of hidden users, whose links and existence are

totally hidden from the crawler.

2.3.2 Scheduling algorithms for crawling OSNs

The scheduling algorithm is the most critical module of the crawler, specially

when it is not possible to crawl the entire connected component. By selecting

a scheduling algorithm together with a seed and a termination condition, the

crawler is determining which part of the network will retrieve. Depending on

how the scheduler chooses the next user to crawl, many algorithms emerge:

• Breadth-First Search (BFS) algorithm acts as a simple queue, where

the first nodes to be crawled are the first that have been discovered. Newly

discovered nodes are appended to the end of the queue, thus previously

discovered nodes are crawled sooner than newer ones. BFS is also known

as FIFO, for its resemblance with a traditional FIFO queue.

• Depth-First Search (DFS) algorithm works as a traditional stack, where

the first nodes to be crawled are the last ones that have been discovered.

Newly discovered nodes are added at the top of the stack, thus they will be

explored sooner than previously crawled nodes.

• Random list algorithm chooses the next node to be crawled with a random

uniform distribution over all nodes that are waiting to be explored. Each

time a new node has to be selected, all nodes in the queue have the same

probability to be chosen. Note that nodes that are discovered sooner in the

crawling process have a higher probability to have been selected at the end

of the crawl than nodes discovered later on.

• The greedy algorithm selects as the next node to be crawled the one with

the highest degree from all Vdisc nodes. Depending on how this degree is

computed, we can distinguish three greedy algorithms:

– Real-degree greedy takes its decisions based on the real degree of

the nodes. Notice that using the architecture described above, infor-

mation on the real degree of a node is unknown for discovered nodes

so additional requests may have to be made to the OSN in order to use

Chapter 2. Preliminary concepts 24

this scheduler. This real-degree greedy definition corresponds to the

hypothetical greedy algorithm [37] and would be called highest-degree-

crawler in Korolova’s terms [38].

– Explored-degree greedy uses the actual known degree of the node

in the explored subgraph Gcrawl as the measure to select the next node

to crawl. This definition of explored-degree greedy can be also found

under the mere greedy name [37].

– Unseen-degree greedy uses the unseen degree of a node, that is the

real degree minus the explored one. Unseen degree corresponds to the

number of friends of a node that the crawler is not aware of. This defi-

nition of unseen-degree is exactly the same as Korolova’s degree-greedy-

crawler [38]. Like real-degree greedy, using unseen-degree greedy to

crawl an OSN may require additional requests to the OSN provider.

• The lottery algorithm selects the next node to be crawled randomly with

a probability proportional to the node degrees. This gives more chance to

high degree nodes to be selected while maintaining the possibility to select

low degree ones. The lottery algorithm can be configured to use any of the

previous degrees (real, explored, or unseen) in order to make its decisions.

2.4 Classification for networked datasets

Classification is one of the basic techniques in data mining processes. Given a

set of labeled samples, the goal is to assign labels or categories to the rest of the

dataset. By doing so, it is possible to learn relevant properties of those samples.

It is immediate to see that depending on the nature of these inferred properties,

the user’s privacy may be compromised through the classification process.

Classification is a supervised machine learning task, because the learning pro-

cess is made from a set of samples that are correctly classified. These samples are

known as training samples. On the contrary, when such already labeled samples

do not exist, we say that we are facing an unsupervised problem. Clustering is

the equivalent unsupervised problem to classification and it consists in categoris-

ing samples into groups.

Chapter 2. Preliminary concepts 25

As with many other machine learning tasks, samples usually consist of a vector of

features or attributes that describes them. For instance, a sample characterising

a candidate for a job may contain the following features: candidate’s GPA, the

number of years of experience in a similar job, and the number of languages

the candidate is able to speak fluently. For the samples in the training set the

associated class label is also known. Following the previous example, candidates

that applied in the past for a similar position in the company can be classified

depending on whether they got the job. For a new candidate, for which it is not

known whether he will be hired, we can use an inferred classifier over the training

samples to make a prediction for the probability of him being hired, that is, we

can try to predict his class label.

Many real world problems deal with samples that have a large number of descrip-

tive features. Usually these many features include both redundant features and

irrelevant ones. Trying to learn from this kind of datasets may be problematic.

On the one hand, the time needed to train the classifier increases with the size

of the feature space. On the other hand, learning with irrelevant features may

lead to overfitting, and thus decreased performance when evaluating unseen sam-

ples. It is thus interesting to try to reduce the number of features describing the

samples before attempting to train the classifier. There are mainly two different

approaches to deal with this problem: feature selection and feature extraction.

Feature selection consists in selecting a subset of features to work from all the

available ones. In contrast, feature extraction tries to build a set of informative

derived features, removing the redundancy.

Relational classification is a special case of classification that deals with the

problem of classifying networked data, that is, data containing a set of entities

that are interlinked with each other. Therefore, classifying users from an OSN can

be seen as a relational classification problem. In the last years, many algorithms

have been proposed to take advantage of the linked nature of these datasets in

order to perform classification. Some traditional machine learning techniques,

that deal with independent entities, have been adapted to handle networked

datasets, and new algorithms have also been proposed to manage this kind of

data.

Relational learning problems are mainly presented in two different forms [39].

Within-network classification faces the problem of classifying a set of entities

Chapter 2. Preliminary concepts 26

that are linked with other entities for which the label may or may not be known.

On the contrary, across-network classification deals with classifying entities of

an unlabeled network. Models are then learned from other similar networks, for

which the entities labels’ are known. In this thesis we deal with within-network

classification problems.

Networked datasets are usually represented by graphs, where entities are mapped

to nodes and edges describe relationships among them. We denote by G = (V,E)

the graph representing a given networked dataset where the set V = {vi, for i =

1, · · · , n} contains the nodes of the graph and E is the set of edges, pairs of

elements of V , representing the relationships between those nodes. Given a set

of nodes V , several sets of edges El can be defined based on the relationships

arising in the studied dataset. If we are dealing with weighted graphs, edges

are pairs of vertexes with an associated weight, e = (vi, vj , wij) s.t. (vi, vj) ∈
V × V and wij ∈ R.

We denote by C = {ck, for k = 1, · · · , |C|} the set of all possible categories an

entity can be labeled with. Then, there exists a set of nodes Vl ⊂ V for which

the mapping T : Vl → C is known before classification takes place, and a set of

nodes Vnl = V \ Vl for which the mapping is unknown. Note that l stands for

labeled and nl stands for not labeled. The goal of the classification process is to

discover this latter mapping, T : Vnl → C, or a probability distribution over it.

In order to evaluate a classification, let us denote by Vtrain ⊂ V the set of labeled

samples used as the training set and Vtest the test set with the rest of the nodes

(so Vtest = V \ Vtrain). Accuracy is then defined as the percentage of samples in

Vtest the classifier is able to correctly predict:

accuracy(T, P, Vtest) =
|vi ∈ Vtest s.t. T (vi) = P (vi)|

|Vtest|

where Vtest is a given set of samples that have not been seen before by the

classifier, T the ground truth mapping, and P the mapping that the classifier has

learned by analyzing the samples on the training set Vtrain.

In the interest of comparing classification performance between different datasets,

we also use the notion of relative error reduction as defined previously in the

Chapter 2. Preliminary concepts 27

literature [40]:

ERREL(fc,D, r) =
base error(D)− error(fc,D, r)

base error(D)
,

where the base error for a given dataset D is the error committed when predicting

that all samples belong to the most prevalent class. The error for a given classifier

fc, a dataset D, and a labeled ratio r is the error committed when trying to

classify the 1− r remaining samples with the specific configuration described by

the classifier. Note that although the error reduction metric is not bounded, its

value is inside the [0, 1] interval when base error(D) ≥ error(fc,D, r), which is

the most common scenario.

CHAPTER 3

Related work

This chapter presents the state of the art with respect to the three main research

topics that influence this thesis: first, we describe some results regarding social

network analysis that are of interest for our work, devoting special emphasis to

studies about OSN privacy; then, we explain the related work focused on the

special case of crawling OSNs; finally, we review the literature about relational

learning.

3.1 Online social network analysis

In this section, we first review the literature about modeling online social net-

works. After that, we summarize the major contributions to the study of privacy

in online social networks.

29

Chapter 3. Related work 30

3.1.1 OSN modeling

OSNs tend to be huge networks with a very complex structure. As a consequence,

studying these networks directly from the data they generate is a difficult prob-

lem. One of the ways that researchers use to try to gain some knowledge about

OSNs is to create models for them. These models, that usually have a proba-

bilistic component, allow us to simplify the representation of the network and

ease the procedure of unveiling their structure. Moreover, having models for the

networks under study allow researchers to test their assumptions about the net-

work behavior, derive properties analytically, simulate processes in the networks,

or make predictions about their behavior.

Modeling network structure: Most research on OSN modeling has focused on

deriving a model for the social graph, namely, the characteristics of the network

structure. Researchers have attempted to learn the distinguishing features of the

OSN underlying friendship graphs, such as:

• power-law degree distributions [29, 41–48]: the probability that a node has

degree k is proportional to k−γ , for γ > 1;

• small diameters, effective diameters, and average path lengths [29, 42–46,

48–55]: both the longest shortest path of the network and the average

distance between two nodes is much smaller than that of a random graph;

• high link reciprocity [29, 45, 46, 53, 56–59]: in directed networks, there are

a large number of edges that exist in both directions;

• high assortativity [29, 44, 45, 54, 60–62]: nodes tend to connect to other

nodes with similar degrees;

• high local clustering coefficient [29, 44–48, 50, 53, 54, 61–64]: the probability

that two friends of a user are also friends themselves is high; and

• community structure [42, 45, 62, 64–67]: networks tend to divide into groups

of nodes whose connections are denser among nodes in the group than with

other nodes in the network.

However, some researchers have also reported that these characteristic features

are not found on the networks they were studying: the degree distribution of

Chapter 3. Related work 31

the network does not follow a power law [50, 52, 54, 61, 63]; the assortativity

does not seem to be that high [43] or the network even shows a dissortative

behavior [46, 50, 63]; or link reciprocity is low [48, 50, 52]. These somehow

contradictory findings are not surprising. On the one hand, many different types

of networks fall inside the definition of online social network. On the other hand,

researchers use different data collection methodologies, so that the analyzed data

differs between studies.

Modeling user interaction: Benevenuto et al. have proposed a model for user

behavior based on their study of the Orkut network [68, 69]. They present, to

the best of our knowledge, the most ambitious and comprehensive model of user

activity. They provide, among others, a characterization of session timing, the

frequency and type of activities performed on the OSN, or the number of friends

users interact with. Their model, however, does not study how these different

features relate to one another or to other OSN features. Similarly, Gyarmati and

Trinh [70] provide a model of the number of logins and total time online (session

duration) per user based on their analysis of four popular social networks.

Despite the fact that no general model for user interaction has been proposed

so far, social network activity has received significant attention in the litera-

ture, unveiling recurrent, characteristic patterns. Users typically communicate

with a small subset of their friends [44, 71, 72], and tend to reply to most mes-

sages and posts received on the OSN, i.e., OSN interactions feature high reci-

procity [44, 71, 73]. User communication also exhibits certain temporal patterns,

for example, differences between workdays and weekends [72], or the rarity of

persistent communication across time [74]. Geographical location has also been

found to influence communication, for instance, communication seems to increase

between people who are not physically nearby [72]. The interplay between the

topics and the people involved in a communication has also been subject to study.

Sousa et al. [75] have investigated whether Twitter users reply to tweets motivated

by the topic or the person that sends them. Lastly, the topological features of the

communication graph have also been studied, revealing that, on Facebook [44],

they differ from average topological graph features, e.g., higher diameter, lower

clustering coefficient, and higher assortativity.

Chapter 3. Related work 32

3.1.2 Privacy in online social networks

In OSN data, both node attributes and edges may be considered sensitive data.

Beyond hiding attributes, OSN users may also want to hide the existence of a

given edge, or even structural properties regarding their surrounding neighbor-

hood. For instance, users may want to hide a specific friendship relationship (or

a set of relationships) or some topological feature like their degree in the net-

work (that may disclose how popular they are). The wide variety of sensitive

information that may be obtained from an OSN already presents challenges for

designing privacy preserving mechanisms, not to mention all the inferences that

can be made from the published data.

A privacy breach occurs when sensitive information about an individual is dis-

closed to an adversary [76]. In traditional tabular data disclosure literature, two

types of privacy breaches are usually studied: identity disclosure and attribute

disclosure. In the context of network data, two additional problems have been

intensively tackled by researchers: edge disclosure and group membership disclo-

sure. However, there also exist some other kinds of disclosures regarding network

data that may be of interest in specific scenarios. For instance, the disclosure of

certain structural patters or properties may be sensitive depending on the con-

text. Moreover, once one of the disclosures occurs, it may lead to other kinds of

disclosures.

3.1.2.1 Attacks on users’ privacy

Privacy implications of social networks have been a popular topic in recent years.

In addition to personal data associated with each user, social networks include

information on users’ relationships, which suppose an added risk to users’ privacy.

Attribute disclosure: The linked structure of online social network data can

be used to infer hidden attributes from users [77]. Mislove et al. found that users

are often linked with other users who share the same attributes and that com-

munities are formed in OSNs around users sharing attributes. Then, they used

community detection techniques and the knowledge of the attribute for a subset

of nodes in the network to predict that very same attribute for nodes who did

not disclosure it. The authors applied their methods to two datasets crawled

Chapter 3. Related work 33

from Facebook and they were able to predict with high precision attributes such

as college and matriculation year (for undergraduate students) and department

and school (for grad students). Zheleva and Getoor [78] combine both commu-

nity detection techniques and Bayesian analysis to infer gender, marital status,

and location, among other attributes. They suggest that the friendship links in

the network do not necessarily enable accurate inferences, but group membership

does. He et al. [79] propose an analysis framework based on Bayesian networks to

infer personal attributes of OSN users based on the attribute values their friends

declare. To test the suitability of the framework, they synthetically generate

attributes for a network of users in Livejournal, demonstrating that their frame-

work successfully exposes relationships between the attributes of a user and this

user’s friends. Heatherly et al. [80] show that combining both non-sensitive at-

tribute values and friendship links leads to more accurate inferences of sensitive

values than using links alone. They use collective inference in order to classify

OSN users taking into account both attributes of the users and relations between

them.

Chaabane et al. [81] exploit semantic similarities between user data to infer un-

known attributes. They rely on a measure of similarity to assign to the unknown

attribute values of a user the known value of other similar users. Although they

use OSN data, they do not use the social graph, in the sense that they do not

take into account explicit relationships between users.

Node reidentification: Backstrom et al. [82] present several active reidentifi-

cation attacks. These attacks allow an adversary to re-identify a set of targeted

users from a single anonymized copy of the network. Active attacks require to

modify the network before it is released, creating new nodes and adding edges

both within the created nodes and between these nodes and the targets. The main

idea is to create a substructure in the network which will be, a posteriori, efficient

to identify in the released graph. They also present a passive attack in which

users of the system try to find themselves in the released anonymized network,

compromising the privacy of their neighbors. Narayanan and Shmatikov [83] have

proposed algorithms for large scale node reidentification attacks. They present a

deanonymization algorithm based on the usage of publicly available auxiliary in-

formation, which may be noisy. Their demonstration with the Netflix dataset [84]

proves that large scale deanonymization in real world networks is achievable with

Chapter 3. Related work 34

auxiliary information obtained from the public domain. Hay et al. [85, 86] also

present attacks that allow an adversary to reidentify OSN nodes taking into ac-

count the knowledge of the local substructure of the node in the network. They

model the specific case where the degree (of the node, the nodes’ neighbors, or

the neighbors of the neighbors degree at any depth) is known, but present also

other structural queries that define the attacker’s knowledge.

Edge disclosure: Node reidentification attacks may lead to edge disclosure

when no edge altering process has been conducted before releasing the data. For

instance, the attack presented by Backstrom et al. [82] leads to edge disclosure,

because if the attack succeeds, the attacker is able to learn the relationships

between the targeted users.

It is also possible to achieve edge disclosure without prior node reidentification.

Zheleva and Getoor [87] study how to predict the existence of sensitive edges

based on the observed edges. They do not include node and edge attributes in

their prediction model, although they claim that including them is trivial. Their

model includes a network for which different kinds of edges exist and where one

of these types is sensitive. They use the edges of the other types in order to

predict the sensitive ones.

Edge disclosure may also occur not only from an anonymized version of the

network, but also by information leaked directly from the OSN public interface.

Korolova et al. [38] study edge privacy from the point of view of the number of

compromised accounts needed to expose as many nodes as possible depending on

the lookahead of the network. Lookahead is defined as the distance from which

a user can see his friends’ links.

3.1.2.2 Preserving users’ privacy

In order to improve users’ privacy and to mitigate some of the described attacks,

researchers have devised data anonymization techniques for network datasets and

designed new architectures for OSNs.

Privacy when releasing data: Theoretical work centered on maintaining pri-

vacy when releasing network data sets has also been done. Traditional data

sanitization techniques used with tabular data are not enough for network data

Chapter 3. Related work 35

because they do not take into account the information that can be extracted

from relationships. For this reason, some authors have created new algorithms

to protect network data, while others have tried to adapt traditional methods to

the networked nature of OSNs.

K-anonymity protection transforms a dataset so that the information of an in-

dividual cannot be distinguished from at least k − 1 other individuals [88–90].

Some problems were detected for the original definition of k-anonymity, so fol-

lowing works have tried to fine-tune the original definition to address the afore-

mentioned problems [91–94].

There exist some adaptations of these definitions to networked domains that take

into account the structural properties of the network: k-degree anonymity [95], k-

neighborhood anonymity [96, 97], k-automorphism anonymity [98], k-Candidate

anonymity [85], p-Sensitive k-Anonymity [99], or (k,l)-grouping [100]. Liu and

Terzi [95] modify the graph so that there are at least k nodes with the same degree,

preventing user re-identification for adversaries who know the degree of certain

nodes of the network; Casas et al. [101] present a more efficient approach that

deals with large graphs; Zhou and Pei [96] assume that the attacker knows the

neighborhood at distance one of a node and they say that a graph is k -anonymous

if at least k different nodes have the same neighborhood graph (or an isomorphism

of that graph); others extend the concept to the whole graph by enforcing k-

automorphism [98], so that nodes cannot be reidentified even if the attacker

knows the structure of the whole network; or propose k-candidate anonymity [85]

to ensure that at least k nodes match a given structural query over the graph.

Although all these techniques offer better anonymization than the naive approach

of removing identifying attributes and assigning random identifiers [85], the utility

of the released graph is usually affected (as shown in Casas et al. [102]) and

obtaining a graph that satisfies the defined properties may be computationally

expensive. For this reason, naive anonymization is still used to anonymize graph

data before releasing it.

Some other works diverge from this line of work and do not try to define privacy

properties based on the k-anonymity paradigm. Zheleva and Getoor [87] pro-

pose several strategies for preventing link re-identification in anonymized graphs.

These strategies combine node anonymization (for which k-anonymity properties

Chapter 3. Related work 36

are indeed required) and edge anonymization (for which different methods based

on edge removal or clustering are proposed).

Decentralized OSNs: One of the alternatives that has been proposed to avoid

data disclosure to the OSN providers is to design and use decentralized online

social networks. By doing so, users’ data is not centralized in the provider’s

hands. However, deciding where to store these data (and how can user data

be updated or searched), as well as enforcing access control mechanisms and al-

lowing interaction between users are challenges that decentralized architectures

must face in order to create functional OSNs. Three different paradigms are used

for designing architectures for decentralized OSNs: P2P architectures, client-

server architectures (whose infrastructure is owned by different authorities), or

hybrid approaches that combine the previous two [103]. There exist implementa-

tions of decentralized OSNs, whose maturity vary from early prototypes to more

developed applications: PeerSoN [104], Vis-à-Vis [105], Diaspora [106, 107], Life-

Social.KOM [108], LotusNet [109], Prometheus [110], or Safebook [111], are just

some examples of this kind of OSNs.

Data encryption: Encrypting content may also be useful for avoiding informa-

tion leakage in OSNs. Some proposals try to incorporate encryption in order to

offer some level of privacy protection to their users, either for fully centralized

online social networks or for any of the decentralized architectures. However,

note that depending on the architecture, even when all the content is encrypted

the provider may still be able to learn information from the users, for instance,

who communicates with whom, how often, etc. Some authors propose to simply

encrypt user information. FlyByNight [112] is a prototype that integrates with

Facebook as a Facebook application to encrypt user content. In contrast, Scram-

ble [113] works as a Firefox plugin, encrypting the content on the client side.

However, when using this approach in centralized OSNs, the provider is able to

detect that encryption is being used and may take action in response. Guha et

al. propose another scheme [114] where users host profile attributes from other

users, and a key is needed to reconstruct a user profile.

Chapter 3. Related work 37

3.2 Crawling online social networks

The web crawling problem, together with the more specific problem of crawling

OSNs, has been studied mainly from two different perspectives: first, in the

design of software architectures that are able to deal with the huge volume of

data that has to be collected; second, in the analysis of the biases introduced

when just a part of the network is retrieved.

Architectures for web crawling: The web crawling problem has been widely

studied in the scientific literature and in the practical arena. Although the imple-

mentation details of web crawlers are usually surrounded by secrecy, some details

about architectures for high performance (centralized) web crawlers have been

published, for instance, Mercator [115] or a prototype of Google [116]. These

studies are centered on obtaining a fully scalable web crawler which can be used

to crawl the entire Web. Detailed analysis on the bottlenecks of the crawling

architectures can also be found in previous articles.

Some effort has been also devoted to the design of distributed web crawlers, where

machines that are located at geographically distant locations are used together

to speed up the crawl [117]. One of the problems that arise with these solutions

is the coordination of the different machines. Three different approaches are used

to solve this problem: independent agents, where the machines do not coordinate

at all and an overlap between retrieved data is assumed; dynamic assignment,

where there exists a central coordinator that gives information to the different

machines during the execution of the crawl; and static assignment, where the Web

is partitioned beforehand and each of the crawlers is responsible for one part only.

Following this paradigm, some authors have shared the specific architectures for

their distributed web crawlers with static assignment [118–120].

Architectures for OSN crawling: Some work has been done on the particular

case of OSN crawling. For instance, Duen et al. [121] describe their architecture

for a parallel OSN crawler with dynamic assignment, where multiple crawler

agents paralelize the crawling job and there exists a central coordinator that

provides the next node to crawl. However, most of the literature centered on OSN

crawling does not explore the architecture of the crawler itself but is focused on

the effects that using different scheduling algorithms have on the sample of the

Chapter 3. Related work 38

network retrieved by the crawler. This is specially important when the retrieved

data is used to perform social network analysis or to attack OSN users’ privacy.

Scheduling algorithms in OSN crawling: Shaozhi et al. [37] evaluate how

node selection algorithms (among other parameters like the graph itself, the

choice of seeds, the crawling size, or the number of protected users) affect crawl-

ing efficiency (defined previously by Korolova et al. [38]) as well as the quality

of the collected data. Their experiments show that doing a partial crawl of an

OSN results in an incorrect estimation of certain structural metrics of the graph.

A study that analyzes which percentage of the network is necessary to obtain in

order to get good estimations of different structural metrics has been published

for the Cyworld network [63].

Biases produced by certain schedulers can be avoided by selecting the proper

scheduling algorithm. For instance, a study with Facebook [122, 123] collected

a random sample of Facebook users using a Metropolis-Hasting Random Walk

(MHRW) and demonstrated that metrics obtained with MHRW largely differ

from those obtained with BFS.

Katzir and Hardiman [124] proposed to use the OSN public interface to perform

a random walk on the social graph and presented algorithms to estimate the

clustering coefficient and the number of registered users using the data collected

from the random walk. Zhang et al. [125] propose a method to estimate the

degree distribution under sampling and demonstrate its usage in different Online

Social Networks. Avrachenkov et al. [126] also study how to obtain unbiased

node and edge statistics of OSNs with partials crawls by using random walks.

OSN data can also be gathered by using strategies other than retrieving the

friends of a user and making a decision about the next user to crawl. For in-

stance, Twitter had a global public timeline that published a random sample of

tweets from the network. By periodically obtaining tweets from this timeline,

users who have written tweets can be discovered. Then, the followers of those

users can be retrieved, and again some kind of scheduling has to be used to decide

which users to crawl first. By combining both techniques, a different sample of

users is obtained. Krishnamurthy et al. [57] compare Twitter social graphs re-

trieved by using different data collection techniques and review the differences of

the collected datasets regarding metrics such as number of followers and following

Chapter 3. Related work 39

users, number of statuses, or time of the day where tweets are published. Erlands-

son et al. [127] base their collection strategies on content (Facebook posts) and

extract user interactions through the crawled content. Nazi et al. [128] present

strategies for obtaining social network data by combining both keyword searches

and friendship list requests.

Sampling large graphs: The problem of trying to select a scheduler that

minimizes the biases introduced when crawling OSNs has lots of points in common

with the problem of sampling large graphs. Sometimes researchers do have access

to a complete graph but they need to perform analysis or calculate measures that

are computationally expensive, up to the point that its computation becomes

impractical over the whole graph. In this case, one possible solution is to sample

the graph and to perform the computations over the sampled subgraph. Thus

it is critical that the obtained sample is representative. However, note that in

this case there is no OSN provider introducing restrictions on the data collection

process (i.e., operations that can be performed over the graph are not restricted

by API calls available on the OSN). There are numerous studies about sampling

strategies for large graphs [129–134]. These studies deal with questions such as

how to select the sampling method, how to decide the size of the sample, how to

scale metrics to the whole graph (when applicable), how to visualize huge graphs,

how to deal with dynamism on the network, or how does sampling affect different

network metrics.

Defending OSNs from crawlers: There exist some works that present sys-

tems to defend OSNs from massive crawlers. Modal et al. [135] propose Genie,

a system that tries to limit crawlers access to OSNs based on the differences

between browsing patterns of honest users and crawlers. Another approach to

limit crawlers ability to collect information from OSNs is presented by Wilson

et al. [136]. Their system, called SpikeStrip, is a web server add-on that makes

use of cryptography in order to penalize parallel crawlers and avoid long-term

crawling sessions.

Chapter 3. Related work 40

3.3 Classification for network datasets

The problem of classifying network data has been a recent focus of activity in

the machine learning research community, with special interest on adapting tra-

ditional machine learning techniques to network data classification.

Macskasy and Provost [40] defined the three main components of a node-centric

classification framework to tackle within-network classification problems. These

components are: a non-relational model, used to generate priors that are used in

the initialization of the relational model; a relational model, that uses the rela-

tionships of the network; and the collective inferencing component, that defines

how the class probabilities of different nodes are estimated together. Note that

the relational component may use attributes and known class labels of related

entities to estimate the class label of a specific entity, but it may also use local

attributes to perform this estimation.

Algorithms for relational learning: The relational learning component of

the above mentioned framework may be instantiated with multiple alternatives.

The Relational Neighbor (RN) classifier [137] is a simple classifier based on the

principle of homophily, where the probability of a sample belonging to a given

class is considered to be proportional to the number of neighbors of that sam-

ple belonging to the same class. The RN classifier makes its predictions using

only the class labels of each of the samples’ neighbors, without using any other

attributes. The authors argue that a simple model like the proposed should be

used as a baseline to evaluate other, usually more complex, relational learners.

Moreover, this simple model should also help to assess how much of the classifi-

cation performance is due to the relational structure of data. Another classifier

that uses only the distribution of neighbor class labels is also presented by the

same authors [40]: the Class-Distribution Relational Neighbor classifier (CDRN).

The CDRN estimates the probability of class membership of a node by using the

similarity of its class vector with the class reference vector. The class vector of

a node is defined as the vector of summed linkage weights to the various classes,

and the class reference vector for a given class is the average of the class vectors

for nodes known to be of that class.

Other relational learning algorithms use not only information about the neigh-

bors classes but also information about nodes’ attributes to build their models.

Chapter 3. Related work 41

In these cases, classification performance cannot be attributed to the network

structure alone, since the added attributes may also contribute to improve this

performance. For instance, Naive Bayes is used to classify hyperlinked docu-

ments [138]. The authors do so by using both local text in a document and

the distribution of the estimated classes of other documents in the neighborhood.

They include an initial bootstrap stage, where all unlabeled samples are classified.

There is also another work where the authors deal with hypertext classification

using hyperlinks with a Bayesian classifier [139]. However, instead of creating a

bootstrap phase like the previous approach, their technique is based on an addi-

tive procedure, where documents are classified incrementally and newly labeled

samples are taken into account as soon as they are known. In a similar way, the

problem of classifying objects using both their descriptions and the links between

objects using regularized logistic regression models has been also studied [140].

The authors study how the network structure can be included in the model in

order to improve accuracy and evaluate the performance of different approaches.

Their work is focused on the problem of how to learn from non-labeled data,

which usually appears in relational domains, where labeled samples are linked

with non-labeled samples. Another approach to combine text and link features

for classification is to use inductive logic programming [141]. One of the main

differences of their approach is that the authors do not use the class labels as

features.

Collective inference: In within-network classification problems entities are in-

terlinked, hence the predicted class of a specific node may have consequences on

the prediction of another node’s class. For this reason, the method of indepen-

dently classifying entities, which may be of use in traditional machine learning

approaches, may not be the best way to deal with interlinked data. The process of

simultaneously classifying a set of linked entities is known as collective inference.

It has been shown that collective inference improves classification accuracy [142].

Many collective inference methods are used in relational learning: Gibbs sam-

pling [143], relaxation labeling [138], and iterative classification [140, 144] are the

most used.

Label dependent vs label independent features: In the context of relational

learning, two different types of features may be distinguished. Label independent

(LI) features make use of the network structure, but no knowledge about class

Chapter 3. Related work 42

labels nor node attributes is used to construct the features. For instance, node

centrality metrics such as degree or betweenness may be used to create this kind of

features. On the contrary, label dependent (LD) features make use of the node’s

class labels and attributes, apart from the network structure itself. Examples of

such features are counts of the number of neighbors with each kind of label (which

is equivalent to the node’s degree taking into account the graphs made using only

the nodes from a specific class) or other centrality metrics computed using the

same approach. It has been shown that introducing label independent features

representing network structure properties to relational classifiers improves their

accuracy [145]). However, other works such as [146] report that label independent

features do not improve classification accuracy and, what is more, they may even

decrease it by introducing contradictory information.

Relational classification use cases: Relational classification has been used in

many scenarios. For instance, it has been applied to email classification [147],

with a dataset of mails being linked only by parent-children relationships; to topic

classification of hypertext documents [138]; to predict movie success with IMDb

data, linking movies with a shared production company [40, 137]; to sub-topic

prediction in machine learning papers [40]; to age, gender, and location prediction

of bloggers [148]; and many other network data classification problems.

Feature selection: The traditional feature subset selection problem has been

approached from two different perspectives. In the wrapper approach [149, 150],

the feature subset selection algorithm exists as a wrapper around the induction

algorithm. The induction algorithm is taken into account during the feature se-

lection process in order to evaluate the impact of choosing a specific set of features

in classification accuracy. The induction algorithm is used as a black box, i.e., no

knowledge on how the algorithm works is needed. Since exhaustively testing all

possible subset selections may be impractical, the problem of feature selection is

then translated into a search problem in the feature space. On the contrary, fil-

ter approaches [151–153] do not take into account the induction algorithm being

used in the classification process. Instead, filter approaches try to evaluate the

importance of the features from the data itself alone.

Edge selection: Some initial ideas about the problem of automatic edge selec-

tion are provided by Macskassy and Provost [40]. They identify the problem,

propose different methods to tackle it, and try to compare their success on being

Chapter 3. Related work 43

able to identify the best edges for a series of datasets. However, this comparison

is just preliminary work on the problem and lacks a systematic approach and a

broad experimentation supporting the results.

Transductive vs inductive inference: When trying to classify a set of un-

labeled test samples, two different approaches can be followed. The first one is

to directly try to predict the class labels of the samples in the test set. This is

called transductive inference. The second approach is to try to obtain a general

prediction function, which then can be applied to the test samples to obtain their

labels, but which is defined for the entire input space of samples. This is known

as inductive inference. Therefore, transductive algorithms will not be able to

predict the class of unseen samples, while inductive algorithms will [154].

Semi-supervised learning: In this thesis we focus on within-network classi-

fication problems, that is, problems where we are given a network with some

of their nodes labeled and we want to predict the class of the rest of the nodes.

Within-network classification is a semi-supervised learning problem [155], because

in order to predict the class label of a node we can make use of the whole net-

work, consisting on both labeled and unlabeled nodes. Note that semi-supervised

learning can be both inductive and transductive [156].1

Algorithms for Semi-supervised learning: The term semi-supervised learn-

ing was first used (in this context) by Merz et al. [157]. Since then, multiple ap-

proaches have been proposed to solve semi-supervised learning problems. Among

the most used we can find self-training, co-training, transductive support vector

machines, and graph-based algorithms.

Self-training is a wrapper algorithm that can be used to perform semi-supervised

learning using as a base a supervised classification algorithm [158]. Self-training

consists in an iterative procedure, where the supervised algorithm is trained with

the labeled data and applied to classify all the unlabeled data. Then, the unla-

beled samples that have been classified with most confidence are added to the

training set, and the classifier is trained again with the extended labeled corpus.

The procedure is repeated, so that the training set will tend to grow. Self-training

1A discussion on the conceptual differences between transductive inference and semi-
supervised learning can be found in the book of Chapelle et al. [154, Chapter 24].

Chapter 3. Related work 44

is probably the first algorithm to make use of unlabeled data to improve classifi-

cation and different variants of the algorithm have been proposed and analyzed

so far [159, 160].

Co-training [161] is also an iterative algorithm that uses a supervised classifier.

However, it is based on the idea of using different views of the samples that will

be classified. The algorithm starts by training two different classifiers with the

labeled data. Each of the classifiers uses a different subset of features of the

samples, that correspond to the different views of the data. Unlabeled samples

are then classified by both classifiers, and the set of samples that are classified

with most confidence with each of the classifiers are added to the training set

of the other classifier, that is, one classifier teaches the other with what has

best learned during that iteration. The procedure is then repeated iteratively.

Theoretical evaluations of co-training have been made [162].

Transductive support vector machines (TSVM), or Semi-Supervised Support Vec-

tor Machines, extend classic support vector machines to work with unlabeled

data [163]. Standard support vector machines try to find a maximum margin

linear boundary between the sets of labeled data. In the transductive version,

unlabeled data is also used and the goal is to find a labeling for this data so that

the boundary has the maximum margin (taking into account both the original

labeled and the newly labeled data). TSVM have been widely studied: finding

efficient approximation algorithms to compute the solution [164–170], presenting

TSVM variants and extensions [163, 171–175], analyzing its properties [176–178],

or presenting use cases [166, 179–185] are some of the fields which have attracted

most attention.

Graph-based semi-supervised learning algorithms are based on constructing a

graph where the nodes represent the samples of the dataset (both the labeled

and unlabeled ones). Edges are then used to represent the distance (or similar-

ity) between pairs of nodes of the graph. The exact method used to construct the

graph varies between different schemes. Distinct algorithms have also been pro-

posed to perform learning with this setting. Some of these algorithms are based

on graph regularization. For instance, in a binary classification task, the classifi-

cation problem can be translated into finding a minimum cut of the graph [186],

such that nodes with positive labels are separated from nodes with negative la-

bels. A modification of the algorithm is proposed [187] where artificial random

Chapter 3. Related work 45

noise is used to obtain a soft version of the classifier. Other algorithms are fo-

cused on propagating the known labels through the graph structure, for example,

using an iterative label propagation algorithm [188].

k-Nearest Neighbor: The classic k-Nearest Neighbor (kNN) classification al-

gorithm consists in classifying a new sample with the class of the majority of

its k-Nearest Neighbors [189, 190]. The parameter k can be tuned to adjust the

classifier for every situation. In order to decide which samples are the nearest

ones, the algorithm uses a distance function. Euclidean distance is a common

choice, but other distances can be used as well.

kNN is widely adopted because its simplicity and performance, and many exten-

sions have been proposed during the last years. When using majority voting to

decide the label of a sample, the labels of all k-nearest neighbors have the same

contribution to the decision, regardless of their distance to the evaluated sample.

It has been proposed [191] to weigh the contribution of the neighbors in the de-

cision taking into account their distance. Other authors [192] propose different

variations of kNN that take into account the structural density or deal with un-

balanced datasets. The Extended Nearest Neighbor Method [193] considers not

only who are the nearest neighbors of the sample that is being classified but also

who consider this sample as their nearest neighbor. There also exist many works

that deal with speed and/or space optimizations for kNN.

3.4 Conclusions

In this chapter, we have reviewed the most relevant contributions of other authors

related to the work done in this thesis. First, we have explained studies about

online social network analysis, focusing on modelling this kind of networks and

the privacy problems that appear with its usage. Then, we have explored the

literature about crawling online social networks. Finally, we have presented the

works dealing with classification for network datasets.

With this chapter, we finish our introduction to the topics covered in this thesis.

From the next chapter on, we focus on explaining our contributions.

CHAPTER 4

When multiple autonomous users

disclose another individual’s information

In order to protect users’ privacy, most OSNs allow their users to configure the

visibility of the information they upload to the network. However, given the re-

lational nature of OSNs, the privacy configurations of different users may collide.

Depending on how the provider handles these collisions, an attacker can take

advantage of them to override the privacy settings of the most restrictive user

and to obtain information that the user tagged as private. In this chapter, we

present an attack that exploits this fact together with specific characteristics of

the OSN regarding the social structure to obtain private information about an

OSN user.

The chapter is organized as follows. Section 4.1 details the proposed attack,

which is based on a specific scheduler for a web crawler. Results of performing

the described attack in two different OSNs are then presented and analyzed in

Section 4.2. Finally, Section 4.3 concludes the chapter.

47

Chapter 4. When users disclose another individual’s information 48

4.1 Proposed attack

Social graphs are known to exhibit high clustering values. Therefore, the set of

neighbors of a given user in the network tends to have many connections between

its nodes (much more that what would be expected for a random graph) and the

probability that any two users are connected is much higher if those users share

some friends than if they do not have any friend in common. By studying social

graphs, it is also very common to observe how users tend to form cliques and

other highly connected structures.

The fact that social graphs present high levels of clustering may be exploited by

an attacker to obtain information that is not publicly disclosed by a given user.

4.1.1 Attack scenario

We consider an online social network with bidirectional links which allows its

users to configure their profile visibility as either totally private or totally public.

User’s profile include personal data (which will be considered node attributes)

and user’s relationships (edges).

We model the adversary as a passive attacker that is in possession of a web

crawler specifically designed for this network. The attacker is, therefore, able to

retrieve all the information related to a user whose profile is configured as totally

public. However, the resources of the attacker are constrained, such that he is

not able to crawl the entire network. Moreover, we assume that the attacker uses

just the crawler to obtain information from the network, that is, he is not able to

obtain any information through other means (for instance, subverting accounts

or creating new accounts and establishing relationships with existing users).

Our victim (u0) is a member of this OSN and has his profile configured as totally

private and, therefore, no one can see his personal information nor his relation-

ships with other users. However, u0 has n relationships with other users that

have configured their profile as public and, therefore, everybody can take a look

on their personal data and their relationships.

Given this scenario, the attacker’s goal is to obtain information from the victim

(u0) without accessing his profile (which is private and thus inaccessible for the

Chapter 4. When users disclose another individual’s information 49

adversary). We assume that the attacker already knows r friends of u0, for some

value 1 ≤ r < n.

4.1.2 Retrieved information

As we have already mentioned, we consider information about a user of a social

graph to be of two different types: node attributes (information about the user

which can be found in his profile) and structural information (which includes

node relationships).

Our attack is designed to obtain structural information about u0 through u0’s

friends. This structural information includes the list of u0’s friends, u0’s degree

(n), and knowledge of u0’s local neighborhood.

It is worth to mention that, although the attack does not provide specific node

attributes (since our model assumes u0 has configured his profile as totally pri-

vate), node attributes may also be inferred by discovering u0’s friends. As we

have seen in Section 3.1.2.1, social networks are structured in communities and

users in the same community are known to share some attributes. Discovering

these communities and obtaining information about other users’ profiles can lead

to u0’s attributes disclosure. Moreover, some kinds of information shared by

users in social networks, such as photos or videos, can be a direct source of other

user’s data without any need to perform inferences.

4.1.3 Attack description

We execute the attack by crawling the OSN with a specifically designed web

crawler. On the one hand, the crawler is configured to interact with the OSN

(either by understanding the particular syntax of the OSN web interface or any

other public interface, such as an API). On the other hand, the crawler imple-

ments a special scheduling algorithm, that will take advantage of the aforemen-

tioned clustered nature of social graphs to try to discover the neighborhood of

the victim.

A straightforward method to obtain structural information about u0’s neigh-

borhood would be to set the victim as the initial seed of a crawler with BFS

Chapter 4. When users disclose another individual’s information 50

scheduling algorithm. However, the assumptions of our attack (see Section 4.1.1)

impose that u0 has defined his profile as totally private, so the crawler would not

be able to get any information about u0 using this method.

For that reason, we have designed a scheduling algorithm that simulates what a

BFS centered on the victim would do. Starting with one of the u0’s friends, the

proposed algorithm (that we have called outliner) tries to crawl u0’s neighbor-

hood without exploring the node u0 itself. The algorithm that we propose takes

advantage of the high clustering coefficient showed by social networks, that is

translated in a high probability that a friend of u0 and u0 itself share more than

one friend.

4.1.3.1 Scheduling algorithm

Next, we present a specific crawling scheduler algorithm, the outliner algorithm,

that maximizes the amount of information acquired from u0 without explicitly

crawling his profile. The outliner algorithm maintains a list of waiting-to-explore

nodes with their known distance to the victim. At the beginning of the crawl, the

list is initialized with the victim’s friends (that is, r nodes adjacent to the victim’s

node, known by the attacker, with 1 ≤ r < n) set at distance 1. Every time a node

is crawled, all of his friends are added to the waiting-to-explore list with distance

incremented by one, obviously discarding nodes already discovered. This distance

can be inaccurate because it is based only in the attacker’s partial knowledge of

the network. When a node is crawled, it is possible that a new relationship

with the victim’s node is found. For this reason, every time such relationship

is found, the node distances have to be recalculates with the new information

found. Such recalculation allows taking posterior scheduling decisions with as

much information as available. Once a node has been crawled, the new node to

crawl is the one with the lowest distance value from the list of waiting-to-explore

nodes. This assures that the crawler will remain as close as possible to the victim.

4.2 Experimental results

In this section, we present a proof of concept of the proposed attack by imple-

menting it over two different online social networks. Results provided give a

Chapter 4. When users disclose another individual’s information 51

flavor of the attack performance on OSNs with diverse characteristics.

4.2.1 Experimental set-up

We have tried the proposed attack over data from two OSNs: flickr and last.fm,

both allowing the all-or-nothing disclosure profile discussed in Section 4.1.1.

We have chosen these two OSNs because network data closely related to the vic-

tim present different degree and clustering values (see Table 4.1). Such differences

allow us to study how the OSN structure affects the performance of the proposed

attack.

Table 4.1: Values from crawled graphs obtained with BFS (seed u0)

OSN Average u0 clustering Crawled mean
clustering coef. coef. degree

Lastfm 0.167 0.031 80.6
Flickr 0.343 0.103 336.6

We target a user u0 in each social network as a victim. In order to test our attack

in the worst case scenario, we restrict the knowledge of the attacker to only one

friend of u0 (that is, r = 1).

As we detailed in Section 4.1.3, the attack is performed through a web crawler

which crawls the OSN looking for the desired information. The termination

condition of the crawler is related to the final goal of the attack. A final goal

of such an attack could be to discover all the friends of the victim. However, if

the cluster coefficient of the nodes involved in the crawling is low, the attack will

take too much time to finish. Furthermore, the degree of the crawled nodes also

affects the attack’s performance, because the higher the degree the more nodes

have to be potentially visited. In order to test the performance of our attack

regarding different properties of the OSN, we have fixed the goal of the attack to

obtain more than one third of the total friends of the victims.1

1We are aware that such assumption implies the knowledge of the degree of the victim, but
we use such information to test the performance of the attack. Other termination conditions
not related with that value could be defined by an attacker targeting a real network.

Chapter 4. When users disclose another individual’s information 52

4.2.2 Data analysis

Figure 4.1 shows the data obtained from the attack in last.fm. The figure shows

the complete 1-node neighborhood graph centered on the victim, where solid

lines are the ones obtained by the attack and dotted lines are existing relations

that the attack has not revealed. In this scenario, the victim u0 (the node in the

center of the figure) has degree 27, and thus the attack finishes when 10 friends

are discovered. The seed of the crawling algorithm for the attack is the node

represented by a circle.

Figure 4.1: 1-node neighborhood of u0 for last.fm network

Figure 4.2 shows the data corresponding to the Flickr network with the same

notation as in Figure 4.1. In this case, the victim u0 (the node in the center) has

degree 35, and therefore the attack finishes when 12 neighbors are obtained.

Both attacks reach the objective of the 1/3 bound of the victim’s friends. Notice

that, in the last.fm case, the crawler is able to connect three apparently disjoint

subgraphs (recall that the central node is not crawled) since this disjunction ex-

ists only at one hop from the victim’s level. Regarding the Flickr case, Figure 4.2

shows that the number of nodes that can be discovered by this crawling algo-

rithm is potentially bigger since the crawler could still discover existing relations

between discovered (but not crawled) nodes and the victim.

One has to be careful when selecting the seed of the crawling algorithm. Notice

that we have assumed that the attacker knows one of the victim’s friends (r = 1).

Chapter 4. When users disclose another individual’s information 53

Figure 4.2: 1-node neighborhood of u0 for Flickr network

However, the exact friend selection is important for the crawling algorithm. If

the selected friend is in a non-connected subgraph (that is, when removing the

victim’s node, the seed belongs to a different connected component than the rest

of u0’s friends), the attack would not be able to reach the objective.

Finally, it is worth to mention how the local clustering coefficient and node degree

affect the performance of the attack. On the one hand, the number of crawled

nodes is affected by the clustering coefficient of the neighborhood. In the last.fm

case, the crawler needs to crawl 805 nodes to achieve the imposed goal (the

1/3 bound), while the number of nodes crawled in the Flickr network is much

lower, 475, for the same objective. This data is consistent with the fact that the

clustering coefficient of Flickr is greater than the one of last.fm (see Table 4.1).

On the other hand, the nodes’ degree influences the number of nodes the crawler

discovers. In our tests, the attack on last.fm needs to discover a total of 69,406

nodes to determine the friends of the victim while in the Flickr case this number

rises up to 124,590 nodes. Again, this data is consistent with the mean degree

value shown in Table 4.1 for both networks.

4.3 Conclusions

In this chapter, we have presented a privacy attack to online social network users.

The attack is performed through a dedicated web crawler algorithm that exploits

Chapter 4. When users disclose another individual’s information 54

the inherent network structure of the OSN. We have presented experimental

results showing that the attack is able to recover a relevant percentage of the

relationships of the targeted victim without exploring his profile. We have shown

that, even exploring only a small part of the network, it is possible to compro-

mise a considerable amount of the targeted user’s neighborhood. This kind of

attacks are further evidence that preserving privacy in network data is much more

complex than in traditional not linked data.

Additionally, our experiments showed that the proposed attack may be performed

by an attacker with very limited resources. In order to reach the 1/3 predefined

goal, the crawled needed to explore 475 (805) users for the Flickr (Last.fm) ex-

periment. Twitter limits the number of API queries asking for the friends list

of a user to 120 requests per hour (for each set of app authentication tokens).

Therefore, even for an attacker in possession of a single set of tokens, the attack

would need less than 4 hours in the Flickr experiment (and less than 7 hours

in Last.fm). Note that in both cases this would imply sending 2 Twitter API

requests per minute, a throughput achievable by far for any current computer or

mobile device with a basic Internet connection.

CHAPTER 5

Crawler scheduling and its privacy

implications

As we have seen in the previous chapter, OSN information can be obtained by

crawling profiles of users in the network. Web crawlers are complex applications

that explore the web with different purposes and they can be configured to crawl

OSNs to obtain both user and link information. When crawling online social

networks, many choices have to be made in order to set up the crawler that

will be used to obtain all the information from a social networking site. These

configuration choices define the crawler settings and, as we will see, they are key

to accomplish the desired crawling goal. Specifically, the choice of the next-node-

to-crawl (determined by the scheduling algorithm) is a critical point, since it

will determine largely which part of the network will be obtained and, therefore,

which level of exposure the online social network users will suffer.

The contributions of this chapter are twofold. On the one hand, we detail the

privacy implications of the scheduling algorithms for web crawlers. On the other

55

Chapter 5. Crawler scheduling and its privacy implications 56

hand, we introduce the concept of Online Social Honeynet (OShN) to provide

some level of protection against attacks performed by web crawlers. We provide

a proof-of-concept of the feasibility to design an appropriated OShN that can

prevent specific web crawler configurations.

The rest of the chapter is organized as follows. First, we discus the privacy

threats that each of the studied scheduler algorithms presents for online social

network users. After that, the concept of Online Social Honeynet is introduced.

Finally, we present the conclusions.

5.1 Privacy threats related to crawling activity

By crawling an OSN the corresponding social graph can be obtained. Such social

graphs provide two kinds of user’s information: node information and edge infor-

mation. All data about a specific user is considered as node information. Node

information includes details provided in the user’s profile on a specific OSN such

as user name, age, nationality, current location, phone number, marital status,

personal web site URL, or a thumbnail.

The other kind of information that can be obtained from the social graph is

edge information. The mere existence of edges already offers information about

users who are linked through them but, in some networks, these edges can be

labeled, thus providing a more detailed description about the relations they repre-

sent. Apart from providing information about the relationships between different

users, edges can also directly disclose node attributes. For instance, an edge rep-

resenting a sentimental relationship between two individuals reveals their sexual

orientation.

Although both node attributes and edges may be considered sensitive information

that the user wants to control, in this chapter we focus on edge privacy since

edges create an added risk to user’s privacy in many different ways. In contrast

to node attributes, whose disclosure can be configured by the user, protecting

edge information involves more than one user and, for that reason, makes it

more difficult for the participating users to maintain control on the visibility of

these relations [1]. On the other hand, relations between users can be used to

detect communities. Analyzing these communities is a usual procedure in social

Chapter 5. Crawler scheduling and its privacy implications 57

network analysis, because communities facilitate the understanding of networks.

Since they do not need the explicit intervention of the user to be created, they

entail a new risk for OSN users privacy. Moreover, it has been shown that

users belonging to the same clique share common interests, believes, or even food

habits, which are node attributes. For this reason, node attributes can be inferred

from information known about other users in the same clique.

Furthermore, edge information has been proved to serve as auxiliary informa-

tion for many deanonymization attacks [82, 83], which makes edges and their

attributes sensitive information. Relations that a user has with others describe

that user in a quasi-unique form. Even when all labels have been removed from

the graph, its structure is leaking information that can be used to reidentify the

nodes. For instance, if an adversary knows how many friends the victim has

and which are the relations among them, the attacker may be able to find this

subgraph inside an anonymized release of the whole graph and learn information

about the victim and his friends.

5.1.1 Scheduler implications on privacy

It seems clear that the social graph of an OSN is a powerful tool to derive in-

formation about users. However, due to the actual size of OSN sites, crawling

them entirely to obtain the social graph may not be an affordable option. If one

can only obtain a partial view, the concept of quality of the collected data of the

crawler comes into play. The quality of collected data is a difficult term to deal

with since the definition of quality depends on the objective of the crawling pro-

cess. The scheduling algorithm, together with the initial seed of the crawler, is

the module of the crawler that determines the path to follow during the crawling

process and thus its selection is critical to determine which part of the network

will be retrieved.

In this chapter, similarly as in the previous one, we assume that an attacker

armed with a crawler wants to obtain information from an OSN. The attacker

is able to access the OSN interface through the Internet as an ordinary user.

We assume the attacker is passive, i.e., he does not try to actively modify the

OSN, and that he has a limitation on resources, that is, he does not have enough

resources to crawl the entire OSN. In this setting, we study how the selection of

Chapter 5. Crawler scheduling and its privacy implications 58

the scheduling algorithm affects the portion of the network retrieved, and how it

relates to specific goals of the attacker.

In order to make a comprehensive analysis, we fixed three different and somehow

opposite objectives that the described attacker may have:

• Objective A: to determine all links of a specific user and communities he

belongs to.

• Objective B: to discover general characteristics of the OSN, focused on

identifying communities.

• Objective C: to discover the maximum number of nodes of the network.

Notice that while objective A is centered on attacking a single user, objectives B

and C target the whole network but with different purposes in mind.

For each scheduling algorithm, we analyze the achievement of these objectives

in terms of cohesive subgroups identification (A and B) or crawling efficiency

(C). For cohesive subgroups identification, we focus on finding cliques and k-

plexes [19], since this structure relaxes the strong familiarity conditions expressed

in a clique but, at the same time, still provides the properties of reachability and

robustness in the resulting cohesive group. For crawling efficiency, we use the

metric defined previously by Korolova et al. [38], where efficiency is defined as

the number of discovered nodes divided by the number of crawled nodes.

5.1.1.1 Breadth-First Search (BFS)

Using a BFS algorithm with only one initial user as seed allows the crawler to

explore the k-neighborhood of the seed, that is, to crawl all nodes at distance

k from the seed and, therefore, discover all nodes at distance k + 1. The data

obtained using a BFS algorithm is of high quality regarding Objective A, since

an accurate view of the OSN centered on the victims will be obtained.

However, BFS performs poorly with respect to Objective B. The sequentiality of

the BFS with respect to the neighbor distance k does not allow the crawler to

move around the graph and the collected data cannot be taken as representative

of the OSN since it is focused on a particular part.

Chapter 5. Crawler scheduling and its privacy implications 59

In BFS algorithm no special attention is paid to higher degree nodes. Therefore,

BFS does not offer significant advantages regarding Objective C.

5.1.1.2 Depth-First Search (DFS)

As a DFS scheduler tries to get as far as possible from the initial seed, neither

the neighborhood of the seed nor subgroup structures will be formed easily when

ncrawl is small with respect to n (recall Section 2.3.1 for the details on the no-

tation). Cliques that are found by this crawling method will be small, usually

with just three nodes. For this reason, data collected with DFS does not provide

quality regarding neither Objective A nor Objective B.

DFS does not take into account node degrees either, but crawling efficiency is

slightly better for DFS than for BFS. The reason is that, as the crawler tries to

get far away from the seed, crawled nodes tend to have a few friends in common,

thus for the same ncrawl more ndisc are obtained. Therefore, DFS performs better

than BFS with respect to Objective C.

5.1.1.3 Real-degree greedy

Real-degree greedy moves towards the largest degree node, and once reached, the

algorithm provides large numbers of cliques and k-plexes since at each iteration

a large number of edges is added to the crawled graph. For this reason, this

algorithm provides good data quality regarding Objective B. However, real-degree

greedy is not suitable to reach Objective A, unless the victim is the highest degree

node. Higher degree nodes are very vulnerable against this scheduling algorithm

since they are reached with very few iterations (regardless of the used seed).

As first nodes selected to be crawled are the ones with higher degrees, graphs

obtained with real-degree greedy always present a high mean degree, which is

much bigger than the mean degree of the complete OSN. Selecting this high

degree nodes leads to obtain high efficiency, thus this algorithm is adequate to

reach Objective C.

Chapter 5. Crawler scheduling and its privacy implications 60

5.1.1.4 Explored-degree greedy

In the explored-degree greedy, the first nodes to be crawled are the ones that are

the most connected to already crawled ones. In contrast to the real-degree greedy,

explored greedy also moves towards the highest degree node but more slowly,

finding the cliques and k-plexes that are in the path between the initial seed

and the highest degree node. With these properties, the explored-degree greedy

algorithm is suitable to achieve Objective B. Regarding Objective A, the explored-

degree greedy does not provide a good strategy since it does not guarantee that

the crawl is centered on the seed and then, the initial seed may not belong to the

cohesive subgroups that are retrieved. However, in comparison with real-degree

greedy, explored-degree greedy keeps the crawler closer to the seed and then, in

terms of Objective A, explored-degree greedy performs better than real-degree

greedy.

5.1.1.5 Unseen-degree greedy

The first users to be crawled with unseen-degree are the ones that have a high real

degree and a small explored degree. In the first iterations of the crawler, unseen-

degree and real-degree perform similarly, moving quickly towards the highest

degree node. At later stages of the crawling, unseen-degree greedy achieves better

efficiency since it discovers more new nodes than real-degree. However, since the

discovered nodes do not provide much information about the retrieved graph

until they are crawled, the numbers of cliques and k-plexes and their sizes are

equivalent to the ones obtained with real-degree. For that reason, performance

of unseen-greedy with respect to Objectives A and B is equivalent to real-degree

greedy.

Selecting the highest unseen degree node as the first node to crawl results in

selecting the node that would lead the crawler to discover the maximum number

of new nodes when it is crawled. Then, unseen-degree greedy is efficient regarding

Objective C.

Chapter 5. Crawler scheduling and its privacy implications 61

5.1.1.6 Lottery

The random effect introduced in the lottery schedulers gives a chance to low de-

gree nodes to be selected as the next-node-to-crawl but prioritizes high degree

nodes. As a consequence, for the same number of Vcrawl nodes, lottery will dis-

cover more nodes than BFS, random list, or DFS but less than greedy schedulers.

So lottery performs better than BFS, random list, and DFS regarding Objective C

but worse than greedy. The same happens with cliques and k-plexes when using

the explored degree as a selection measure. In this case, lottery will find more

cliques than DFS or random list but less than its greedy counterparts. Much

like the explored-degree greedy case, explored-degree lottery also presents the

problem that the initial seed may not belong to the found cliques, which can be

problematic when the pursued goal is Objective A.

Like in the greedy case, lottery tends to select as next node to crawl the ones with

the highest degrees (whatever the chosen degree is used), resulting in a higher

mean degree in Gcrawl than in the actual graph G. However, this effect is less

pronounced in the lottery case because its random component gives a chance to

low degree nodes to be selected. As a consequence, lottery performs worse than

greedy algorithms regarding Objective B.

5.2 Online Social Honeynets

As we have seen, web crawling may create a big risk for users’ privacy. OSNs

contain enormous volumes of personal data which is, in many cases, publicly

available to anyone who is interested in it. Web crawlers can be used as a tool to

collect all this data. For this reason, it is important to be able to defend an OSN

from automated web crawlers that try to obtain information about its users.

The first trivial approach to avoid these risks is to deny the access to the network

to web crawlers. In order to do so, the providers need to be able to distinguish

between web crawlers and other kinds of accesses to their network (for instance,

legitimate users accessing the OSN through their web browser). Although some

web crawlers identify themselves via the User Agent field in the HTML protocol,

it is easy to forge the requests in order to simulate queries made by a common

Chapter 5. Crawler scheduling and its privacy implications 62

browser. Consequently, providers cannot rely on the HTML User Agent to tell

the difference between web crawlers and non web crawlers.

It is also possible to try to forbid the access to web crawlers by banning the

public access to the network. However, this is a difficult task to perform without

affecting the usability of the network. It is possible to configure the network in

such a manner that only registered users are allowed to obtain information about

other users. In addition, the information that a user can obtain on another user

can be constrained depending on the distance between these users. For instance,

a sample configuration may be to allow a user to obtain all the information that

the network has of a direct friend, only the degree of a user which is a friend of

a friend, and no information at all about the rest of the users of the network.

However, even when the network is closed and the neighbors of a targeted user

can only be obtained by users in the network at a fixed distance l of this targeted

user, published studies [38] show different strategies to maximize the portion

of the network discovered depending on the value l of the lookahead. All the

presented attacks require the attacker to subvert some user accounts to obtain

information on his friends. The authors show that for lookahead values higher

than two, the number of subverted accounts needed to discover 80% of the nodes

of the LiveJournal network (that had 571,949 nodes) is just 6,308, making the

attack feasible even for an attacker with limited resources.

Furthermore, there are some OSNs whose properties or goals make them impossi-

ble to be built under a closed paradigm network. This is the case, for example, for

Twitter, whose slogan describes it as “the best way to discover what’s happening

on your world”. How could this goal be accomplished by limiting the disclosure

of all comments to just the users’ direct friends?

Another approach to try to forbid the access to web crawlers is to try to limit the

number of accesses to the network made from the same IP address. Although this

may seem a good strategy, it can be easily circumvented by using anonymizing

techniques that mask the source IP address [194].

As we have seen, neither making the OSN a closed network nor limiting the

number of accesses that can be done by the same IP address per unit of time

are feasible solutions to our problem. For this reason, some other techniques

have to be designed to limit the information that crawlers may obtain from

Chapter 5. Crawler scheduling and its privacy implications 63

OSNs. In the traditional web crawling literature, web crawler traps are known

to cause troubles to web crawlers [115]. Crawler traps are URLs that cause the

crawler to crawl indefinitely. In the traditional web, some crawler traps can be

created unintentionally. For example, symbolic links within a file system can

create cycles. Other crawler traps are produced intentionally. For instance, CGI

programs that dynamically generate an infinite web of documents. We propose

a similar approach to protect OSNs from web crawlers by introducing the idea

of Online Social Honeynets.

Online Social Honeynets (OShN) are, much like traditional honeynets, a set of

users in the network whose objective is to attract and defend the network from

attackers that want to retrieve information from the network. Also like traditional

honeynets, OShN consist in a set of users who appear to be part of the network

with information of value to the attackers but they are actually isolated and

monitored. OShN also extend the concept of Social Honeypot [195] where fake

users are created in OSNs to detect spam profiles and distinguish social spammers

from legitimate users.

Although it is obvious that the idea of OShN can be used for different purposes,

our main goal is to design an OShN that may provide some protection from web

crawlers, minimizing the useful information that the web crawler may obtain from

the OSN.

In order to protect OSNs from web crawlers, the OShN should be able, first of all,

to attract web crawlers and, later on, to keep the crawler inside the boundaries

of the OShN.

5.2.1 Definitions, assumptions, and goals

Given a social graph G = (V,E) that represents an entire OSN, an OShN can be

modeled as a social graph Gh, with a set of fake users Vh and its relationships

Eh, and a set of honeynet bridges Eb that will link the real social graph G

with our honeynet graph Gh (see Figure 5.1). Then, the disclosed network can

be modeled as a social graph Gd = (Vd, Ed) containing all nodes from both

graphs (Vd = V ∪ Vh) and all edges from both graphs plus the honeynet bridges

(Ed = E∪Eh∪Eb). Notice that we keep the edges defining the honeynet bridges

Chapter 5. Crawler scheduling and its privacy implications 64

Figure 5.1: Online Social Honeynet (OShN)

outside G and Gh, since, as we describe later, such bridges play an important

role for the objective of the OShN. Nodes in Gh incident to some edge in Eb

are called exterior nodes while nodes in Gh without any connection to G will be

called interior nodes.

In order to assess the performance of the OShN, we define two metrics: the

attraction time, ta, and the trapping time, tt. Let ta be the time that our OShN

needs to attract the crawler, that is, the time needed for the crawler to first

discover a node in Vh. Let tt be the time our OShN is able to trap the crawler,

that is, the time spent by the crawler exploring nodes in Vh.

Then, ta and tt (together with the total time the crawler spends crawling the

network) influence the amount of correct information the crawler is able to obtain

from the OSN and we make use of these two parameters in order to design and

evaluate our OShN. Specifically, we design our OShN with two goals in mind:

1. Minimize the attraction time ta.

2. Maximize the trapping time tt.

Furthermore, we also include as a requirement for our OShN to try to minimize

the introduced noise. We want the OShN to be minimally invasive, so that OSN

Chapter 5. Crawler scheduling and its privacy implications 65

users are disturbed as little as necessary. The overall overhead introduced by the

OShN should also be as low as possible. Therefore, we add two more goals to our

OShN design:

3. Minimize the number of edge bridges, |Eb|.

4. Minimize the size of the OShN, both in terms of nodes |Vh| and edges |Eh|.

5.2.2 An online social honeynet to protect online social

networks from greedy schedulers

In this section, we present a proof-of-concept of an OShN in order to show the

feasibility of the idea. We focus our OShN to be resistant against attacks of a web

crawler configured using a real-degree greedy. These attacks represent a threat

for OSNs since they achieve high efficiency rates, as has been shown before [37].

Furthermore, this algorithm is suitable to obtain a general view of the OSN, as

pointed out in Section 5.1, and provides an important number of cliques and

k-plexes.

In order to define our OShN, we make the following design decision: our OShN

will be static, in the sense that elements in Vh , Eh, and Eb will remain unchanged

during the crawling.

The first goal that an OShN has to accomplish is to be able to attract web

crawlers fast, that is, to minimize the time ta. This attraction is done by properly

selecting the connections of our OShN to the rest of the nodes of the network

Eb. As we have seen, greedy algorithms select as the next node to crawl the one

with the highest degree. So when a crawler configured with a greedy algorithm

is launched, it will tend to first explore the highest degree nodes of the network.

Consequently, we will create the set of fake edges Eb between our OShN and the

OSN so that they connect Gh with a number k of the highest degree nodes in G,

ensuring that the crawler will discover those nodes when exploring the highest

degree nodes of the network. This implicitly accomplishes another of our goals:

to minimize the annoyance produced by the OShN to users. Since these very

high degree users tend to have thousands of connections with other users, the

impact of establishing a connection with Gh is minimum for them and, in fact,

Chapter 5. Crawler scheduling and its privacy implications 66

it is likely most of the users will not even become aware of this connection. Note

that when defending the OSN from these particular scheduling algorithms, it is

not needed to attach one node of G to more than one node in Gh since all the

nodes of Gh connected with the same node in G would be discovered at the same

time. However, it may be useful to connect the same node of Gh to many nodes

in G since that would let the crawler discover the node in Gh from different real

nodes, reducing the time ta.

Once the attraction has been done, and an exterior node of Gh has been discov-

ered, we want to maximize the time tt by forcing the crawler to discover more

nodes from Gh and crawling all of them. While the crawler is inside Gh, no

real nodes are crawled thus no node attributes of real nodes are ever disclosed.

However, even when the crawler is inside Gh, some real nodes may be discovered,

depending on the size of |Eb|. Since our OShN is designed towards protecting

the OSN from real-degree greedy algorithms, we propose to set the degrees of the

exterior nodes of Gh to at least max{mi+ 1} where mi is the real degree of their

neighbors in G and the degree of interior nodes higher than the maximum degree

of G. Using this strategy, the time tt is maximum, and it corresponds exactly to

the time needed for the crawler to crawl all nodes in Gh. Then, we can increase

tt by assigning an arbitrary large number of nodes to Gh. Notice that trapping

indefinitely the crawler in Gh will imply to assign an infinite number of nodes in

Gh which is not feasible in our scenario since we have assumed that our OShN

is not dynamic, in the sense that Vh, Eh, and Eb remain unchanged during the

execution of the crawler. Therefore, the size of Gh will be a tradeoff between the

amount of time we want the crawler to be trapped tt and the overhead we are

willing to assume in order to create Gh.

There are many possible configurations that meet the above requirements. For

instance, we can design Gh as a complete graph of d nodes where all nodes have

degree d− 1 except for a node v0
h ∈ Vh, which has degree d. The additional edge

incident to this node is going to be our bridge edge e0
b = (v0, v0

h) ∈ Eb, which

will link our honeynet Gh with the real graph G. As we want to ensure that the

crawler is not able to escape from the honeynet until it has crawled all the nodes

inside Gh, we will force interior nodes of Gh to have a higher degree than the

node that has served as an entry point to the honeynet v0. For this reason, we

will set d = max{mi + 2}, so the interior nodes of Gh will have one more link

Chapter 5. Crawler scheduling and its privacy implications 67

than the most connected node of G. Notice that doing so, the entry node v0
h has

exactly the degree of v0 plus two. Even though a one point degree increment will

be enough to force the crawler to crawl v0
h just after crawling v0, increasing it

by two allows us to construct Gh in an easy manner, avoiding having to spend

computational resources in the design of Gh. Figure 5.1 shows an example of

such a configuration.

5.2.3 Experimental results

We have simulated how a crawler behaves in an OSN with the previously de-

scribed proof-of-concept OShN over the Flickr OSN, taking as a testbed the data

collected by Mislove et al. [29] which contains over 11 million users. This dataset

is one of the most complete OSN data available and can be used as a testing set

for OSN analysis. We have centered our experiments in the Flickr network, for

which this dataset contains almost the 27% of nodes existing on the network at

the time of the crawl (1,846,198 nodes) with its relations (22,613,981 links). Our

OSN graph G is exactly the Flickr graph that had been retrieved by Mislove et

al. [29]. The diameter of this graph G is 27, the radius is 13, and its mean degree

is 12.24. The highest degree of a node in G is 26,185.

Flickr is a directed network that only allows to query for outgoing connections.

Therefore, in the experiments the crawler is configured to follow outgoing con-

nections and the real-outdegree of the nodes is used by the scheduler to decide

the next-node-to-crawl. Then, the OShN is also a directed graph where all nodes

are connected to all nodes in both directions.

Since real-degree greedy is the scheduler algorithm used as a base point for the

tests in other works [37], we have conducted our experiments with a crawler

configured with this algorithm as a scheduler. Three termination conditions have

been set for the crawler to stop its job:

a) to reach 1,000 crawled nodes, ncrawl = 1,000.

b) to crawl the v0
h node, that is, the first node in Gh that has been crawled.

Chapter 5. Crawler scheduling and its privacy implications 68

c) to reach a point where no nodes are left to crawl. This state is reached when

the initial seed belongs to an isolated component of the graph containing less

than 1,000 nodes.

Assuming these settings, we have created our experimental OShN by generating

a complete subgraph of d = 26,187 nodes, such that every node in the Gh has

exactly degree 26,186 except for a node v0
h ∈ Vh, for which we set a degree of

26,187.

We have conducted 18,461 experiments (1% of the total number of nodes in the

data testbed) in order to evaluate the attraction and trapping capacity of our

OShN. For each experiment, we selected a random node in the Flickr network

and we launched a crawler using this node as initial seed (and the configuration

detailed above). In 12,283 of the conducted experiments, a 66.53% of them, the

OShN was able to attract the web crawler and the crawler crawled the gateway

node v0
h. For these experiments, the crawler only needed 5.09 hops (in mean)

to reach v0
h from the initial seed. This value indicates that the time ta for this

proof-of-concept is really low and, therefore, the leaked information obtained by

the crawler is also low. The mean number of real nodes crawled by the crawler

in the experiments was only five and the mean number of discovered nodes is

12,645.60 nodes, that corresponds to less than the 0.7% of the entire network.

A detailed analysis of the 6,178 experiments where the OShN could not attract

the crawler shows that in all cases there is no (directed) path between the seed

and v0
h. The interesting point is that, for that seeds, the total number of nodes

that the crawler is able to crawl is, in mean, 4.40 which implies that the isolated

parts of the graph, where the crawler seed has been randomly chosen, are really

small. For this reason, adding edge bridges connecting these isolated components

of the OSN with our OShN is not worth the effort. Moreover, OSNs have been

reported to have one big connected component containing most of the users of

the network, so for most of the settings there will be no need to create additional

bridges joining different components of the OSN with the OShN.

Obviously, regarding the design of the OShN, the trapping time tt was maximum,

in the sense that the ending condition was met before the crawler left the OShN.

Chapter 5. Crawler scheduling and its privacy implications 69

5.3 Conclusions

In this chapter, we provide some details about the impact that different schedulers

have on the part of the network retrieved by a web crawler. We describe some of

the goals that an attacker using a web crawler over an OSN may have in mind,

and evaluate how different schedulers may be of use to accomplish these goals.

This analysis shows the threat that web crawlers may constitute regarding OSN

information retrieval. For that reason, and assuming the difficulty to ban web

crawlers from OSNs, we introduce the concept of online social honeynet (OShN)

as a mechanism to achieve some degree of protection against web crawlers. We

provide a proof-of-concept of an OShN designed to protect the OSN from a web

crawler with a real-degree greedy as a scheduling algorithm. Experimental data

shows that the proposed protection is effective and that the amount of OSN data

disclosed to the web crawler can be kept at low levels. Although the proposed

OShN only protects the OSN from a specific crawler configuration, it requires low

|Eb| values, which makes it easy to be implemented in real world environments.

We have provided some hints towards the construction of the honeynet graph,

the conditions that force the crawler to enter the honeynet once it has been

discovered, and the conditions that ensure the crawler is not able to exit the

honeynet once it is inside.

CHAPTER 6

OSN crawling schedulers and their

implications on k-plexes detection

In the previous chapter, we explained how web crawlers can be used by an at-

tacker to retrieve information from an OSN. We defined a set of goals that the

attacker may have in mind when launching a crawler and tried to explain how dif-

ferent schedulers affected the quality of the retrieved data taking into account the

defined goals. In this chapter, we go one step further towards analyzing the part

of the network retrieved when using different schedulers. First, we set specific

quantifiable goals for the attacker. After that, we perform a series of experiments

that allow us to evaluate over a real network the level of accomplishment of these

goals depending on the used scheduler.

The rest of the chapter is organized as follows. Section 6.1 presents the adversary

model: it explains the adversary capabilities and defines the adversary goals.

In Section 6.2 we discuss the adversary achievements regarding the previously

71

Chapter 6. OSN crawling schedulers and k-plexes detection 72

defined goals for different crawling configurations. Finally, Section 6.3 presents

the conclusions.

6.1 Adversary model

OSNs are susceptible of many different attacks, from classical web attacks di-

rected to their websites to specifically designed OSN attacks. While some of

these attacks are focused on producing malfunctions on the network, others have

their goal on retrieving as much information as possible from the network. Since

online social networks store huge quantities of personal data from their users, they

are an attractive target for many organizations that can benefit from obtaining

this data. In this chapter, we focus on this second kind of attacks involving in-

formation retrieval. Specifically, we assume that the attacked OSN profiles are

mostly public.1 We consider that an OSN profile is public if at least the list

of friends is publicly accessible for the attacker. Moreover, public profiles can

also include personal data from the profile owner (node attributes) or edge labels

(edge attributes) that the user also discloses.

In the same way than in the previous chapters, our adversary is an attacker who

has knowledge of the OSN acquired by acceding to the public interface of the

OSN with a properly configured web crawler. We assume that the adversary has

limited resources and hence he is not able to obtain information on the whole

network. This assumption is realistic due to the current OSN sizes. In order to

conduct the attack, the adversary has to choose the configuration parameters of

the crawler that allow him to maximize his benefits, which will vary depending

on the specific adversary goal.

Note that although node and edge attributes may be available to the crawler,

we take as a definition of a public profile the restrictive case where only the list

of friends is publicly accessible. So we assume that the only information the

attacker can obtain for sure about a node is the list of friends. Moreover, since

data is obtained directly by accessing the OSN public interface, we assume that

1For simplicity, we restrict our description to public profiles network. However, similar
attacks can be conducted even when some profiles are not public. It has been shown previ-
ously [38] that the percentage of public profiles needed to obtain all relationships of a set of
users is really low, so the described attacks could also work when private profiles are found in
the network.

Chapter 6. OSN crawling schedulers and k-plexes detection 73

no anonymization process has been applied to the obtained data, and thus no

edges nor nodes have been introduced nor removed from the network.

6.1.1 Adversary goals

Given this scenario, an adversary may have different goals in mind when launch-

ing a web crawler towards an OSN. For instance, it may be the case that the

adversary wants to obtain as much information as possible about a single user

(recall Objective A from Chapter 5). On the contrary, the adversary may not

have any chosen victim in mind and may just want to obtain as much information

as possible from the OSN in the amount of time that he disposes (Objectives B

and C from Chapter 5). Moreover, apart from defining who the victim is, the

adversary may also be interested in obtaining different kinds of information from

this victim. For instance, in the single victim scenario, the victim may have his

profile configured as totally public in the OSN, so that the adversary is able to

easily obtain all node attributes of the victim immediately. In this case, the goal

of the attacker may be to discover who are the friends of the victim, obtaining a

more in depth knowledge of the victim’s social circles. However, it may also be

the case that the victim has all his node attributes hidden, so that the attacker

can not obtain this information directly. In this case, the attacker may want to

discover to which subgroups does the victim belong in order to try to infer the

attributes of the victim from that of his community colleagues.

Having all these possibilities in mind, we have defined eight different quantifiable

indicators that the attacker may want to maximize when launching a crawler

towards an OSN. These indicators depend on who the target is (a single victim

or the whole network) and what does the attacker want to do with the obtained

data:

1. The whole network:

(a) Number of k-plexes obtained.

(b) Size of the maximum k-plex.

(c) Number of nodes in any of the k-plexes.

Chapter 6. OSN crawling schedulers and k-plexes detection 74

(d) Efficiency:

Eff =
|Vdisc|
|Vcrawl|

2. One victim:

(a) Number of k-plexes where the victim belongs.

(b) Size of the maximum k-plex where the victim belongs.

(c) Number of nodes in any of the k-plexes where the victim belongs.

(d) Efficiency regarding a single victim:

Eff(v) =

d∑
i=1

β(i−1)|V i,vdisc|

|Vcrawl|

where

V i,vdisc = {u ∈ Vdisc | dist(u, v) = i}

and

β < 1, d = max
∀u∈Vdisc

dist(u, v)

Indicators for the whole network target are focused on evaluating the subgroup

structure discerned and the number of nodes discovered. For cohesive subgroup

identification, we fixed the indicators aiming attention on finding k-plexes since

this structure relaxes the strong familiarity conditions expressed in a clique but,

at the same time, still provides the properties of reachability and robustness in

the resulting cohesive group. By changing the value of k and studying the size

of the resulting k-plexes, we are able to obtain a good idea of the cohesion found

in the subgraph. In order to study the k-plexes found in Gcrawl, we take into

account how many k-plexes are found (Indicator 1a), which size do these k-plexes

have at most (Indicator 1b), and how many of the crawled nodes belong to at

least one k-plex (Indicator 1c). For this last Indicator 1c, we are interested in

discovering how are the nodes distributed among the k-plexes, that is, knowing

if just a few of the nodes form many k-plexes or, on the contrary, k-plexes are

formed through all the crawled subgraph. Note that these indicators are, in fact,

simplifications of other indicators of higher dimensionality. Indicators 1a and 1b

summarize the distribution of the number of k-plexes found for each different

k-plex size. In the same manner, Indicator 1c condenses the distribution of the

number of nodes belonging to a given number of k-plexes.

Chapter 6. OSN crawling schedulers and k-plexes detection 75

The last indicator used to evaluate the whole network target is efficiency (In-

dicator 1d), defined as the quotient of the number of discovered nodes by the

number of crawled nodes. This metric gives information on how many new nodes

are discovered for each crawled node, thus it is useful to evaluate how good are

schedulers in discovering as many nodes as possible.

Indicators for a single victim are also focused on evaluating subgroup structure

and nodes discovered, but this time taking into account that the goal is to obtain

as much information as possible from a single victim, that is considered to be

the seed of the crawling process. For this reason, when evaluating the number

of k-plexes found (Indicator 2a), the size of those k-plexes (Indicator 2b), or the

nodes belonging to any k-plex (Indicator 2c), the restriction of requiring that the

victim belongs to the evaluated k-plexes is added. In this manner, we are able to

assess the subgroup discovery around the victim.

In a similar manner, efficiency metric is also adapted to consider the victim as the

central goal (Indicator 2d). In order to do so, the number of discovered nodes is

weighted depending on its distance to the victim. Nodes close to the victim will

contribute more in efficiency that nodes further away. The exact contribution that

a node at distance i from the victim makes to the overall efficiency is determined

by β(i−1), with the parameter β < 1, so that β(i−1) decreases as i increases. Note

that with this definition, nodes at distance one from the victim will contribute in

exactly one unit to the overall efficiency. Moreover, by leaving β as a parameter,

we are able to adjust the efficiency value to the attacker’s will: while an attacker

interested only in the victim’s close neighborhood will set β to a small value, an

attacker concerned about getting a broader view can choose a higher β value. By

doing so, we are able to model more precisely the attacker’s intentions.

6.2 Experimental results

In order to analyze the scheduler decision implications on privacy, we have sim-

ulated the crawling of an OSN using as a testbed the data collected by Mislove

et al. [29] which contains over 11 million users. This dataset is one of the most

complete OSN data available and can be used as a testing set for OSN analy-

sis. Like in the previous chapter, we have focused our experiments in the Flickr

Chapter 6. OSN crawling schedulers and k-plexes detection 76

network, for which this dataset contains almost the 27% of nodes existing on the

network at the time of the crawl (1,846,198 nodes) with its relations (22,613,981

links). Our experiments are done considering that our OSN graph G is exactly

the Flickr graph that had been retrieved by Mislove et al. [29].

Flickr relationships are directed. In order to simulate the crawling of the Flickr

network, we have configured our crawler to follow outgoing links. However, when

analyzing the k-plexes found in the crawled subgraphs, k-plexes are computed in

its subjacent graph, that is, its underlying undirected graph. So although Gcrawl

is directed, results on the number, size, and k-plex distribution are based on its

undirected counterpart.

Initially, we chose 50 different random seeds and launched a crawler configured

with each of the presented scheduling algorithms.2 However, we noticed that

some of the schedulers lead to very similar graphs, regardless of the chosen initial

seed. As we showed previously in Chapter 5, the number of hops needed to reach

the highest degree node of the network from any other node in the same strongly

connected component when using real-degree greedy is very low. Consequently,

subgraphs obtained when using real-degree greedy starting from different seeds

have a lot of nodes in common. A similar behavior can be observed when using

unseen degree greedy.

For this reason, we first analyzed the results obtained with just 20 different seeds

and looked at how much node overlap there was between subgraphs obtained

with the same scheduler but starting from different seeds. For each scheduler,

we compute the pairwise number of common nodes of all subgraphs obtained

with this specific scheduler. While the mean node overlap reached 96.56% and

96.45% for real and unseen degree greedy, respectively, it dropped to just 0.11%

for random list. In between, there is a mean overlap of 1.28% and 1.21% for real

and unseen lottery, respectively, which is explained by the random component

added to these schedulers. For BFS, the overlap is higher than for random list,

reaching 1.16% of the nodes. Explored degree greedy obtains a 4.03% of overlap,

which is a consequence of the correlation between explored degree and real degree

of nodes.

2The random seed choosing is part of our experimental methodology. We chose random
seeds in order to obtain mean values to compare the different schedulers. However, note that
an attacker does not necessary want to follow this procedure in order to choose the adequate
seeds.

Chapter 6. OSN crawling schedulers and k-plexes detection 77

Given the high percentages of node overlap showed in the obtained graphs for

some of the schedulers, we decided to continue the experiments for the left 30

seeds for the schedulers not involving real and unseen degrees. Moreover, from the

50 initial seeds, 10 had an outdegree of exactly zero. These seeds were excluded

from our analysis since they distort the actual results. Although all the other

seeds were used to compute the results of each indicator, graphs appearing in this

section contain only the results for a subset of 10 seeds for the sake of clarity.

Special attention has to be paid to another seed which lead to characteristic re-

sults. This seed was not in the biggest strongly connected component but in a

rather small one of just 45 nodes. Since the stopping condition of the crawler

was to reach 101 crawled nodes, in this specific case the crawling always ended

prematurely when the 45 nodes of the connected component were explored. Con-

sequently, the subgraph obtained when starting from this seed was the same for

all schedulers and thus all the indicators for the goals of the attacker are exactly

the same, regardless of the specific scheduler used. For this reason, the indica-

tors of the crawlings starting with this seed are useless to compare schedulers.

Moreover, since the crawled subgraph contains just 45 nodes (less than half of

the nodes that all the other subgraphs have), the results of this seed are not

comparable neither to the results of any other seeds. Even though this seed is

useless to compare schedulers, we have decided to include it in our analysis since

it represents an interesting outlier case.

6.2.1 Targeting the whole network

In this section we review the schedulers’ performance regarding indicators evalu-

ating the whole network (Indicators 1a, 1b, 1c, and 1d, defined in Section 6.1.1).

6.2.1.1 Number of k-plexes obtained

Figure 6.1(a) shows the number of cliques obtained with each scheduler (Indicator

1a). Each line in the graph represents a different seed. We can observe that

while explored degree greedy is the best scheduler in terms of number of cliques

obtained in the resulting graph for some seeds, it is not so good for other seeds.

Taking into account that explored greedy selects as the next node to crawl the

Chapter 6. OSN crawling schedulers and k-plexes detection 78

(a) Number of k-plexes (k=1,
log scale)

(b) Maximum k-plex size
(k=1)

Figure 6.1: Results for Indicators 1a and 1b. Each line of the graph repre-
sents a different seed

one that has the highest amount of connections with the already crawled nodes,

it is reasonable to expect that this scheduler will obtain a denser subgraph with

many more cliques than any other scheduling algorithm when the seed belongs

to a thigh community. However, when the same scheduling algorithm is used

starting in a very loose neighborhood, explored greedy may not be the best

algorithm to pursue this goal, since it is slower in moving to other more thigh

regions than real or unseen degree greedy.

Using the bounds for the number of maximal cliques demonstrated previously by

other researchers [196, 197], we can compute the maximum number of maximal

cliques for our crawled subgraphs. For a graph with 101 nodes, the superior

bound for the number of cliques of size at most three is 37,026. Using explored-

degree greedy as scheduler, the mean number of cliques obtained is 25,019, which

corresponds to nearly 68% of the previously computed bound.

Both real and unseen degree greedy algorithms are able to outperform BFS when

evaluating this very same indicator. For real-degree greedy, this happens because

it selects nodes that have been discovered (and thus are connected to at least one

already crawled node) and have very high degrees. Although these nodes may

not have a lot of connections with the already crawled nodes, it is not usually

the case. Therefore, a crawler using real degree greedy obtains a high density

subgraph with more cliques than any other scheduler but explored-degree greedy.

Note that real and unseen degree greedy algorithms are able to obtain, in mean,

a number of cliques an order of magnitude higher than BFS.

Chapter 6. OSN crawling schedulers and k-plexes detection 79

For most of the seeds, the number of cliques obtained with BFS is lower than

with the three greedy algorithms and higher than for the three lottery algorithms.

The random component of these lottery algorithms makes them choice users with

not so high degrees, so the density of the subgraph obtained is less and thus fewer

cliques are found.

Random list selector obtains, in almost all the different experiments, the worst

results. The fact that this scheduler does not use the node degree nor the distance

to the seed to make its decisions is a clear disadvantage for this specific goal. With

just the unordered list of discovered nodes as the only information to operate,

random list is not able to obtain a subgraph with many cliques, getting in mean

just a 12% of the number of cliques obtained by explored degree greedy.

When analyzing the number of k-plexes obtained in all the crawled subgraphs

for k = 1 and for k = 2, very similar results are found. While the actual number

of k-plexes obtained for the two k values is different, the relative performance for

different schedulers remains stable. The increase on the number of k-plexes for

each scheduler is highly dependent on the specific scheduler. While increasing k

from one to two increases nearly 30 times the number of k-plexes obtained for

unseen greedy, real greedy, and random list, it increases by half that value for

the three lottery algorithms and for BFS.

6.2.1.2 Maximum k-plex size

Both unseen and real degree greedy algorithms outperform all other schedulers

in terms of maximum clique size (Indicator 1b). Once again, the reason of that is

the selection of very high degree nodes already connected to the crawled graph.

By selecting these high degree nodes, unseen and real degree algorithms obtain

really dense subgraphs with big cliques. The maximum clique size obtained with

unseen-degree greedy is 27, whereas it descends to 25 for real-degree greedy as it

is shown in Figure 6.1(b).

Cliques smaller than with real and unseen degree are obtained with explored-

degree greedy. By selecting the nodes which are better connected to the other

crawled nodes, explored greedy is able to collect a subgraph with big cliques, much

bigger than any other scheduler but unseen and real greedy. Once again, the fact

that the subgraph obtained with explored-degree greedy depends strongly on the

Chapter 6. OSN crawling schedulers and k-plexes detection 80

initial seed creates differences on the maximum clique size for this scheduler,

making it oscillate between 10 and 24.

BFS is also able to retrieve cliques of a considerable size. In mean, cliques

obtained with BFS are 1/3 of the size of those obtained with unseen-degree

greedy, that is, they have 10 nodes on average. Although BFS does not pay

special attention to node degrees, the fact that it explores the k-neighborhood

of a seed for increasing values of k allows it to detect the cliques formed in this

neighborhood, which given the highly clustered structure of social networks leads

to obtain quite big cliques.

Worse results are obtained for the schedulers that include a random component,

as it should be expected. The random component of real, unseen, and explored

degree greedy deviate their decisions for high degree nodes and, as a result,

smaller cliques are obtained with these schedulers. Selecting next nodes randomly

with a uniform distribution over the discovered set also leads to very small cliques

of size at most five.

Increasing k to two lead to very similar results. By relaxing the number of

connections that each node must have in order to be part of the k-plex, the actual

size of the maximum k-plex is increased. However, the upgrowth is not really

significant. While the maximum cliques size is 27 (unseen-degree greedy), it just

reaches 30 for this very same scheduler when k is set to two. Similar increases are

observed for all schedulers. As with the number of k-plexes obtained, the relative

performance for different schedulers when k = 1 and when k = 2 remains stable.

6.2.1.3 Number of nodes in any of the k-plexes

Regarding the number of nodes which take part in any of the cliques (Indicator

1c), all three greedy algorithms perform very well, nearly at the optimal level.

Both unseen and real degree schedulers are able to obtain subgraphs where at

least 97% of the nodes belong to at least one clique as it is shown in Figure 6.2(a).

Note that 35% of the seeds have an outdegree of exactly one and thus they can

not belong to any clique of size at least three in the directed graph.3

3However, they may belong to a clique in the subjacent graph, where direction of the edges
is ignored.

Chapter 6. OSN crawling schedulers and k-plexes detection 81

(a) Number of unique nodes
(k=1)

(b) Efficiency

Figure 6.2: Results for Indicators 1c and 1d. Each line of the graph repre-
sents a different seed

Explored-degree greedy starting on most of the seeds has the same performance,

although for five seeds the percentage of nodes belonging to at least one clique

drops between 78− 95%.

In a similar fashion, the random variants of those algorithms perform a little

worse than the greedy ones. While real and unseen lottery are able to recover

subgraphs where between 72 − 96% of the nodes belong to at least one clique,

explored lottery drops this percentage between 36− 90%.

The number of nodes belonging to at least one clique for BFS exhibits a high

variance depending on the seed. While for some seeds BFS is able to get 98%

of the nodes belonging to any clique, for some other seeds just 45% of them

participate in a clique. That is because by exploring the k-neighborhood of a

seed, the obtained subgraph depends highly on the chosen seed.

Selecting the next node to crawl uniformly at random from the list of discovered

nodes leads to the worst performance for this specific goal. While for some seeds

just 21% of the nodes belong to at least one clique, for other seeds this percentage

increases to 58%.

Unlike any of the other goals, analyzing the number of unique nodes belonging

to at least one k-plex for k = 2 is not interesting at all. Since we are taking into

account all 2-plexes of size at least three and the crawled subgraph is always a

single connected component, all crawled nodes will belong to at least one 2-plex,

regardless of the selected scheduler or seed.

Chapter 6. OSN crawling schedulers and k-plexes detection 82

6.2.1.4 Efficiency

When the crawling goal is set to maximize efficiency (Indicator 1d), real-degree

greedy is always the best scheduling choice. Selecting the highest real degree node

as the next node to crawl leads to discover many new nodes at each iteration, thus

maximizing efficiency. When real-degree greedy is used, efficiency when the 101

nodes have been crawled oscillates between 1,742 and 1,739 as it is illustrated in

Figure 6.2(b). This means that the number of discovered nodes is between 175,942

and 175,639. Note that although we can not assure that real-degree greedy selects

the node that will effectively lead to discover the biggest possible amount of users

at a given state, we can affirm that it will select the node that adds the maximum

number of edges possible. This happens because the crawled graph is directed and

the crawler is following just outgoing links, and thus crawling a node of outdegree

outdeg assures us to discover exactly outdeg new edges. However, crawling the

same node may lead to discover less than outdeg new nodes, since some of them

may have been previously discovered by the crawler.

After real and unseen degree greedy schedulers, real and unseen lottery give the

best results in mean, offering about 1/3 of the efficiency demonstrated by real-

degree greedy. Selecting next nodes to be crawled with a probability proportional

to its degree gives more change to high degree nodes to be selected than low

degree nodes, thus getting better results on efficiency. Even though, efficiency is

not always better with real and unseen lottery than BFS for all the seeds. When

a crawler with BFS is launched starting in a seed with high degree nodes in its

neighborhood, efficiency may be better than when the crawled is configured with

real or unseen lottery. Except for these specific cases, BFS is not a good choice

for maximizing efficiency since exploring the k-neighborhood of a seed makes the

crawler to rediscover already discovered nodes.

Schedulers using explored degree to make its decisions perform bad in terms of

efficiency. Since next nodes to be crawled are the ones that already have a lot

of connections with the crawled subgraph, each new crawled node rediscovers

many nodes that were already discovered and consequently does not contribute

to increasing efficiency. However, given that there is some correlation between

a node’s explored and real degrees, high degree nodes may be selected at each

iteration, and thus are able to counteract a little the negative effect on efficiency.

For this reason, there are some seeds for which efficiency with explored-degree

Chapter 6. OSN crawling schedulers and k-plexes detection 83

greedy is better than for random list or explored-degree lottery. In mean, effi-

ciency for explored-degree greedy is just 159.1, 1/10 of the efficiency obtained by

real-degree greedy.

6.2.2 Targeting one specific victim

In this section we review the schedulers’ performance regarding indicators evalu-

ating a single victim (Indicators 2a, 2b, 2c, and 2d, defined in Section 6.1.1).

6.2.2.1 Number of k-plexes where the victim belongs

The results of the number of k-plexes obtained in each graph when requiring that

the victim belongs to the k-plex (Indicator 2a) are quite different than the ones

obtained when no restrictions are imposed (Indicator 1a).

The first thing to notice when analyzing the results for this goal is that many

seeds lead to graphs where the victim is not part of any clique, regardless of the

specific scheduler selected. The reason of this behavior is that the outdegrees

of all these seeds are exactly one and indegrees are zero thus these seeds will

never be part of any clique as defined in Section 2.1.2. This does not occur when

increasing k to two, since then there is no need for the seed to have degree greater

than one in the subjacent graph to be part of a k-plex.

Whenever the seeds have degrees greater than one, BFS is the best scheduler

regarding the number of cliques obtained as it is shown in Figure 6.3(a). Given

that BFS stays as close as possible to the victim, it always obtains the neighbor-

hood of the victim and consequently this victim belongs to many of the found

cliques. Note that when only parts or the whole 1-neighborhood of the victim is

crawled, the victim will belong to all cliques with order higher or equal to three

in the crawled subgraph. BFS is able to recover at most 62 cliques where the

victim belongs. This is much less than the number of cliques recovered by this

very same algorithm when no restrictions on who has to belong to the clique were

applied, which was 5,016.

Although the number of cliques obtained for explored-degree greedy is much big-

ger than for BFS when no restrictions on the victim are imposed, explored-degree

Chapter 6. OSN crawling schedulers and k-plexes detection 84

(a) Number of k-plexes
with victim (k=1, log

scale)

(b) Maximum k-plex
size with victim (k=1)

(c) Number of unique
nodes with victim (k=1)

Figure 6.3: Results for Indicators 2a, 2b, and 2c. Each line of the graph
represents a different seed

greedy performs worse when there is a specific victim. This happens because se-

lecting the nodes with highest explored degree may force the crawler to move

further away from the seed, obtaining lots of cliques where the victim does not

take part. Even though, explored-degree greedy is the second ranked algorithm

in terms of number of cliques obtained with a fixed victim, obtaining just 1.6

cliques in mean. As it should be expected, its randomized version, explored-

degree lottery performs a little worse but better than any of the other scheduling

algorithms.

The rest of the algorithms are not able to obtain more than two cliques where the

victim participates, regardless of the chosen seed. Mean values for the number

of cliques obtained where the victim belongs are under one.

Similar results but with an increased magnitude and with more variance are

obtained when augmenting k to two. While for BFS the maximum number of

2-plexes obtained increases until 158 (254% increment), the increase is much

bigger for other schedulers. Those schedulers which were only able to recover

two cliques, are able to obtain dozens of 2-plexes.

6.2.2.2 Maximum k-plex size where the victim belongs

Much alike with the number of k-plexes found, the results on the maximum k-

plex size where the victim belongs (Indicator 2b) differ largely from those of the

maximum k-plex size for the whole network (Indicator 1b).

Chapter 6. OSN crawling schedulers and k-plexes detection 85

Once again, the first thing to notice when analyzing the results for this goal is

that many seeds lead to graphs where the maximum clique size where the victim

belongs is zero, that is, there is no k-plex where the victim participates. The

reason is the same as for the previous goal: these seeds have an outdegree of

exactly one.

Contrary to what we have seen before for the other goals, there is no clear best

scheduler regarding the maximum clique size where the victim belongs goal as

can be observed in Figure 6.3(b). While explored-degree greedy is able to obtain

the biggest cliques with 10 nodes for some of the seeds, it performs at the same

level than other schedulers for some other seeds and even worse for another ones.

For most of the seeds, most of the schedulers are just able to obtain cliques of

size three where the victim participates. While explored-degree greedy performs

better for a few seeds, real-degree, explored lottery, and random list do so for

other seeds.

These results are explained by the topology of the whole graph that the crawler

is exploring. While some of the seeds have an outdegree of just one, some other

seeds present small outdegrees of three to eleven, and some other seeds have really

high outdegrees, reaching even 73. The size of the maximum clique where the

victim belongs is highly conditioned by the outdegree of the seed. Specifically,

it determines an upper bound: for a seed of degree deg(v0) = d, the size of the

maximum clique where it can belong is at most d+ 1.

When increasing k to two, all the seeds that do not belong to any clique now

belong to at least a 2-plex of size three. However, while both explored greedy and

BFS get better results for some seeds, they are outperformed by other schedulers

for some other seeds.

6.2.2.3 Number of nodes in any of the k-plexes where the victim

belongs

While the number of nodes that participate in at least one clique (Indicator 1c)

reached 95% for greedy algorithms and exceeds 45% for all the other schedulers

except random list, the number of nodes participating in cliques where the victim

also belongs to (Indicator 2c) never reaches 40%.

Chapter 6. OSN crawling schedulers and k-plexes detection 86

Although the results on this goal are far away from the optimal for all sched-

ulers, BFS is able to obtain subgraphs where up to 34% of the nodes belong

to at least one clique where the victim belongs as can be seen in Figure 6.3(c).

Explored-degree greedy reduces this percentage to 17%, still higher than the

other schedulers. The fact that BFS explore first nodes at distance j than nodes

at distance j + 1 makes more probable that crawled nodes belong to the same

clique than the victim. As it has been explained before, the properties of the

obtained subgraph for explored-degree greedy vary depending on the topology of

the underneath graph G, thus the distribution of the crawled nodes in cliques

where the victim belongs also changes depending on G.

The other algorithms perform even worse for this indicator, with just at most

11% of the nodes of the crawled graph belonging to at least one clique were the

victim also belongs.

In a similar manner than with other indicators, increasing k to two leads to an

increase of the absolute value of the number of k-plexes while maintaining the

relative performance of the different schedulers.

6.2.2.4 Efficiency with a victim node

Results for victim efficiency (Indicator 2d) depend on the chosen β value, the

parameter that determines the contribution of each node based on its distance

to the victim. If β values close to zero are used, nodes further away from the

seed have almost no contribution to the overall efficiency score. On the contrary,

when β values close to one are used, nodes further away from the seed have

similar contributions than those directly connected to the seed. By adjusting the

β parameter, it is possible to evaluate victim efficiency in the desired conditions,

giving more importance to discover the immediate neighborhood of the seed or,

oppositely, giving more significance to discover the long distance neighborhood.

Note that when setting β = 1, all discovered nodes have the same contribution

to the overall victim efficiency. In this case, victim efficiency (Indicator 2d) and

efficiency for the whole network (Indicator 1d) are exactly the same.

Results for efficiency with a single victim with β = 0.01 are shown in Fig-

ure 6.4(a). BFS and explored-degree greedy are clearly the best schedulers

regarding this indicator. Since BFS explores the neighborhood of the victim

Chapter 6. OSN crawling schedulers and k-plexes detection 87

(a) β = 0.01 (b) β = 0.1

Figure 6.4: Results for Indicator 2d when increasing the significance of
distant friends. Each line of the graph represents a different seed.

crawling the closer nodes to the seed before any other more distant nodes, victim

efficiency is maximized when the close neighborhood of the victim is prioritized

(low β values). Explored-degree greedy acts in a similar way: it chooses nodes

with the highest explored-degree as next nodes to crawl so the diameter of the

crawled subgraph does not increase much, maintaining victim efficiency levels

similar to those observed with BFS. Explored lottery performs a little worse

than explored-degree greedy, a behavior consistent with its random component.

Except for three specific seeds, results on victim efficiency for the other schedulers

are mostly the same. The random component of those schedulers on one hand

and the urge to pursue real or unseen high degrees on the other hand make the

other schedulers to crawl nodes far away for the seed, and consequently victim

efficiency remains low.

Results for β = 0.1 (Figure 6.4(b)) already start to exhibit the consequences of

increasing β: algorithms that are able to discover a lot of nodes (such as real and

unseen greedy) obtain high victim efficiency. However, with β = 0.1 this behavior

is observed for just three different seeds and victim efficiency is still higher with

BFS than with real greedy for those seeds.

Increasing β to 0.5 leads to obtain better results for real-degree greedy than for

BFS for all the seeds. In a similar way, unseen-degree greedy also presents high

victim efficiency and both real and unseen lottery schedulers start to exhibit

higher victim efficiencies.

Finally, increasing β to 0.99 makes that schedulers using real or unseen degree

overank both BFS and explored-degree greedy. Since using real or unseen degree

Chapter 6. OSN crawling schedulers and k-plexes detection 88

leads to discover many more nodes than making decisions without taking into

account these degrees, setting β ≈ 1 benefits these algorithms when evaluating

victim efficiency.

6.3 Conclusions

In this chapter, we study the effect that web crawlers have on the information

that can be retrieved from an OSN. We analyze the impact of different scheduling

algorithms on the information that the web crawler retrieves from an OSN. We

evaluate the information that the attacker obtains with respect to the goals de-

scribed in Section 6.1.1. Note that these goals are based on the k-plexes obtained

in the crawled graph and, therefore, the algorithms’ evaluation might differ if

other goals are taken into account.

With respect to the obtained results, the three greedy algorithms achieve the

best results for three of the four indicators regarding the whole network attacks

(Indicators 1a, 1b, 1c). The exception is efficiency (Indicator 1d), for which

although both real and unseen degree greedy offer the best results, explored

degree greedy performs worse than the other algorithms.

On the contrary, when the target is a single victim, BFS is the scheduler offering

the best performance for all the four indicators. Given that BFS always explores

nodes that are closer to the victim than those which are further away, it discov-

ers the neighborhood of the victim, thus maximizing indicators focused on the

victim. Explored-degree greedy also performs much better than any of the other

algorithms for one victim indicators, being the second ranked scheduler for the

four indicators focused on a single victim.

Lottery algorithms tend to perform a little worse for all the indicators than their

greedy counterpart. The random component of the lottery schedulers forces them

not to make optimal decisions regarding the degree of the nodes thus penalizing

the obtained results.

Selecting the next node to crawl with a random uniform distribution over the

Vdisc list does not provide good performance in any of the evaluated indicators.

The uniform distribution selects any discovered node with the same probability,

Chapter 6. OSN crawling schedulers and k-plexes detection 89

so nodes with just one link to the crawled component have the same probability

to be selected as the next node to crawl than those which are already very good

connected. This results in obtaining a few really small cliques.

CHAPTER 7

On improving classification of interlinked

entities using only the network structure

In this chapter, we address the problem of classifying entities using only their rela-

tionships with other entities. Although semantic content describing the nodes or

the relationships between those nodes could also be used to perform this classifi-

cation, we demonstrate that with the graph structure alone it is actually possible

to achieve significant correct rates.

This scenario, where the only information known is the existence of entities and

whether or not it exists a relationship between each pair of entities, is of special

interest. There has been quite a stir lately about the NSA collecting and storing

metadata about phone calls [198]. The NSA allegedly uses this metadata to

decide whether it exists a reasonable articulable suspicion of a connection of an

individual to a terrorist investigation. Social networks are also a rich source of

information about individuals and their relationships, with the goal of classifying

individuals as one of the most important for the advertisement industry. The

91

Chapter 7. Improving classification using network structure 92

security community often deals with the problem of identifying sybils in a peer-

to-peer network, with the connections each user makes as the only available

information. These are just a few examples of the kind of problems that can

be reduced to classification problems where the only information available is the

graph structure (and labels for a small subset of the entities of the graph).

In order to show that classification with the graph structure alone is possible,

we tackle different classification problems. Some of these problems consist in

performing binary classification, while others deal with multiclass classification.

Moreover, we experiment with datasets of very different nature. On one hand, we

make use of various relational datasets already used in the past by the machine

learning community. One the other hand, we crawl Twitter to obtain information

about users and their relationships, and define a set of classification problems over

the collected data. We show that entity classification through the graph structure

alone is possible for both sets of data and for both classification problems.

The main contribution of this chapter is to present a classifier architecture that

is able to deal with the problem of classifying interlinked entities when the only

information available is the relationships between these entities. The architecture

introduces the usage of label independent features in the initialization stage of

the relational classifier. In order to demonstrate that our proposal is sound,

we perform a systematic analysis of the accuracies obtained when classifying

datasets from different sources and of very different nature with our proposed

architecture, and compare the results against multiple algorithms already known

by the community. The results show that our proposal outperforms all the other

algorithms for most of the experimental configurations.

The rest of the chapter is organized as follows. Section 7.1 reviews the formal

definition of the problem and some basic notation (note that a more detailed

introduction to classification can be found in Section 2.4). After that, Section 7.2

presents our proposed architecture to deal with classification of relational data.

Later on, Section 7.3 presents the experimental results performed to support our

proposal. Finally, Section 7.5 exposes the conclusions.

Chapter 7. Improving classification using network structure 93

7.1 Problem definition and notation

As we explained on Chapter 2, we denote by G = (V,E) the graph representing a

given networked dataset. The set V = {vi, for i = 1, · · · , n} contains the nodes

of the graph. On the other hand, E is the set of edges, pairs of elements of V ,

representing the relationships between those nodes.

Regarding classification, we denote by C = {ck, for k = 1, · · · , |C|} the set of all

possible categories an entity can be labeled with. Then, there exists a set of nodes

Vl ⊂ V for which the mapping T : Vl → C is known before classification takes

place, and a set of nodes Vnl = V \ Vl for which the mapping is unknown. The

goal of the classification process is to discover this latter mapping, T : Vnl → C,

or a probability distribution over it.

7.2 Building a relational classifier using only the

network structure

In this section, we propose a classifier that takes advantage of the network struc-

ture to classify entities. Inspired by the literature about social networks, where

homophily is usually reported, our classifier uses the labels assigned to one en-

tity’s neighbors in order to classify that very same entity. The problem that

arises with this approach is obvious: needing to know the labels of the neighbors

in order to classify an entity creates a recursive problem, where the labels of the

neighbors are needed to classify the original neighbors, and so on.

Our approach to solve this problem is to create a two-module classifier as shown

in Figure 7.1. This two-module classifier is composed by an initial module, which

makes a first labeling of entities into the desired categories; and a relational

module, which uses the results of the previous module to exploit the neighborhood

profile. The initial module uses label independent features extracted from the

network structure. Note that the performance of the initial module is not critical

since its results are only used once as inputs for the relational module. In turn,

the relational module makes use of both label independent features computed

on the previous stage and label dependent features, that can be computed for

all the nodes because the output of the initial module provides labels for all the

Chapter 7. Improving classification using network structure 94

Initial

classifier

Relational

classifier

Data

preprocessing

Data

preprocessing

Class

labels
New class

labels

Neighborhood

analysis

Structural features

extraction

Initial Module Relational Module

Figure 7.1: Classifier modules scheme

entities. Moreover, the relational module can be applied iteratively, so that the

results of one execution of the relational classifier can be used as new labels for

a new execution of the relational classifier. By doing so the classifier is able to

refine the results taking into account the newly learned information.

This architecture is similar, to some extent, to the one used by NetKit [40]. In

our proposal, the initial module acts as the non-relational model. The modules

are similar in the sense that they provide a model to initialize the relational

component. However, note that one of our contributions is to use the network

structure to define features for this classifier, instead of using local attributes of

the nodes alone. Then, their relational and collective inference models correspond

to our second module, which uses relationships in a similar way than in Class-

Distribution Relational neighbor Classifier [40, 199, 200].

The next subsections describe each of the two modules in detail. As we will

see, the initial module is composed by three different components: the struc-

tural feature extraction, the data preprocessing, and the initial classifier. At the

same time, the relational module is also made of three elements, presenting a

similar architecture: the neighborhood analysis, the data preprocessing, and the

relational classifier.

7.2.1 Initial module

The initial module uses structural node properties to obtain an initial node la-

beling that can be used afterwards by the relational module. Starting from a

graph, a set of structural features is extracted. These features are then used

Chapter 7. Improving classification using network structure 95

to map nodes to |F|-dimensional samples which can be labeled with a classic

non-relational classifier.

The feature extraction component is used to obtain local features for each of

the nodes’ of the graph. Although any graph structural feature computed over

the nodes of the graph can be used with this setting, our experiments show

that very basic metrics already provide good enough results for an initial of

the nodes. Node metrics such as degree, betweenness, and closeness centrality,

clustering coefficient, or degree assortativity may be used as local features. The

number of features used by the feature extraction module determines the number

of dimensions of the resulting samples. We denote by F the set of node local

features used in the initial module.

Just before classifying the samples obtained from the feature extraction module,

a data preprocessing step is applied. This preprocessing step consists in basic

transformations of the data that ease the classification process. On one hand,

data is standardized by dividing each sample by the standard deviation of the at-

tribute. Moreover, feature extraction and dimensionality reduction is performed

with Principal Component Analysis (PCA) to try to optimize the classifier perfor-

mance. This preprocessing step is done independently from our structural feature

extraction module, i.e., it is applied to the |F|-dimensional samples obtained by

the structural features extraction component, without taking into account the

graph itself any more.

Then, the initial classifier component is built upon a Support Vector Machine

classifier (svm) with soft margins, a Gaussian Radial Basis Function kernel, and

a scaling factor of one. Relational datasets usually contain some weird nodes

that, although being labeled as members of one type, they exhibit values on the

computed attributes very similar to those shown on nodes of the other types. For

this reason, we use a soft margin classifier in order to find a solution that better

distinguishes the majority of the nodes while neglecting to classify these outliers.

Using a Radial Basis Function as kernel shows good enough results for the initial

classifier. Other kernels such as high degree polynomials also offer similar results.

Support vectors are computed from the train dataset with Quadratic program-

ming method and the final result is an initial classification P 0 where all nodes vi

have been assigned to a category ck for some k ∈ {1, · · · , |C|}.

Chapter 7. Improving classification using network structure 96

7.2.2 Relational module

The initial classification provides us with an initial mapping P 0(vi) = ck,∀i =

1, · · · , n that can be used together with the relations between entities expressed

by the graph to further improve classification accuracy. The relational classi-

fier module uses this initial classification to start exploiting the relationships

expressed by the graph. However, note that this information is used only once,

in the first iteration of the relational classifier. From that moment on, since

new updated (and allegedly more accurate) information about nodes’ labels is

available, the relational module does not need this initial labeling any more.

The neighborhood analysis module has as inputs the graph, that is, entities

and their relationships, and the initial labeling P 0(vi); and outputs a (|C| × 2)-

dimensional sample for each of the nodes of the graph. This sample contains

an aggregated description of the neighborhood of the node. The relational mod-

ule assumes that the class of a node depends only on the classes of their direct

neighbors, such that the probability of a node belonging to a given class is in-

dependent of the rest of the graph but its immediate neighborhood. This makes

the problem of inferring class membership more tractable. Then, in a similar way

than with the Class-Distribution Relational neighbor Classifier [40, 199, 200], the

neighborhood analysis module constructs the node vi class vector CV (vi) as the

vector of summed linkage weights to the various known classes. In this way, the

k-th position of the class vector CV (vi)k contains the number of neighbors of vi

within the predicted class ck.

Following the scheme showed in Figure 7.1, CV (t)(vi) is the result of the neighbor-

hood analysis box at the t-th iteration, which is used as input for the relational

classifier, after being properly preprocessed. The first time the neighborhood

analysis module is used, the mapping P 0(vi) resulting from the initial classi-

fication is used to construct the nodes’ class vectors. From that moment on,

the neighborhood analysis module takes as inputs the new mappings P t, t 6= 0,

resulting from the relational classification phase. It is worth to mention that

classification at stage t+ 1 uses only labels designed at stage t.

However, since we are dealing with directed graphs, we extend the class vector

to contain two different values for each category, corresponding to the prede-

cessors and the successors of the analyzed node. Therefore, each CV (vi) vector

Chapter 7. Improving classification using network structure 97

component has exactly two dimensions,1 the first corresponding to the aggre-

gated counts over the successors of the node, and the second corresponding to

the analysis of the predecessors:

CV (t)(vi)k,1 = |{vj ∈ Γ(vi) s.t. P t−1(vj) = ck}|

CV (t)(vi)k,2 = |{vj ∈ Γ−1(vi) s.t. P t−1(vj) = ck}|

Then, as can be appreciated from the classifier architecture, another data pre-

processing module is applied just before the relational classifier. This module

has two main functions. First, it takes the samples created by the neighbor-

hood analysis module and appends them the features used by the initial module.

Since the information generated by the feature extraction component of the initial

module has proven to be useful to classify entities, there is no apparent reason

to obviate it. Second, in a similar manner than in the data preprocessing step

from the initial module, basic prepocessing techniques such as standardization

and dimensionality reduction are applied.

Once the vectors for each of the samples have been constructed, we use them as

inputs for the relational classifier. The relational classifier is instantiated in a

similar way than the initial classifier. It uses Support Vector Machines with soft

margins and a Gaussian Radial Kernel Function with the scaling factor equal to

one.

Let us stress again that the relational module and, with it, the relational classifier,

is applied iteratively. Since the output of the refinement classifier should be better

than that of the initial classifier, we can use the output of the relational classifier

to compute new values describing the relationships of the entities, and then apply

the relational classifier again to improve classification performance. Ideally, we

would like to run the relational classifier iteratively as many times as needed until

the results converge. However, this method may not always converge, so some

other termination condition has to be set to stop the iterative process. In our

1Note that this very same approach can be used to extend the methodology to heterogeneous
networks, by adding dimensions for each type of edge.

Chapter 7. Improving classification using network structure 98

case, we fixed a maximum amount of iterations and considered as final results

those obtained when that maximum amount of iterations is reached.

7.2.3 Multiclass classification

Since basic support vector machines are applicable only to binary classification

problems, our architecture as described above would have the same limitation.

In order to overcome this limitation, we allow both our classifier modules to

use a combination of binary svm classifiers with one-versus-all methodology. In

this setting, we construct |C| binary classifiers, each of them considering positive

samples the nodes of one class and negative samples the nodes of all other classes.

Then, we assign each test sample to the class that classifies it with the greatest

margin. Individual binary classifiers are built with the configuration explained

in Sections 7.2.1 and 7.2.2.

7.3 Experiments’ description

This section describes the methodology used to evaluate the proposed classifier

as well as the results of the experiments performed in order to do this evaluation.

7.3.1 Datasets

The experiments described in this chapter are made using datasets from different

sources. On one hand, we use datasets collected by other researchers. These

datasets have been used in the past by the machine learning community. Sec-

tion 7.3.1.1 reviews the most important characteristics of these datasets. On the

other hand, we also collected data from Twitter and used this data in our ex-

periments, in the same way that with the already existent datasets. The data

collection process as well as the datasets per se are described in Section 7.3.1.2.

Note that although we distinguish the datasets by source when presenting them,

afterwards the datasets are treated equally, without taking into account its source.

Chapter 7. Improving classification using network structure 99

Table 7.1: Already existing datasets

Dataset |C| Edge set |V | |E|
WebKB Cornell 7 Cocitations 351 26,832

WebKB Cornell 7 Links 351 1,393

WebKB Texas 7 Cocitations 338 32,988

WebKB Texas 7 Links 338 1,002

WebKB Washington 7 Cocitations 434 30,462

WebKB Washington 7 Links 434 1,941

WebKB Wisconsin 7 Cocitations 354 33,250

WebKB Wisconsin 7 Links 354 11,55

7.3.1.1 Datasets already used by the ML community

The existing datasets that we use on our experiments have essentially four differ-

ent sources, providing a total of eight graphs. These graphs describe web pages of

computer science departments from different universities. From each data source,

different graphs are created depending on the specific entities included and the

type of relationships describing how the entities are interconnected. The classi-

fication problem is the same for all datasets: web pages from computer science

departments have to be classified into one of the seven possible classes (course,

department, faculty, project, staff, student, or other).

Table 7.1 presents a short summary of the key properties of each graph. The

original datasets used in this chapter together with a more detailed description

of their content can be found in the Netkit website [201].

7.3.1.2 New datasets

Apart from the existing datasets, we also crawled Twitter to obtain two more

graphs. We used the Twitter API to obtain users and their relationships, which

are directly mapped into nodes and directed edges, respectively. From each of the

two graphs, we created four different classification problems, one of them being a

binary classification task and the other three consisting on 5-category multiclass

problems. For the binary classification task, we manually labeled users into

two categories, distinguishing between individual users and companies. For the

multiclass classification task, we have three different labelings of users. These

Chapter 7. Improving classification using network structure 100

Table 7.2: New datasets

Dataset |C| Edge set |V | |E|
Twitter (seed 1) 2 Followers 303 3,454

Twitter (seed 1) 5 (l = abs) Followers 303 3,454

Twitter (seed 1) 5 (l = weigh) Followers 303 3,454

Twitter (seed 1) 5 (l = man) Followers 303 3,454

Twitter (seed 2) 2 Followers 335 10,003

Twitter (seed 2) 5 (l = abs) Followers 335 10,003

Twitter (seed 2) 5 (l = weigh) Followers 335 10,003

Twitter (seed 2) 5 (l = man) Followers 335 10,003

labels are assigned by hand in one case and using an automated procedure for

the other two cases.

For these two latter cases, we make use of the Twitter lists feature to deduce

the users’ labels. After obtaining users and their relationships, we proceeded

to obtain list membership information, discovering in which lists does every of

the previously crawled users appear. For each list, name, slug and description

were retrieved, as well as their subscribers and members count, and ownership

information. In order to assign the ground truth labels to users in the categories

we perform an automatic user labeling process using the Twitter lists feature

(following a similar procedure than in previous works [202]). In order to do this

labeling, we perform two different processes:

For the first labeling process, we select a list of keywords that define each cat-

egory. We use the same words that are defined in a previous study [202] as

keywords.2 Then, we fetch all Twitter lists where a user belongs to and look

for those keywords in the name, slug, and description of the list. If a list, Lj ,

matches at least one of the keywords of a given category, ck, it is considered to

belong to that category, Lj ∈ ck. Then, the category score of a user vi is the

number of lists in category ck where the user vi belongs to, more precisely:

scoreck(vi) = |{Lj , such that vi ∈ Lj and Lj ∈ ck}|
2Celebrities: star, stars, hollywood, celebs, celebrity, celebrities, celebsverified, celebrity-

list, celebrities-on-twitter, celebrity-tweets; Media: news, media, news-media; Organiza-
tions: company, companies, organization, organisation, organizations, organisations, corpo-
ration, brands, products, charity, charities, causes, cause, ngo; Blogs: blog, blogs, blogger,
bloggers.

Chapter 7. Improving classification using network structure 101

Finally, we say that the class of a user is the category that has a higher score for

that user:

Tabs(vi) = ck , where scoreck(vi) ≥ scorecj (vi) ∀j = 1, · · · , |C|

On the other hand, we perform a second labeling process taking into account not

only the number of lists in which the user belongs, scoreck(vi), but also the total

number of lists of such category Nck . Then, we assign to each user a weighted

category:

Tweigh(vi) = ck , where
scoreck(vi)

Nck

≥
scorecj (vi)

Ncj

∀j = 1, · · · , |C|

Users with scoreck(vi) = 0 ∀k are assigned to the non-elite user category.

With this methodology, we crawled the Twitter network starting from two dif-

ferent users and exploring around 300 users for each of the seeds. This lead us

to discover almost a million (936,423) different Twitter users and around half a

million (563,533) lists. Table 7.2 presents a summary of the graphs constructed

using the described procedure.

7.3.2 Selecting attributes for the initial classifier

In order to both test our classifier and exemplify the possible features that may be

used by the feature extraction module, we consider three different graph metrics

to be used by the initial classifier:

• F1(vi) = |Γ(vi)|, that is, F1 corresponds to node’s outdegree.

• F2(vi) = |Γ−1(vi)|, that is, F2 corresponds to node’s indegree.

• F3(vi) =
|{e=(vj ,vk,wjk)∈E s.t. vj ,vk∈N(vi)}|

|N(vi)|(|N(vi)|−1) , that is, F3 corresponds to the

clustering coefficient of the node’s neighborhood.

Note that although the specific set of features useful for this procedure may seem

application-dependant, we have found that this three very simple features are

Chapter 7. Improving classification using network structure 102

good enough for all the tested datasets. So despite the fact that tuning this

selection may improve initial classification accuracy, we show that the presented

selection is a good choice for different kinds of graphs. In Section 7.3.5, we expose

the rationale that made us choose this selection with a specific example over one

of the datasets.

With this choice of features, each node in the graph is now mapped into a 3-

dimensional sample describing its outdegree, indegree, and clustering coefficient

values. Note that although these attributes are structural properties of the nodes

in the network, there is no need to know the class labels (nor any attribute) of

the neighbors of a given node to compute them.

7.3.3 Netkit classification algorithms

We use the Netkit toolkit [40] as the relational classification framework. By us-

ing Netkit, we are able to systematically test different classifiers and compare

the results. Classifiers in Netkit are comprised by a local classifier (LC), a re-

lational classifier (RC), and a collective inference procedure (CI). Each of the

different modules can be instantiated with many components. In our experi-

ments, we allow the LC to be instantiated with either classpriors (cp) or uniform

(unif); the RC component can be instantiated with Weighted-Vote Relational

Neighbor Classifier (wvrn), its Probabilistic version (prn), the Class-distribution

Relational Neighbor Classifier (cdrn-norm-cos),3 harmonic relational classifier

(harmonic), and Network-Only Bayes Classifier (no-bayes); the CIs module can

be specified with Relaxation Labeling (relaxLabel), Iterative Classification (it),

Gibbs sampling (Gibbs), or without any inference method (null).4 This give us

2× 5× 4 = 40 different full classifiers. For the rest of this document, we will use

the term full classifier (fc) to refer to a specific instantiation of the three modules

(LC-RC-CI). We will denote our proposal as fc0, and use subindexes other than

zero to denote the rest of the full classifiers.

3Class-distribution Relational Neighbor Classifier is configured with Normalized values of
neighbor-class and using the cosine distance metric.

4Readers can refer to the original Netkit paper [40] for a full explanation of these modules.

Chapter 7. Improving classification using network structure 103

7.3.4 Experimental setup

The usual separation between test and training sets is a difficult one in within-

network classification problems. Moreover, entities with already known class la-

bels can be used both as training set and as neighborhood information to classify

their own neighbors. For this reason, we use the same approach than in previous

works [40] to create training and test sets. Given a graph G = (V,E), we ran-

domly pick a subset of labeled nodes Vtrain ⊂ V to be used as the training set.

Then, the test set Vtest is defined as the rest of the nodes, so Vtest = V r Vtrain.

Therefore, we are facing a within-network classification problem, having a sce-

nario with labeled nodes linked with nodes for which the class is unknown.

The experimentation methodology that we follow is the same for all the classifi-

cation problems and datasets. We repeat the process of randomly selecting test

and training sets, building classifiers based on the training information, and eval-

uating the results with the test set 100 times for each graph. Then, we define the

performance of the classifier with respect to a given graph and a labeled ratio r as

the mean of these 100 different runs. We repeat the process for different labeled

ratios (train set sizes) of 20%, 35%, 50%, and 65%. Since we want to compare

the performance of our classifier with respect to those described in the literature,

we perform the same set of experiments using, on one hand, our proposed clas-

sifier architecture and, on the other hand, a set of already existing algorithms.

Section 7.3.3 reviews the algorithms we have used for the comparison.

Our classifier uses label independent features extracted from the network struc-

ture to classify. When testing the performance of the already existing algorithms,

we perform two different sets of experiments. First, we evaluate the existing algo-

rithms using label dependent features only. For the studied datasets, this corre-

sponds to using only the neighbors’ class labels to estimate the class of the nodes.

Then, we perform a second set of experiments where we add new attributes to

the entities. These new attributes correspond to the structural features that we

use in our classifier. We then apply the same algorithms over the datasets with

the extended attribute sets.

Chapter 7. Improving classification using network structure 104

7.3.5 A working example

Given the huge number of experiments we have performed, we are not able to

include the detailed results of all of them in this document. Note that we evaluate

the performance of 41 full classifiers (the 40 used from Netkit plus our proposal)

with 16 different datasets and two different feature sets. For each classifier and

dataset, we repeat the process of selecting training and test sets and evaluating

the performance of the classifier over the test set 100 times, and we perform this

process for four different training set sizes. So, overall, we performed 40 × 16 ×
2×100×4 = 512,000 individual experiments with already existing classifiers plus

16× 100× 4 = 6,400 with our proposed classifier. Therefore, instead of including

all the results in this chapter, this section presents the complete results for one

dataset, together with a detailed explanation of the data transformations done

during the classification process. Then, Section 7.3.6 presents a summary of the

results obtained for all the datasets.

Let us take as the example the binary classification task for the first dataset of

the Twitter graph. Users in the dataset are labeled as either individual users

(c1) or either companies and organizations (c2). The dataset contains 303 users,

159 of which belong to c1, leaving the remaining 144 on c2. We can observe that

there is a similar distribution of samples for each of the two classes.

7.3.5.1 Initial module

In order to construct the initial module, we need to first choose the set of struc-

tural features that will be computed with the feature extraction component.

Although we will use the features already described in Section 7.3.2, let’s see

why they are a good choice for this dataset. A good set of features will map

nodes into samples in a way that nodes in the same category have similar val-

ues in the feature space while nodes in different categories present significantly

different values. However, instead of taking into account local semantic node at-

tributes, we focus on information that can be extracted from the network itself,

that is, information that can be obtained from the mere existence of nodes and

the relationships created between them.

Chapter 7. Improving classification using network structure 105

10
0

10
2

10
4

10
6

10
8

10
0

10
1

10
2

10
3

10
4

10
5

Real indegree

R
e

a
l
o

u
td

e
g

re
e

Node degree

Companies

Users

Figure 7.2: Scatter plot of node indegree and outdegree for users and com-
panies (Twitter dataset, seed 1)

One of the most direct metric for nodes is their degree. Twitter is a directed

network, so for each node we can compute both its indegree and outdegree.

Figure 7.2 shows a scatter plot of each of the nodes in and out degrees, with

individual users plotted with dots and companies plotted with crosses. As can

be observed in the plot, it would be difficult to obtain a perfect classification of

the samples only with this information. However, Figure 7.2 also shows that it

is fairy easy to obtain a rough initial classification with a simple linear classifier:

while individual users tend to show an equilibrium between in and outdegrees,

most companies have a high indegree with a lower outdegree. We can also observe

that there are some companies that present an indegree versus outdegree ratio

more similar to that showed by individual users, and thus will be misclassified.

On the other hand, social networks are known to present high clustering coeffi-

cient. The intuition dictates that individual users will present higher clustering

coefficient values than companies because of their use of the network: companies

make a usage of the network similar to that of a traditional diffusion media and,

therefore, they will not exhibit such a high clustering as individual users.

So we configure the feature extraction module to use these three features: F1 =

|Γ(vi)|, F2(vi) = |Γ−1(vi)|, and F3(vi) =
|{e=(vj ,vk,wjk)∈E s.t. vj ,vk∈N(vi)}|

|N(vi)|(|N(vi)|−1) . Then,

the feature extraction module takes as input the original graph and transforms

it into a set of 3-dimensional samples, as depicted by Table 7.3.

Once the 3-dimensional samples are constructed, data preprocessing and classifi-

cation is performed as described in Section 7.2.1, and an initial labeling of nodes

is obtained.

Chapter 7. Improving classification using network structure 106

Table 7.3: Transformation performed by the feature extraction module

−→ F1 F2 F3

outdegree indegree clustering coeff.

Figure 7.3: Relationship profile for users and companies (dataset 1)

7.3.5.2 Relational module

Once an initial classification of nodes is made, we can take advantage of this

classification and analyze the class labels of each of the nodes’ neighbors, that is,

we can use the categories assigned to a node’s neighbors in order to determine

the category of that very same node.

For the described approach to work, the graph needs to present notable differ-

ences between categories in terms of network linkage. Let us explore how users

of each of the defined categories are connected to users in any category for the

studied dataset. Figure 7.3 shows the relationship profile of users in the dataset.

Values on the edges represent the percentage of existing relationships of the spe-

cific type from the total of the outgoing or incoming relationships. Therefore,

individual users outgoing relationships are directed, in 65% of cases, to other in-

dividual users, and in 35%, to companies. On the contrary, companies outgoing

relationships are directed to users or other companies in a more equitable way

(45% for users, 55% for companies). Incoming edges also present the same kind

of phenomenon, with individual users being followed mostly by individual users

and companies having a more equitable incoming profile. All together, these dif-

ferences on the relationship profiles of the two different categories are exploited

by the relational classifier in order to improve the initial classification results.

Chapter 7. Improving classification using network structure 107

Table 7.4: Class vector

CV (t)(vi)1,1 CV (t)(vi)2,1 CV (t)(vi)1,2 CV (t)(vi)2,2

of outgoing # of incoming # of outgoing # of incoming

neighbors in neighbors in neighbors in neighbors in

individual class individual class company class company class

Since the relationship profile of a user contains information about its class, we

include this information into the samples the classifier is working with. The

neighborhood analysis module of the relational classifier constructs a class vector

of each of the nodes of the graph as shown in Table 7.4. This vector contains in-

formation about the classes of the neighbors of the node. For the studied dataset,

the obtained vector has four components: the number of successors classified as

individual users, CV (t)(vi)1,1; the number of predecessors classified as individual

users, CV (t)(vi)2,1; the number of successors classified as companies, CV (t)(vi)1,2;

and the number of predecessors classified as companies, CV (t)(vi)2,2.

7.3.5.3 Classification results

Tables 7.5 and 7.6 show the mean accuracy results for the analyzed dataset (with

and without including the extended attributes on the other classifiers, respec-

tively). That is, Table 7.5 shows the mean accuracy of our classifier versus all

the competing classifiers when only the class labels of the node’s neighbors are

used for classification. Table 7.6 shows also the mean accuracy of our classifier

over the same dataset, but this time the competing classifiers are evaluated with

a modified graph, whose nodes have also the extended features. In our example,

these extended features include nodes’ outdegree, indeegree, and clustering coef-

ficient. Each row presents the classification accuracy obtained when classifying

samples in the test set (the value is the mean of the accuracies obtained for the

100 different train and test sets partitions).

Chapter 7. Improving classification using network structure 108

Table 7.5: Classification accuracy for the binary classification task on the
Twitter dataset (seed 1), competing classifiers use only the neighbors’ class

labels

Full classifier (fc) Training set size
0.2 0.35 0.5 0.65

Our proposal (fc0) 0.65289 0.6841 0.7115 0.726
uniform-wvrn-null 0.59917 0.63452 0.63576 0.63208
uniform-wvrn-relaxlabel 0.64463 0.63959 0.66225 0.70755
uniform-wvrn-gibbs 0.59091 0.60406 0.68212 0.63208
uniform-wvrn-iterative 0.55785 0.61421 0.52318 0.67925
uniform-harmonic-null 0.58264 0.67513 0.60265 0.69811
uniform-harmonic-relaxlabel 0.66116* 0.59391 0.65563 0.72642*
uniform-harmonic-gibbs 0.61157 0.67513 0.59603 0.63208
uniform-harmonic-iterative 0.61570 0.68020 0.69536 0.62264
uniform-prn-null 0.57438 0.61421 0.60927 0.69811
uniform-prn-relaxlabel 0.60331 0.72589 0.70861 0.68868
uniform-prn-gibbs 0.39669 0.63959 0.62914 0.67925
uniform-prn-iterative 0.61983 0.51777 0.60927 0.59434
uniform-cdrn-norm-cos-null 0.41736 0.54315 0.49007 0.56604
uniform-cdrn-norm-cos-relaxlabel 0.45041 0.43147 0.39073 0.50000
uniform-cdrn-norm-cos-gibbs 0.44628 0.45685 0.50331 0.54717
uniform-cdrn-norm-cos-iterative 0.54545 0.40609 0.51656 0.49057
uniform-nobayes-null 0.52066 0.53299 0.53642 0.76415
uniform-nobayes-relaxlabel 0.59504 0.43655 0.49669 0.52830
uniform-nobayes-gibbs 0.51653 0.53299 0.60927 0.53774
uniform-nobayes-iterative 0.52066 0.51777 0.49007 0.60377
classprior-wvrn-null 0.61570 0.64467 0.68874 0.62264
classprior-wvrn-relaxlabel 0.59917 0.57868 0.66225 0.74528*
classprior-wvrn-gibbs 0.58678 0.67005 0.65563 0.67925
classprior-wvrn-iterative 0.62810 0.63452 0.66225 0.60377
classprior-harmonic-null 0.63636 0.62944 0.62914 0.68868
classprior-harmonic-relaxlabel 0.58678 0.67513 0.66887 0.70755
classprior-harmonic-gibbs 0.53719 0.55838 0.64901 0.72642*
classprior-harmonic-iterative 0.68182 0.66497 0.69536 0.71698
classprior-prn-null 0.57851 0.58883 0.62914 0.62264
classprior-prn-relaxlabel 0.55372 0.60406 0.66887 0.68868
classprior-prn-gibbs 0.54959 0.51269 0.54305 0.53774
classprior-prn-iterative 0.59504 0.51777 0.52318 0.58491
classprior-cdrn-norm-cos-null 0.51653 0.57868 0.52318 0.50943
classprior-cdrn-norm-cos-relaxlabel 0.42562 0.43147 0.43709 0.5283
classprior-cdrn-norm-cos-gibbs 0.54959 0.44162 0.57616 0.59434
classprior-cdrn-norm-cos-iterative 0.59917 0.58376 0.40397 0.47170
classprior-nobayes-null 0.53306 0.50254 0.59603 0.53774
classprior-nobayes-relaxlabel 0.52479 0.64975 0.69536 0.46226
classprior-nobayes-gibbs 0.41322 0.53807 0.50993 0.73585*
classprior-nobayes-iterative 0.54959 0.52284 0.60927 0.64151

Wins count 38 39 40 35
fc0 - max∀i fci -0.0289 -0.0417 0.00289 -0.0381

Chapter 7. Improving classification using network structure 109

Table 7.6: Classification accuracy for the binary classification task on the
Twitter dataset (seed 1), competing classifiers use both neighbors’ class labels

and the extended feature set

Full classifier (fc) Training set size
0.2 0.35 0.5 0.65

Our proposal (fc0) 0.65289 0.6841 0.7115 0.726
uniform-wvrn-null 0.54959 0.70051 0.56291 0.66981
uniform-wvrn-relaxlabel 0.60744 0.6599 0.56954 0.68868
uniform-wvrn-gibbs 0.65702* 0.63452 0.5894 0.68868
uniform-wvrn-iterative 0.53306 0.62944 0.53642 0.58491
uniform-harmonic-null 0.60744 0.61929 0.65563 0.71698
uniform-harmonic-relaxlabel 0.68182 0.69036* 0.72848* 0.67925
uniform-harmonic-gibbs 0.61983 0.65482 0.6755 0.65094
uniform-harmonic-iterative 0.57025 0.60406 0.7351 0.66981
uniform-prn-null 0.56198 0.5736 0.65563 0.67925
uniform-prn-relaxlabel 0.57025 0.66497 0.69536 0.66038
uniform-prn-gibbs 0.55372 0.54822 0.5298 0.65094
uniform-prn-iterative 0.57438 0.57868 0.54305 0.51887
uniform-cdrn-norm-cos-null 0.54959 0.46701 0.4702 0.53774
uniform-cdrn-norm-cos-relaxlabel 0.50000 0.44162 0.49007 0.50000
uniform-cdrn-norm-cos-gibbs 0.45868 0.48731 0.49007 0.61321
uniform-cdrn-norm-cos-iterative 0.44215 0.56345 0.41722 0.49057
uniform-nobayes-null 0.57851 0.51777 0.51656 0.59434
uniform-nobayes-relaxlabel 0.42975 0.51777 0.53642 0.56604
uniform-nobayes-gibbs 0.52893 0.60406 0.69536 0.64151
uniform-nobayes-iterative 0.45455 0.53807 0.59603 0.51887
classprior-wvrn-null 0.6405 0.64975 0.68874 0.70755
classprior-wvrn-relaxlabel 0.57438 0.65482 0.5894 0.70755
classprior-wvrn-gibbs 0.6157 0.63452 0.62914 0.65094
classprior-wvrn-iterative 0.55372 0.56345 0.70199 0.68868
classprior-harmonic-null 0.53306 0.61421 0.64901 0.61321
classprior-harmonic-relaxlabel 0.64876 0.62944 0.70199 0.71698
classprior-harmonic-gibbs 0.59091 0.64467 0.70199 0.66038
classprior-harmonic-iterative 0.63223 0.62944 0.69536 0.66038
classprior-prn-null 0.54132 0.63959 0.66887 0.68868
classprior-prn-relaxlabel 0.6157 0.64467 0.6755 0.69811
classprior-prn-gibbs 0.59091 0.56853 0.64901 0.62264
classprior-prn-iterative 0.54959 0.5533 0.58278 0.48113
classprior-cdrn-norm-cos-null 0.45455 0.41117 0.45695 0.50000
classprior-cdrn-norm-cos-relaxlabel 0.43388 0.54822 0.44371 0.54717
classprior-cdrn-norm-cos-gibbs 0.51653 0.48223 0.54305 0.50943
classprior-cdrn-norm-cos-iterative 0.42975 0.4467 0.44371 0.56604
classprior-nobayes-null 0.39256 0.49746 0.48344 0.57547
classprior-nobayes-relaxlabel 0.59917 0.52792 0.58278 0.53774
classprior-nobayes-gibbs 0.52479 0.59391 0.61589 0.57547
classprior-nobayes-iterative 0.39256 0.54315 0.5894 0.53774

Wins count 38 38 38 40
fc0 - max∀i fci -0.0289 -0.0164 -0.0236 0.009

Chapter 7. Improving classification using network structure 110

The rows at the bottom of the table contain aggregated information on our classi-

fier’s performance with respect to all the other algorithms. The first row (“Wins

count”) contains a simple count of the number of times our classifier outperforms

the other 40 classifiers. The second row (fc0 - max∀i fci) shows the difference

between the accuracy obtained with our classifier and the accuracy obtained with

the best of all other classifiers. This aggregated information is what is shown, for

all the analyzed datasets, in Section 7.3.6.

Bold numbers in the tables indicate the best classifier for each specific configura-

tion. Asterisks are used to indicate the specific configurations where the obtained

accuracy is better than our classifier.

As can be observed in Table 7.5, our classifier outperforms the majority of all the

other algorithms for the different settings, beating all the other classifiers for the

training set size of 0.5 and being in the top two, three, and six for training set

sizes of 0.35, 0.20, and 0.65, respectively.

Regarding the set of experiments that include the extended attributes for the

competing classifiers (Table 7.6), its impact on accuracy is far from homogeneous.

While sometimes it improves accuracy, other times it decreases it. Moreover,

accuracy changes do not follow any clear tendency over the same classifier and

different train set sizes.

7.3.5.4 A further look into the iterative component

The proposed method is an iterative process. Figure 7.4 draws the mean accu-

racy results at each iteration step for all performed experiments of the analyzed

dataset. We can observe that, although the initial classification (iteration 0)

never gets over a 63% of correctly classified samples, the correct rate increases

considerably with the first relational classification stage (iteration 1), and keeps

increasing with the following iterations until it stabilizes (around iteration five),

presenting correct rates close to 73% when the training set contains 65% of the

nodes of the graph. As it is expected, classification accuracy increases as the

training set size also increases because nodes in the training set are used to con-

struct the relationship profiles of nodes in the test set, so increasing the training

set size also increases the amount of correct information available when classify-

ing.

Chapter 7. Improving classification using network structure 111

0 1 2 3 4 5 6 7 8 9 10
0.5

0.55

0.6

0.65

0.7

0.75

Iteration

C
or

re
ct

 ra
te

Correct rates

D1−65% train
D1−50% train
D1−35% train
D1−20% train

Figure 7.4: Classification accuracy per iteration

We have mentioned before that accuracy results obtained with the initial classifier

are not critical. However, although the proposed method is not highly sensitive

to it, indeed final results are affected by the initial classifier performance. That

is, initial classification performance does not need to be very high in order for

the relational classifier to be able to improve accuracy, but classification accuracy

on the initial stage does affect the final accuracy that our architecture is able to

achieve.

Table 7.7 shows the impact of the initial classifier accuracy on the final classifi-

cation accuracy for the working example dataset. When analyzing classification

performance, we repeat the process of spliting the graph into training and test

sets and evaluating the results 100 times for each dataset and train set size. On

the rest of the chapter, we use the mean accuracy results of these 100 experi-

ments to evaluate a given configuration. On the contrary, here we have grouped

the results of these 100 experiments depending on the accuracy obtained with the

initial classifier. We have then showed the mean accuracies obtained both with

the initial classifier and the final result (that corresponds to the 10th iteration

of the relational classifier). We have also indicated how many experiments are

included in each of the bins, so that results with different train set sizes can be

compared and representativity of the values can be taken into account.

Chapter 7. Improving classification using network structure 112

By doing so, we are able to draw a couple of conclusions. On one hand, final

classification accuracy is higher when the initial classification accuracy is also

higher. This makes sense, since with higher initial accuracy, the results of the

neighborhood analysis are also more accurate. On the other hand, the improve-

ment between accuracy in the initial stage and final accuracy is smaller the better

the initial results are. This is also what intuition says, since as better accuracy is

achieved on the initial stage, less margin for improvement is left for the relational

module.

We can also observe the impact of using different train set sizes. Increasing the

train set size leads to better accuracy results, both at the initial stage and at the

final. It is also interesting to note that, even when similar accuracy results are

achieved on the initial classification, the final accuracy is higher the higher the

train set is. Note that, since labeled entities are interlinked with unlabeled ones,

increasing the training set not only allows for better training of the classifier but

also increases accuracy of the neighborhood analysis module. For instance, if we

look at experiments with initial accuracy between 0.5 and 0.55, the mean final

accuracy for those experiments is as high as 0.73 for 80% of training samples,

whereas it decreases to 0.67 for training set size 20%.

Finally, we would also like to evaluate the possibility of removing the initial clas-

sifier from our architecture and, instead, assign random labels to the nodes as

a first stage. By using a discrete uniform random distribution to choose node

labels, we will have a 0.5 accuracy on the initial stage (recall that we are dealing

with a binary classification problem). Looking at Table 7.7, we can observe that

accuracy of the initial classifier is always higher than 50% (except for two exper-

iments done with the smallest training set size). Therefore, randomly choosing

node labels as boostraping phase for the relational classifier will lead to worse

accuracy results.

Note that, for the studied dataset, the nodes’ class labels are balanced (recall

that, from the 303 nodes of the graph, there are 159 nodes belonging to c1 and

144 to c2). Therefore, even if the data miner knew the distribution of class labels,

using this information to assign labels for the initial stage does not lead to much

improvement. For this configuration, the improvement is less than 1%, and thus

using the proposed initial classifier is still a much better alternative.

Chapter 7. Improving classification using network structure 113

Table 7.7: Initial classifier accuracy analysis for the binary classification task
on the Twitter dataset (seed 1)

Train set size 80% 65% 50%

Acc it0 # Exp Acc it0 Acc it10 # Exp Acc it0 Acc it10 # Exp Acc it0 Acc it10

[0.00, 0.40) 0 - - 0 - - 0 - -

[0.40, 0.50) 0 - - 0 - - 0 - -

[0.50, 0.55) 5 0.53898 0.73559 6 0.53651 0.68571 2 0.53311 0.70199

[0.55, 0.60) 23 0.58143 0.71923 16 0.57857 0.69821 24 0.58554 0.69481

[0.60, 0.65) 38 0.62489 0.74353 50 0.62648 0.72971 56 0.62666 0.7157

[0.65, 0.70) 27 0.67232 0.75769 23 0.67246 0.7383 18 0.66703 0.72185

[0.70, 0.75) 6 0.72316 0.76554 5 0.71619 0.76952 0 - -

[0.75, 0.80) 1 0.76271 0.79661 0 - - 0 - -

[0.80, 1.00) 0 - - 0 - - 0 - -

Train set size 35% 20%

Acc it0 # Exp Acc it0 Acc it10 # Exp Acc it0 Acc it10

[0.00, 0.40) 0 - - 0 - -

[0.40, 0.50) 0 - - 2 0.44421 0.4938

[0.50, 0.55) 3 0.52891 0.64626 7 0.52656 0.67414

[0.55, 0.60) 30 0.58163 0.67058 42 0.58107 0.64974

[0.60, 0.65) 57 0.62648 0.69074 47 0.62089 0.66037

[0.65, 0.70) 10 0.66173 0.69796 2 0.65909 0.6281

[0.70, 0.75) 0 - - 0 - -

[0.75, 0.80) 0 - - 0 - -

[0.80, 1.00) 0 - - 0 - -

7.3.6 Experimental results

This section presents an aggregated summary of all the performed experiments

with all the datasets. Detailed results of the individual performances for each

configuration are omitted for the sake of brevity.

Table 7.8 shows the number of times our classifier outperforms the other classi-

fiers. Since there are 40 other algorithms, the highest (best) value is 40. This

means that our classifier beats all the other classifiers, i.e., mean classification

accuracy over the test sets is higher for our proposal than all the other classifiers.

We can appreciate that our classifier outperforms most of all the other algorithms

in almost all configurations. The only exception is one of the five class labeling of

the first Twitter dataset. If we analyze the network information for this dataset

in a similar way than in Section 7.3.5, we observe that it is specially bad, with the

class labels of the neighbors offering almost no information about nodes’ classes.

Using the extended attributes on the other algorithms does not show any signif-

icant improvement (nor decrease) on the overall accuracy.

Chapter 7. Improving classification using network structure 114

Table 7.8: Win counts: number of times our classifier outperforms the other
algorithms (over 40)

Features Neighbors class only Extended features
|Vtrain| 0.35 0.5 0.65 0.35 0.5 0.65

Twitter (seed 2, |C| = 2) 19 30 30 16 25 31
Twitter (seed 1, |C| = 2) 39 40 35 38 38 40
Twitter (seed 2, |C| = 5, l = abs) 40 40 40 40 40 40
Twitter (seed 2, |C| = 5, l = weigh) 40 40 40 40 40 40
Twitter (seed 2, |C| = 5, l = man) 24 30 27 26 26 24
Twitter (seed 1, |C| = 5, l = abs) 7 7 7 7 8 9
Twitter (seed 1, |C| = 5, l = weigh) 37 36 33 38 36 34
Twitter (seed 1, |C| = 5, l = man) 39 39 38 36 40 39
WebKB Cornell cocite 40 40 40 40 40 40
WebKB Cornell link 35 36 40 37 38 40
WebKB Texas cocite 40 40 40 40 40 40
WebKB Texas link 40 40 40 40 39 38
WebKB Washington cocite 40 40 40 40 40 40
WebKB Washington link1 38 37 38 35 37 36
WebKB Wisconsin cocite 40 40 40 40 40 40
WebKB Wisconsin link1 40 40 40 40 40 40

In a similar way, Table 7.9 presents the difference of the accuracy obtained when

classifying using our proposed architecture and the accuracy obtained for the

best of all the other algorithms. A positive value (denoted in bold) in this table

indicates thus that our classifier beats all the other algorithms. We can observe

that the improvement our classifier provides over the best of the other algorithms

is, in some cases, really high. For instance, for the Texas cocite dataset, it is over a

23% when the train set size is 0.35. We can also note that, with a few exceptions,

our classifier is better than the best of all the other algorithms when it is the best,

and just a little worse than the best of all the others when there exists a better

algorithm (with the exception of the same dataset that we commented before).

Therefore, the main advantage of our classifier with respect to the other evaluated

classifiers is the accuracy ratios obtained when applied to the scenario under

study, that is, when only class labels of some of the neighbors and the network

structure is known. Nonetheless, the advantages of our proposed architecture are

not limited to accuracy results. On one hand, our method can be extended to

include other features of the nodes directly, just by adding more dimensions to

the vectorialized samples representing each of the nodes. On the other hand, the

proposed architecture has been presented as a wrapper that uses two support

vector machine classifiers. Therefore, it can be easily implemented, since svm

are widely used and there exist implementations in many languages and machine

learning frameworks. Moreover, the same wrapper approach can be used with

other classifiers in order to adapt it to other classification problems. Note however

Chapter 7. Improving classification using network structure 115

Table 7.9: Accuracy difference between our classifier’s and the best of all
the other algorithms

Features Neighbors class only Extended features

|Vtrain| 0.35 0.5 0.65 0.35 0.5 0.65

Twitter (s.2.|C| = 2) -0.07419 -0.03201 -0.08312 -0.05584 -0.0620 -0.02329

Twitter (s.1.|C| = 2) -0.04179 0.00289 -0.03815 -0.01641 -0.0236 0.00902

Twitter (s.2.|C| = 5.l = a) 0.18911 0.16821 0.152 0.0882 0.0664 0.04944

Twitter (s.2.|C| = 5.l = w) 0.14511 0.12907 0.12607 0.13594 0.0991 0.15171

Twitter (s.2.|C| = 5.l = m) -0.06275 -0.05064 -0.06165 -0.04898 -0.0506 -0.07019

Twitter (s.1.|C| = 5.l = a) -0.16997 -0.20095 -0.18461 -0.15474 -0.1745 -0.19404

Twitter (s.1.|C| = 5.l = w) -0.02545 -0.02117 -0.06442 -0.01023 -0.0079 -0.01261

Twitter (s.1.|C| = 5.l = m) -0.00384 -0.04508 -0.04772 -0.02414 0.0145 -0.00055

WebKB Cornell cocite 0.16881 0.1483 0.12169 0.17319 0.12541 0.10543

WebKB Cornell link -0.05763 -0.0237 0.009 -0.02254 -0.01794 0.009

WebKB Texas cocite 0.23824 0.1914 0.19909 0.19733 0.19137 0.16519

WebKB Texas link 0.01432 0.0234 0.03005 0.00523 -0.018 -0.0208

WebKB Washington cocite 0.15723 0.1470 0.12522 0.12531 0.15156 0.14495

WebKB Washington link1 -0.03841 -0.0652 -0.00882 -0.05259 -0.05601 -0.02855

WebKB Wisconsin cocite 0.16357 0.1584 0.11271 0.16357 0.15839 0.12884

WebKB Wisconsin link1 0.06905 0.0558 0.08338 0.01687 0.02758 0.08338

that our experiments show that using the proposed architecture with svm gives

good results for all the classification problems we have studied. Finally, our

proposal explicitly makes use of label independent features, which allow us to

extract information from the network structure to initialize class labels and refine

classification afterwards. Other algorithms do not explicitly include this kind of

features and, as the experiments have shown, adding this very same information

to other classifiers does not necessarily improve performance.

Our method makes use of a vectorial representation of the neighborhood of the

nodes. This has some advantages as we have mentioned before, but it may also

be seen as a limitation of the proposed method with respect to other state of the

art techniques that allow for more complex neighborhood similarity measures

and representations [155]. Additionally, the iterative nature of the proposed

architecture may also be seen as a problem regarding the time needed to classify

samples. However, note that the vast majority of the approaches to solve within-

network classification problems include an iterative phase, that allows to solve

the problem of a node’s class labels depending on the neighbors labels, which in

turn depend on their neighbors labels and so on.

Chapter 7. Improving classification using network structure 116

7.4 Discussion of similar approaches

In this section, we discuss our proposed method with respect to similar existing

algorithms and paradigms.

7.4.1 Our proposal as a semi-supervised learning algorithm

Within-network classification problems are semi-supervised learning problems,

because unlabeled nodes from which we want to infer its label are connected to

both labeled and unlabeled ones, and unlabeled nodes contribute to the classi-

fication process. Information from unlabeled nodes is indeed used in the classi-

fication process. Our proposed classifier has some ideas in common with many

of the paradigms that have been used in semi-supervised learning, although it

does not tightly fit into any of them. In this section, we discuss the similarities

and differences between the main semi-supervised learning paradigms and our

proposal. Note, however, that our contributions are focused on solving within-

network classification problems where nodes do not have semantic information

attached, that is, where only the graph structure is available.

Maybe the most similar paradigm to our proposal is self-training. Indeed, our

proposal can be seen as a wrapper in which a supervised classification algorithm

is used iteratively. Moreover, our proposal also uses the supervised algorithm to

classify unlabeled samples. There are three main differences between standard

self-training algorithms and our proposal. First, we make use of a two step

classifier while self-training uses only one classifier with a fixed set of features.

Second, at each iteration we classify all unlabeled samples and we keep the labels

of all samples, regardless of the confidence obtained for the classification process.

All those labels are then used to train the next iteration classifier. Third, at each

iteration we may potentially change the labels of any of the originally unlabeled

samples (some self-training algorithms also allow to change an already assigned

label). So essentially, we are not increasing the training set size as self-training

does, but labeling all the samples and then allowing those labels to change.

Our classifier has two characteristics that are similar to the co-training algorithm,

although the theoretical foundations and the goals are eminently different. On

one hand, it is also an iterative algorithm that makes use of a supervised classifier.

Chapter 7. Improving classification using network structure 117

On the other hand, both proposals combine the usage of two classifiers which are

trained with a different subset of features. Differences between the proposals are

however huge. In our proposal the set of features used by the initial classifier is

a subset of the ones used in the relational module. On the contrary, co-training

proposes to use two disjoint subsets of features. Our proposal uses the initial

classifier to train the relational classifier, but this step is only performed once

(and never in the opposite direction). Differently, in co-training both classifiers

receive feedback from each other iteratively.

Our work resembles semi-supervised support vector machines in the sense that

it also proposes to use support vector machines in a semi-supervised setting.

However, we use support vector machines as a supervised algorithm and many

other supervised classification algorithms could be used instead of it with the

proposed architecture.

Moreover, the three approaches (namely, self-training, co-training, and semi-

supervised support vector machines) are not specifically designed for graph data.

Therefore, they differ with our proposal in that they deal with tabular samples

instead of network data and, consequently, in all the data processing we are

proposing (for instance, the usage of label independent features).

Finally, our work is similar than graph-based semi-supervised learning algorithms

in that we both deal with graph data, where nodes are the entities that must

be classified. However, the proposal differs substantially on the initialization.

The first phase of graph-based semi-supervised learning algorithms is usually to

create a graph-representation of a dataset. We omit this step since our data is

inherently a graph and, in fact, our first step is basically in the opposite direction:

we obtain a vector of features for each of the nodes of the graph, converting the

first classification problem into a traditional classification problem. Our relational

classifier works, on the contrary, more in the same line of through than graph-

based semi-supervised learning algorithms, since they both try to exploit the

graph structure to classify. However, to the best of our knowledge, no graph-

based semi-supervised learning algorithms make use of label independent features

nor work as wrappers for supervised algorithms.

Chapter 7. Improving classification using network structure 118

7.4.2 K-Nearest Neighbor classification

The samples that are used by the relational module of the proposed classifier con-

tain both label independent features, that are created by analyzing the network,

and label dependent features, that are computed using both the network and the

assigned labels (recall that at this stage all nodes have a label, either because the

label is known or because a prediction of the label has been made by the initial

classifier). Regarding the label dependent features, note that their values are

computed taking into account only the direct neighbors of each node. That is,

for every node, the values for these features are computed considering the labels

of their neighbors only and, therefore, the labels of the rest of the nodes of the

graph are obviated.

This procedure has some similitudes with the k-Nearest Neighbor rule, where

a sample is classified taking into account the labels of its k nearest neighbors.

However, note that our proposal does not classify a sample depending on the

majority of its neighbors labels. Instead, the labels of the neighbors are used

to create a profile of the node, and then the node will be classified taking into

account the labels of the nodes that have a similar profile. Take as an example

a binary classification task where samples can be either positive or negative. A

node with eight negative neighbors will be classified as negative using the NN

majority rule. However, following our proposal, the node’s label will depend

on the labels of other nodes that have a similar neighborhood, that is, other

nodes that are connected to eight negative nodes. Additionally, note that the

samples used with the relational module of our classifier also have a set of label

independent features. The values of the samples for these features do not depend

on the labels of the neighbors.

7.5 Conclusions

In this chapter, we have tackled the problem of classifying entities using only their

relationships, that is, classifying nodes of a graph knowing only the edges. By

using the proposed architecture to solve different classification problems, we aim

to show that this kind of classification is possible for datasets of different nature:

we showed that the information found in the social graph was enough to perform

Chapter 7. Improving classification using network structure 119

user classification, but also demonstrated that relationships like coauthorship be-

tween members of a computer science department are also good enough for this

purpose. Moreover, we have done extensive experimentation with real datasets

and compared our proposal with various existing algorithms. The results show

that our proposal outperforms the existing algorithms for most of the experimen-

tal configurations and datasets.

We have also studied the impact of using label independent features extracted

from the network topology to improve classification. Although its usage has

proven to be useful with our classifier architecture, using them on other classifiers

has lead to inconclusive results.

CHAPTER 8

Improving relational classification using

link prediction techniques

Assortativity mixing is the tendency for nodes in a network to connect to other

similar nodes [203]. Prior works [40, 204] have suggested that assortativity with

respect to class labels is an indicator of the level of performance that a relational

classifier is able to achieve. Therefore, assortativity has been used in the context

of automatic edge selection [40], to choose which edge set will result in better

classification on graphs where multiple edge sets are available. However, these

preliminary works already showed that the procedure does not always lead to the

best possible choice. It is thus interesting to evaluate to what extent assortativity

is a good indicator of classification performance and to try to improve it.

The contribution of this chapter is fourfold. First, we propose a method to in-

crease both node and edge assortativity by modifying the weights of the edges.

This method is based on the usage of scoring functions. We investigate the abil-

ity of several scoring functions in increasing assortativity for different datasets.

121

Chapter 8. Improving classification using link prediction techniques 122

Second, we evaluate the correlation between the level of assortativity found in a

graph and the obtained performance when trying to classify nodes of that graph.

We evaluate correlation for datasets modeling different entities and relationships

and for multiple relational classifiers. Third, we compare the classification re-

sults of the increased assortativity graphs with the original graphs and analyze

the performance improvement. Fourth, we propose a new metric to be used for

edge selection instead of assortativity and we show how this new metric better

correlates with classification performance than assortativity.

The rest of the chapter is organized as follows. First, Section 8.1 summarizes

the notation and formally defines the edge selection problem. Then, Section 8.2

describes the experimental setup (datasets, classification algorithms, and method-

ology). After that, Section 8.3 describes our proposal for increasing assortativity

by modifying the weights of the edges of the graph with Section 8.3.4 present-

ing the experimental results supporting our claims: Section 8.3.4.1 demonstrates

how the proposed method is able to increase assortativity; Section 8.3.4.2 shows

how assortativity is positively correlated with classification performance; and

Section 8.3.4.3 demonstrates the effects of using the proposed method on classi-

fication performance. Then, Section 8.4 presents the metric we propose to use

for edge selection instead of assortativity, with Section 8.4.3 evaluating its per-

formance. Finally, Section 8.5 presents the conclusions.

8.1 Notation and problem definition

Given a graph G = (V,El), the set of nodes V represents the entities in the

networked dataset and the set of edges El represents the relationships between

those entities. Given a single set of nodes V , different sets of edges El can be

defined based on different relationships arising in the studied dataset.

Figure 8.1 presents a toy example of the IMDb dataset (used afterwards in the

experimental part of this chapter). Nodes represent movies and edges describe

relationships between these movies. A movie can be linked to another using three

different kinds of edges, which indicate whether they share a director, a producer,

or an actor. For instance, movies one and two have at least one director and one

actor in common, whereas movies three and four have the same producer. Note

Chapter 8. Improving classification using link prediction techniques 123

that the homogeneous graph obtained when selecting only the actor edges is

very different from the graph obtained when selecting just the producer edges

(or even when selecting all the available edges, regardless of their type). Since

the obtained graphs present important dissimilarities, it is thus interesting to

study which of the alternatives will enable to better classify the nodes and how

to identify it.

director
director

actor

actor

producer

Figure 8.1: An example of a graph with nodes from two different classes
linked by relationships of three different kinds

Given a set of nodes V and a series of candidate edge sets El, for l = 0, · · · , L,

the edge selection problem consists in selecting one of the El which leads to the

best classification accuracy. Note that we are not interested in selecting the edges

that better represent the data: we focus our goal in selecting those edges that

will allow the classifier to achieve the best performance.

The feature selection problem has been tackled following two different approaches:

a wrapper approach, by taking into consideration the induction algorithm used

in the classification process; or a filter approach, by focusing in the data alone to

make the decision. These two different ways of dealing with the feature selection

problem can also be applied to the edge selection problem. In this chapter,

we evaluate different metrics to be used within the filter paradigm to create

homogeneous networks with the straight forward methodology of selecting the

edges presenting the highest value for the studied metric. That is, given a set of

vertexes V and a series of candidate edge sets El, we define a metric s over the

graph Gl = (V,El), compute it for all the available edge sets l = 0, · · · , L, and

select the edge set that maximizes the metric value. The selected edge set Elmax

is thus:

Chapter 8. Improving classification using link prediction techniques 124

{Elmax
s.t. s((V,Elmax

)) ≥ s((V,El))∀l = 0, . . . , L}

Since we are dealing with weighted graphs, edges are pairs of vertexes with an

associated weight e = (vi, vj , wij) s.t. (vi, vj) ∈ V × V and wij ∈ R. Because

we are dealing with undirected graphs, symmetry is assumed, e = (vi, vj , wij) =

(vj , vi, wji).

In this chapter, we use the same definition and notation of the classification

problem than in the previous chapter (Section 7.1).

8.2 Experimental setup

This section describes the experimental setup, presenting both the datasets and

the classification algorithms used for the experiments, and explaining the method-

ology followed to perform the experiments.

8.2.1 Datasets

Table 8.1: Original datasets

Dataset |C| Edge set |V | |E|
WebKB Cornell 7 Cocitations 351 26,832
WebKB Cornell 7 Links 351 1,393
WebKB Texas 7 Cocitations 338 32,988
WebKB Texas 7 Links 338 1,002
WebKB Washington 7 Cocitations 434 30,462
WebKB Washington 7 Links 434 1,941
WebKB Wisconsin 7 Cocitations 354 33,250
WebKB Wisconsin 7 Links 354 1,155
IMDb 2 All 1,441 48,419
IMDb 2 Prodco 1,441 20,317
Industry 12 Pr 2,189 13,062
Industry 12 Yh 1,798 14,165
Cora 7 All 4,240 71,824
Cora 7 Cite 4,240 22,516

This chapter’s experiments are based on several relational datasets which have

already been used in the past by the relational learning community. Note that

Chapter 8. Improving classification using link prediction techniques 125

some of these datasets have already been used in the experiments of the previous

chapter (Section 7.3.1.1).

All the experiments described in this chapter are made using essentially four

different datasets. For each of the datasets, various graphs can be created at-

tending on the kind of relationships taken into account to define the edges or

the source of information used to create the graph. This results in a total of 14

different graphs to experiment with. Table 8.1 presents a short summary of the

key properties of each dataset. Note that these datasets are of very different na-

ture and that the differences between graphs constructed using different edges or

different datasets are strongly pronounced. The fact that our assumptions hold

for most of the presented datasets is thus a good indicator of the soundness of

the presented techniques. The original datasets used in this chapter are publicly

accessible [201], together with a more detailed description of their content.

8.2.2 Classification algorithms

Some of the experiments conducted in this chapter need to evaluate the perfor-

mance of a classifier over the studied graphs. For those experiments, in the same

way than in the previous chapter (Section 7.3.3), we use the Netkit toolkit [40] as

the relational classification framework, allowing the LC to be instantiated with

either classpriors (cp) or uniform (unif); the RL with Weighted-Vote Relational

Neighbor Classifier (wvrn), its Probabilistic version (prn), the Class-distribution

Relational Neighbor Classifier (cdrn-norm-cos),1 and Network-Only Bayes Clas-

sifier (no-bayes); the CI module with Relaxation Labeling (relaxLabel), Itera-

tive Classification (it), or without any inference method (null).

8.2.3 Methodology

In the experiments including classification, in order to evaluate classification ac-

curacy we try to classify each of the available graphs with all the full classifiers.

For each experiment, that is, for a given graph and a given full classifier, we

repeat the process of selecting new train and test sets 100 times and define the

accuracy of the full classifier with respect to a given graph and a labeled ratio

1With Normalized values of neighbor-class and using the cosine distance metric.

Chapter 8. Improving classification using link prediction techniques 126

r as the mean of the accuracy over the test set of these 100 different runs. We

repeated the process for different labeled ratios (train set sizes): 20%, 35%, 50%,

and 65%.

For some of the experiments we need to evaluate the correlation between two

different sets of data. In this chapter we use both Spearman’s and Kendall’s rank

correlation coefficients to do so.

Spearman’s rank correlation coefficient is a measure of statistical dependence

between two variables that assesses how well this relationship can be described

using a monotonic function [205]. The Spearman’s coefficient can take values

between −1 and 1, with −1 describing a perfect decreasing monotonic function

and 1 characterizing a perfect increasing monotonic function when data does not

contain repeated values.

The Kendall τ rank correlation coefficient [206] is a measure of rank correlation,

i.e., a measure of the similarity of the orderings of two measured quantities.

Kendall’s τ ranges also from −1 to 1, with −1 expressing a negative correlation

between the two variables (one increases with the decrease of the second), zero

expressing that the two variables are independent, and one expressing a perfect

positive correlation between the two variables (one increases with the increase of

the second).

8.3 Modifying edges’ weight to increase assorta-

tivity

This section describes the proposed procedure for increasing assortativity. After

reviewing the concept of assortativity, we present the set of scoring functions that

we use to test our technique. Then, we show how to compute the new weights

taking into account the results of the scoring functions. Finally, we evaluate

the proposed procedure with real graphs and analyze the induced changes on

assortativity.

Chapter 8. Improving classification using link prediction techniques 127

8.3.1 Assortativity

Assortativity mixing is the tendency for entities in a network to be connected to

other entities that are like them in some way [203]. This phenomenon has been

much studied for social networks, where users show a preference to link, follow,

or listen to other users who are like them. When dealing with social networks,

assortativity is usually known as homophily. Assortativity (or dissortativity, the

tendency of nodes to be linked to other nodes that are not like them) has been

reported in many kinds of networks. For instance, degree dissortativity has been

observed in protein networks, neural networks, and metabolic networks [203].

Assortativity mixing can be computed according to an enumerative characteristic

or a scalar characteristic. In the latter case, degree assortativity is of special

interest because of its consequences on the structure of the network. In this

chapter, we are interested on the first alternative, assortativity according to an

enumerative characteristic, where assortativity will be related to the class label

of the nodes for which the classification will take place. From now on, we will

refer to the assortativity regarding the class labels as merely assortativity.

The first hypothesis that we want to test is if it is possible to increase the assor-

tativity of a graph with respect to the class labels assigned to its nodes without

knowing these class labels. That is, given a graph G = (V,El) for which all class

labels are unknown, we want to see if it is possible to design a process that results

in a new graph G′ = (V,E′l) that presents higher assortativity than G. This sce-

nario is even more restrictive than the usual within-network node classification

scenario, where some of the labels will be known in advance. Note that although

the described process does not need any class label, we make use of these class

labels to evaluate its performance (i.e. to compute assortativity).

In order to compute edge assortativity [203] for a given graph G = (V,E) for

which the mapping T : V → C is known for all V, an edge assortativity matrix

e of size |C| × |C| is constructed. Each cell eij contains the fraction of all edges

that link nodes of class ci to nodes of class cj , normalized such that
∑
∀i,j eij = 1.

Values ai and bi are defined as the fraction of each type of end of an edge that

is attached to vertexes of type ci : ai =
∑
∀j eij and bj =

∑
∀i eij . The (edge)

assortativity coefficient AE is then defined as:

Chapter 8. Improving classification using link prediction techniques 128

AE =

∑
∀i eii −

∑
∀i aibi

1−
∑
∀i aibi

Because AE measures assortativity across edges and not across nodes, a node

assortativity metric, AN , is also defined [40]. AN is computed in the same way,

now using the node assortativity matrix e∗ instead of the edge assortativity matrix

e. There are also weighted versions of these metrics that take into account not

only if there exists an edge between two nodes but also the weight of that edge.

Through the rest of the chapter, we make use of these weighted versions.

8.3.2 Scoring functions

In order to increase both node and edge assortativity in a graph, our proposal

is to modify the weights of the edges of the graph, so that the new weight is

able to better quantify the relationship that the edges represent. We make use

of functions that receive as input an unweighted unlabeled graph G = (V,E) and

return a symmetric score, s(vi, vj) = s(vj , vi), for every pair of nodes in V .

The set of scoring functions chosen to test our hypothesis was inspired from

those used to solve the link prediction problem in online social networks. OSNs

are very dynamic by nature. Over time, new members join the network and

new relationships are created both between new and old members. The link

prediction problem for OSNs consists in inferring which new links are more likely

to appear in the future in a network given only its current state [207]. One

of the approaches that has been followed to deal with this problem is to define

functions that evaluate how likely it is, for a given pair of nodes, to create a

new link. After applying these functions to every pair of nodes in the network,

the algorithm predicts that those pairs of nodes for which the function returns

higher values are the ones who are going to create a new link in the near future.

The used functions try to evaluate the proximity or similarity of the nodes, with

the idea in mind that two nodes that are proximal are more likely to create a

connection in the future than two distant nodes. Depending on which metric is

used to define proximity, many link prediction models are created.

Chapter 8. Improving classification using link prediction techniques 129

The set of metrics that are used to define proximity in the link prediction problem

meets all the requirements for our scoring functions. What follows is a short

summary of the metrics we have chosen to experiment with.

Number of Common Neighbors (CN): Proximity is usually understood in

terms of describing the common neighborhood. The most direct metric to mea-

sure the common neighborhood is the number of common neighbors, that is, the

cardinal of the intersection between each of the nodes’ neighbors sets:

scoreCN (vi, vj) = |Γ(vi) ∩ Γ(vj)|

Figure 8.2: Number of common friends scoring function

This measure captures how many neighbors two nodes have in common, but it

does not take into account how many non shared neighbors do these nodes have.

In order to also include this information, Jaccard Index is defined.

Jaccard Index (JI): JI is defined as the size of the intersection between the

two nodes’ neighborhoods divided by the size of the union of the neighborhoods:

scoreJI(vi, vj) =
|Γ(vi) ∩ Γ(vj)|
|Γ(vi) ∪ Γ(vj)|

Figure 8.3: Jaccard index scoring function

In a similar fashion, we could want to give higher score to nodes that share low

degree neighbors. Intuitively, it is more difficult that these low degree nodes have

the two evaluated nodes as neighbors than it is for higher degree nodes.

Adamic-Adar (AA): The adaptation to the link prediction model for the

Adamic-Adar metric [208] would take into account the degree of the shared neigh-

bors:

Chapter 8. Improving classification using link prediction techniques 130

scoreAA(vi, vj) =
∑

vk∈Γ(vi)∩Γ(vj)

1

log (|Γ(vk)|)

Figure 8.4: Adamic-Adar scoring function

However, other studies point metrics that do not follow this line of thought.

Instead of rewarding connections between low degree nodes, some models assume

that high degree nodes tend to create more new links.

Preferential Attachment (PA): The preferential attachment model postulates

that the probability that a node vi creates a new link in the network is propor-

tional to the current degree of vi. Then, the probability that a new link between

two nodes is formed depends on the current degrees of these two nodes:

scorePA(vi, vj) = |Γ(vi)||Γ(vj)|

Figure 8.5: Preferential attachment scoring function

Apart from looking at the degree of the neighbors, we can also take into account

the density of the common neighbors subgraph.

Clustering Coefficient (CC): The CC of the common neighborhood captures

the number of links existing between the common neighbors, taking into account

how many of those links could exist:

scoreCC(vi, vj) =
2 |{e = (vk, vl) ∈ E s.t. vk, vl ∈ Γ(vi) ∩ Γ(vj)}|

|Γ(vi) ∩ Γ(vj)|(|Γ(vi) ∩ Γ(vj)| − 1)

Figure 8.6: Clustering coefficient scoring function

Note that all the proposed metrics are based on analyzing the common neighbor-

hood that any two nodes may share. Apart from these metrics, other topological

measures have been proposed to be used in link prediction. These measures take

Chapter 8. Improving classification using link prediction techniques 131

into account distances between nodes, paths among them, or similarity. A review

of some of these metrics can be found in previous works [207]. Note that some

of these metrics are difficult to compute on large graphs, and thus may not be

suitable to try to improve classification over such graphs.

8.3.3 Modifying edges’ weight

Once we have a set of functions, we need to define how to modify the original

graph, which already has weights, so that it includes the results of the scoring

functions. We propose to modify each weight by directly multiplying it by the

result of the scoring function:

w′ij = scorefunc(vi, vj) ∗ wij

By doing so, we attain two different goals. On one hand, we ensure that no new

edges are created. Recall that the scoring function is defined for every pair of

nodes of the graph, whether they share a link or not. By multiplying the result

of the scoring function by the original weight, we guarantee that all nodes that

do not share a link in the original graph (and thus have w = 0) will not share a

link on the modified graph. On the other hand, we allow all scoring functions to

eliminate non-relevant edges by assigning them a score of zero.

8.3.4 Experimental results

This section presents the experimental results supporting our proposal. First,

we analyze if our modifications in the weights indeed produce an increase in

assortativity. Second, we evaluate if this increase in assortativity is translated

into an increase in classification accuracy. Finally, we study the impact of our

modifications in increasing classification accuracy.

8.3.4.1 Assortativity measurements

Table 8.2 shows the obtained edge assortativity (AE) values for the original graph

as well as for the graphs modified using the scoring functions (those in bold type

Chapter 8. Improving classification using link prediction techniques 132

Table 8.2: Edge assortativity

Graph Original AA CC CN JI PA

Cornellcocite 0.22701 0.19305 0.21925 0.18095 0.24969 0.13277

Cornelllink 0.05404 0.05860 0.09348 0.11501 0.12689 −0.25756

Texascocite 0.46064 0.47667 0.45137 0.45240 0.61685 0.29227

Texaslink −0.03256 0.25315 0.29175 0.29279 0.50357 −0.22091

Washingtoncocite 0.30070 0.27731 0.29330 0.25166 0.36886 0.19694

Washingtonlink 0.08401 0.19725 0.05016 0.15769 0.43920 −0.29734

Wisconsincocite 0.57683 0.65363 0.58620 0.64662 0.74448 0.44479

Wisconsinlink 0.16045 0.45262 0.38430 0.50690 0.54182 0.21701

IMDball 0.30519 0.39482 0.33020 0.38908 0.44831 0.24412

IMDbprodco 0.50085 0.52631 0.49038 0.53462 0.50723 0.52579

Industrypr 0.44210 0.54537 0.47248 0.54325 0.53394 0.48832

Industryyh 0.44061 0.47978 0.41910 0.45753 0.51627 0.38919

Coracite 0.73664 0.81468 0.81058 0.80629 0.84720 0.65804

Coraall 0.65627 0.65103 0.64375 0.64624 0.67744 0.58648

are the ones for which assortativity improves w.r.t. the original graph). The first

thing to notice is that original graphs present very different edge assortativity

values, and even one of the graphs presents a negative value, although it is close to

zero. So we are dealing with graphs that do not show any kind of assortativity nor

dissortativity together with graphs that show very high assortativity (for instance,

coracite presents a value of 0.74). When analyzing the success of the different

scoring functions in increasing edge assortativity, we can observe that using the

Jaccard Index (JI) leads to an increase on AE for all graphs. Furthermore, there

is a set of three graphs (Cornellcocite, Washingtoncocite, and Coraall) for which the

JI is the only scoring function able to increase AE . Apart from Jaccard Index,

both the Adamic-Adar metric (AA) and the size of the common neighborhood

(CN) are also quite successful, with 11 out of 14 and 10 out of 14 graphs showing

an increase on assortativity, respectively. Finally, Clustering Coefficient leads to

an increase of AE on just half of the graphs, while Preferential Attachment is

able to do so for only three graphs.

The magnitude of the assortativity growth also differs depending on the used

scoring function. While JI usually leads to the biggest growth, that is not true

for all the cases. For instance, both CN and AA are able to surpass JI for the

IMDbprodco and Industrypr graphs.

Table 8.3 shows the obtained values for node assortativity (AN). In this case,

there is a graph (Industrypr) for which none of the modified graphs are able

Chapter 8. Improving classification using link prediction techniques 133

Table 8.3: Node assortativity

Graph Original AA CC CN JI PA

Cornellcocite 0.15595 0.17092 0.15571 0.16393 0.20798 0.12103

Cornelllink1 0.03999 0.08155 0.03542 0.12417 0.12070 −0.12177

Texascocite 0.39393 0.44062 0.37213 0.42317 0.55223 0.28926

Texaslink1 0.04574 0.24626 0.21532 0.29777 0.48132 −0.12948

Washingtoncocite 0.16165 0.19945 0.14190 0.17674 0.21560 0.15828

Washingtonlink 0.02381 0.13928 0.03976 0.10134 0.36904 −0.14483

Wisconsincocite 0.45537 0.55342 0.46367 0.55227 0.60544 0.39855

Wisconsinlink 0.19886 0.41702 0.32907 0.47819 0.50172 0.20973

IMDball 0.29626 0.38699 0.32643 0.38093 0.44384 0.23210

IMDbprodco 0.50011 0.52696 0.49147 0.53516 0.50827 0.52552

Industrypr 0.38282 0.38206 0.35325 0.37290 0.38263 0.38222

Industryyh 0.38541 0.35086 0.37761 0.32570 0.42881 0.24248

Coracite 0.72968 0.81079 0.81299 0.80202 0.84906 0.65219

Coraall 0.64420 0.63709 0.63393 0.63092 0.67066 0.55912

to surpass the original graph assortativity. Nonetheless, AN does not decrease

substantially for any of the modified graphs, so no negative consequences will

appear by using the modifications. Leaving aside this graph, results for AN are

similar than those showed for AE . Graphs modified using JI exhibit higher AN

than the original ones for all datasets, and both the AA and the CN are able to

increase AN for most of the graphs (11 out of 14 and 10 out of 14, respectively).

Graphs modified using CC and PA do not show an increase on AN for most of

the graphs.

We have shown that it is possible to increase both edge and node assortativity

without knowing the class labels. Using Jaccard Index as a scoring function

results in a general increase on (node and edge) assortativity. The usage of the

CN and AA as scoring functions also leads to an increase on assortativity for

most of the graphs, although this increase can not be observed for all them. In

these cases where assortativity does not increase, it is worth to note that the

magnitude of the decrease is small. The graphs modified using CC as the scoring

function do not show a significant increase in assortativity, so this metric does

not seem to be a good alternative to use with general graphs. Lastly, the use of

PA as a scoring function must be discarded, as it does not show any improvement

over the non-modified graph.

The poor performance of PA in increasing assortativity may be explained by

the fact that preferential attachment is a model of network growth, that is, it

Chapter 8. Improving classification using link prediction techniques 134

explains how likely it is for a node to get new links, but, unlike the other scoring

functions, it does not quantify the strength of the created link in any manner.

On the contrary, the relationships involving very high degree nodes (which get

high scores when using PA), will most likely be very weak connections. Note that

all the other scoring functions, although they can be used to predict the creation

of non existing links, also quantify, in some way, the strength of the relationship

between any two nodes.

8.3.4.2 Correlation between assortativity and performance

Once we have shown that it is possible to increase assortativity (Section 8.3.4.1),

we have to analyze if this increase in assortativity leads to an increase in classi-

fication performance. Intuitively, this is almost tautological for some relational

classifiers [40], but the relation is not so obvious for some other classifiers. In

order to test our second hypothesis, namely, that assortativity is positively cor-

related with classification performance, we compute assortativity as exposed in

Section 8.3.4.1 and classification performances as described in Section 8.2.3.

We are interested in analyzing the correlation between assortativity and classifi-

cation performance. We expect that when assortativity increases, classification

performance also increases. So we want to discover if the function that describes

the relationship between these two variables is monotonically increasing. How-

ever, we are not concerned on finding the exact function that describes this

relationship.

Table 8.4 shows the Spearman’s rank correlation coefficient between the node

and edge assortativity of each of the graphs and the error reduction2 achieved

when classifying those graphs with the different full classifiers. Results presented

on the table correspond to the experiments with r set to 35%. Each of the values

represents the correlation between the 84 graphs3 assortativity values and the

100−run mean performance obtained when classifying those graphs. As it was

expected, we found a positive correlation between both edge and node assorta-

tivity for all full classifiers, with the Spearman’s rank coefficient ranging between

2Error reduction is defined previously in Section 2.4.
3Notice that the total number of graphs tested comes from the 14 original graphs plus the

ones obtained using each of the five scoring functions.

Chapter 8. Improving classification using link prediction techniques 135

Table 8.4: Spearman’s rank correlation coefficient between error reduction
and assortativity (r=0.35)

Full classifier AN AE Full classifier AN AE

cprior-wvrn-it 0.6264 0.6315 unif-wvrn-it 0.5986 0.6049

cprior-prn-it 0.4481 0.4474 unif-prn-it 0.4448 0.4417

cprior-nobayes-it 0.4949 0.5054 unif-nobayes-it 0.5002 0.5121

cprior-cdrn-norm-it 0.7362 0.7175 unif-cdrn-norm-it 0.6819 0.6676

cprior-wvrn-relaxLabel 0.5213 0.5171 unif-wvrn-relaxLabel 0.5355 0.5415

cprior-prn-relaxLabel 0.4534 0.4831 unif-prn-relaxLabel 0.4423 0.4757

cprior-nobayes-relaxLabel 0.5100 0.5357 unif-nobayes-relaxLabel 0.5205 0.5471

cprior-cdrn-norm-relaxLabl 0.4863 0.5015 unif-cdrn-norm-relaxLabl 0.4894 0.4848

cprior-wvrn-null 0.5318 0.5304 unif-wvrn-null 0.5390 0.5491

cprior-prn-null 0.4627 0.4893 unif-prn-null 0.4669 0.5016

cprior-nobayes-null 0.5103 0.5342 unif-nobayes-null 0.5431 0.5644

cprior-cdrn-norm-null 0.4963 0.5063 unif-cdrn-norm-null 0.4956 0.4903

0.44 and 0.73 for node assortativity and between 0.44 and 0.71 for edge assorta-

tivity. Although classification performance increased with the labeled set ratio

(as we will see in Section 8.3.4.3), no significant differences where observed on

the correlation between performance and assortativity for different labeled ratios

(r values).

The Spearman’s rank correlation coefficient is positive and greater than 0.44 for

all the classifiers, which denotes that there exists a positive correlation between

both node and edge assortativity and classification performance. The strength

of this correlation varies depending on the specific classifier configuration. How-

ever, the values are quite high considering that different datasets are compared

together. Although relative error reduction is used instead of classification ac-

curacy, which already tries to compensate the differences between base errors

on the different datasets, the different nature of the used graphs introduces ad-

ditional complexity. When evaluating the different datasets independently, we

found that the correlation was almost perfect for some datasets and worse for

some other datasets. For instance, Cornellcocite, Texascocite, and IMDball showed

a correlation of 0.9429 (node assortativity and relative error reduction for the

cp-wvrn-it configuration), while other datasets such as the four university ones

with link edges showed very low correlation, or even a negative one.

Chapter 8. Improving classification using link prediction techniques 136

8.3.4.3 Increasing classification performance

Once we have shown that we are able to increase assortativity using our scoring

functions and that assortativity is positively correlated with performance, we

want to observe the results of our third hypothesis, namely, that using scoring

functions to correct weights can improve relational classification.

In order to evaluate the degree in which using scoring functions improves net-

worked classification, we use the different full classifiers (Section 8.2.2) with all

the available graphs (Section 8.2.1). Since we have 14 original graphs and five

different variations of each of these graphs can be obtained by using the different

scoring functions, all the experiments are done with 14×6 graphs. We follow the

methodology described in Section 8.2.3 to compute classification accuracy4.

Figure 8.7 shows the results of this classification for Cornellcocite dataset. First,

we can see that for all the classifiers but those using Network-Only Bayes (noB),

classification accuracy increases as the training set size grows. As the labeled ratio

increases, best models can be built and more correct information is available to

do the predictions.

Second, we can appreciate that the performance offered by the scoring functions

strongly depends on the specific relational classifier (RL) used and, maybe on

second term, the collective inference (CI) module.

For cdrn-cos and wvrn, the graph modified with JI leads to the best performance;

the graphs modified with AA, CC, and CN give similar results than the original

graph, sometimes showing slightly better performance than the original graph;

PA modifications offer the worst results, not being able to increase performance

over the original graph. Performance when using prn is also consistent when

varying the LC and IC components: the graph modified with JI always offers the

best accuracy, sometimes increasing performance over 10%; CC is slightly better

than the original graph; and AA, CN, and PA do not overcome the performance

achieved with the original graph. Network-Only Bayes results are the same for

all the LC-IC variations.

4Accuracy is defined previously in Section 2.4

Chapter 8. Improving classification using link prediction techniques 137

(a) cp-cdrn-it (b) cp-noB-it (c) cp-prn-it (d) cp-wvrn-it

(e) cp-cdrn-null (f) cp-noB-null (g) cp-prn-null (h) cp-wvrn-null

(i) cp-cdrn-rL (j) cp-noB-rL (k) cp-prn-rL (l) cp-wvrn-rL

(m) unif-cdrn-it (n) unif-noB-it (o) unif-prn-it (p) unif-wvrn-it

(q) unif-cdrn-null (r) unif-noB-null (s) unif-prn-null (t) unif-wvrn-null

(u) unif-cdrn-rL (v) unif-noB-rL (w) unif-prn-rL (x) unif-wvrn-rL

Figure 8.7: Performances comparison for all the classifiers and the different
graph variations for the Cornellcocite dataset: Original (), AA (), CC

(), CN (), JI (), PA ()

Chapter 8. Improving classification using link prediction techniques 138

Independently of the selected full classifier, the graph modified with Preferential

Attachment always offers worse performance than all the other graphs. This is

consistent with the results showed in Section 8.3.4.1, where we could observe that

the assortativity values always decreased when using PA as scoring function. This

is also true for the graphs modified with JI, where we could see that assortativity

always increased along with performance.

Results for the other datasets showed the same consistency when using the

same relational classifier and varying the LC and IC components. JI also reg-

ularly performed better than all the other alternatives for all fc when testing

Washingtoncocite, Wisconsincocite, Texascocite, and IMDball.
5 JI was overcome

by CC for some specific full classifiers for Texaslink and Cornelllink datasets,

and sometimes for other modified graphs or even for the original graph for the

Washingtonlink and Wisconsinlink datasets. However, for both Cora and Industry

datasets, the graph modified with JI did not show a significant improvement over

the original graph.

8.4 A new metric to improve edge selection

As we have seen early in this chapter, assortativity has been used in the literature

as a metric for edge selection. Our experiments confirmed that assortativity shows

a positive correlation with classification performance. However, this correlation

is far from perfect, giving us much room for improvement. In this section, we

propose a new metric for edge selection. Our experiments show that the proposed

metric better correlates with classification performance than assortativity.

This section first describes our proposed metric (Section 8.4.1) and then evaluates

its performance with respect to assortativity (Section 8.4.3).

8.4.1 General overview

The proposed metric derives from two different ideas that have already been used

in the past for similar purposes: aggregation operators and silhouette plots.

5The exceptions were two fc in Texascocite for which the original graph performed better
than JI, and some specific r values and classifiers in IMDball.

Chapter 8. Improving classification using link prediction techniques 139

Aggregation operators have been proposed to model relational data [199, 209].

Relational data contains information about entities and their relationships. These

relationships include a huge amount of information that should not be discarded

when analyzing the data. However, when using traditional machine learning tech-

niques, dealing with these relationships supposes a challenge because it usually

implies having to work with high-dimensional categorical attributes representing

these relationships. Aggregation operators can be then used to create features

representing this data.

Aggregation usually leads to information loss. For this reason, one of the charac-

teristics that we have to take into account when selecting aggregation operators

is the amount of information that is lost. Moreover, when creating aggregation

operators for relational classification problems, we want the results of the aggre-

gation such that instances from the same class are similar while instances from

different classes are distant.

Silhouettes [210] were created in the context of cluster analysis. A silhouette

plot is a graphical display that represents how well samples in a cluster fit in

that cluster by taking into account the distance between the sample and other

samples in the same cluster, and the distance between the sample and samples

in other clusters. Intuitively, the closer a sample is to others in the same cluster

and the further it is from samples in other clusters, the better fit it is in that

cluster.

Silhouette is mainly used for cluster validation, i.e., given a specific partition of

the data, it is a useful tool to determine if the partition is good for that data or,

on the contrary, a different number of clusters will lead to a better partitioning.

However, silhouette plots can also be used in classification, where the number of

classes is fixed. In this case, silhouette values are useful to assess how difficult

a certain classification process will be. We take advantage of this characteristic,

and try to evaluate how difficult the classification process will be depending on

the selected edge sets.

8.4.2 Metric detailed description

Given a graph Gl = (V,El) and a mapping T between nodes in V and their

categories in C, we compute the silhouette based metric as follows.

Chapter 8. Improving classification using link prediction techniques 140

First, let us map each sample in V to its corresponding node class vector. The

node’s vi class vector CV (vi) is defined as the vector of summed linkage weights

to each of the classes in C:

CV (vi)k =
∑

vj∈Γ(vi) s.t. T (vj)=ck

wij

CV is thus a vector with m components (recall that m = |C|). Given the nodes’

class vectors and a specific distance function dist, we can then compute the mean

distance between a node and all samples in a given class ck.

dist(vi, ck) =

∑
vj∈V s.t. T (vj)=ck,vj 6=vi dist(vi, vj)

|{vj ∈ V s.t. T (vj) = ck, vj 6= vi}|
(8.1)

When T (vi) 6= ck, the formula gives the mean distance between the sample and

all samples in another class. When T (vi) = ck, it provides the mean distance

between the sample and other samples in the same class. Intuitively, the higher

the first value and the lower the second one, the easier the sample will be to

classify. Let us quantify this idea by defining the silhouette value for a given

sample, vi:

s(vi) =
minck∈C,ck 6=T (vi){dist(vi, ck)} − dist(vi, T (vi))

max{minck∈C,ck 6=T (vi){dist(vi, ck)}, dist(vi, T (vi))}

This takes into account the mean distances from a sample to all the other classes,

and consider the worst case by selecting the nearest class. It is also useful to define

the silhouette value for a given class ck, which is just the mean silhouette values

of the samples in that class:

s(ck) =
1

|{vj ∈ V s.t. T (vj) = ck}|
∑

vj∈V s.t. T (vj)=ck

s(vj)

Finally, the silhouette value for a whole graph is defined as the mean silhouette

values of all its nodes:

Chapter 8. Improving classification using link prediction techniques 141

s(G) =
1

|V |
∑
vi∈V

s(vi)

Notice that Equation 8.1 is based on a distance metric between nodes. In Sec-

tion 8.4.3, we experiment with three different distance functions: cosine distance

scos, Euclidean distance sEucl, and Manhattan distance sManh, and compare the

results obtained for the different configurations.

8.4.3 Experimental results

In this section, we analyze the ability of the proposed metric to select the edges

leading to the best classification accuracy. We compare the performance of the

different metrics with respect to selecting the best edge set, that is, the edge set

that leads to the best classification accuracy. We evaluate the two assortativity

variants as defined previously [40], edge assortativity (AE) and node assortativ-

ity (AN), and compare them with the proposed silhouette based metric using

as distance functions the cosine distance (scos), euclidean distance (sEucl), and

Manhattan distance (sManh).

We are interested in analyzing which metric is better correlated with classifica-

tion accuracy. Given a set of nodes V and many different sets of edges El for

l = 0, · · · , L, the ideal metric should have a perfect positive correlation with

classification accuracy, that is, the metric should return higher values when clas-

sification accuracy is high and lower values when classification accuracy is also

low. With this kind of metric, we could simply select as the best edge set the one

showing the highest value of the specific metric.

Table 8.5 shows the Kendall’s τ rank correlation coefficient between classifica-

tion accuracy and each of the proposed metrics for every full classifier,6 when

setting the training set size to 35%. The presented results take into account all

the possible edge sets for each of the datasets, that is, the six different El for the

14 datasets. Each of the presented values represents the correlation between the

metrics over these graphs and the 100−run mean accuracy (over the test sets)

obtained when classifying those graphs. Even though datasets from very different

6Since classification performance differs from one full classifier to another, it is thus inter-
esting to analyze it w.r.t each full classifier.

Chapter 8. Improving classification using link prediction techniques 142

Table 8.5: Kendall’s τ rank correlation coefficient between accuracy and
each of the metrics (r=0.35)

Full classifier AN AE scos sEucl sManh

cprior-wvrn-it 0.3945 0.3764 0.5829 0.3649 0.3844
cprior-prn-it 0.2878 0.2238 0.2203 0.2020 0.2146
cprior-nobayes-it 0.3021 0.2536 0.2513 0.3133 0.3121
cprior-cdrn-norm-it 0.4616 0.4142 0.5347 0.4314 0.4280
cprior-wvrn-relaxLabel 0.2958 0.2616 0.4624 0.3810 0.3890
cprior-prn-relaxLabel 0.2734 0.2553 0.3620 0.2840 0.3104
cprior-nobayes-relaxLabel 0.2837 0.2536 0.2765 0.3649 0.3626
cprior-cdrn-norm-relaxLabl 0.3549 0.3133 0.4739 0.4360 0.4257
cprior-wvrn-null 0.3073 0.2742 0.4796 0.3787 0.3878
cprior-prn-null 0.2906 0.2691 0.3574 0.2817 0.3092
cprior-nobayes-null 0.2941 0.2570 0.2800 0.3546 0.3488
cprior-cdrn-norm-null 0.3612 0.3115 0.4687 0.4343 0.4251
unif-wvrn-it 0.3742 0.3555 0.5374 0.3647 0.3761
unif-prn-it 0.2786 0.2169 0.2042 0.1985 0.2065
unif-nobayes-it 0.2924 0.2450 0.2186 0.2978 0.2932
unif-cdrn-norm-it 0.4232 0.3735 0.4504 0.3769 0.3701
unif-wvrn-relaxLabel 0.3440 0.3247 0.5221 0.3775 0.3890
unif-prn-relaxLabel 0.3050 0.2823 0.3419 0.2628 0.2869
unif-nobayes-relaxLabel 0.3090 0.2651 0.2685 0.3328 0.3316
unif-cdrn-norm-relaxLabl 0.3377 0.3041 0.4131 0.3890 0.3775
unif-wvrn-null 0.3325 0.3155 0.5106 0.3890 0.3993
unif-prn-null 0.3101 0.2886 0.3471 0.2714 0.2920
unif-nobayes-null 0.3124 0.2616 0.2708 0.3236 0.3190
unif-cdrn-norm-null 0.3406 0.3012 0.4033 0.4045 0.3919

nature are compared together, obtained τ coefficients are quite high. For all the

possible configurations and analyzed metrics, τ coefficients are positive values,

which denotes that there exists a positive correlation between the analyzed met-

rics and classification performance. Regarding the strength of this correlation,

bold numbers denote the highest correlation achieved for the listed fc. Note that

edge assortativity, AE , is beaten for all configurations. On the other hand, node

assortativity, AN , presents better correlation with accuracy for two fc configura-

tions using prn as the relational classifier module and iterative as the collective

inference method. For the rest of the fc configurations, silhouette based metrics

show better correlation with accuracy. Regarding the used distance function, the

cosine distance exhibits the highest correlation for almost all fc. The exceptions

are two fc for which AN stands out and all the fc using network only Bayes as

the relational module, for which using sManh leads to the best correlation.

Although using the proposed metric with euclidean distance, sEucl, does not yield

to the best correlation for any fc, it is important to notice that the results are

very similar to those showed when using Manhattan distance, sManh. The mean

difference between the correlations showed for sManh and sEucl is just 0.0109, so

there is no significant difference between using euclidean or Manhattan distances

when evaluating the different edge sets.

Chapter 8. Improving classification using link prediction techniques 143

Table 8.6: A detailed example of the usage of Kendall’s τ coefficient using
Cora-cite dataset classified with cprior-wrn-it with r = 0.35

Edge set Scoring function Accuracy Accuracy rank scos scos rank

E0 Original 0.715 1 0.525 1

E1 CN 0.521 4 0.373 5

E2 JI 0.348 6 0.206 6

E3 AA 0.524 3 0.383 4

E4 PA 0.515 5 0.391 3

E5 CC 0.673 2 0.453 2

τ 0.733

Table 8.6 presents an example of how the τ coefficients are used for evaluating the

different metrics. In the example, the displayed accuracy values are computed

using cprior-wrn-it full classifier over the Cora-cite dataset (for a training set

size of 0.35) for each of the available edge sets. We can also find the corresponding

scos values. Taking into account the scos results, we will predict that the best

edge set will be the original edge set, E0, followed by E5, E4, E3, E1, and finally

E2. We can observe that the predictions are quite accurate, with E0 being the

best choice followed by E5, and E2 being the worst choice. However, there are

three of the edge sets, E1, E3, and E4 for which the predicted order is not exactly

the same. Note that the three edge sets lead to very similar accuracy results, with

less that 1% difference, and this is also reflected by the scos values, which are

also very close. The obtained τ correlation coefficient for the set of accuracy and

scos values is 0.733, denoting that there is a strong positive correlation between

the two variables, although not a perfect one.

8.5 Conclusions

We have showed that it is possible to increase the assortativity of a graph ac-

cording to the node class labels with a very simple technique based on the usage

of scoring functions. We have evaluated different scoring functions and demon-

strated that using Jaccard Index (JI) always results in an increase on edge as-

sortativity and, on all datasets but one, also in node assortativity. The usage of

Chapter 8. Improving classification using link prediction techniques 144

Common Neighbors (CN) and Adamic-Adar (AA) also leads to an increase on

both node and edge assortativity for most of the tested datasets.

Although we have showed that there is a positive correlation between an increase

on assortativity and an increase on classification performance, this correlation is

not perfect (which supports preliminary tests [40]). Note that while we are dealing

with a single assortativity value for each graph, many variables are involved in the

performance obtained when classifying: from the specific configuration that the

classifier adopts to the effect of choosing a concrete split of the training and test

samples. So each assortativity value is compared against multiple classification

performance results obtained when using different full classifiers.

We have presented a metric that is able to identify which edge set will lead to

the best classification accuracy for a given classification problem over a relational

dataset. Experimental results show that the proposed metric outperforms the

ones being currently used for the same purpose. Experimental results also indi-

cate that classification accuracy, and thus correlation between accuracy and the

studied metrics, strongly depends on the specific full classifier being used. At

the same time, the full classifier obtaining the best accuracy also depends on the

specific dataset that is being classified, i.e., there is no configuration for the three

modules of the classifier that works better than all the other for all datasets. All

these facts suggest that using wrapper approaches, which take into consideration

the classification algorithm, are more adequate than filter approaches for tackling

the edge selection problem for relational classification.

CHAPTER 9

Towards inferring communication

patterns in online social networks

The final contribution of this thesis is joint work done together with Ero Balsa

during my visits to COSIC at KU Leuven. Unlike the previous work, this chapter

is focused on communication between online social network users.

In order to hide communication between users to the service provider, users may

use encryption to assure that content is not leaked. However, encryption does

not conceal traffic data. Even if all data and communications are encrypted,

the service provider is still able to monitor the users’ communication patterns,

namely, who the users communicate with, how much, and how often, as well as

other activities performed by the users on the site.

Communication patterns potentially reveal who the users are the most intimate

with, their affinity in terms of age, religion, kinship, or political views, among

other attributes. They may also expose the strength of the users’ relationships

145

Chapter 9. Towards inferring communication patterns in OSNs 146

and how they evolve with time. Time in turn revealing changes on the life

of a person such as moving to another city, changing jobs, or a new romantic

relationship.

Yet hiding communication patterns in the same way that encryption hides mes-

sages is impossible, and alternative strategies must be devised, such as obfusca-

tion. Obfuscation tools send dummy traffic on behalf of the user to befog her

communication patterns: an eavesdropper, such as the OSN provider, observes

a mix of real and dummy traffic; and is as a result no longer able to retrieve an

accurate representation of the user’s real communication patterns.

Yet for dummy traffic to work it must be indistinguishable from real traffic. Even

if encryption prevents the service provider from distinguishing between real and

dummy traffic based on the content of the messages, other features such as the

timing or size of the messages may be exploitable. In particular, OSNs pose a

particularly challenging scenario as the wealth of data available may give away

information about how users communicate. Do two users communicate more

when they have more friends in common? Does their number of friends affect

their communication patterns? Can we tell how a user communicates by looking

at other publicly available information on the OSN?

Previous research has focused on modeling the OSN structure and studying infer-

ences of private attributes from publicly available data. However, little is known

about the feasibility of inferring communication patterns.

In this chapter, we take the first steps towards this goal by performing a prelim-

inary study on the feasibility of inferring private communication patterns from

publicly available friendship and traffic data. We have obtained a dataset from

a Belgian social network, Netlog1, that we have analyzed to determine how both

friendship graph and public traffic data can expose private communication pat-

terns. To this end, we propose a model for communication inference in OSNs and

perform a study that includes several OSN features.

The relevance of our study is twofold. On the one hand, we study the likelihood

with which an external observer could infer the private communication patterns of

a user even when it only has access to OSN encrypted data or data stripped from

its content. Examples of such scenario include an OSN analyst that only obtains

1Nowadays merged with Twoo: http://www.twoo.com/

http://www.twoo.com/

Chapter 9. Towards inferring communication patterns in OSNs 147

metadata from the service provider or an OSN provider that implements end-to-

end encryption and provides traffic data to a law enforcement agency. On the

other hand, our results inform design strategies of obfuscation tools to achieve in-

distinguishability between real and dummy traffic, e.g., preventing dummy traffic

to be filtered out when it does not match expected correlations with other avail-

able OSN data. Besides, our study can also inform OSN communication models,

and thus allow researchers to simulate realistic communication patterns in OSNs.

The rest of this chapter is organized as follows. First, Section 9.1.1 presents the

model we use to represent OSN communication and Section 9.1.2 explains the

analytical tools we use in this work. Then, Section 9.2 contains the analysis we

have made over the data from an OSN: Netlog. First, Section 9.2.1 describes de

dataset. Then, Section 9.2.2 presents the analysis of the data. Finally, Section 9.3

provides a discussion of the results and the conclusions of this chapter.

9.1 Communication inference on OSNs

In this section, we first present our model for representing both friendship and

communication information from an OSN. Then, we describe the tools used to

evaluate the feasibility of making inferences from different sets of variables.

9.1.1 A model of communication on OSNs

We model an online social network as a mixed multigraph G := (V, F, P,M). The

set of nodes V represents the OSN users. The set of friendships F represents

friend relations between the OSN users. The multiset of posts P , represents mes-

sages publicly posted on users’ walls. The multiset of messages M represents the

private messages sent on the OSN. Friendship relationships are represented with

undirected edges while posts and messages are represented with arcs (directed

edges).

For a specific OSN user a ∈ V , say Alice, F (a) denotes Alice’s set of friend

relationships. The set of posts sent and received by Alice are denoted as P−→(a)

and P←−(a), respectively. The sets of sent and received messages are analogously

Chapter 9. Towards inferring communication patterns in OSNs 148

represented as M−→(a) and M←−(a). The absence of an arrow indicates that direction

is irrelevant thus M(a) = {M−→(a) ∪M←−(a)} and P (a) = {P−→(a) ∪ P←−(a)}.

The set P−→(a,b) represents the posts Alice sent to Bob and, in the same way,

M−→(a,b) represents the messages Alice sent to Bob.

We denote as VF (a) the set of nodes on the induced subgraph formed by the set of

friendships, that is, the set of nodes representing friends of the user Alice. In the

same way, VP (a) (respectively, VM (a)) is the set of nodes on the induced subgraph

formed by the multiset of posts P (analogously, messages M) sent and received

by Alice, this is, the set of users that sent and received posts (correspondingly,

messages) to and from Alice. We also use arrows to indicate direction in this

context. For instance, VM−→
(a) denotes the set of nodes to which Alice sent a

message.

Moreover, the cardinality of a set S is denoted as ¯̄S, e.g., ¯̄VF (a) denotes the

number of friends Alice has on the OSN.

We use a superscript T to refer to communication taking place on a specific time

period T , e.g., VM−→
T (a) represents the set of users Alice sent a message to on time

period T .

Table 9.1 presents a summary of all the notation described above.

Note that the vast heterogeneity and complexity of online social networks, as well

as the types of communication available on them, prevents us from providing a

thorough yet simple OSN communication model. We have favoured simplicity at

the expense of generality. Our model is vastly informed by our analysis frame-

work, graph theory, and the dataset we have obtained for evaluation.

9.1.2 Evaluating the feasibility of communication inference

on OSNs

We use both information theory and Bayesian analysis to evaluate the feasibility

of inferring OSN private communications.

We model any unknown variable to be inferred or any evidence variable to perform

inferences from as random variables, R. We denote the probability distribution of

Chapter 9. Towards inferring communication patterns in OSNs 149

Table 9.1: Notation summary

Symbol Definition

G := (V, F, P,M) Mixed multigraph representing the OSN

V Set of OSN users (nodes)
F Set of friendships (edges)
P Multiset of public posts (arcs)
M Multiset of private messages (arcs)

F (a) Alice’s set of friend relationships
P−→(a) Multiset of posts sent by Alice

P←−(a) Multiset of posts received by Alice

M−→(a) Multiset of messages sent by Alice

M←−(a) Multiset of messages received by Alice

P (a) {P−→(a) ∪ P←−(a)}
M(a) {M−→(a) ∪M←−(a)}

P (a, b) Multiset of posts exchanged between Alice and Bob
M(a,b) Multiset of messages exchanged between Alice and Bob

VF (a) Set of nodes that are friends with Alice
VP (a) Set of nodes that sent or received posts from/to Alice
VM (a) Set of nodes that sent or received messages from/to Alice

¯̄S Cardinality of the set S

Superscript T Specifies time frame

a random variable as P[R = r], e.g., P[¯̄M−→(a,b)] represents the probability dis-

tribution of the number of messages sent by a user Alice to a user Bob. Similarly,

P[R1 | R2, R3, . . . , Rk] denotes the conditional probability of R1 given evidence

from random variables {R2, R3, . . . , Rk}, e.g., P[¯̄M−→(a,b) = z | ¯̄P←−(b, a) = x] rep-

resents the probability that a user, say Alice, sends z messages to Bob given that

Bob left on Alice’s wall x posts.

Shannon entropy [211], denoted as H(R), is a measure of the amount of un-

certainty about the expected value of a random variable R. We use Shannon

entropy to measure to what extent it is possible to infer the value of R. Low

values of entropy represent easy inferences, namely, some values R = r are far

more likely than others. Conversely, high values of entropy indicate harder infer-

ence problems, as there is significant uncertainty about the actual value that R

may take. The conditional entropy, denoted as H(R1 | R2, R3, . . . , Rk), measures

the uncertainty about the expected value of R1 when information about random

variables {R2, R3, . . . , Rk} is available. Conditional entropy ranges from zero to

Chapter 9. Towards inferring communication patterns in OSNs 150

H(R1). When knowing the values of R2 = r2, R3 = r3, . . . , Rk = rk univocally

determines the value R1 = r1, conditional entropy is 0. When knowing the val-

ues of R2, R3, . . . , Rk provides no additional information about R1, conditional

entropy is H(R1), namely, there is just as much information about R1 with or

without R2, R3, . . . , Rk.

Both entropy and conditional entropy are related to mutual information through

the following expression: I(R1;R2) = H(R1) − H(R1|R2). We have favoured

mutual information over other measures of statistical dependence, such as corre-

lation coefficients, for its equitability, i.e., its ability to detect general, not only

linear or monotonic, dependence [212, 213]. Even if the results we present in

this chapter are in terms of conditional entropy, note however that it is trivial to

obtain the corresponding mutual information.

Practicalities The computation of both entropy and conditional entropy de-

pends on the estimation of the probability distribution of the random variables

involved. We quantise random variables to reduce the set of values they may

take [214]. Quantisation collapses several values on one category of values, effec-

tively increasing the number of samples available per category. This reduces the

error on the probability distribution estimation, albeit at the expense of coarser

random variable values. Moreover, shorter lists of values allow for a speedier thus

more efficient computation of the mutual information. To measure the underly-

ing estimation error we resort to Bayesian Inference, using the methods described

previously [214].

9.2 A case study: Netlog

In this section, we present the results obtained from the evaluation of a real OSN

dataset. First, a description of the dataset is made. After that, the results of

evaluating private information inferences are described. Finally, we include a

discussion about the obtained results, the implications of our findings, and the

limitations of the study.

Chapter 9. Towards inferring communication patterns in OSNs 151

9.2.1 The Netlog dataset

We have performed our study using a dataset from Netlog2, a Belgian OSN. Our

dataset comprises communication data from the Dutch-speaking subnetwork in

Netlog. Specifically, it includes three different sets of interaction data: friendship

requests and acceptances, private messages (i.e., only visible to the sender and

recipient of the message) both sent and received, and public posts (messages that

users leave on other users’ personal pages and are publicly available) sent and

received.

Table 9.2 outlines the data obtained for each type of interaction and the time

period for which complete data is available.3,4 Note that the dataset contains

no personal attributes or the contents of any message or post, but only meta-

data. Moreover, the dataset was de-identified, namely, names were replaced by a

random identifier.

Table 9.2: Description of the Netlog interaction dataset

Type Data Time period

Friendship User 1 ID User 2 ID Day & time Dec’02 - Oct’11
Posts Poster ID Recipient ID Day & time Dec’02 - Oct’11
Messages Sender ID Recipient ID Day & time May’11 - Oct’11

Figure 9.1 sums up some statistics about the dataset. We use the acronym ‘AT’

(All Time) to tag those figures that refer to all the time for which data are

available. Otherwise, figures refer to the six-month period of messages data. We

use the terms posting and messaging users to refer to users that posted and sent

at least one post or message, respectively. Active users either posted or sent

at least one message and strictly active sent at least one of each. Note that

active users are a small fraction of the total number of users in the network, as

previously reported in the literature [68].

2http://en.netlog.com/
3The dataset includes additional datafields which are not used for the results included in

this chapter.
4Note that in Section 9.1.1 we have modeled friendship as an undirected edge between two

users. We consider two users Alice and Bob to be friends (and thus a friendship edge is added
to the social graph between the node representing Alice and the node representing Bob) when
the dataset contains both a friendship request from Alice to Bob and a friendship acceptance
from Bob to Alice.

http://en.netlog.com/

Chapter 9. Towards inferring communication patterns in OSNs 152

Number of users 3,834,304
Number of posts (AT) 175,731,008

Number of messages 70,170,964

Posting users (AT) 1,763,931
Posting users 180,182

Messaging users 379,611
Active users 443,398

Strictly active users 270,327

Average friend. degree 24.96
Std. devi. friend. degree 161.1

Figure 9.1: Dataset statistics

0 10 100 1000

10
−6

10
−4

10
−2

10
0

Degree

P
r[

D
eg

re
e]

Degree Probability Distribution

Figure 9.2: P[¯̄VF (a)]

0 10 100 1000
10

−8

10
−6

10
−4

10
−2

10
0

Number of People Messaged by Alice

P
ro

ba
bi

lit
y

1−15
16−50
51−250
>250

Topo degree

(a) P[¯̄VM−→
(a) | ¯̄VF (a)]

0 10 100 100010−8

10−6

10−4

10−2

100

Num. of People To Whose Walls Alice Posted

Pr
ob

ab
ilit

y

1−15
16−50
51−250
>250

Topo degree

(b) P[¯̄VP−→
(a) | ¯̄VF (a)]

0 10 100 100010−8

10−6

10−4

10−2

100

Num. of People To Whose Walls Alice Posted

Pr
ob

ab
ilit

y

1−15
16−50
51−250
>250

Topo degree

(c) P[¯̄V
PT
−−→

(a) | ¯̄VF (a)] (AT)

Figure 9.3: Distributions of the number of people a user sends messages and
posts to

Figure 9.2 displays the distribution of the number of friends each user has,

P[¯̄Vf (a)], which approximately follows a power-law with α = 2.2.

Figure 9.3 shows the distribution of the number of friends with whom each user

communicates, depending on their number of friends, referred to as Topo degree in

the legend. Not surprisingly, the more friends a user has, the greater the number

of people she sends messages and posts to. Also, over larger periods of time users

communicate with a larger number of people, as shown in Figure 9.3(c). All

three figures show that OSN users only communicate with a small subset of their

friends, as previously reported [72, 74, 215].

Figure 9.4 shows the probability distribution of the number of messages and posts

a user Alice sends to a friend, Bob. Figure 9.4(a) shows that the number of mes-

sages does not depend on the number of friends Alice has, whereas Figure 9.4(b)

shows there is a slight dependency between the number of posts Alice sends to

Bob and her number of friends, i.e., the fewer friends Alice has, the less posts she

Chapter 9. Towards inferring communication patterns in OSNs 153

0 10 100 1000
10

−8

10
−6

10
−4

10
−2

10
0

Messages Sent by Alice to Bob

P
ro

ba
bi

lit
y

1−15
16−50
51−250
>250

Topo degree

(a) P[¯̄M−→(a, b) | ¯̄VF (a)]

0 10 100 1000
10

−8

10
−6

10
−4

10
−2

10
0

Posts sent by Alice to Bob

P
ro

ba
bi

lit
y

1−15
16−50
51−250
>250

Topo degree

(b) P[¯̄P−→(a, b) | ¯̄VF (a)]

0 10 100 1000
10

−8

10
−6

10
−4

10
−2

10
0

Posts Sent by Alice to Bob

P
ro

ba
bi

lit
y

1−15
16−50
51−250
>250

Topo degree

(c) P[¯̄P−→
T (a, b) | ¯̄VF (a)]

(AT)

Figure 9.4: Messages and posts Alice sends to Bob

0 10 100 1000
10

−8

10
−6

10
−4

10
−2

10
0

Messages Sent by Alice

P
ro

ba
bi

lit
y

1−15
16−50
51−250
>250

Topo degree

(a) P[¯̄M−→(a) | ¯̄VF (a)]

0 10 100 1000
10

−8

10
−6

10
−4

10
−2

10
0

Posts sent by Alice

P
ro

ba
bi

lit
y

1−15
16−50
51−250
>250

Topo degree

(b) P[¯̄P−→(a) | ¯̄VF (a)]

0 10 100 1000
10

−8

10
−6

10
−4

10
−2

10
0

Posts Sent by Alice

P
ro

ba
bi

lit
y

1−15
16−50
51−250
>250

Topo degree

(c) P[¯̄P−→
T (a) | ¯̄VF (a)] (AT)

Figure 9.5: Number of messages and posts Alice sends

will send to each of them. Interestingly, this trend tends to disappear over time,

as shown in Figure 9.4(c)

This ‘independence’ between the number of friends a user has and how much

she communicates with each of them is further confirmed by Figure 9.5, which

describes the probability distribution of the total number of posts and messages

sent by Alice. Note the similarity to Figure 9.3, showing that the total number

of messages and posts a user sends is dependent on the number of friends a user

has.

Figure 9.6 represents the probability distribution of different features of the OSN

graph. Figure 9.6(a) shows the probability distribution of the amount of friends

Alice has in common with each of her friends, namely, abusing notation, P[¯̄VF (a∩
b) | ¯̄VF (a)].5

5Strictly following our notation, it is equivalent to: P[VF (a) ∩ VF (b) | ¯̄VF (a)]

Chapter 9. Towards inferring communication patterns in OSNs 154

0 10 100 1000
10

−8

10
−6

10
−4

10
−2

10
0

Alice and Bob’s mutual friends

P
ro

ba
bi

lit
y

1−15
16−50
51−250
>250

Alice Topo degree

(a) Mutual friends

0 10 100 1000
10

−8

10
−6

10
−4

10
−2

10
0

Alice and Bob’s union of friends

P
ro

ba
bi

lit
y

1−15
16−50
51−250
>250

Alice Topo degree

(b) Union of friends

0 10 100 1000
10

−6

10
−4

10
−2

10
0

Average Friends’ Degree

P
ro

ba
bi

lit
y

1−15
16−50
51−250
>250

Alice Topo degree

(c) Friends’ Avg Deg

0 0.25 0.5 0.75 1
10

−8

10
−6

10
−4

10
−2

10
0

Alice and Bob’s Topo Jaccard

P
ro

ba
bi

lit
y

1−15
16−50
51−250
>250

Alice Topo degree

(d) Jaccard

Figure 9.6: Graph features

Figure 9.6(b) shows the probability of the number of different people that two

friends, Alice and Bob, can jointly count among their friends, i.e., P[¯̄VF (a ∪ b) |
¯̄VF (a)]. That number is strongly correlated with the degree of Alice because,

as shown in Figure 9.6(c), users tend to become friends with people that have a

similar amount of friends in the OSN. This has been referred in the literature as

homophily [77].

Lastly, Figure 9.6(d) shows the probability distribution of the Jaccard coefficients

between any two friends, i.e., P[JF (a,b) | ¯̄VF (a)], where JF (a,b) =
¯̄VF (a∩b)
¯̄VF a∪b)

.

Note that the greater the degree of Alice the lower the Jaccard coefficient is

likely to be. The probability that Alice and Bob have the same friends decreases

as the degree of any of them increases.

Figure 9.7 represents the degree of reciprocity for both messages (9.7(a)) and

posts (9.7(b) and 9.7(c)), showing that, as previously reported [44, 71, 73], users

have a strong tendency to reciprocate the messages and posts they receive.

Chapter 9. Towards inferring communication patterns in OSNs 155

Alice’s messages to Bob

B
ob

’s
 m

es
sa

ge
s

to
 A

lic
e

50 100 150 200

20

40

60

80

100

120

140

160

180

200

 0

 100

 1000

 10000

 100000

1000000

(a) Messages

Alice’s posts to Bob

B
ob

’s
 p

os
ts

 to
 A

lic
e

10 20 30 40 50 60 70

10

20

30

40

50

60

70

 0

 10

 100

 1000

 10000

100000

(b) Posts

Alice’s posts to Bob

B
ob

’s
 p

os
ts

 to
 A

lic
e

50 100 150 200

20

40

60

80

100

120

140

160

180

200

 0

 10

 100

 1000

 10000

 100000

 1000000

10000000

(c) Posts (AT)

Figure 9.7: Communication reciprocity

9.2.2 Inferring private communication on Netlog

In this section we present the results of our analysis of the feasibility of inferring

private communication patterns. Unless otherwise stated, all figures included in

this section follow the same representation formula. They display conditional

probability distributions P[Z | X] where Z represents the variable to be inferred

(e.g., number of messages sent by Alice to Bob) and X represents the evidence

variable (e.g., the number of friends Alice and Bob have in common). In the

figures, the x-axis represents values of the independent variable X = x, and the

y-axis the probability P[Z = z | X = x]. The figures may also feature error bars,

which represent the standard error on a 99% confidence interval.

9.2.2.1 Messaging behavior based on features of the online social net-

work friendship graph

We analyze the relationship between the number of private messages users send

and the friendship graph features of the OSN.

Chapter 9. Towards inferring communication patterns in OSNs 156

Table 9.3: Entropy of number of messages given number of friends

Bits

Ref.: H(¯̄M−→(a,b)) 3.426

H(¯̄M−→(a,b) | ¯̄VF (a)) 3.4249

H(¯̄M−→(a,b) | ¯̄VF (b)) 3.4253

10
−5

10
0

Degree

P
ro

ba
bi

lit
y

0 2 8 32 12
8

51
2

20
48

81
92

32
76

8

0
[1, 5]
[6, 25]
[26, 100]
> 100

Messages

(a) P[¯̄M−→(a,b) | ¯̄VF (a)]

10
0

Degree

P
ro

ba
bi

lit
y

0 2 8 32 12
8

51
2

20
48

81
92

32
76

8

0
[1, 5]
[6, 25]
[26, 100]
> 100

Messages

(b) P[¯̄M−→(a,b) | ¯̄VF (b)]

Figure 9.8: Messages given number of friends

Messages sent given number of friends Figure 9.8(a) shows the conditional

probability distribution of the number of messages Alice sends to Bob given her

number of friends, namely, P[¯̄M−→(a,b) | ¯̄VF (a)]. This shows that the number of

friends users have is not a good indicative of the number of messages they send

to any of their friends. Similarly, the number of messages Alice sends to Bob

does not depend on the number of friends he has, as shown in Fig 9.8(b). The

analysis of the entropies, shown in Table 9.3, further confirms this. Knowing the

number of friends Alice or Bob have does not reduce the uncertainty about the

number of messages Alice sends to Bob.

Messages exchanged given subnetwork graph We have analyzed the re-

lationship between the number of messages two friends exchange with respect

to various features of their local subnetwork graph. This allows us to evaluate

whether knowing “how well connected” two users are in the OSN reveals any

information about the volume of their private communication.

Figure 9.9 shows the probability of the number of messages two users exchange

given their mutual friends (Figure 9.9(a)), the union of their friends sets (Fig-

ure 9.9(b)), and their Jaccard coefficient (Figure 9.9(c)).

Chapter 9. Towards inferring communication patterns in OSNs 157

10
−5

10
0

Mutual Friends

P
ro

ba
bi

lit
y

0 2 8 32 12
8

51
2

20
48

81
92

32
76

8

0
[1, 5]
[6, 25]
[26, 100]
> 100

Mes. Exch.

(a) P[¯̄M(a, b) | ¯̄VF (a ∩ b)]

10
0

Union Friends

P
ro

ba
bi

lit
y

2 8 32 12
8

51
2

20
48

81
92

32
76

8

13
10

72

0
[1, 5]
[6, 25]
[26, 100]
> 100

Mes. Exch.

(b) P[¯̄M(a, b) | ¯̄VF (a ∪ b)]

10
−5

10
0

Jaccard

P
ro

ba
bi

lit
y

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

0
[1, 5]
[6, 25]
[26, 100]
> 100

Mes. Exch.

(c) P[¯̄M(a, b) | JF (a, b)]

Figure 9.9: Messages exchanged given subnetwork graph

Table 9.4: Entropy of messages exchanged given subnetwork graph

Bits

Ref.: H(¯̄M(a,b)) 0.2751

H(¯̄M(a,b) | ¯̄VF (a ∩ b)) 0.2751

H(¯̄M(a,b) | ¯̄VF (a ∪ b)) 0.2734

H(¯̄M(a,b) | JF (a,b)) 0.2738

All three features do not convey much information about the number of private

messages two users exchange. The probability of any number of messages stays

rather constant for numbers of mutual friends below 1,024. Beyond that number

the error increases significantly, as few users have more than 1,024 mutual friends,

but nothing indicates that the trend is likely to change.

On the other hand, when both two friends have each few friends, there is a high

probability they choose each other to exchange the majority of their messages,

possibly because none of them has many other communication partners. In fact,

the moment at least one of them has more friends, chances are the majority of

those friends will receive few or no messages at all, regardless of whether a few

of them still receive a large number of messages.

With respect to the Jaccard index, the greater it is, the more likely Alice and

Bob are to message each other. Note however that for Jaccard values beyond 0.5

the probability seems to decrease while the error increases significantly; thus it is

hard (and unintuitive!) to conclude that when Alice and Bob have most of their

friends in common they actually exchange less messages.

Table 9.4 displays the results of the entropies analysis. This confirms that all three

features provide little information, with the union of friends being slightly more

Chapter 9. Towards inferring communication patterns in OSNs 158

informative. Note that the Jaccard index depends on both the number of mutual

friends (non-informative) and the union of friends (slightly bit more informative),

thus the effect of the former may diminish the amount of information provided

by the latter.

9.2.2.2 Messaging behavior based on posting behavior

We analyze the relationship between private communication patterns and public

communication patterns.

10
−4

10
−2

10
0

Posts

P
ro

ba
bi

lit
y

0 2 8 32 12
8

51
2

20
48

0
[1, 5]
[6, 25]
[26, 100]
> 100

Messages

(a) P[¯̄M−→(a,b) | ¯̄P−→(a,b)]

10−4

10−2

100
Pr

ob
ab

ilit
y

0 2 8 32 12
8

51
2

20
48

0
[1, 5]
[6, 25]
[26, 100]
> 100

Posts

Messages

(b) P[¯̄M−→(a,b) | ¯̄P−→(b, a)]

10
−4

10
−2

10
0

Posts

P
ro

ba
bi

lit
y

0 2 8 32 12
8

51
2

20
48

81
92

0
[1, 5]
[6, 25]
[26, 100]
> 100

Messages

(c) P[¯̄M−→(a,b) | ¯̄P−→
T (a,b)] (AT)

10
−4

10
−2

10
0

Posts

P
ro

ba
bi

lit
y

0 2 8 32 12
8

51
2

20
48

81
92

0
[1, 5]
[6, 25]
[26, 100]
> 100

Messages

(d) P[¯̄M−→(a,b) | ¯̄P−→
T (b, a)] (AT)

10
−4

10
−2

10
0

% Posts

P
ro

ba
bi

lit
y

0

0.
4

0.
8

0
(0, 0.2]
(0.2, 0.4]
(0.4, 0.6]
(0.6, 0.8]
> 0.8

% Messages

(e) P[% ¯̄M−→(a,b) | % ¯̄P−→(a,b)]

10
−4

10
−2

10
0

% Posts

P
ro

ba
bi

lit
y

0

0.
4

0.
8

0
(0, 0.2]
(0.2, 0.4]
(0.4, 0.6]
(0.6, 0.8]
> 0.8

% Messages

(f) P[% ¯̄M−→(a,b) | % ¯̄P←−(a,b)]

Figure 9.10: Messages sent given sent/received posts

Chapter 9. Towards inferring communication patterns in OSNs 159

Table 9.5: Entropy of Sent Messages Given Sent/Received Post

Bits

Ref.: H(¯̄M(a,b)) 0.2044

H(¯̄M−→(a,b) | ¯̄P−→(a,b)) 0.1989

H(¯̄M−→(a,b) | ¯̄P−→(b, a)) 0.1996

H(¯̄M−→(a,b) | ¯̄P−→
T (a,b)) (AT) 0.2031

H(¯̄M−→(a,b) | ¯̄P−→
T (b, a)) (AT) 0.2033

Messages sent given sent or received posts Figure 9.10(a) represents the

probability of the number of messages Alice sends to Bob given the number of

posts she writes to him in the same period of time (i.e., 6 months). The proba-

bility significantly rises when she writes at least one message on his wall, steadily

increasing for an even larger number of posts. The same is true when we consider

the number of posts Alice receives from Bob, shown in Figure 9.10(b). Thus con-

sidering either the number of posts Alice sends to Bob or receives from Bob is

equivalent towards inferring the number of messages Alice sends to him. This is

not surprising given the high communication reciprocity observed in the network

(cfr. Figure 9.7). This result also suggests that users tend to use interchangeably

both means of communications with a given friend, instead of sending private

messages to certain friends and writing posts to others.

Considering the previous posting history between two users could further help

inferring the number of messages users send to their friends. Figure 9.10(c)

(9.10(d)) represents the probability that Alice (Bob) sends a number of messages

to Bob (Alice) on a 6-month period given that Alice wrote to him a number of

posts in the previous 9 years.

The probability that Alice sends messages to Bob still increases with the num-

ber of posts s/he left on her/his wall. However, the relationship between posts

and messages seems to be weaker than when considering the same time period.

Previous posting history is therefore not as reliable to predict recent messaging

behavior as the evidence of posts on the same time frame. This suggests that

communication profiles are not stable, they change with time, and that inferences

from previous communication history about current communication behavior may

not be as accurate.

Chapter 9. Towards inferring communication patterns in OSNs 160

Table 9.6: Conditional Entropies Given Posting Friends Sets

Bits

Ref.: H(¯̄M(a,b)) 0.2751

H(¯̄M(a,b) | ¯̄VPT (a ∩ b)) (AT) 0.2744

H(¯̄M(a,b) | ¯̄VP−→
T (a ∩ b)) (AT) 0.2744

H(¯̄M(a,b) | ¯̄VP←−
T (a ∩ b)) (AT) 0.2730

H(¯̄M(a,b) | ¯̄VP (a ∩ b)) 0.2712

H(¯̄M(a,b) | ¯̄VP−→
T (a ∩ b)) 0.2726

H(¯̄M(a,b) | ¯̄VP←−
T (a ∩ b)) 0.2721

H(¯̄M(a,b) | ¯̄VPT (a ∪ b)) (AT) 0.2736

H(¯̄M(a,b) | ¯̄VP−→
T (a ∪ b)) (AT) 0.2737

H(¯̄M(a,b) | ¯̄VP←−
T (a ∪ b)) (AT) 0.2731

Table 9.5 shows the entropies of the distributions represented above. Note that

the entropy of the number of messages barely changes given the number of posts.

Even if a recent post history is more informative than a long, past history, know-

ing that Alice (Bob) sent a specific number of posts to Bob (Alice) does not

clearly determine the number of messages Alice sends to Bob.

In fact, the most prominent trend in Figure 9.10(a) and 9.10(b) is that the prob-

ability to send any number of messages increases with the number of posts, but

rather at a similar rate for any number of messages.

Thus even if the probability to send a given number of messages increases with

the number of posts, it increases rather similarly for any number of messages

greater than 0. As a result, the entropy of the probability distribution of the

number of messages given any specific number of posts does not substantially

decrease.

Exchanged messages given posting friends We have analyzed the relation-

ship between the number of messages two friends exchange with respect to their

shares of posting friends, namely, friends to whom they send or receive posts

from. Specifically, we have considered the number of mutual posting friends

(Figs. 9.11(a) and 9.11(b)) and the union of posting friends (Figure 9.11(c)).

The number of friends that both Alice and Bob have sent or received messages

Chapter 9. Towards inferring communication patterns in OSNs 161

10−4

10−2

100

Pr
ob

ab
ilit

y

0 2 8 32 12
8

51
2

0
[1, 5]
[6, 25]
[26, 100]
> 100

Alice and Bob’s mutual posting friends

Messages

(a) P[¯̄M(A,B) | ¯̄VP (a ∩ b)]

10
−4

10
−2

10
0

Alice and Bob’s mutual posting friends

P
ro

ba
bi

lit
y

0 2 8 32 12
8

51
2

20
48

81
92

0
[1, 5]
[6, 25]
[26, 100]
> 100

Messages

(b) P[¯̄M(A,B) | ¯̄V
PT (a ∩ b)]

10
−4

10
−2

10
0

Union Posting Friends

P
ro

ba
bi

lit
y

0 2 8 32 12
8

51
2

20
48

81
92

32
76

8

0
[1, 5]
[6, 25]
[26, 100]
> 100

Messages

(c) P[¯̄M(A,B) | ¯̄V
PT (a ∪ b)]

Figure 9.11: Exchanged messages given posting friends

to provides little information about the number of messages Alice and Bob ex-

change, regardless of whether we consider the posts on the same period of time

(Figure 9.11(a)) or a longer history (Figure 9.11(b)). The probability that Alice

and Bob exchange at least a message substantially increases when the number of

mutual posting friends is greater than one. As for the exact number of messages

exchanged, this evidence variable does not provide enough information. The

same occurs when considering the union of posting friends, namely, those friends

that at least Alice or Bob have sent or received a post to/from. The analysis of

the conditional entropy confirms these results, as shown in Table 9.6. Note that

we have included in Table 9.6 the results of further analyzes which we have not

represented, mainly due to the high similarity with the figures already included.

9.3 Conclusions

Our analysis has shown, consistently with previous results [44, 71, 72], that most

Netlog users only communicate with a small subset of their friends. Inferring

the communication patterns between two Netlog users could therefore be quite

straightforward: one should always assume, with a high probability to be right,

that two users do not communicate at all.

Chapter 9. Towards inferring communication patterns in OSNs 162

Our results suggest that, at least in the case of Netlog, publicly available OSN

graph and communication features barely help us improving the accuracy of our

inferences. In our exploratory evaluation, most of the features we have considered

provide little or no information about the number of messages users send.

Only public posts traffic data provided some information about private commu-

nication patterns, possibly due to the fact that OSN users interchangeably use

the different communication means available on the OSN; yet this does not sig-

nificantly improve the accuracy of the inferences. Moreover, we have seen that

communication patterns are likely to evolve with time and that only up to date

information may be successfully exploited.

This preliminary study presents several limitations. Firstly, our analysis was

circumscribed to metadata. We have not considered the content of public posts

nor the users’ attributes, and these may be valuable sources of information for

someone attempting to infer private communication patterns. Secondly, because

our dataset was stripped off all content, we could not easily prune the dataset

off bots and spammers, although we hope that the effect of these should be no

more than outliers. Thirdly, these are the results of both univariate and bivariate

analyzes, i.e., we have evaluated the amount of information conveyed by different,

single variables about private communication variables. A multivariable analysis

that considers several variables at once may enable better inferences. Future work

should explore the relationship between communication and other OSN variables

through more advanced Bayesian inference methods, such as Bayesian networks.

Our preliminary results have however several, interesting implications. On the

one hand, private communication patterns may remain private if inferences are

not enabled by other types of publicly available data. For example, the amount

of mutual friends between two users does not provide any information about

how much they communicate. Moreover, the lack of correlations between private

communication patterns and other types of variables also allows the designer of a

communication obfuscation tool to treat these variables independently [214]. In

other words, a designer could be cautiously confident that the service provider

cannot exploit the relationship between different OSN features, such as the graph

structure, to filter out dummy traffic.

Chapter 9. Towards inferring communication patterns in OSNs 163

Users of online social networks are often provided with privacy settings that allow

them to control what is publicly visible and what is private on the site. Depen-

dence between different types of OSN data may however enable an adversary to

perform inferences about the private data based on other OSN available data.

Previous work has focused on inferences about private or non disclosed attributes

of OSN users. In this work we have performed a preliminary analysis of the

feasibility of performing inferences about private communication patterns, i.e.,

with whom and how much a user communicates. We have focused on traffic data

because while users may use their privacy settings or use encryption to hide their

messages and sensitive attributes, traffic data cannot be easily hidden from the

service provider.

We have used both the friendship graph and public communication traffic data

from Netlog, a Belgian OSN, to measure the amount of information that several

OSN features provide about the amount of private messages a user exchanges.

The implications of our results are promising in terms of privacy protection. We

have found that, in Netlog, the number of messages a user exchanges is not related

to several OSN features we have examined.

CHAPTER 10

Conclusions

This final chapter summarizes the conclusions extracted from the work presented

in this thesis (Section 10.1) and presents some guidelines for further work (Sec-

tion 10.2).

10.1 Conclusions

The first part of this thesis is focused on the impact of crawling on the privacy

of OSN users. Most social networks have publicly available interfaces that are

accessible by anyone through the Internet. These interfaces can be used by users

and attackers alike to extract data from online social networks. We have studied

two different scenarios in which this automated data extraction may create a

privacy risk for users: colliding visibility preferences and network discovery.

In Chapter 4 we have seen how users rely on the configuration of their profile

visibility to hide certain information to other OSN users. However, due to the

165

Chapter 10. Conclusions 166

interlinked nature of OSNs, users may have colliding preferences: for instance, a

user may not be willing to reveal his friends while his friends do not mind sharing

their friends list. We worked on this specific scenario, where friendship informa-

tion can be obtained even though the user itself is not sharing the information.

We designed a scheduling algorithm for a crawler to exploit the colliding prefer-

ences, taking advantage of the properties exhibited by social graphs. Next, we

tested the algorithm with two different social networks and demonstrated that

it is fairly easy to discover friendship information from users who do no share

their friends’ list if their friends share it. For the tested scenario, crawling a

few hundred nodes allowed us to discover more than 1/3 of the targetted user’s

friends. Note that crawling this number of nodes is affordable even for low-budget

attackers. This kind of attacks have direct implications on user’s privacy: the

most restrictive privacy preferences (in the studied scenario, hidding the friends

list) are not enforced by the provider, and thus the users’ privacy expectations

are not met.

Sometimes the goal of the attacker may not be to discover the friendship connec-

tions of a single user, but to obtain other information from a user, to maximize

the amount of information collected, or to discover certain characteristics of the

network. In Chapter 5 we defined alternative goals for an attacker that explores

an OSN through crawling and gave a first evaluation of how different scheduling

algorithms will perform regarding these goals. Then, we proposed the concept of

Online Social Honeynet (OShN) as a countermeasure and evaluated a proof-of-

concept implementation. This proof-of-concept was designed to protect against

crawlers using real-degree greedy scheduling, minimizing the impact for the OSN.

Experimentation with real OSN datasets showed that the OShN was able to cap-

ture the crawler fast (in mean, it took 5.09 hops to reach the OShN entry point)

and with high success ratio (the crawler was captured in all the experiments where

the initial node was in the same connected component of the OShN). Deploying

an OShN in a real OSN will thus reduce the amount of information collected from

real users by a crawler using real-degree greedy (with respect to the information

that the same crawler would collect in the same time and conditions in a network

without the OShN).

Chapter 6 further explores the goals an attacker crawling an OSN may have and

quantifies how do different scheduling algorithms perform regarding the defined

Chapter 10. Conclusions 167

goals. Greedy algorithms tend to perform better in goals regarding the whole

network discovery, whereas Breadth-First Search offers better performance when

the evaluated goals affect a single user. This information can be used not only

by attackers to optimize their behavior but also to inform designers of counter-

measures.

The second part of this thesis leaves behind the crawling scenario and focuses

on the information that can be extracted from OSN data. Particularly, we dealt

with the problem of classification of OSN users, using as the only information the

graph structure. We found this design specially interesting since it corresponds

to many real life scenarios.

In Chapter 7 we proposed an architecture for classifying nodes using informa-

tion from the network structure. We first designed it to classify OSN users, but

experimentation with graph datasets from other sources showed that it was also

offering good performance in these other contexts, that is, the proposed archi-

tecture was outperforming most of the other evaluated algorithms for most of

the tested datasets. Therefore, from this moment on we continued working on

classification of graph data, without limiting ourselves to graphs representing on-

line social networks. Our experiments showed that the network structure alone is

enough to achieve good classification accuracy in different scenarios. Classifica-

tion may lead to attribute disclosure and create privacy risks in certain scenarios.

For instance, when labels represent sensitive attributes and nodes are users, suc-

cessful classification of a sample implies that the attacker is able to correctly

predict a sensitive attribute from a user for which this attribute was not known.

Chapter 8 presented a technique to increase classification accuracy. The tech-

nique preprocesses the graph before classification takes place, and thus it may

be used with any classifier. The method makes use of a scoring function. We

first evaluated the ability of different scoring functions in increasing assortativity

and then showed that there exists a positive correlation between assortativity

and classification accuracy. We found one scoring function (Jaccard Index) that

resulted in an increase of assortativity on all the tested datasets and other func-

tions that also showed this tendency for most of the datasets (but with some

exceptions). We also observed how it was far from perfect, even if there was a

positive correlation between assortativity and classification accuracy. Assorta-

tivity had been proposed in the past as a metric to use in filter approaches to

Chapter 10. Conclusions 168

the automated edge selection problem. We propose another metric for this very

same purpose and demonstrate that it outperforms assortativity on most of the

configurations.

Apart from node classification, other kinds of inferences can be made from online

social network data. Chapter 9 introduces our work regarding inferences about

communication patterns in online social networks. We have analyzed whether

it is possible to infer the amount of private communication between OSN users

taking as a basis the friendship graph and public communication traffic in the

same network. Our analysis over the Netlog network (a Belgian OSN) showed

that the number of messages a user privately exchanges with other users of the

network is not significantly related to several features extracted from public data.

Although the work done in this thesis is diverse, some conclusions can be drawn

from all of it. First, graph data (i.e. relationships between entities) encode an

enormous amount of information. Relationships can be exploited to extract

knowledge, either in online social networks as well as in many other contexts.

Regarding privacy, caution has to be taken when applying techniques created for

tabular data to graph data. Although some of these techniques can indeed be

adapted, naive adaptations may introduce problems and designers must be aware

of the potential leaks of information and inferences available when graph data is

involved.

10.2 Further work

The work done in this thesis opens many lines of future research. In this section,

we review some of these ideas.

In relation to crawling and its privacy implications, we found three clear lines of

further research. First, regarding the design of a scheduler that is able to retrieve

friendship relations from users that are not sharing this information, further work

can be done in improving the scheduler: determining the termination condition

for the crawler based only on the attacker’s knowledge of the network or analyzing

in detail the effect of the clustering coefficient and mean degree on the success of

the attack are some lines for continuing this work. Second, we studied the specific

case of friendship relationships where one of the users discloses the relationship

Chapter 10. Conclusions 169

and the other wants to keep it private. However, this is not the only case where

contradicting privacy preferences may generate problems in OSNs. Further work

can be done in exploring other scenarios where this problem appears. Third, since

our Online Social Honeynet proposal (OShN) is just a proof-of-concept, a natural

continuation of this work would be to convert it into a ready-to-deploy OShN. To

that end, some problems that may be interesting to explore are: tuning the OShN

to be able to defend against other scheduling algorithms, avoiding detection by

the crawler (or studying how to react to this detection), or deciding how to

integrate it in a real OSN.

In relation to classification of nodes, we also detected three possible lines of fur-

ther work. First, we have dealt with classification from the graph structure alone.

Therefore, the most natural extension of our work would be to incorporate at-

tributes that describe the entities of those graphs. Second, we could also face a

scenario where nodes or edges have been modified intentionally, for instance, as

part of an anonymization procedure. Studying how these changes affect classifica-

tion performance and designing classifiers that are robust to them are interesting

problems to work on. Third, we proposed a preprocessing technique based on

scoring function to increase classification performance and evaluated a set of scor-

ing functions. An interesting line of work opens in designing scoring functions to

optimize classification accuracy.

In relation to communication inferences in OSN, two main lines of work appear.

First, analyzing if the behavior observed in Netlog is extrapolatable to other

OSN. Second, further digging into the data to analyze and better understand

the relation between communication and other OSN features.

APPENDIX A

OSN crawler implementation

Part of the experiments performed in this thesis make use of a crawler in order

to obtain online social network data. In this appendix, we briefly describe the

implementation of our OSN crawler.

The application was developed using Java as the programming language and

MySQL as the database management system.

The architecture of our crawler is the same that was described on the prelimi-

nary concepts chapter of this document (Section 2.3.1). We proceed to explain

the implementation details of each of the described modules: Section A.1 de-

scribes the downloader, Section A.2 details the parser, Section A.3 presents the

implemented schedulers, Section A.4 explains the storage module, and finally

Section A.5 summarizes general features of the crawler.

171

Chapter 10. Conclusions 172

A.1 The downloader

The download manager is the module of the crawler responsible for interact-

ing with the OSN. The download manager receives an URL and downloads its

content, which then serves as input to the parser module.

The implemented download manager can be configured to wait a certain amount

of time between downloading a page and downloading the next one. While using

a timeout greater than 0 increases the time needed for the crawl, it also allows

the crawler to be more respectful towards the network being crawled.

The download manager is also able to redirect its connections through the Tor

network. Tor [216] is a distributed network of relays designed to anonymize

TCP streams. In order to redirect the download through Tor, the Tor client

must be installed in the same machine where the crawler is executed. Then, the

TorLib [217] java library is used by the crawler to redirect the connections.

A.2 The parsers

The parser is the component of the crawler responsible to extract useful data

from all the downloaded content. This task would be trivial if the Semantic Web

was now a reality, as all user data and their relationships would be described

in a formal way using the same ontology. Specifically, the FOAF (Friend of a

Friend) ontology is defined to describe people and their relationships. Although

the ontology was defined some time ago (the 1.1 version of the specification dated

from April 2005 [218]), most OSNs analyzed in this thesis were not recognized

as W3C FOAF data sources. For this reason, rather than developing a single

parser capable of analyzing FOAF data format, we have developed a parser for

each specific OSN.

Moreover, some OSNs offer APIs so that programmers can interact with their

networks easily. By using APIs, we are usually able to obtain the desired infor-

mation in an easy to process format (XML or JSON). However, not all networks

offer these services. In these cases, instead of obtaining the information through

the API, the HTML pages that people use to browse the OSN are parsed to

extract the desired information.

Chapter 10. Conclusions 173

Our crawler has the following set of parsers implemented:

• Academia

• AllLinks

• BlogsBlogspot

• BlogsHeuristic

• BlogsWordpress

• Facebook

• Flickr

• Lastfm

• Typepad

• Sql

• Twitter

That is, the crawler has parsers for some OSNs: Academia, Facebook, Flickr,

Lastfm, Typepad, and Twitter. Additionally, it also has parsers for blogs, being

able to interpret Blogspot and Wordpress blogs. Since there are blogs built with

other platforms, we also implemented another parser (BlogsHeuristic) that tries

to parse the content downloaded from blogs, regardless of the platform used to

create the blog. It uses a heuristic to try to detect the blogroll. We have also

implemented a generic parser (AllLinks) that extracts all links found in a web

page. Finally, there also exists an SQL parser, that allows us to simulate crawlings

over an already collected dataset that is stored into an SQL database.

A.3 The schedulers

The scheduler module of our crawler can be instantiated with any of the following

algorithms:

• Breadth-First Search (BFS)

Chapter 10. Conclusions 174

• Depth-First Search (DFS)

• Random list

• Random walker

• Real degree greedy

• Explored degree greedy

• Unseen degree greedy

• Real degree lottery

• Explored degree lottery

• Unseen degree lottery

• Outliner

• Antigreedy

Most of the algorithms are explained in Section 2.3.2. The Outliner algorithm

is defined in Section 4.1.3.1. Two of the implemented algorithms have not been

described in this document, since they are not used in the experimentation part

of this thesis. The random walker algorithm performs a random walk using as

starting point the crawling seed: it selects one of its neighbors at random, explores

the neighbor, and repeats the procedure. The antigreedy algorithm selects as the

next node to crawl the one with the lowest degree.

A.4 The storage device

Data extracted by the parser is then stored in a relational database for its pos-

terior analysis. This information consists, essentially, of node information and

relationships. The information is stored into two different tables of the database.

The database also contains some additional tables that are used by the session

recovery functionality, the additional information collection mode, and to store

configuration information.

Chapter 10. Conclusions 175

A.5 Other features

Apart from the modules described above, our crawler has these additional fea-

tures:

• Log creation: the crawler can be configured to generate logs with different

verbosity levels.

• Sessions: given that crawling may take some time, the crawler has the

ability to save its current state, so that a given crawling session can be

recovered and finished in a later moment.

• Data export: data retrieved from OSNs is stored into a MySQL database

and can afterwards be exported into dot [219] or GML [220] graph data

formats. This feature allows us to process the graphs with external graph

analysis and visualization software.

• Additional information collection: in its basic mode, the crawler only

collects basic information from users and their relationships. The crawler

is also able to collect additional information from the users profiles.

• Unit testing: the crawler project contains unit tests for all the scheduling

algorithms.

Our contributions

[1] Cristina Pérez-Solà and Jordi Herrera-Joancomart́ı. OSN: When multi-

ple autonomous users disclose another individual’s information. In Fatos

Xhafa, Leonard Barolli, Hiroaki Nishino, and Markus Aleksy, editors, Inter-

national Conference on P2P, Parallel, Grid, Cloud, and Internet Comput-

ing (SIDEUS workshop), pages 471–476, Los Alamitos, CA, USA, Novem-

ber 2010. IEEE Computer Society. ISBN 978-0-7695-4237-9. doi: 10.1109/

3PGCIC.2010.80. URL http://doi.ieeecomputersociety.org/10.1109/

3PGCIC.2010.80.

[2] Jordi Herrera-Joancomart́ı and Cristina Pérez-Solà. Online social hon-

eynets: Trapping web crawlers in OSN. In Vicenç Torra, Yasuo Narakawa,

Jianping Yin, and Jun Long, editors, Proceedings of the 2011 Interna-

tional Conference on Modeling Decisions for Artificial Intelligence, vol-

ume 6820 of Lecture Notes in Computer Science, pages 1–16, Berlin, Hei-

delberg, July 2011. Springer Berlin / Heidelberg. ISBN 978-3-642-22588-

8. doi: 10.1007/978-3-642-22589-5 1. URL http://dx.doi.org/10.1007/

978-3-642-22589-5_1.

177

http://doi.ieeecomputersociety.org/10.1109/3PGCIC.2010.80
http://doi.ieeecomputersociety.org/10.1109/3PGCIC.2010.80
http://dx.doi.org/10.1007/978-3-642-22589-5_1
http://dx.doi.org/10.1007/978-3-642-22589-5_1

Chapter 10. Conclusions 178

[3] Cristina Pérez-Solà and Jordi Herrera-Joancomart́ı. OSN crawling sched-

ulers and their implications on community detection. International Jour-

nal of Intelligent Systems, 28(6):583–605, July 2013. ISSN 0884-8173. doi:

10.1002/int.21594. URL http://dx.doi.org/10.1002/int.21594.

[4] Cristina Pérez-Solà and Jordi Herrera-Joancomart́ı. Classifying Online

Social Network Users through the Social Graph. In J. Garcia-Alfaro,

Frédéric Cuppens, Nora Cuppens-Boulahia, Ali Miri, and Nadia Tawbi, ed-

itors, Proceedings of the 5th International Symposium on Foundations &

Practice of Security, volume 7743 of Lecture Notes in Computer Science,

pages 115–131, Berlin, Heidelberg, January 2013. Springer Berlin / Heidel-

berg. ISBN 978-3-642-37119-6. doi: 10.1007/978-3-642-37119-6 8. URL

http://dx.doi.org/10.1007/978-3-642-37119-6_8.

[5] Cristina Pérez-Solà and Jordi Herrera-Joancomart́ı. On improving classifi-

cation of interlinked entities using only the network structure. Knowledge

and Information Systems, Submitted, 2015.

[6] Cristina Pérez-Solà and Jordi Herrera-Joancomart́ı. Improving Relational

Classification Using Link Prediction Techniques. In Hendrik Blockeel,

Kristian Kersting, Siegfried Nijssen, and Filip Železný, editors, Proceed-

ings of the 5th European Conference on Machine Learning and Princi-

ples and Practice of Knowledge Discovery in Databases, volume 8188 of

Lecture Notes in Computer Science, pages 590–605, Berlin, Heidelberg,

September 2013. Springer Berlin / Heidelberg. ISBN 978-3-642-40987-5.

doi: 10.1007/978-3-642-40988-2 38. URL http://dx.doi.org/10.1007/

978-3-642-40988-2_38.

[7] Cristina Pérez-Solà and Jordi Herrera-Joancomart́ı. Improving Automatic

Edge Selection for Relational Classification. In V. Torra, Y. Narukawa,

G. Navarro-Arribas, and D. Meǵıas, editors, Proceedings of the 10th In-

ternational Conference on Modeling Decisions for Artificial Intelligence,

volume 8234 of Lecture Notes in Computer Science, pages 284–293,

Berlin, Heidelberg, November 2013. Springer Berlin / Heidelberg. ISBN

978-3-642-41549-4. URL http://link.springer.com/chapter/10.1007%

2F978-3-642-41550-0_25.

http://dx.doi.org/10.1002/int.21594
http://dx.doi.org/10.1007/978-3-642-37119-6_8
http://dx.doi.org/10.1007/978-3-642-40988-2_38
http://dx.doi.org/10.1007/978-3-642-40988-2_38
http://link.springer.com/chapter/10.1007%2F978-3-642-41550-0_25
http://link.springer.com/chapter/10.1007%2F978-3-642-41550-0_25

Bibliography 179

[8] Ero Balsa, Cristina Pérez-Solà, and Claudia Diaz. Towards inferring commu-

nication patterns in online social networks. ACM Transactions on Internet

Technology, Submitted, 2015.

[9] Cristina Pérez-Solà and Jordi Casas-Roma. Análisis de datos de redes so-

ciales. Manuals. Editorial UOC, 2016. To appear.

[10] Cristina Pérez-Solà, Jordi Conesa i Caralt, and M. Elena Rodŕıguez. ¿Cómo

usar una base de datos en grafo? H2PAC. Editorial UOC, 2015. To appear.

[11] Iraklis Symeonidis, Fateme Shirazi, Gergely Biczók, Cristina Pérez-Solà, and

Bart Preneel. Collateral damage of facebook apps: Friends, providers, and

privacy interdependence. In IFIP Advances in Information and Communi-

cation Technology, To Appear, volume 471. Springer, 2016.

[12] Cristina Pérez-Solà and Jordi Herrera-Joancomart́ı. Bitcoin y el prob-

lema de los generales Bizantinos. In R. Álvarez, J. Climent, F. Ferrández,

F. Mart́ınez, L. Tortosa, J. Vicent, and A. Zamora, editors, Actas de la XIII

Reunión Española de Criptoloǵıa y Seguridad de la Información (RECSI

2014), pages 241–246, Campus de San Vicente, s/n, 03690 San Vicente del

Raspeig, Septiembre 2014. Publicaciones Universidad de Alicante. ISBN

978-84-9717-323-0. URL http://hdl.handle.net/10045/40444.

[13] Joan Antoni Donet Donet, Cristina Pérez-Solà, and Jordi Herrera-

Joancomart́ı. The Bitcoin P2P network. In Financial Cryptography and

Data Security, volume 8438 of Lecture Notes on Computer Science, pages

87 – 102, Berlin, Heidelberg, October 2014. Springer Berlin / Heidelberg.

ISBN 978-3-662-44773-4. doi: 10.1007/978-3-662-44774-1 7. URL http:

//link.springer.com/chapter/10.1007%2F978-3-662-44774-1_7.

http://hdl.handle.net/10045/40444
http://link.springer.com/chapter/10.1007%2F978-3-662-44774-1_7
http://link.springer.com/chapter/10.1007%2F978-3-662-44774-1_7

Bibliography

[14] Carter Jernigan and Behram F. T. Mistree. Gaydar: Facebook friendships

expose sexual orientation. First Monday, 14(10), 2009. doi: http://dx.

doi.org/10.5210/fm.v14i10.2611. URL http://firstmonday.org/htbin/

cgiwrap/bin/ojs/index.php/fm/article/view/2611.

[15] Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts

in mathematics. Springer, 2012. ISBN 978-3-642-14278-9. URL http:

//diestel-graph-theory.com/.

[16] Linton C. Freeman. Centrality in social networks conceptual clarifica-

tion. Social Networks, 1(3):215 – 239, 1978–1979. ISSN 0378-8733.

doi: http://dx.doi.org/10.1016/0378-8733(78)90021-7. URL http://www.

sciencedirect.com/science/article/pii/0378873378900217.

[17] Linton C. Freeman, Douglas Roeder, and Robert R. Mulholland. Centrality

in social networks: ii. experimental results. Social Networks, 2(2):119 – 141,

1979–1980. ISSN 0378-8733. doi: http://dx.doi.org/10.1016/0378-8733(79)

90002-9. URL http://www.sciencedirect.com/science/article/pii/

0378873379900029.

181

http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/2611
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/2611
http://diestel-graph-theory.com/
http://diestel-graph-theory.com/
http://www.sciencedirect.com/science/article/pii/0378873378900217
http://www.sciencedirect.com/science/article/pii/0378873378900217
http://www.sciencedirect.com/science/article/pii/0378873379900029
http://www.sciencedirect.com/science/article/pii/0378873379900029

Bibliography 182

[18] Mark E. J. Newman and Michelle Girvan. Finding and evaluating

community structure in networks. Phys. Rev. E, 69:026113, Feb 2004.

doi: 10.1103/PhysRevE.69.026113. URL http://link.aps.org/doi/10.

1103/PhysRevE.69.026113.

[19] Stanley Wasserman and Katherine Faust. Social network anal-

ysis : methods and applications. Structural analysis in the

social sciences. Cambridge University Press, November 1994.

ISBN 0521387078. URL http://www.cambridge.org/us/

academic/subjects/sociology/sociology-general-interest/

social-network-analysis-methods-and-applications?format=PB.

[20] Robert D. Luce and Albert Perry. A method of matrix analysis of group

structure. Psychometrika, 14(2):95–116–116, June 1949. ISSN 0033-

3123. doi: 10.1007/BF02289146. URL http://www.springerlink.com/

content/j7u53t8276412qp7/.

[21] Balabhaskar Balasundaram, Sergiy Butenko, and Illya V. Hicks. Clique

relaxations in social network analysis: The maximum k-plex problem. Oper.

Res., 59(1):133–142, January 2011. ISSN 0030-364X. doi: 10.1287/opre.

1100.0851. URL http://dx.doi.org/10.1287/opre.1100.0851.

[22] Danah Boyd and Nicole B. Ellison. Social network sites: Definition, history,

and scholarship. Journal of Computer-Mediated Communication, 13(1),

2007. URL http://jcmc.indiana.edu/vol13/issue1/boyd.ellison.

html.

[23] Tribe, Last accessed: January 2012. URL http://www.tribe.net.

[24] Friendster, Last accessed: May 2015. URL http://www.friendster.com.

[25] Facebook, Last accessed: May 2015. URL http://www.facebook.com.

[26] Flickr, Last accessed: May 2015. URL http://www.flickr.com.

[27] Lastfm, Last accessed: May 2015. URL http://www.lastfm.com.

[28] Twitter, Last accessed: May 2015. URL http://twitter.com.

[29] Alan Mislove, Massimiliano Marcon, Krishna P. Gummadi, Peter Druschel,

and Bobby Bhattacharjee. Measurement and analysis of online social

http://link.aps.org/doi/10.1103/PhysRevE.69.026113
http://link.aps.org/doi/10.1103/PhysRevE.69.026113
http://www.cambridge.org/us/academic/subjects/sociology/sociology-general-interest/social-network-analysis-methods-and-applications?format=PB
http://www.cambridge.org/us/academic/subjects/sociology/sociology-general-interest/social-network-analysis-methods-and-applications?format=PB
http://www.cambridge.org/us/academic/subjects/sociology/sociology-general-interest/social-network-analysis-methods-and-applications?format=PB
http://www.springerlink.com/content/j7u53t8276412qp7/
http://www.springerlink.com/content/j7u53t8276412qp7/
http://dx.doi.org/10.1287/opre.1100.0851
http://jcmc.indiana.edu/vol13/issue1/boyd.ellison.html
http://jcmc.indiana.edu/vol13/issue1/boyd.ellison.html
http://www.tribe.net
http://www.friendster.com
http://www.facebook.com
http://www.flickr.com
http://www.lastfm.com
http://twitter.com

Bibliography 183

networks. In IMC ’07: Proceedings of the 7th ACM SIGCOMM confer-

ence on Internet measurement, pages 29–42, New York, NY, USA, 2007.

ACM. ISBN 978-1-59593-908-1. doi: 10.1145/1298306.1298311. URL

http://dx.doi.org/10.1145/1298306.1298311.

[30] Alex Bavelas. Communication patterns in task oriented groups. Jour-

nal of the Acoustical Society of America, 22:271–282, 1950. URL

http://scitation.aip.org/content/asa/journal/jasa/22/6/10.

1121/1.1906679.

[31] Marvin E. Shaw. Group structure and the behavior of individ-

uals in small groups. Journal of Psychology, 38:139–149, 1954.

URL http://www.tandfonline.com/doi/abs/10.1080/00223980.1954.

9712925?journalCode=vjrl20#.Vvz9VmGLT3A.

[32] Alex Bavelas. A mathematical model for group structures. Human Orga-

nization, 7:16–30, 1948. URL http://www.sfaajournals.net/doi/pdf/

10.17730/humo.7.3.f4033344851gl053.

[33] Alfonso Shimbel. Structural parameters of communication networks. Bul-

letin of Mathematical Biophysics, 15:501–507, 1953. URL http://link.

springer.com/article/10.1007%2FBF02476438#page-1.

[34] Bernard S. Cohn and McKim Marriot. Networks and centers of integration

in Indian civilization. Journal of Social Research, 1:1–9, 1958.

[35] Twitter Inc. Twitter usage, Last accessed: October 2015. URL https:

//about.twitter.com/company.

[36] Erkan Yilmaz. Last.fm statistics, Last accessed: May 2015. URL http:

//www.skilledtests.com/wiki/Last.fm_statistics.

[37] Shaozhi Ye, Juan Lang, and Felix Wu. Crawling online social graphs. In

Proceedings of the 12th International Asia-Pacific Web Conference, April

2010. URL http://dl.acm.org/citation.cfm?id=1826337.

[38] Aleksandra Korolova, Rajeev Motwani, Shubha U. Nabar, and Ying Xu.

Link privacy in social networks. In CIKM ’08: Proceeding of the 17th

ACM conference on Information and knowledge management, pages 289–

298, New York, NY, USA, 2008. ACM. ISBN 978-1-59593-991-3. doi:

http://dx.doi.org/10.1145/1298306.1298311
http://scitation.aip.org/content/asa/journal/jasa/22/6/10.1121/1.1906679
http://scitation.aip.org/content/asa/journal/jasa/22/6/10.1121/1.1906679
http://www.tandfonline.com/doi/abs/10.1080/00223980.1954.9712925?journalCode=vjrl20#.Vvz9VmGLT3A
http://www.tandfonline.com/doi/abs/10.1080/00223980.1954.9712925?journalCode=vjrl20#.Vvz9VmGLT3A
http://www.sfaajournals.net/doi/pdf/10.17730/humo.7.3.f4033344851gl053
http://www.sfaajournals.net/doi/pdf/10.17730/humo.7.3.f4033344851gl053
http://link.springer.com/article/10.1007%2FBF02476438#page-1
http://link.springer.com/article/10.1007%2FBF02476438#page-1
https://about.twitter.com/company
https://about.twitter.com/company
http://www.skilledtests.com/wiki/Last.fm_statistics
http://www.skilledtests.com/wiki/Last.fm_statistics
http://dl.acm.org/citation.cfm?id=1826337

Bibliography 184

10.1145/1458082.1458123. URL http://dx.doi.org/10.1145/1458082.

1458123.

[39] Przemyslaw Kazienko and Tomasz Kajdanowicz. Label-dependent

node classification in the network. Neurocomputing, 75(1):199 – 209,

2012. ISSN 0925-2312. doi: http://dx.doi.org/10.1016/j.neucom.2011.

04.047. URL http://www.sciencedirect.com/science/article/pii/

S092523121100508X. Brazilian Symposium on Neural Networks (SBRN

2010) International Conference on Hybrid Artificial Intelligence Systems

(HAIS 2010).

[40] Sofus A. Macskassy and Foster Provost. Classification in networked data: A

toolkit and a univariate case study. J. Mach. Learn. Res., 8:935–983, May

2007. ISSN 1532-4435. URL http://portal.acm.org/citation.cfm?id=

1248693.

[41] Albert-László Barabási and Réka Albert. Emergence of scaling in random

networks. Science, 286(5439):509–512, 1999. URL http://barabasi.com/

f/67.pdf.

[42] Emilio Ferrara and Giacomo Fiumara. Topological Features of Online Social

Networks. CoRR, abs/1202.0331, 2012. URL http://arxiv.org/abs/

1202.0331.

[43] Yong-Yeol Ahn, Seungyeop Han, Haewoon Kwak, Sue Moon, and Ha-

woong Jeong. Analysis of topological characteristics of huge online so-

cial networking services. In Proceedings of the 16th international con-

ference on World Wide Web, pages 835–844. ACM, 2007. URL http:

//www2007.org/papers/paper676.pdf.

[44] Christo Wilson, Bryce Boe, Alessandra Sala, Krishna P.N. Puttaswamy,

and Ben Y. Zhao. User interactions in social networks and their implica-

tions. In Proceedings of the 4th ACM European conference on Computer

systems, EuroSys ’09, pages 205–218, New York, NY, USA, 2009. ACM.

ISBN 978-1-60558-482-9. URL http://doi.acm.org/10.1145/1519065.

1519089.

[45] Akshay Java, Xiaodan Song, Tim Finin, and Belle Tseng. Why we twitter:

Understanding microblogging usage and communities. In Proceedings of the

http://dx.doi.org/10.1145/1458082.1458123
http://dx.doi.org/10.1145/1458082.1458123
http://www.sciencedirect.com/science/article/pii/S092523121100508X
http://www.sciencedirect.com/science/article/pii/S092523121100508X
http://portal.acm.org/citation.cfm?id=1248693
http://portal.acm.org/citation.cfm?id=1248693
http://barabasi.com/f/67.pdf
http://barabasi.com/f/67.pdf
http://arxiv.org/abs/1202.0331
http://arxiv.org/abs/1202.0331
http://www2007.org/papers/paper676.pdf
http://www2007.org/papers/paper676.pdf
http://doi.acm.org/10.1145/1519065.1519089
http://doi.acm.org/10.1145/1519065.1519089

Bibliography 185

9th WebKDD and 1st SNA-KDD 2007 Workshop on Web Mining and Social

Network Analysis, WebKDD/SNA-KDD ’07, pages 56–65, New York, NY,

USA, 2007. ACM. ISBN 978-1-59593-848-0. doi: 10.1145/1348549.1348556.

URL http://doi.acm.org/10.1145/1348549.1348556.

[46] V. Zlatić, M. Božičević, H. Štefančić, and M. Domazet. Wikipedias: Col-

laborative web-based encyclopedias as complex networks. Phys. Rev. E,

74:016115, Jul 2006. doi: 10.1103/PhysRevE.74.016115. URL http:

//link.aps.org/doi/10.1103/PhysRevE.74.016115.

[47] Matti Peltomäki and Mikko Alava. Correlations in bipartite collabora-

tion networks. Journal of Statistical Mechanics: Theory and Experiment,

2006(01):P01010, 2006. URL http://stacks.iop.org/1742-5468/2006/

i=01/a=P01010.

[48] Xiaolin Shi, Belle L. Tseng, and Lada A. Adamic. Looking at the blogo-

sphere topology through different lenses. In Proceedings of the First Inter-

national Conference on Weblogs and Social Media, ICWSM 2007, Boulder,

Colorado, USA, March 26-28, 2007, 2007. URL http://www.icwsm.org/

papers/paper14.html.

[49] Duncan J. Watts and Steven H. Strogatz. Collective dynamics of “small-

world” networks. Nature, 393(6684):440–442, 1998.

[50] Christofer R. Edling and Fredrik Liljeros. Structure and time evolu-

tion of an internet dating community. http://arxiv.org/pdf/cond-mat/

0210514.pdf, 2003.

[51] Lada A. Adamic, Orkut Buyukkokten, and Eytan Adar. A social network

caught in the web. First Monday, 8(6), June 2003. URL http://www.

firstmonday.org/issues/issue8_6/adamic/.

[52] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. What is

Twitter, a social network or a news media? In Proceedings of the 19th

International Conference on World Wide Web, WWW ’10, pages 591–600,

New York, NY, USA, 2010. ACM. ISBN 978-1-60558-799-8. doi: 10.1145/

1772690.1772751. URL http://doi.acm.org/10.1145/1772690.1772751.

[53] Meeyoung Cha, Alan Mislove, and Krishna P. Gummadi. A measurement-

driven analysis of information propagation in the Flickr social network.

http://doi.acm.org/10.1145/1348549.1348556
http://link.aps.org/doi/10.1103/PhysRevE.74.016115
http://link.aps.org/doi/10.1103/PhysRevE.74.016115
http://stacks.iop.org/1742-5468/2006/i=01/a=P01010
http://stacks.iop.org/1742-5468/2006/i=01/a=P01010
http://www.icwsm.org/papers/paper14.html
http://www.icwsm.org/papers/paper14.html
http://arxiv.org/pdf/cond-mat/0210514.pdf
http://arxiv.org/pdf/cond-mat/0210514.pdf
http://www.firstmonday.org/issues/issue8_6/adamic/
http://www.firstmonday.org/issues/issue8_6/adamic/
http://doi.acm.org/10.1145/1772690.1772751

Bibliography 186

In Proceedings of the 18th International Conference on World Wide Web,

WWW ’09, pages 721–730, New York, NY, USA, 2009. ACM. ISBN 978-1-

60558-487-4. doi: 10.1145/1526709.1526806. URL http://doi.acm.org/

10.1145/1526709.1526806.

[54] Johan Ugander, Brian Karrer, Lars Backstrom, and Cameron Marlow. The

anatomy of the Facebook social graph. arXiv preprint arXiv:1111.4503,

2011. URL http://arxiv.org/abs/1111.4503.

[55] Lars Backstrom, Paolo Boldi, Marco Rosa, Johan Ugander, and Sebastiano

Vigna. Four degrees of separation. In Proceedings of the 4th Annual ACM

Web Science Conference, WebSci ’12, pages 33–42, New York, NY, USA,

2012. ACM. ISBN 978-1-4503-1228-8. doi: 10.1145/2380718.2380723. URL

http://doi.acm.org/10.1145/2380718.2380723.

[56] Alan Mislove, Hema Swetha Koppula, Krishna P Gummadi, Peter Dr-

uschel, and Bobby Bhattacharjee. Growth of the Flickr social network.

In Proceedings of the First Workshop on Online Social Networks, pages

25–30. ACM, 2008. URL https://www.mpi-sws.org/~gummadi/papers/

Growth-WOSN.pdf.

[57] Balachander Krishnamurthy, Phillipa Gill, and Martin Arlitt. A few chirps

about twitter. In WOSP ’08: Proceedings of the First Workshop on Online

Social Networks, pages 19–24, New York, NY, USA, 2008. ACM. ISBN

978-1-60558-182-8. doi: 10.1145/1397735.1397741. URL http://dx.doi.

org/10.1145/1397735.1397741.

[58] D. Garlaschelli, G. Caldarelli, and L. Pietronero. Patterns of link reciprocity

in directed networks. Physical Review Letters, 93, 2004. URL http://

arxiv.org/abs/cond-mat/0404521.

[59] Jianshu Weng, Ee-Peng Lim, Jing Jiang, and Qi He. Twitterrank: Finding

topic-sensitive influential twitterers. In Proceedings of the Third ACM In-

ternational Conference on Web Search and Data Mining, WSDM ’10, pages

261–270, New York, NY, USA, 2010. ACM. ISBN 978-1-60558-889-6. doi:

10.1145/1718487.1718520. URL http://doi.acm.org/10.1145/1718487.

1718520.

http://doi.acm.org/10.1145/1526709.1526806
http://doi.acm.org/10.1145/1526709.1526806
http://arxiv.org/abs/1111.4503
http://doi.acm.org/10.1145/2380718.2380723
https://www.mpi-sws.org/~gummadi/papers/Growth-WOSN.pdf
https://www.mpi-sws.org/~gummadi/papers/Growth-WOSN.pdf
http://dx.doi.org/10.1145/1397735.1397741
http://dx.doi.org/10.1145/1397735.1397741
http://arxiv.org/abs/cond-mat/0404521
http://arxiv.org/abs/cond-mat/0404521
http://doi.acm.org/10.1145/1718487.1718520
http://doi.acm.org/10.1145/1718487.1718520

Bibliography 187

[60] Mark E. J. Newman. Assortative mixing in networks. Phys. Rev. Lett.,

89:208701, Oct 2002. doi: 10.1103/PhysRevLett.89.208701. URL http:

//link.aps.org/doi/10.1103/PhysRevLett.89.208701.

[61] Minas Gjoka, Maciej Kurant, Carter T. Butts, and Athina Markopoulou.

Unbiased sampling of Facebook. arXiv preprint arXiv:0906.0060, 2009.

[62] Mark E. J. Newman and Juyong Park. Why social networks are different

from other types of networks. Physical Review E, 68(3):36122, 2003.

URL http://scholar.google.de/scholar.bib?q=info:Ep_ADiiiopYJ:

scholar.google.com/&output=citation&hl=de&as_sdt=2000&ct=

citation&cd=0.

[63] Haewoon Kwak, Seungyeop Han, Yong yeol Ahn, Sue Moon, and Hawoong

Jeong. Impact of snowball sampling ratios on network characteristics esti-

mation: A case study of Cyworld. Technical report, KAIST, Department

of Computer Science, 2006.

[64] Ravi Kumar, Jasmine Novak, Prabhakar Raghavan, and Andrew Tomkins.

Structure and evolution of blogspace. Commun. ACM, 47(12):35–39, De-

cember 2004. ISSN 0001-0782. doi: 10.1145/1035134.1035162. URL

http://doi.acm.org/10.1145/1035134.1035162.

[65] Lars Backstrom, Dan Huttenlocher, Jon Kleinberg, and Xiangyang Lan.

Group formation in large social networks: Membership, growth, and evolu-

tion. In Proceedings of the 12th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, KDD ’06, pages 44–54, New York,

NY, USA, 2006. ACM. ISBN 1-59593-339-5. doi: 10.1145/1150402.1150412.

URL http://doi.acm.org/10.1145/1150402.1150412.

[66] Michelle Girvan and Mark E. J. Newman. Community structure in social

and biological networks. Proceedings of the National Academy of Sciences,

99(12):7821–7826, 2002. doi: 10.1073/pnas.122653799. URL http://www.

pnas.org/content/99/12/7821.abstract.

[67] Ravi Kumar, Jasmine Novak, Prabhakar Raghavan, and Andrew Tomkins.

On the bursty evolution of blogspace. In Proceedings of the 12th Interna-

tional Conference on World Wide Web, WWW ’03, pages 568–576, New

York, NY, USA, 2003. ACM. ISBN 1-58113-680-3. doi: 10.1145/775152.

775233. URL http://doi.acm.org/10.1145/775152.775233.

http://link.aps.org/doi/10.1103/PhysRevLett.89.208701
http://link.aps.org/doi/10.1103/PhysRevLett.89.208701
http://scholar.google.de/scholar.bib?q=info:Ep_ADiiiopYJ:scholar.google.com/&output=citation&hl=de&as_sdt=2000&ct=citation&cd=0
http://scholar.google.de/scholar.bib?q=info:Ep_ADiiiopYJ:scholar.google.com/&output=citation&hl=de&as_sdt=2000&ct=citation&cd=0
http://scholar.google.de/scholar.bib?q=info:Ep_ADiiiopYJ:scholar.google.com/&output=citation&hl=de&as_sdt=2000&ct=citation&cd=0
http://doi.acm.org/10.1145/1035134.1035162
http://doi.acm.org/10.1145/1150402.1150412
http://www.pnas.org/content/99/12/7821.abstract
http://www.pnas.org/content/99/12/7821.abstract
http://doi.acm.org/10.1145/775152.775233

Bibliography 188

[68] Fabŕıcio Benevenuto, Tiago Rodrigues, Meeyoung Cha, and Virǵılio

Almeida. Characterizing user behavior in online social networks. In Pro-

ceedings of the 9th ACM SIGCOMM conference on Internet measurement

conference, pages 49–62. ACM, 2009. URL http://pages.cs.wisc.edu/

~akella/CS740/S12/740-Papers/BEN+09.pdf.

[69] Fabŕıcio Benevenuto, Tiago Rodrigues, Meeyoung Cha, and Virǵılio A. F.

Almeida. Characterizing user navigation and interactions in online social

networks. Inf. Sci., 195:1–24, 2012.

[70] László Gyarmati and Tuan Anh Trinh. Measuring user behavior in online

social networks. IEEE Network, 24(5):26–31, 2010. URL http://dx.doi.

org/10.1109/MNET.2010.5578915.

[71] Hyunwoo Chun, Haewoon Kwak, Young-Ho Eom, Yong-Yeol Ahn, Sue B.

Moon, and Hawoong Jeong. Comparison of online social relations in vol-

ume vs interaction: a case study of cyworld. In Konstantina Papagiannaki

and Zhi-Li Zhang, editors, Internet Measurement Comference, pages 57–

70. ACM, 2008. ISBN 978-1-60558-334-1. URL http://doi.acm.org/10.

1145/1452520.1452528.

[72] Scott A. Golder, Dennis M. Wilkinson, and Bernardo A. Huberman.

Rhythms of social interaction: messaging within a massive online network.

CoRR, abs/cs/0611137, 2006. URL http://www.hpl.hp.com/research/

idl/papers/facebook/facebook.pdf.

[73] Jing Jiang, Christo Wilson, Xiao Wang, Peng Huang, Wenpeng Sha, Yafei

Dai, and Ben Y. Zhao. Understanding latent interactions in online social

networks. In Proceedings of the 10th ACM SIGCOMM conference on In-

ternet measurement, IMC ’10, pages 369–382, New York, NY, USA, 2010.

ACM. ISBN 978-1-4503-0483-2. URL http://doi.acm.org/10.1145/

1879141.1879190.

[74] Bimal Viswanath, Alan Mislove, Meeyoung Cha, and Krishna P. Gummadi.

On the evolution of user interaction in Facebook. In Proceedings of the

2nd ACM workshop on Online social networks, WOSN ’09, pages 37–42,

New York, NY, USA, 2009. ACM. ISBN 978-1-60558-445-4. URL http:

//doi.acm.org/10.1145/1592665.1592675.

http://pages.cs.wisc.edu/~akella/CS740/S12/740-Papers/BEN+09.pdf
http://pages.cs.wisc.edu/~akella/CS740/S12/740-Papers/BEN+09.pdf
http://dx.doi.org/10.1109/MNET.2010.5578915
http://dx.doi.org/10.1109/MNET.2010.5578915
http://doi.acm.org/10.1145/1452520.1452528
http://doi.acm.org/10.1145/1452520.1452528
http://www.hpl.hp.com/research/idl/papers/facebook/facebook.pdf
http://www.hpl.hp.com/research/idl/papers/facebook/facebook.pdf
http://doi.acm.org/10.1145/1879141.1879190
http://doi.acm.org/10.1145/1879141.1879190
http://doi.acm.org/10.1145/1592665.1592675
http://doi.acm.org/10.1145/1592665.1592675

Bibliography 189

[75] Daniel Sousa, Lúıs Sarmento, and Eduarda Mendes Rodrigues. Charac-

terization of the Twitter @replies network: are user ties social or topical?

In Proceedings of the 2nd international workshop on Search and mining

user-generated contents, SMUC ’10, pages 63–70, New York, NY, USA,

2010. ACM. ISBN 978-1-4503-0386-6. URL http://doi.acm.org/10.

1145/1871985.1871996.

[76] Elena Zheleva and Lise Getoor. Privacy in social networks: A

survey. In Charu C. Aggarwal, editor, Social Network Data Ana-

lytics, pages 277–306. Springer US, 2011. ISBN 978-1-4419-8461-6.

doi: 10.1007/978-1-4419-8462-3 10. URL http://dx.doi.org/10.1007/

978-1-4419-8462-3_10.

[77] Alan Mislove, Bimal Viswanath, Krishna P. Gummadi, and Peter Druschel.

You are who you know: inferring user profiles in online social networks.

In Proceedings of the third ACM international conference on Web search

and data mining, WSDM ’10, pages 251–260, New York, NY, USA, 2010.

ACM. ISBN 978-1-60558-889-6. doi: 10.1145/1718487.1718519. URL http:

//dx.doi.org/10.1145/1718487.1718519.

[78] Elena Zheleva and Lise Getoor. To join or not to join: the illusion of

privacy in social networks with mixed public and private user profiles.

In Proceedings of the 18th international conference on World wide web,

pages 531–540. ACM, 2009. URL http://linqs.cs.umd.edu/basilic/

web/Publications/2009/zheleva:www09/.

[79] Jianming He, Wesley W Chu, and Zhenyu Victor Liu. Inferring privacy

information from social networks. In Intelligence and Security Informatics,

pages 154–165. Springer, 2006. URL http://www.cobase.cs.ucla.edu/

tech-docs/jmhek/inferring_privacy_isi2006.pdf.

[80] Raymond Heatherly, Murat Kantarcioglu, and Bhavani Thuraisingham.

Preventing private information inference attacks on social networks. Knowl-

edge and Data Engineering, IEEE Transactions on, 25(8):1849–1862,

2013. URL http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=

6226400.

http://doi.acm.org/10.1145/1871985.1871996
http://doi.acm.org/10.1145/1871985.1871996
http://dx.doi.org/10.1007/978-1-4419-8462-3_10
http://dx.doi.org/10.1007/978-1-4419-8462-3_10
http://dx.doi.org/10.1145/1718487.1718519
http://dx.doi.org/10.1145/1718487.1718519
http://linqs.cs.umd.edu/basilic/web/Publications/2009/zheleva:www09/
http://linqs.cs.umd.edu/basilic/web/Publications/2009/zheleva:www09/
http://www.cobase.cs.ucla.edu/tech-docs/jmhek/inferring_privacy_isi2006.pdf
http://www.cobase.cs.ucla.edu/tech-docs/jmhek/inferring_privacy_isi2006.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6226400
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6226400

Bibliography 190

[81] Abdelberi Chaabane, Gergely Acs, Mohamed Ali Kaafar, et al. You are

what you like! Information leakage through users’ interests. In Proceed-

ings of the 19th Annual Network & Distributed System Security Sympo-

sium (NDSS), 2012. URL https://www.crysys.hu/~acs/publications/

ChaabaneAK11ndss.pdf.

[82] Lars Backstrom, Cynthia Dwork, and Jon Kleinberg. Wherefore art thou

r3579x?: Anonymized social networks, hidden patterns, and structural

steganography. In WWW ’07: Proceedings of the 16th International Con-

ference on World Wide Web, pages 181–190, New York, NY, USA, 2007.

ACM. ISBN 978-1-59593-654-7. doi: 10.1145/1242572.1242598. URL

http://dx.doi.org/10.1145/1242572.1242598.

[83] Arvind Narayanan and Vitaly Shmatikov. De-anonymizing social networks.

In SP ’09: Proceedings of the 2009 30th IEEE Symposium on Security and

Privacy, pages 173–187, Washington DC, USA, Mar 2009. IEEE Com-

puter Society. ISBN 978-0-7695-3633-0. URL http://arxiv.org/abs/

0903.3276.

[84] Arvind Narayanan and Vitaly Shmatikov. How to break anonymity of

the netflix prize dataset. arxiv preprint cs/0610105, 2006. URL http:

//arxiv.org/pdf/cs/0610105.pdf.

[85] Michael Hay, Gerome Miklau, David Jensen, Philipp Weis, and Sid-

dharth Srivastava. Anonymizing Social Networks. SCIENCE, 245:107–

3, 2007. URL http://scholarworks.umass.edu/cgi/viewcontent.cgi?

article=1175;context=cs_faculty_pubs.

[86] Michael Hay, Gerome Miklau, David Jensen, Don Towsley, and Philipp

Weis. Resisting structural re-identification in anonymized social net-

works. Proc. VLDB Endow., 1(1):102–114, August 2008. ISSN 2150-

8097. doi: 10.14778/1453856.1453873. URL http://dx.doi.org/10.

14778/1453856.1453873.

[87] Elena Zheleva and Lise Getoor. Preserving the privacy of sensi-

tive relationships in graph data. In Francesco Bonchi, Elena Fer-

rari, Bradley Malin, and Yücel Saygin, editors, Proceedings of the

First International Workshop on Privacy, Security, and Trust in

KDD, volume 4890 of Lecture Notes in Computer Science, pages

https://www.crysys.hu/~acs/publications/ChaabaneAK11ndss.pdf
https://www.crysys.hu/~acs/publications/ChaabaneAK11ndss.pdf
http://dx.doi.org/10.1145/1242572.1242598
http://arxiv.org/abs/0903.3276
http://arxiv.org/abs/0903.3276
http://arxiv.org/pdf/cs/0610105.pdf
http://arxiv.org/pdf/cs/0610105.pdf
http://scholarworks.umass.edu/cgi/viewcontent.cgi?article=1175;context=cs_faculty_pubs
http://scholarworks.umass.edu/cgi/viewcontent.cgi?article=1175;context=cs_faculty_pubs
http://dx.doi.org/10.14778/1453856.1453873
http://dx.doi.org/10.14778/1453856.1453873

Bibliography 191

153–171, Berlin, Heidelberg, August 2007. Springer Berlin Heidel-

berg. ISBN 978-3-540-78477-7. doi: 10.1007/978-3-540-78478-4

9. URL http://waimea.cs.umd.edu:8080/basilic/web/Publications/

2008/zheleva:kdd07-lncs/zheleva-pinkdd07-extended.ps.

[88] Latanya Sweeney. K-anonymity: A model for protecting privacy. Int.

J. Uncertain. Fuzziness Knowl.-Based Syst., 10(5):557–570, October 2002.

ISSN 0218-4885. doi: 10.1142/S0218488502001648. URL http://dx.doi.

org/10.1142/S0218488502001648.

[89] Pierangela Samarati and Latanya Sweeney. Protecting privacy when dis-

closing information: k-anonymity and its enforcement through generaliza-

tion and suppression. Technical Report SRI-CSL-98-04, SRI Computer

Science Department, Palo Alto, California, 1998. URL https://epic.

org/privacy/reidentification/Samarati_Sweeney_paper.pdf.

[90] Latanya Sweeney. Achieving k-anonymity privacy protection us-

ing generalization and suppression. Int. J. Uncertain. Fuzziness

Knowl.-Based Syst., 10(5):571–588, October 2002. ISSN 0218-4885.

doi: 10.1142/S021848850200165X. URL http://dx.doi.org/10.1142/

S021848850200165X.

[91] Ashwin Machanavajjhala, Daniel Kifer, Johannes Gehrke, and Muthu-

ramakrishnan Venkitasubramaniam. L-diversity: Privacy beyond k-

anonymity. ACM Transactions on Knowledge Discovery from Data, 1

(1), March 2007. ISSN 1556-4681. doi: 10.1145/1217299.1217302. URL

http://doi.acm.org/10.1145/1217299.1217302.

[92] Ninghui Li and Tiancheng Li. t-closeness: Privacy beyond k-anonymity

and l-diversity. In In Proceedings of the IEEE 23rd International Con-

ference on Data Engineering (ICDE’07), pages 106–115, 2007. URL

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4221659.

[93] Xiaokui Xiao and Yufei Tao. M-invariance: Towards privacy preserving re-

publication of dynamic datasets. In Proceedings of the 2007 ACM SIGMOD

International Conference on Management of Data, SIGMOD ’07, pages

689–700, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-686-8. doi:

10.1145/1247480.1247556. URL http://doi.acm.org/10.1145/1247480.

1247556.

http://waimea.cs.umd.edu:8080/basilic/web/Publications/2008/zheleva:kdd07-lncs/zheleva-pinkdd07-extended.ps
http://waimea.cs.umd.edu:8080/basilic/web/Publications/2008/zheleva:kdd07-lncs/zheleva-pinkdd07-extended.ps
http://dx.doi.org/10.1142/S0218488502001648
http://dx.doi.org/10.1142/S0218488502001648
https://epic.org/privacy/reidentification/Samarati_Sweeney_paper.pdf
https://epic.org/privacy/reidentification/Samarati_Sweeney_paper.pdf
http://dx.doi.org/10.1142/S021848850200165X
http://dx.doi.org/10.1142/S021848850200165X
http://doi.acm.org/10.1145/1217299.1217302
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4221659
http://doi.acm.org/10.1145/1247480.1247556
http://doi.acm.org/10.1145/1247480.1247556

Bibliography 192

[94] Traian Marius Truta and Bindu Vinay. Privacy protection: p-sensitive

k-anonymity property. In In Proceedings of 22nd IEEE International

Conference on Data Engineering Workshops, page 94. IEEE Computer

Society, 2006. URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?

arnumber=1623889.

[95] Kun Liu and Evimaria Terzi. Towards identity anonymization on graphs.

In SIGMOD ’08: Proceedings of the 2008 ACM SIGMOD international

conference on Management of data, pages 93–106, New York, NY, USA,

2008. ACM. ISBN 978-1-60558-102-6. doi: 10.1145/1376616.1376629. URL

http://dx.doi.org/10.1145/1376616.1376629.

[96] Bin Zhou and Jian Pei. Preserving privacy in social networks against

neighborhood attacks. In Proceedings of the 2008 IEEE 24th International

Conference on Data Engineering, ICDE ’08, pages 506–515, Washington,

DC, USA, 2008. IEEE Computer Society. ISBN 978-1-4244-1836-7. doi:

10.1109/ICDE.2008.4497459. URL http://dx.doi.org/10.1109/ICDE.

2008.4497459.

[97] Xintao Wu, Xiaowei Ying, Kun Liu, and Lei Chen. A survey of privacy-

preservation of graphs and social networks. In Charu C. Aggarwal and

Haixun Wang, editors, Managing and Mining Graph Data, volume 40 of

Advances in Database Systems, pages 421–453. Springer US, 2010. ISBN

978-1-4419-6044-3. doi: 10.1007/978-1-4419-6045-0 14. URL http://dx.

doi.org/10.1007/978-1-4419-6045-0_14.

[98] Lei Zou, Lei Chen, and M. Tamer Özsu. k-automorphism: a general

framework for privacy preserving network publication. Proceedings of the

VLDB Endowment, 2(1):946–957, August 2009. ISSN 2150-8097. URL

http://dl.acm.org/citation.cfm?id=1687627.1687734.

[99] Roy Ford, Traian Marius Truta, and Alina Campan. P-sensitive k-

anonymity for social networks. In DMIN, pages 403–409, 2009. URL

http://www.nku.edu/~trutat1/papers/DMIN09_ford.pdf.

[100] Graham Cormode, Divesh Srivastava, Ting Yu, and Qing Zhang.

Anonymizing bipartite graph data using safe groupings. The VLDB Jour-

nal, 19(1):115–139, 2010. ISSN 1066-8888. doi: 10.1007/s00778-009-0167-9.

URL http://dx.doi.org/10.1007/s00778-009-0167-9.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1623889
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1623889
http://dx.doi.org/10.1145/1376616.1376629
http://dx.doi.org/10.1109/ICDE.2008.4497459
http://dx.doi.org/10.1109/ICDE.2008.4497459
http://dx.doi.org/10.1007/978-1-4419-6045-0_14
http://dx.doi.org/10.1007/978-1-4419-6045-0_14
http://dl.acm.org/citation.cfm?id=1687627.1687734
http://www.nku.edu/~trutat1/papers/DMIN09_ford.pdf
http://dx.doi.org/10.1007/s00778-009-0167-9

Bibliography 193

[101] Jordi Casas-Roma, Jordi Herrera-Joancomart́ı, and Vicenç Torra. An al-

gorithm for k-degree anonymity on large networks. In Proceedings of the

2013 IEEE/ACM International Conference on Advances in Social Networks

Analysis and Mining, ASONAM ’13, pages 671–675, New York, NY, USA,

2013. ACM. ISBN 978-1-4503-2240-9. doi: 10.1145/2492517.2492643. URL

http://doi.acm.org/10.1145/2492517.2492643.

[102] Jordi Casas-Roma, Jordi Herrera-Joancomart́ı, and Vicenç Torra.

Anonymizing graphs: measuring quality for clustering. Knowledge

and Information Systems, 44(3):507–528, 2015. ISSN 0219-1377.

doi: 10.1007/s10115-014-0774-7. URL http://dx.doi.org/10.1007/

s10115-014-0774-7.

[103] Thomas Paul, Antonino Famulari, and Thorsten Strufe. A survey on decen-

tralized online social networks. Computer Networks, 75, Part A(0):437–452,

2014. ISSN 1389-1286. URL http://www.sciencedirect.com/science/

article/pii/S1389128614003600.

[104] Sonja Buchegger, Doris Schiöberg, Le-Hung Vu, and Anwitaman Datta.

Peerson: P2P social networking: Early experiences and insights. In Pro-

ceedings of the Second ACM EuroSys Workshop on Social Network Systems,

SNS ’09, pages 46–52, New York, NY, USA, 2009. ACM. ISBN 978-1-

60558-463-8. doi: 10.1145/1578002.1578010. URL http://doi.acm.org/

10.1145/1578002.1578010.

[105] Amre Shakimov, Harold Lim, Ramón Cáceres, On P. Cox, Kevin Li, Dong-

tao Liu, and Er Varshavsky. Vis-à-vis: Privacy-preserving online social

networking via virtual individual servers. In In COMSNETS, 2011. URL

https://users.cs.duke.edu/~harold/my_papers/comsnets11.pdf.

[106] Diaspora, Last accessed: March 2016. URL https://joindiaspora.com/.

[107] Ames Bielenberg, Lara Helm, Anthony Gentilucci, Dan Stefanescu, and

Honggang Zhang. The growth of Diaspora - A decentralized online social

network in the wild. In 2012 Proceedings IEEE INFOCOM Workshops,

Orlando, FL, USA, March 25-30, 2012, pages 13–18, 2012. doi: 10.1109/

INFCOMW.2012.6193476. URL http://dx.doi.org/10.1109/INFCOMW.

2012.6193476.

http://doi.acm.org/10.1145/2492517.2492643
http://dx.doi.org/10.1007/s10115-014-0774-7
http://dx.doi.org/10.1007/s10115-014-0774-7
http://www.sciencedirect.com/science/article/pii/S1389128614003600
http://www.sciencedirect.com/science/article/pii/S1389128614003600
http://doi.acm.org/10.1145/1578002.1578010
http://doi.acm.org/10.1145/1578002.1578010
https://users.cs.duke.edu/~harold/my_papers/comsnets11.pdf
https://joindiaspora.com/
http://dx.doi.org/10.1109/INFCOMW.2012.6193476
http://dx.doi.org/10.1109/INFCOMW.2012.6193476

Bibliography 194

[108] Kalman Graffi, Christian Gross, Dominik Stingl, Daniel Hartung, Aleksan-

dra Kovacevic, and Ralf Steinmetz. LifeSocial.KOM: A secure and P2P-

based solution for online social networks. In IEEE Consumer Communi-

cations and Networking Conference (CCNC), pages 554–558, 2011. doi:

10.1109/CCNC.2011.5766541. URL http://ieeexplore.ieee.org/xpl/

articleDetails.jsp?arnumber=5766541.

[109] Luca Maria Aiello and Giancarlo Ruffo. LotusNet: Tunable privacy for

distributed online social network services. Comput. Commun., 35(1):75–

88, January 2012. ISSN 0140-3664. doi: 10.1016/j.comcom.2010.12.006.

URL http://dx.doi.org/10.1016/j.comcom.2010.12.006.

[110] Nicolas Kourtellis, Joshua Finnis, Paul Anderson, Jeremy Blackburn,

Cristian Borcea, and Adriana Iamnitchi. Middleware 2010: ACM/I-

FIP/USENIX 11th International Middleware Conference, Bangalore, In-

dia, November 29 - December 3, 2010. Proceedings, chapter Prometheus:

User-Controlled P2P Social Data Management for Socially-Aware Appli-

cations, pages 212–231. Springer Berlin Heidelberg, Berlin, Heidelberg,

2010. ISBN 978-3-642-16955-7. doi: 10.1007/978-3-642-16955-7 11. URL

http://dx.doi.org/10.1007/978-3-642-16955-7_11.

[111] Leucio Antonio Cutillo, Refik Molva, and Thorsten Strufe. Safebook : a

privacy preserving online social network leveraging on real-life trust. IEEE

Communications Magazine Consumer Communications and Networking

Series, 47(12), 12 2009. URL http://www.eurecom.fr/publication/

2908.

[112] Matthew M. Lucas and Nikita Borisov. Flybynight: Mitigating the privacy

risks of social networking. In Proceedings of the 7th ACM Workshop on

Privacy in the Electronic Society, WPES ’08, pages 1–8, New York, NY,

USA, 2008. ACM. ISBN 978-1-60558-289-4. doi: 10.1145/1456403.1456405.

URL http://doi.acm.org/10.1145/1456403.1456405.

[113] Filipe Beato, Markulf Kohlweiss, and Karel Wouters. Scramble! Your So-

cial Network Data. In Simone Fischer-Hübner and Nicholas Hopper, editors,

PETS, volume 6794 of Lecture Notes in Computer Science, pages 211–225.

Springer, 2011. ISBN 978-3-642-22262-7. URL http://freehaven.net/

anonbib/papers/pets2011/p12-beato.pdf.

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5766541
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5766541
http://dx.doi.org/10.1016/j.comcom.2010.12.006
http://dx.doi.org/10.1007/978-3-642-16955-7_11
http://www.eurecom.fr/publication/2908
http://www.eurecom.fr/publication/2908
http://doi.acm.org/10.1145/1456403.1456405
http://freehaven.net/anonbib/papers/pets2011/p12-beato.pdf
http://freehaven.net/anonbib/papers/pets2011/p12-beato.pdf

Bibliography 195

[114] Saikat Guha, Kevin Tang, and Paul Francis. NOYB: Privacy in online social

networks. In Proceedings of the First Workshop on Online Social Networks,

WOSN ’08, pages 49–54, New York, NY, USA, 2008. ACM. ISBN 978-1-

60558-182-8. doi: 10.1145/1397735.1397747. URL http://doi.acm.org/

10.1145/1397735.1397747.

[115] Allan Heydon and Marc Najork. Mercator: A scalable, extensible web

crawler. World Wide Web, 2:219–229, 1999. URL http://link.springer.

com/article/10.1023%2FA%3A1019213109274.

[116] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual

web search engine. Computer Networks and ISDN Systems, 30(1–7):107–

117, 1998. URL http://infolab.stanford.edu/~backrub/google.html.

[117] Junghoo Cho and Hector Garcia-Molina. Parallel crawlers. In Proceed-

ings of the 11th International Conference on World Wide Web, WWW

’02, pages 124–135, New York, NY, USA, 2002. ACM. ISBN 1-58113-

449-5. doi: 10.1145/511446.511464. URL http://doi.acm.org/10.1145/

511446.511464.

[118] Vladislav Shkapenyuk and Torsten Suel. Design and implementation of a

high-performance distributed web crawler. In Proc. of the Int. Conf. on

Data Engineering, pages 357–368, 2002. URL http://ieeexplore.ieee.

org/xpl/abstractAuthors.jsp?arnumber=994750.

[119] Paolo Boldi, Bruno Codenotti, Massimo Santini, and Sebastiano Vigna.

Ubicrawler: a scalable fully distributed web crawler. Softw. Pract. Exper.,

34:711–726, July 2004. ISSN 0038-0644. doi: 10.1002/spe.587. URL http:

//portal.acm.org/citation.cfm?id=1045968.1045969.

[120] Marc Najork, Allan Heydon, Marc Najork, and Allan Heydon. High-

performance web crawling. Technical report, SRC Research Report 173,

Compaq Systems Research, 2001. URL http://www.cs.cornell.edu/

courses/cs685/2002fa/mercator.pdf.

[121] Duen H. Chau, Shashank Pandit, Samuel Wang, and Christos Faloutsos.

Parallel crawling for online social networks. In WWW ’07: Proceedings

http://doi.acm.org/10.1145/1397735.1397747
http://doi.acm.org/10.1145/1397735.1397747
http://link.springer.com/article/10.1023%2FA%3A1019213109274
http://link.springer.com/article/10.1023%2FA%3A1019213109274
http://infolab.stanford.edu/~backrub/google.html
http://doi.acm.org/10.1145/511446.511464
http://doi.acm.org/10.1145/511446.511464
http://ieeexplore.ieee.org/xpl/abstractAuthors.jsp?arnumber=994750
http://ieeexplore.ieee.org/xpl/abstractAuthors.jsp?arnumber=994750
http://portal.acm.org/citation.cfm?id=1045968.1045969
http://portal.acm.org/citation.cfm?id=1045968.1045969
http://www.cs.cornell.edu/courses/cs685/2002fa/mercator.pdf
http://www.cs.cornell.edu/courses/cs685/2002fa/mercator.pdf

Bibliography 196

of the 16th international conference on World Wide Web, pages 1283–

1284, New York, NY, USA, May 2007. ACM. ISBN 978-1-59593-654-

7. doi: 10.1145/1242572.1242809. URL http://www2007.org/posters/

poster1057.pdf.

[122] Minas Gjoka, Maciej Kurant, Carter T. Butts, and Athina Markopoulou.

A walk in Facebook: Uniform sampling of users in online social networks,

Jun 2009. URL http://arxiv.org/abs/0906.0060v2.

[123] Minas Gjoka, Maciej Kurant, Carter T. Butts, and Athina Markopoulou.

Practical Recommendations on Crawling Online Social Networks. IEEE

Journal on Selected Areas in Communications, 29(9):1872–1892, October

2011. ISSN 0733-8716. doi: 10.1109/jsac.2011.111011. URL http://dx.

doi.org/10.1109/jsac.2011.111011.

[124] Liran Katzir and Stephen J. Hardiman. Estimating clustering coefficients

and size of social networks via random walk. ACM Trans. Web, 9(4):

19:1–19:20, September 2015. ISSN 1559-1131. doi: 10.1145/2790304. URL

http://doi.acm.org/10.1145/2790304.

[125] Yaonan Zhang, Eric D. Kolaczyk, and Bruce D. Spencer. Estimating Net-

work Degree Distributions Under Sampling: An Inverse Problem, with Ap-

plications to Monitoring Social Media Networks. The Annals of Applied

Statistics, 9(1):166–199, 2015. URL http://projecteuclid.org/euclid.

aoas/1430226089.

[126] Konstantin Avrachenkov, Bruno F. Ribeiro, and Jithin Kazuthuveet-

til Sreedharan. Bayesian inference of online social network statis-

tics via lightweight random walk crawls. CoRR, abs/1510.05407,

2015. URL http://dblp.uni-trier.de/db/journals/corr/corr1510.

html#AvrachenkovRS15.

[127] Fredrik Erlandsson, Roozbeh Nia, Martin Boldt, Henric Johnson, and

Felix Wu. Crawling online social networks. In Second European Net-

work Intelligence Conference, pages 9–16, 2015. doi: DOI10.1109/ENIC.

2015.10. URL http://ieeexplore.ieee.org/xpl/articleDetails.jsp?

arnumber=7321230.

http://www2007.org/posters/poster1057.pdf
http://www2007.org/posters/poster1057.pdf
http://arxiv.org/abs/0906.0060v2
http://dx.doi.org/10.1109/jsac.2011.111011
http://dx.doi.org/10.1109/jsac.2011.111011
http://doi.acm.org/10.1145/2790304
http://projecteuclid.org/euclid.aoas/1430226089
http://projecteuclid.org/euclid.aoas/1430226089
http://dblp.uni-trier.de/db/journals/corr/corr1510.html#AvrachenkovRS15
http://dblp.uni-trier.de/db/journals/corr/corr1510.html#AvrachenkovRS15
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7321230
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7321230

Bibliography 197

[128] Azade Nazi, Saravanan Thirumuruganathan, Vagelis Hristidis, Nan Zhang,

and Gautam Das. Querying hidden attributes in an online commu-

nity network. In IEEE 12th International Conference on Mobile Ad

Hoc and Sensor Systems (MASS), pages 657–662. IEEE Computer Soci-

ety, 2015. doi: http://doi.ieeecomputersociety.org/10.1109/MASS.2015.74.

URL https://www.computer.org/csdl/proceedings/mass/2015/9101/

00/9101a657-abs.html.

[129] Jure Leskovec and Christos Faloutsos. Sampling from large graphs. In

KDD ’06: Proceedings of the 12th ACM SIGKDD international conference

on Knowledge discovery and data mining, pages 631–636, New York, NY,

USA, 2006. ACM Press. ISBN 1595933395. doi: 10.1145/1150402.1150479.

URL http://dx.doi.org/10.1145/1150402.1150479.

[130] Daniel Stutzbach, Reza Rejaie, Nick Duffield, Subhabrata Sen, and Walter

Willinger. Sampling techniques for large, dynamic graphs. In INFOCOM

2006. 25th IEEE International Conference on Computer Communications.

Proceedings, pages 1–6, 2006. doi: 10.1109/INFOCOM.2006.39. URL http:

//dx.doi.org/10.1109/INFOCOM.2006.39.

[131] Davood Rafiei. Effectively visualizing large networks through sampling.

IEEE Visualization, pages 375–382, October 2005. doi: 10.1109/VISUAL.

2005.1532819. URL http://ieeexplore.ieee.org/stamp/stamp.jsp?

tp=&arnumber=1532819.

[132] Vaishnavi Krishnamurthy, Junhong Sun, Michalis Faloutsos, and Sudhir

Tauro. Sampling internet topologies: How small can we go? In Inter-

national Conference on Internet Computing, pages 577–580, 2003. URL

http://www.cs.ucr.edu/~michalis/PAPERS/IC03sampling.pdf.

[133] Sang H. Lee, Pan-Jun Kim, and Hawoong Jeong. Statistical properties of

sampled networks. Physical Review E, 73(1):016102, 2006. URL http:

//stat.kaist.ac.kr/~pj/sampling06.pdf.

[134] Luca Becchetti, Carlos Castillo, Debora Donato, and Adriano Fazzone. A

comparison of sampling techniques for web graph characterization. In Pro-

ceedings of the Workshop on Link Analysis (LinkKDD’06), Philadelphia,

PA, 2006. URL http://chato.cl/papers/donato_2006_comparing_

sampling_techniques.pdf.

https://www.computer.org/csdl/proceedings/mass/2015/9101/00/9101a657-abs.html
https://www.computer.org/csdl/proceedings/mass/2015/9101/00/9101a657-abs.html
http://dx.doi.org/10.1145/1150402.1150479
http://dx.doi.org/10.1109/INFOCOM.2006.39
http://dx.doi.org/10.1109/INFOCOM.2006.39
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1532819
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1532819
http://www.cs.ucr.edu/~michalis/PAPERS/IC03sampling.pdf
http://stat.kaist.ac.kr/~pj/sampling06.pdf
http://stat.kaist.ac.kr/~pj/sampling06.pdf
http://chato.cl/papers/donato_2006_comparing_sampling_techniques.pdf
http://chato.cl/papers/donato_2006_comparing_sampling_techniques.pdf

Bibliography 198

[135] Mainack Mondal, Bimal Viswanath, Allen Clement, Peter Druschel, Kr-

ishna P. Gummadi, Alan Mislove, and Ansley Post. Defending against

large-scale crawls in online social networks. In Proceedings of the 8th In-

ternational Conference on Emerging Networking Experiments and Tech-

nologies, CoNEXT ’12, pages 325–336, New York, NY, USA, 2012. ACM.

ISBN 978-1-4503-1775-7. doi: 10.1145/2413176.2413214. URL http:

//doi.acm.org/10.1145/2413176.2413214.

[136] Christo Wilson, Alessandra Sala, Joseph Bonneau, Robert Zablit, and

Ben Y. Zhao. Don’t tread on me: Moderating access to osn data with

spikestrip. In Proceedings of the 3rd Wonference on Online Social Net-

works, WOSN’10, pages 5–5, Berkeley, CA, USA, 2010. USENIX Associa-

tion. URL http://dl.acm.org/citation.cfm?id=1863190.1863195.

[137] Sofus A. Macskassy and Foster Provost. A simple relational classifier. In

Proc. of the 2nd Workshop on Multi-Relational Data Mining, pages 64–76,

2003. URL http://research.rutgers.edu/~sofmac/paper/mrdm2003/

macskassy-mrdm2003.ps.gz.

[138] Soumen Chakrabarti, Byron Dom, and Piotr Indyk. Enhanced hyper-

text categorization using hyperlinks. In SIGMOD ’98: Proc. of the 1998

ACM SIGMOD International Conference on Management of Data, vol-

ume 27, pages 307–318, New York, NY, USA, June 1998. ACM Press. ISBN

0897919955. doi: 10.1145/276304.276332. URL http://dx.doi.org/10.

1145/276304.276332.

[139] Hyo-Jung Oh, Sung Hyon Myaeng, and Mann-Ho Lee. A practical hyper-

text catergorization method using links and incrementally available class

information. In Proceedings of the 23rd annual international ACM SIGIR

conference on Research and development in information retrieval, SIGIR

’00, pages 264–271, New York, NY, USA, 2000. ACM. ISBN 1-58113-

226-3. doi: 10.1145/345508.345594. URL http://doi.acm.org/10.1145/

345508.345594.

[140] Qing Lu and Lise Getoor. Link-based classification using labeled and

unlabeled data. In Proc. of the ICML-2003 Workshop on The Con-

tinuum from Labeled to Unlabeled Data, Washington, DC, 2003. URL

http://www.cs.umd.edu/~{}getoor/Publications/icml03-ws.pdf.

http://doi.acm.org/10.1145/2413176.2413214
http://doi.acm.org/10.1145/2413176.2413214
http://dl.acm.org/citation.cfm?id=1863190.1863195
http://research.rutgers.edu/~sofmac/paper/mrdm2003/macskassy-mrdm2003.ps.gz
http://research.rutgers.edu/~sofmac/paper/mrdm2003/macskassy-mrdm2003.ps.gz
http://dx.doi.org/10.1145/276304.276332
http://dx.doi.org/10.1145/276304.276332
http://doi.acm.org/10.1145/345508.345594
http://doi.acm.org/10.1145/345508.345594
http://www.cs.umd.edu/~{}getoor/Publications/icml03-ws.pdf

Bibliography 199

[141] Alexandrin Popescul, Lyle H. Ungar, Steve Lawrence, and David M. Pen-

nock. Towards structural logistic regression: Combining relational and

statistical learning. In KDD Workshop on Multi-Relational Data Mining,

pages 130–141, 2002. URL http://www.cis.upenn.edu/~ungar/papers/

popescul/popescul02structural.pdf.

[142] David Jensen, Jennifer Neville, and Brian Gallagher. Why collective in-

ference improves relational classification. In KDD ’04: Proc. of the 2004

ACM SIGKDD Int. Conf. on Knowledge discovery and data mining, pages

593–598, New York, NY, USA, 2004. ACM Press. ISBN 1581138889. doi:

10.1145/1014052.1014125. URL http://dx.doi.org/10.1145/1014052.

1014125.

[143] Stuart Geman and Donald Geman. Stochastic relaxation, gibbs distri-

butions, and the bayesian restoration of images. Pattern Analysis and

Machine Intelligence, IEEE Transactions on, PAMI-6(6):721–741, Novem-

ber 1984. ISSN 0162-8828. doi: 10.1109/TPAMI.1984.4767596. URL

http://dx.doi.org/10.1109/TPAMI.1984.4767596.

[144] Jennifer Neville and David Jensen. Iterative classification in relational

data. In AAAI-2000 Workshop on Learning Statistical Models from Re-

lational Data, pages 42–49, 2000. URL https://www.cs.purdue.edu/

homes/neville/papers/neville-jensen-srl2000.pdf.

[145] Brian Gallagher and Tina Eliassi-Rad. Leveraging label-independent fea-

tures for classification in sparsely labeled networks: An empirical study.

In Lee Giles, Marc Smith, John Yen, and Haizheng Zhang, editors,

Advances in Social Network Mining and Analysis, volume 5498 of Lec-

ture Notes in Computer Science, pages 1–19. Springer Berlin Heidel-

berg, 2010. ISBN 978-3-642-14928-3. URL http://eliassi.org/papers/

gallagher-snakdd08.pdf.

[146] Tomasz Kajdanowicz, Przemys law Kazienko, and Piotr Doskocz. Label-

dependent feature extraction in social networks for node classification. In

Leonard Bolc, Marek Makowski, and Adam Wierzbicki, editors, Social

Informatics, volume 6430 of Lecture Notes in Computer Science, pages

89–102. Springer Berlin Heidelberg, 2010. ISBN 978-3-642-16566-5. URL

http://arxiv.org/pdf/1303.0095.pdf.

http://www.cis.upenn.edu/~ungar/papers/popescul/popescul02structural.pdf
http://www.cis.upenn.edu/~ungar/papers/popescul/popescul02structural.pdf
http://dx.doi.org/10.1145/1014052.1014125
http://dx.doi.org/10.1145/1014052.1014125
http://dx.doi.org/10.1109/TPAMI.1984.4767596
https://www.cs.purdue.edu/homes/neville/papers/neville-jensen-srl2000.pdf
https://www.cs.purdue.edu/homes/neville/papers/neville-jensen-srl2000.pdf
http://eliassi.org/papers/gallagher-snakdd08.pdf
http://eliassi.org/papers/gallagher-snakdd08.pdf
http://arxiv.org/pdf/1303.0095.pdf

Bibliography 200

[147] Vitor R. Carvalho and William W. Cohen. On the collective classification

of email “speech acts”. In SIGIR ’05: Proc. of the 28th annual interna-

tional ACM SIGIR conference on Research and development in information

retrieval, pages 345–352, New York, NY, USA, 2005. ACM. ISBN 1-59593-

034-5. doi: 10.1145/1076034.1076094. URL http://dx.doi.org/10.1145/

1076034.1076094.

[148] Smriti Bhagat, Irina Rozenbaum, and Graham Cormode. Applying link-

based classification to label blogs. In Proc. of the 9th WebKDD and

1st SNA-KDD Workshop on Web mining and social network analysis,

WebKDD/SNA-KDD ’07, pages 92–101. ACM, 2007. ISBN 978-1-59593-

848-0. doi: http://doi.acm.org/10.1145/1348549.1348560.

[149] George H. John, Ron Kohavi, and Karl Pfleger. Irrelevant features and the

subset selection problem. In Proceedings of the 11th Int. Machine Learning,

pages 121–129, 1994.

[150] Ron Kohavi and George H. John. Wrappers for feature subset selection.

Artificial Intelligence, 97(1-2):273–324, 1997. URL http://ai.stanford.

edu/~ronnyk/wrappersPrint.pdf.

[151] Hussein Almuallim and Thomas G. Dietterich. Learning with many ir-

relevant features. In Proceedings of the 9th National Conf. on Artificial

Intelligence, pages 547–552, 1991. URL https://www.aaai.org/Papers/

AAAI/1991/AAAI91-085.pdf.

[152] Kenji Kira and Larry A. Rendell. The feature selection problem: traditional

methods and a new algorithm. In Proc. of the 10th Conf. on Artificial

intelligence, pages 129–134, 1992. ISBN 0-262-51063-4. URL http://dl.

acm.org/citation.cfm?id=1867135.1867155.

[153] Claire Cardie. Using decision trees to improve case-based learning. In Pro-

ceedings of the 10th International Conference on Machine Learning, pages

25–32. Morgan Kaufmann, 1993. URL https://www.cs.cornell.edu/

home/cardie/papers/ml-93.ps.

[154] Olivier Chapelle, Bernhard Schlkopf, and Alexander Zien. Semi-

Supervised Learning. The MIT Press, 1st edition, 2010. ISBN

0262514125, 9780262514125. URL https://mitpress.mit.edu/books/

semi-supervised-learning.

http://dx.doi.org/10.1145/1076034.1076094
http://dx.doi.org/10.1145/1076034.1076094
http://ai.stanford.edu/~ronnyk/wrappersPrint.pdf
http://ai.stanford.edu/~ronnyk/wrappersPrint.pdf
https://www.aaai.org/Papers/AAAI/1991/AAAI91-085.pdf
https://www.aaai.org/Papers/AAAI/1991/AAAI91-085.pdf
http://dl.acm.org/citation.cfm?id=1867135.1867155
http://dl.acm.org/citation.cfm?id=1867135.1867155
https://www.cs.cornell.edu/home/cardie/papers/ml-93.ps
https://www.cs.cornell.edu/home/cardie/papers/ml-93.ps
https://mitpress.mit.edu/books/semi-supervised-learning
https://mitpress.mit.edu/books/semi-supervised-learning

Bibliography 201

[155] Christian Desrosiers and George Karypis. Within-network classification us-

ing local structure similarity. In Wray Buntine, Marko Grobelnik, Dunja

Mladenić, and John Shawe-Taylor, editors, Machine Learning and Knowl-

edge Discovery in Databases, volume 5781 of Lecture Notes in Computer

Science, pages 260–275. Springer Berlin Heidelberg, 2009. ISBN 978-3-642-

04179-2. doi: 10.1007/978-3-642-04180-8 34. URL http://dx.doi.org/

10.1007/978-3-642-04180-8_34.

[156] Xiaojin Zhu. Semi-supervised learning literature survey. Technical Report

1530, Computer Sciences, University of Wisconsin-Madison, 2005. URL

http://pages.cs.wisc.edu/~jerryzhu/pub/ssl_survey.pdf.

[157] Chris J. Merz, Daniel C. St. Clair, and William E. Bond. Semi-supervised

adaptive resonance theory. In International Joint Conference on Neural

Networks, pages 851 – 856, 1992. URL http://ieeexplore.ieee.org/

xpls/abs_all.jsp?arnumber=227046&tag=1.

[158] David Yarowsky. Unsupervised word sense disambiguation rivaling super-

vised methods. In Proceedings of the 33rd Annual Meeting on Associa-

tion for Computational Linguistics, ACL ’95, pages 189–196, Stroudsburg,

PA, USA, 1995. Association for Computational Linguistics. doi: 10.3115/

981658.981684. URL http://dx.doi.org/10.3115/981658.981684.

[159] Steven Abney. Understanding the Yarowsky algorithm. Com-

put. Linguist., 30(3):365–395, September 2004. ISSN 0891-2017.

doi: 10.1162/0891201041850876. URL http://dx.doi.org/10.1162/

0891201041850876.

[160] Gholamreza Haffari and Anoop Sarkar. Analysis of semi-supervised learn-

ing with the Yarowsky algorithm. In 23rd Conference on Uncertainty in

Artificial Intelligence (UAI), 2007.

[161] Avrim Blum and Tom Mitchell. Combining labeled and unlabeled data

with co-training. In Proceedings of the Eleventh Annual Conference on

Computational Learning Theory, COLT’ 98, pages 92–100, New York, NY,

USA, 1998. ACM. ISBN 1-58113-057-0. doi: 10.1145/279943.279962. URL

http://doi.acm.org/10.1145/279943.279962.

[162] Sanjoy Dasgupta, Michael L. Littman, and David A. McAllester. Pac

generalization bounds for co-training. In T.G. Dietterich, S. Becker, and

http://dx.doi.org/10.1007/978-3-642-04180-8_34
http://dx.doi.org/10.1007/978-3-642-04180-8_34
http://pages.cs.wisc.edu/~jerryzhu/pub/ssl_survey.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=227046&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=227046&tag=1
http://dx.doi.org/10.3115/981658.981684
http://dx.doi.org/10.1162/0891201041850876
http://dx.doi.org/10.1162/0891201041850876
http://doi.acm.org/10.1145/279943.279962

Bibliography 202

Z. Ghahramani, editors, Advances in Neural Information Processing Sys-

tems 14, pages 375–382. MIT Press, 2002. URL http://papers.nips.cc/

paper/2040-pac-generalization-bounds-for-co-training.pdf.

[163] Vladimir N. Vapnik. Statistical Learning Theory. Wiley-Interscience,

1998. ISBN 978-0-471-03003-4. URL http://eu.wiley.com/WileyCDA/

WileyTitle/productCd-0471030031.html.

[164] Vladimir N. Vapnik and A. Sterin. On Structural Risk Minimization or

Overall Risk in a Problem of Pattern Recognition. Automation and Remote

Control, 10(3):1495–1503, 1977.

[165] Kristin P. Bennett and Ayhan Demiriz. Semi-supervised support vector

machines. In Proceedings of the 1998 Conference on Advances in Neu-

ral Information Processing Systems II, pages 368–374, Cambridge, MA,

USA, 1999. MIT Press. ISBN 0-262-11245-0. URL http://dl.acm.org/

citation.cfm?id=340534.340671.

[166] Thorsten Joachims. Transductive inference for text classification using sup-

port vector machines. In Proceedings of the Sixteenth International Confer-

ence on Machine Learning, ICML ’99, pages 200–209, San Francisco, CA,

USA, 1999. Morgan Kaufmann Publishers Inc. ISBN 1-55860-612-2. URL

http://dl.acm.org/citation.cfm?id=645528.657646.

[167] Thorsten Joachims. Learning to Classify Text Using Support Vector Ma-

chines: Methods, Theory and Algorithms. Kluwer Academic Publishers,

Norwell, MA, USA, 2002. ISBN 079237679X. URL http://www.cs.

cornell.edu/People/tj/svmtcatbook/.

[168] Ayhan Demiriz and Kristin P. Bennett. Optimization approaches to semi-

supervised learning. In MichaelC. Ferris, OlviL. Mangasarian, and Jong-

Shi Pang, editors, Complementarity: Applications, Algorithms and Exten-

sions, volume 50 of Applied Optimization, pages 121–141. Springer US,

2001. ISBN 978-1-4419-4847-2. doi: 10.1007/978-1-4757-3279-5 6. URL

http://dx.doi.org/10.1007/978-1-4757-3279-5_6.

[169] Tijl D. Bie and Nello Cristianini. Convex methods for transduction. In Se-

bastian Thrun, Lawrence Saul, and Bernhard Schölkopf, editors, Advances

http://papers.nips.cc/paper/2040-pac-generalization-bounds-for-co-training.pdf
http://papers.nips.cc/paper/2040-pac-generalization-bounds-for-co-training.pdf
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471030031.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471030031.html
http://dl.acm.org/citation.cfm?id=340534.340671
http://dl.acm.org/citation.cfm?id=340534.340671
http://dl.acm.org/citation.cfm?id=645528.657646
http://www.cs.cornell.edu/People/tj/svmtcatbook/
http://www.cs.cornell.edu/People/tj/svmtcatbook/
http://dx.doi.org/10.1007/978-1-4757-3279-5_6

Bibliography 203

in Neural Information Processing Systems 16, page None. MIT Press, Cam-

bridge, MA, 2003. URL http://books.nips.cc/papers/files/nips16/

NIPS2003_AA10.pdf.

[170] Glenn Fung and O. L. Mangasarian. Semi-supervised support vec-

tor machines for unlabeled data classification. Optimization Methods

and Software, 15:29–44, 2001. URL ftp://ftp.cs.wisc.edu/pub/dmi/

tech-reports/99-05.ps.

[171] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A training

algorithm for optimal margin classifiers. In Proceedings of the Fifth Annual

Workshop on Computational Learning Theory, COLT ’92, pages 144–152,

New York, NY, USA, 1992. ACM. ISBN 0-89791-497-X. doi: 10.1145/

130385.130401. URL http://doi.acm.org/10.1145/130385.130401.

[172] Bernhard Scholkopf and Alexander J. Smola. Learning with Kernels: Sup-

port Vector Machines, Regularization, Optimization, and Beyond. MIT

Press, Cambridge, MA, USA, 2001. ISBN 0262194759. URL https:

//mitpress.mit.edu/books/learning-kernels.

[173] Linli Xu and Dale Schuurmans. Unsupervised and semi-supervised multi-

class support vector machines. In Proceedings of the 20th National Confer-

ence on Artificial Intelligence - Volume 2, AAAI’05, pages 904–910. AAAI

Press, 2005. ISBN 1-57735-236-x. URL http://dl.acm.org/citation.

cfm?id=1619410.1619478.

[174] Olivier Chapelle and Alexander Zien. Semi-supervised classification by low

density separation. In Z. Ghahramani Cowell, R., editor, AISTATS 2005,

pages 57–64. Max-Planck-Gesellschaft, January 2005. ISBN 0-9727358-

1-X. URL http://www.is.tuebingen.mpg.de/fileadmin/user_upload/

files/publications/pdf2899.pdf.

[175] Olivier Chapelle, Mingmin Chi, and Alexander Zien. A continuation

method for semi-supervised SVMs. In Proceedings of the 23rd International

Conference on Machine Learning, ICML ’06, pages 185–192, New York,

NY, USA, 2006. ACM. ISBN 1-59593-383-2. doi: 10.1145/1143844.1143868.

URL http://doi.acm.org/10.1145/1143844.1143868.

http://books.nips.cc/papers/files/nips16/NIPS2003_AA10.pdf
http://books.nips.cc/papers/files/nips16/NIPS2003_AA10.pdf
ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/99-05.ps
ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/99-05.ps
http://doi.acm.org/10.1145/130385.130401
https://mitpress.mit.edu/books/learning-kernels
https://mitpress.mit.edu/books/learning-kernels
http://dl.acm.org/citation.cfm?id=1619410.1619478
http://dl.acm.org/citation.cfm?id=1619410.1619478
http://www.is.tuebingen.mpg.de/fileadmin/user_upload/files/publications/pdf2899.pdf
http://www.is.tuebingen.mpg.de/fileadmin/user_upload/files/publications/pdf2899.pdf
http://doi.acm.org/10.1145/1143844.1143868

Bibliography 204

[176] Olivier Chapelle, Vikas Sindhwani, and S. Sathiya Keerthi. Branch

and bound for semi-supervised support vector machines. In Ad-

vances in Neural Information processing systems, pages 217–224, 2006.

URL http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=

6287367&abstractAccess=no&userType=inst.

[177] Jason Weston, Ronan Collobert, Fabian Sinz, Léon Bottou, and Vladimir

Vapnik. Inference with the universum. In Proceedings of the 23rd interna-

tional conference on Machine learning, pages 1009–1016. ACM, 2006. URL

http://ronan.collobert.com/pub/matos/2006_universum_icml.pdf.

[178] Tong Zhang and Frank J. Oles. A probability analysis on the value of

unlabeled data for classification problems. In 17th International Conference

on Machine Learning, 2000. URL http://www-cs-students.stanford.

edu/~tzhang/papers/icml00-unlabeled.pdf.

[179] Olivier Chapelle, Jason Weston, and Bernhard Schölkopf. Cluster ker-

nels for semi-supervised learning. In S. Thrun and K. Obermayer, editors,

Advances in Neural Information Processing Systems 15, pages 585–592.

MIT Press, Cambridge, MA, 2002. URL http://books.nips.cc/papers/

files/nips15/AA13.pdf.

[180] Michael Kockelkorn, Andreas Lüneburg, and Tobias Scheffer. Using trans-

duction and multi-view learning to answer emails. In Nada Lavrač,

Dragan Gamberger, Ljupčo Todorovski, and Hendrik Blockeel, editors,

Knowledge Discovery in Databases: PKDD 2003, volume 2838 of Lecture

Notes in Computer Science, pages 266–277. Springer Berlin Heidelberg,

2003. ISBN 978-3-540-20085-7. doi: 10.1007/978-3-540-39804-2 25. URL

http://dx.doi.org/10.1007/978-3-540-39804-2_25.

[181] Simon Tong and Daphne Koller. Support vector machine active learning

with applications to text classification. J. Mach. Learn. Res., 2:45–66,

March 2002. ISSN 1532-4435. doi: 10.1162/153244302760185243. URL

http://dx.doi.org/10.1162/153244302760185243.

[182] Lei Wang, Kap Luk Chan, and Zhihua Zhang. Bootstrapping SVM ac-

tive learning by incorporating unlabelled images for image retrieval. In

Proceedings of the 2003 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, CVPR’03, pages 629–634, Washington,

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6287367&abstractAccess=no&userType=inst
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6287367&abstractAccess=no&userType=inst
http://ronan.collobert.com/pub/matos/2006_universum_icml.pdf
http://www-cs-students.stanford.edu/~tzhang/papers/icml00-unlabeled.pdf
http://www-cs-students.stanford.edu/~tzhang/papers/icml00-unlabeled.pdf
http://books.nips.cc/papers/files/nips15/AA13.pdf
http://books.nips.cc/papers/files/nips15/AA13.pdf
http://dx.doi.org/10.1007/978-3-540-39804-2_25
http://dx.doi.org/10.1162/153244302760185243

Bibliography 205

DC, USA, 2003. IEEE Computer Society. ISBN 0-7695-1900-8, 978-0-7695-

1900-5. URL http://dl.acm.org/citation.cfm?id=1965841.1965923.

[183] Nikola Kasabov and Shaoning Pang. Transductive support vector machines

and applications in bioinformatics for promoter recognition. In Proceedings

of the 2003 International Conference on Neural networks and Signal Pro-

cessing, volume 1, pages 1–6. IEEE, 2003. URL http://ieeexplore.ieee.

org/xpls/abs_all.jsp?arnumber=1279199.

[184] Mark-A. Krogel and Tobias Scheffer. Multi-relational learning, text min-

ing, and semi-supervised learning for functional genomics. Machine Learn-

ing, 57(1-2):61–81, 2004. ISSN 0885-6125. doi: 10.1023/B:MACH.

0000035472.73496.0c. URL http://link.springer.com/article/10.

1023%2FB%3AMACH.0000035472.73496.0c.

[185] Cyril Goutte, Hervé Déjean, Eric Gaussier, Nicola Cancedda, and Jean-

Michel Renders. Combining labelled and unlabelled data: A case study

on Fisher kernels and transductive inference for biological entity recogni-

tion. In Proceedings of the 6th Conference on Natural Language Learning -

Volume 20, COLING-02, pages 1–7, Stroudsburg, PA, USA, 2002. Associ-

ation for Computational Linguistics. doi: 10.3115/1118853.1118864. URL

http://dx.doi.org/10.3115/1118853.1118864.

[186] Avrim Blum and Shuchi Chawla. Learning from labeled and unlabeled

data using graph mincuts. In Proceedings of the Eighteenth International

Conference on Machine Learning, ICML ’01, pages 19–26, San Francisco,

CA, USA, 2001. Morgan Kaufmann Publishers Inc. ISBN 1-55860-778-1.

URL http://dl.acm.org/citation.cfm?id=645530.757779.

[187] Avrim Blum, John Lafferty, Mugizi Robert Rwebangira, and Rajashekar

Reddy. Semi-supervised learning using randomized mincuts. In Proceedings

of the Twenty-first International Conference on Machine Learning, ICML

’04, pages 13–, New York, NY, USA, 2004. ACM. ISBN 1-58113-838-5. doi:

10.1145/1015330.1015429. URL http://doi.acm.org/10.1145/1015330.

1015429.

http://dl.acm.org/citation.cfm?id=1965841.1965923
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1279199
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1279199
http://link.springer.com/article/10.1023%2FB%3AMACH.0000035472.73496.0c
http://link.springer.com/article/10.1023%2FB%3AMACH.0000035472.73496.0c
http://dx.doi.org/10.3115/1118853.1118864
http://dl.acm.org/citation.cfm?id=645530.757779
http://doi.acm.org/10.1145/1015330.1015429
http://doi.acm.org/10.1145/1015330.1015429

Bibliography 206

[188] Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and un-

labeled data with label propagation. Technical Report CMU-CALD-

02-107, CMU, 2002. URL http://mlg.eng.cam.ac.uk/zoubin/papers/

CMU-CALD-02-107.pdf.

[189] Evelyn Fix and J. L. Hodges. Discriminatory analysis, nonparametric dis-

crimination: Consistency properties. US Air Force School of Aviation

Medicine, Technical Report 4(3):477+, January 1951. ISSN 00419907. URL

http://www.dtic.mil/dtic/tr/fulltext/u2/a800276.pdf.

[190] Thomas M. Cover and Peter E. Hart. Nearest neighbor pattern classi-

fication. IEEE Trans. Inf. Theor., 13(1):21–27, September 2006. ISSN

0018-9448. doi: 10.1109/TIT.1967.1053964. URL http://dx.doi.org/

10.1109/TIT.1967.1053964.

[191] Sahibsingh A. Dudani. The distance-weighted k-nearest-neighbor

rule. IEEE Transactions on Systems Man and Cybernetics, 6(3):325–

327, 1976. URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?

arnumber=5408784.

[192] Zacharias Voulgaris and George D. Magoulas. Extensions of the k near-

est neighbour methods for classification problems. In Proceedings of the

26th IASTED International Conference on Artificial Intelligence and Ap-

plications, AIA ’08, pages 23–28, Anaheim, CA, USA, 2008. ACTA Press.

ISBN 978-0-88986-710-9. URL http://dl.acm.org/citation.cfm?id=

1712759.1712765.

[193] Bo Tang and Haibo He. Enn: Extended nearest neighbor method for pat-

tern recognition. IEEE Computational Intelligence Magazine, 10:52–60,

August 2015. ISSN 1556-603X. URL http://www.ele.uri.edu/faculty/

he/PDFfiles/ENN.pdf.

[194] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-

generation onion router. In 13th USENIX Security Symposium, San

Diego, CA, USA, August 2004. URL http://www.onion-router.net/

Publications/tor-design.pdf.

[195] Kyumin Lee, James Caverlee, and Steve Webb. The social honeypot

project: protecting online communities from spammers. In Proceed-

ings of the 19th international conference on World wide web, WWW

http://mlg.eng.cam.ac.uk/zoubin/papers/CMU-CALD-02-107.pdf
http://mlg.eng.cam.ac.uk/zoubin/papers/CMU-CALD-02-107.pdf
http://www.dtic.mil/dtic/tr/fulltext/u2/a800276.pdf
http://dx.doi.org/10.1109/TIT.1967.1053964
http://dx.doi.org/10.1109/TIT.1967.1053964
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5408784
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5408784
http://dl.acm.org/citation.cfm?id=1712759.1712765
http://dl.acm.org/citation.cfm?id=1712759.1712765
http://www.ele.uri.edu/faculty/he/PDFfiles/ENN.pdf
http://www.ele.uri.edu/faculty/he/PDFfiles/ENN.pdf
http://www.onion-router.net/Publications/tor-design.pdf
http://www.onion-router.net/Publications/tor-design.pdf

Bibliography 207

’10, pages 1139–1140, New York, NY, USA, 2010. ACM. ISBN 978-

1-60558-799-8. doi: http://doi.acm.org/10.1145/1772690.1772843. URL

http://doi.acm.org/10.1145/1772690.1772843.

[196] David Wood. On the number of maximal independent sets in a graph.

Discrete Mathematics & Theoretical Computer Science, 13(3), 2011. ISSN

1365-8050. URL http://www.dmtcs.org/dmtcs-ojs/index.php/dmtcs/

article/view/2023/3691.

[197] Jesper Makholm Nielsen. On the number of maximal independent sets in a

graph. Technical Report RS-02-15, Center for Basic Research in Computer

Science (BRICS), April 2002. URL http://www.brics.dk/RS/02/15/.

[198] Caspar Bowden. The US surveillance programmes and their impact

on EU citizens’ fundamental rights. Technical report, European Par-

liament, 2013. URL http://www.europarl.europa.eu/meetdocs/2009_

2014/documents/libe/dv/briefingnote_/briefingnote_en.pdf.

[199] Claudia Perlich and Foster Provost. Distribution-based aggregation for

relational learning with identifier attributes. Machine Learning, 62(1-2):

65–105, February 2006. doi: 10.1007/s10994-006-6064-1. URL http://

dx.doi.org/10.1007/s10994-006-6064-1.

[200] Joseph Rocchio. Relevance Feedback in Information Retrieval, pages 313–

323. Prentice Hall, 1971.

[201] Sofus A. Macskassy and Foster Provost. NetKit-SRL - network learning

toolkit for statistical relational learning, 2007. URL http://netkit-srl.

sourceforge.net/data.html.

[202] Shaomei Wu, Jake M. Hofman, Winter A. Mason, and Duncan J. Watts.

Who says what to whom on Twitter. In Proc. of World Wide Web Con-

ference (WWW ’11), 2011. URL http://research.yahoo.com/files/

twitter-flow.pdf.

[203] Mark E. J. Newman. Mixing patterns in networks. Phys. Rev. E, 67:

026126, Feb 2003. doi: 10.1103/PhysRevE.67.026126. URL http://link.

aps.org/doi/10.1103/PhysRevE.67.026126.

http://doi.acm.org/10.1145/1772690.1772843
http://www.dmtcs.org/dmtcs-ojs/index.php/dmtcs/article/view/2023/3691
http://www.dmtcs.org/dmtcs-ojs/index.php/dmtcs/article/view/2023/3691
http://www.brics.dk/RS/02/15/
http://www.europarl.europa.eu/meetdocs/2009_2014/documents/libe/dv/briefingnote_/briefingnote_en.pdf
http://www.europarl.europa.eu/meetdocs/2009_2014/documents/libe/dv/briefingnote_/briefingnote_en.pdf
http://dx.doi.org/10.1007/s10994-006-6064-1
http://dx.doi.org/10.1007/s10994-006-6064-1
http://netkit-srl.sourceforge.net/data.html
http://netkit-srl.sourceforge.net/data.html
http://research.yahoo.com/files/twitter-flow.pdf
http://research.yahoo.com/files/twitter-flow.pdf
http://link.aps.org/doi/10.1103/PhysRevE.67.026126
http://link.aps.org/doi/10.1103/PhysRevE.67.026126

Bibliography 208

[204] Mustafa Bilgic and Lise Getoor. Effective label acquisition for collective

classification. In Proceedings of the International Conference on Knowl-

edge discovery and data mining, pages 43–51, 2008. ISBN 978-1-60558-

193-4. doi: 10.1145/1401890.1401901. URL https://www.cs.umd.edu/

~mbilgic/pdfs/kdd08.pdf.

[205] Charles Spearman. The proof and measurement of association between

two things. The American journal of psychology, 15(1):72–101, 1904. ISSN

0002-9556. URL http://view.ncbi.nlm.nih.gov/pubmed/3322052.

[206] Maurice Kendall and Jean D. Gibbons. Rank Correlation Meth-

ods. A Charles Griffin Title, 5th edition, September 1990. ISBN

0195208374. URL http://www.amazon.com/exec/obidos/redirect?

tag=citeulike07-20&path=ASIN/0195208374.

[207] David Liben and Jon Kleinberg. The link prediction problem for social

networks. In Proceedings of the International Conference on Informa-

tion and knowledge management, pages 556–559, 2003. ISBN 1-58113-

723-0. doi: 10.1145/956863.956972. URL http://doi.acm.org/10.1145/

956863.956972.

[208] Lada Adamic and Eytan Adar. Friends and neighbors on the

Web. Social Networks, 25(3):211–230, 2003. ISSN 03788733. doi:

10.1016/s0378-8733(03)00009-1. URL http://dx.doi.org/10.1016/

s0378-8733(03)00009-1.

[209] Claudia Perlich and Foster Provost. Aggregation-based feature inven-

tion and relational concept classes. In Proceedings of the 9th Interna-

tional Conference on Knowledge Discovery and Data Mining, pages 167–

176, 2003. URL http://pages.stern.nyu.edu/~cperlich/home/Paper/

claudia-kdd03-final.pdf.

[210] Peter Rousseeuw. Silhouettes: A graphical aid to the interpretation and

validation of cluster analysis. J. of Computational & Applied Mathe-

matics, 20:53 – 65, 1987. ISSN 0377-0427. doi: 10.1016/0377-0427(87)

90125-7. URL http://www.sciencedirect.com/science/article/pii/

0377042787901257.

https://www.cs.umd.edu/~mbilgic/pdfs/kdd08.pdf
https://www.cs.umd.edu/~mbilgic/pdfs/kdd08.pdf
http://view.ncbi.nlm.nih.gov/pubmed/3322052
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0195208374
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0195208374
http://doi.acm.org/10.1145/956863.956972
http://doi.acm.org/10.1145/956863.956972
http://dx.doi.org/10.1016/s0378-8733(03)00009-1
http://dx.doi.org/10.1016/s0378-8733(03)00009-1
http://pages.stern.nyu.edu/~cperlich/home/Paper/claudia-kdd03-final.pdf
http://pages.stern.nyu.edu/~cperlich/home/Paper/claudia-kdd03-final.pdf
http://www.sciencedirect.com/science/article/pii/0377042787901257
http://www.sciencedirect.com/science/article/pii/0377042787901257

Bibliography 209

[211] Claude E. Shannon. A Mathematical Theory of Communication. Bell

System Technical Journal, The, 27(3):379–423, July 1948. ISSN 0005-

8580. doi: 10.1002/j.1538-7305.1948.tb01338.x. URL http://www.essrl.

wustl.edu/~jao/itrg/shannon.pdf.

[212] Shiraj Khan, Sharba Bandyopadhyay, Auroop R Ganguly, Sunil Saigal,

David J Erickson III, Vladimir Protopopescu, and George Ostrouchov. Rel-

ative performance of mutual information estimation methods for quantify-

ing the dependence among short and noisy data. Physical Review E, 76(2):

026209, 2007. URL http://journals.aps.org/pre/abstract/10.1103/

PhysRevE.76.026209.

[213] Justin B. Kinney and Gurinder S. Atwal. Equitability, mutual informa-

tion, and the maximal information coefficient. Proceedings of the National

Academy of Sciences, 111(9):3354–3359, 2014. URL http://www.pnas.

org/content/111/9/3354.

[214] Ero Balsa, Carmela Troncoso, and Claudia Diaz. A Metric to Eval-

uate Interaction Obfuscation in Online Social Networks. International

Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 20(6):

877–892, 2012. URL https://securewww.esat.kuleuven.be/cosic/

publications/article-2244.pdf.

[215] Bernardo Huberman, Daniel Romero, and Fang Wu. Social networks that

matter: Twitter under the microscope. First Monday, 14(1), 2008. ISSN

13960466. URL http://firstmonday.org/ojs/index.php/fm/article/

view/2317.

[216] Roger Dingledine and et al. Tor project, Last accessed: March 2016. URL

http://www.torproject.org/.

[217] Joe Foley. Torlib, Last accessed: March 2016. URL http://www.mit.edu/

~foley/TinFoil/Docs/tinfoil/TorLib.html.

[218] Dan Brickley and Libby Miller. FOAF vocabulary specification, 2005. URL

http://xmlns.com/foaf/spec/20050403.html.

[219] Wikipedia, Last accessed: March 2016. URL https://en.wikipedia.org/

wiki/DOT_(graph_description_language).

http://www.essrl.wustl.edu/~jao/itrg/shannon.pdf
http://www.essrl.wustl.edu/~jao/itrg/shannon.pdf
http://journals.aps.org/pre/abstract/10.1103/PhysRevE.76.026209
http://journals.aps.org/pre/abstract/10.1103/PhysRevE.76.026209
http://www.pnas.org/content/111/9/3354
http://www.pnas.org/content/111/9/3354
https://securewww.esat.kuleuven.be/cosic/publications/article-2244.pdf
https://securewww.esat.kuleuven.be/cosic/publications/article-2244.pdf
http://firstmonday.org/ojs/index.php/fm/article/view/2317
http://firstmonday.org/ojs/index.php/fm/article/view/2317
http://www.torproject.org/
http://www.mit.edu/~foley/TinFoil/Docs/tinfoil/TorLib.html
http://www.mit.edu/~foley/TinFoil/Docs/tinfoil/TorLib.html
http://xmlns.com/foaf/spec/20050403.html
https://en.wikipedia.org/wiki/DOT_(graph_description_language)
https://en.wikipedia.org/wiki/DOT_(graph_description_language)

Bibliography 210

[220] Michael Himsolt. GML: A portable graph file format. Techni-

cal report, University of Passau, 1997. URL https://www.fim.

uni-passau.de/fileadmin/files/lehrstuhl/brandenburg/projekte/

gml/gml-technical-report.pdf.

https://www.fim.uni-passau.de/fileadmin/files/lehrstuhl/brandenburg/projekte/gml/gml-technical-report.pdf
https://www.fim.uni-passau.de/fileadmin/files/lehrstuhl/brandenburg/projekte/gml/gml-technical-report.pdf
https://www.fim.uni-passau.de/fileadmin/files/lehrstuhl/brandenburg/projekte/gml/gml-technical-report.pdf

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Contributions
	1.4 Thesis outline

	2 Preliminary concepts
	2.1 Graphs
	2.1.1 Graph metrics
	2.1.2 Cohesive subgroups

	2.2 Online social networks
	2.2.1 Social graphs
	2.2.2 Online social network websites

	2.3 Crawling online social networks
	2.3.1 Architecture of a web crawler
	2.3.2 Scheduling algorithms for crawling OSNs

	2.4 Classification for networked datasets

	3 Related work
	3.1 Online social network analysis
	3.1.1 OSN modeling
	3.1.2 Privacy in online social networks
	3.1.2.1 Attacks on users' privacy
	3.1.2.2 Preserving users' privacy

	3.2 Crawling online social networks
	3.3 Classification for network datasets
	3.4 Conclusions

	4 When multiple autonomous users disclose another individual's information
	4.1 Proposed attack
	4.1.1 Attack scenario
	4.1.2 Retrieved information
	4.1.3 Attack description
	4.1.3.1 Scheduling algorithm

	4.2 Experimental results
	4.2.1 Experimental set-up
	4.2.2 Data analysis

	4.3 Conclusions

	5 Crawler scheduling and its privacy implications
	5.1 Privacy threats related to crawling activity
	5.1.1 Scheduler implications on privacy
	5.1.1.1 Breadth-First Search (BFS)
	5.1.1.2 Depth-First Search (DFS)
	5.1.1.3 Real-degree greedy
	5.1.1.4 Explored-degree greedy
	5.1.1.5 Unseen-degree greedy
	5.1.1.6 Lottery

	5.2 Online Social Honeynets
	5.2.1 Definitions, assumptions, and goals
	5.2.2 An online social honeynet to protect online social networks from greedy schedulers
	5.2.3 Experimental results

	5.3 Conclusions

	6 OSN crawling schedulers and their implications on k-plexes detection
	6.1 Adversary model
	6.1.1 Adversary goals

	6.2 Experimental results
	6.2.1 Targeting the whole network
	6.2.1.1 Number of k-plexes obtained
	6.2.1.2 Maximum k-plex size
	6.2.1.3 Number of nodes in any of the k-plexes
	6.2.1.4 Efficiency

	6.2.2 Targeting one specific victim
	6.2.2.1 Number of k-plexes where the victim belongs
	6.2.2.2 Maximum k-plex size where the victim belongs
	6.2.2.3 Number of nodes in any of the k-plexes where the victim belongs
	6.2.2.4 Efficiency with a victim node

	6.3 Conclusions

	7 On improving classification of interlinked entities using only the network structure
	7.1 Problem definition and notation
	7.2 Building a relational classifier using only the network structure
	7.2.1 Initial module
	7.2.2 Relational module
	7.2.3 Multiclass classification

	7.3 Experiments' description
	7.3.1 Datasets
	7.3.1.1 Datasets already used by the ML community
	7.3.1.2 New datasets

	7.3.2 Selecting attributes for the initial classifier
	7.3.3 Netkit classification algorithms
	7.3.4 Experimental setup
	7.3.5 A working example
	7.3.5.1 Initial module
	7.3.5.2 Relational module
	7.3.5.3 Classification results
	7.3.5.4 A further look into the iterative component

	7.3.6 Experimental results

	7.4 Discussion of similar approaches
	7.4.1 Our proposal as a semi-supervised learning algorithm
	7.4.2 K-Nearest Neighbor classification

	7.5 Conclusions

	8 Improving relational classification using link prediction techniques
	8.1 Notation and problem definition
	8.2 Experimental setup
	8.2.1 Datasets
	8.2.2 Classification algorithms
	8.2.3 Methodology

	8.3 Modifying edges' weight to increase assortativity
	8.3.1 Assortativity
	8.3.2 Scoring functions
	8.3.3 Modifying edges' weight
	8.3.4 Experimental results
	8.3.4.1 Assortativity measurements
	8.3.4.2 Correlation between assortativity and performance
	8.3.4.3 Increasing classification performance

	8.4 A new metric to improve edge selection
	8.4.1 General overview
	8.4.2 Metric detailed description
	8.4.3 Experimental results

	8.5 Conclusions

	9 Towards inferring communication patterns in online social networks
	9.1 Communication inference on OSNs
	9.1.1 A model of communication on OSNs
	9.1.2 Evaluating the feasibility of communication inference on OSNs

	9.2 A case study: Netlog
	9.2.1 The Netlog dataset
	9.2.2 Inferring private communication on Netlog
	9.2.2.1 Messaging behavior based on features of the online social network friendship graph
	9.2.2.2 Messaging behavior based on posting behavior

	9.3 Conclusions

	10 Conclusions
	10.1 Conclusions
	10.2 Further work

	A OSN crawler implementation
	A.1 The downloader
	A.2 The parsers
	A.3 The schedulers
	A.4 The storage device
	A.5 Other features

	Bibliography

	Títol de la tesi: Towards understanding privacy risks in online social networks
	Nom autor/a: Cristina Pérez-Solà

