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Abstract

We study the rank and kernel of Z4 cyclic codes of odd length n and
give bounds on the size of the kernel and the rank. Given that a cyclic
code of odd length is of the form C = 〈fh, 2fg〉, where fgh = xn − 1,
we show that 〈2f〉 ⊆ K(C) ⊆ C and C ⊆ R(C) ⊆ 〈fh, 2g〉 where K(C) is
the preimage of the binary kernel and R(C) is the preimage of the space
generated by the image of C. Additionally, we show that both K(C) and
R(C) are cyclic codes and determine K(C) and R(C) in numerous cases.
We conclude by using these results to determine the case for negacyclic
codes as well.
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1 Introduction

A quaternary code of length n is a subset of Zn4 and a binary code of length n is
a subset of Fn2 . For Z4 we say the code is linear if it is a module and for F2 we
say it is linear if it is a vector space. Throughout this work, quaternary codes
shall be denoted by calligraphic letters C,D and binary codes will be denoted
by standard type letters C,D.
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Any linear Z4-code C is permutation-equivalent to a code with generator
matrix of the form: (

Iδ A B
0 2Iγ 2C

)
, (1)

where A and C are matrices over F2 and B is a matrix over Z4. It follows that
|C| = 22δ+γ and in this case we say that C is of type 4δ2γ . This generator matrix
is said to be in standard form. We say that a quaternary non-zero vector v is of
order 2 if v +v = 0 and of order 4 if it is not of order 2 and v +v +v +v = 0.

The Hamming weight of any vector u ∈ Fn2 , denoted by wH(u), is the
number of non-zero coordinates of u. Given two binary vectors u,v ∈ Fn2 ,
the Hamming distance between u and v is d(u,v) = wH(u,v) and it is the
number of coordinates in which they differ. The Lee weights of 0, 1, 2, 3 ∈ Z4

are 0, 1, 2, 1 respectively, and the Lee weight of u ∈ Zn4 , wL(u), is the rational
sum of the Lee weights of its components. If u,v ∈ Zn4 , then the Lee distance
between u and v is dL(u,v) = wL(u− v).

Denote by φ the standard Gray map φ : Z4 → F2
2 that is defined by 0 →

00, 1 → 01, 2 → 11, 3 → 10. We extend this map to Zn4 → F2n
2 by applying it

coordinatewise. The map is a non-linear distance preserving map. If C ⊆ Zn4
is a quaternary code with minimum distance d, then φ(C) ⊆ F2n

2 is a binary
code with the same minimum distance. This map was used in [11] to show that
certain non-linear binary codes had a Z4 structure.

We take the standard inner-product, namely [v,w] =
∑
viwi. For a linear

code C over any alphabet, define its dual code as C⊥ = {w | [w,v] = 0,∀v ∈ C}.
The code C⊥ is a linear code whether or not C is.

We say that a code C over any alphabet is cyclic if

(c0, c1, . . . , cn−1) ∈ C ⇒ (cn−1, c0, c1, . . . , cn−2) ∈ C

and that it is negacyclic if

(c0, c1, . . . , cn−1) ∈ C ⇒ (−cn−1, c0, c1, . . . , cn−2) ∈ C.

We denote the cyclic shift by π, that is

π((c0, c1, . . . , cn−1)) = (cn−1, c0, c1, . . . , cn−2)

and the negacyclic shift by σ, that is

σ((c0, c1, . . . , cn−1)) = (−cn−1, c0, c1, . . . , cn−2).

We say that C is quasi-cyclic of index k if πk(C) = C and k is the least integer
satisfying this equation.

As usual we associate cyclic codes over a ring R with ideals in R[x]/〈xn −
1〉 and negacyclic codes with ideals in R[x]/〈xn + 1〉, where the vector c =
(c0, c1, . . . , cn−1) corresponds to the polynomial c(x) = c0 + c1x+ c2x

2 + . . .+
cn−1x

n−1. Throughout this paper, we will write c intead of c(x) when we refer
to the polynomial. Moreover, when we say that a quaternary code is cyclic we
are assuming that the code is linear. However, when we say a binary code is
quasi-cyclic we are not assuming that it is linear.

In [13], Pless and Qian describe cyclic codes over Z4 building on the earlier
work of Calderbank and Sloane in [6] who studied cyclic codes over Zpe and the
p-adic integers. The following fundamental theorem can be found in [13].
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Theorem 1 Let C be a Z4 cyclic code of odd length n. Then there are unique,
monic polynomials f, g, and h such that C = 〈fh, 2fg〉, where fgh = xn−1 and
|C| = 4deg(g)2deg(h).

From the definition of the type of a quaternary cyclic code, if C = 〈fh, 2fg〉 is
a quaternary cyclic code of type 4δ2γ , we have that δ = deg(g) and γ = deg(h).

Recall that (xn − 1) = (x − 1)(xn−1 + xn−2 + . . . + x + 1). This means
that x− 1 and xn−1 + xn−2 + . . .+ x+ 1 are always divisors of xn − 1. For the
remainder of the paper we assume that n is odd. This is because if n is odd there
is a unique factorization of xn − 1 into basic irreducible polynomials over the
binary field. Then, using Hensel’s lift, we have a unique factorization into basic
irreducible pairwise coprime polynomials. Cyclic and negacyclic codes have also
been studied for even lengths, see [1], [2], [3] and [8]. However, the description
of the ideals is quite different for even lengths because the factorization of xn−1
is not unique in these cases.

For u ∈ Z4[x], we denote by ũ ∈ F2[x] the polynomial obtained by consider-
ing the coefficients of u modulo 2. Note that if u is a divisor of xn − 1 in Z4[x],
then ũ is a divisor of xn − 1 in F2[x]. Let β be a primitive root of unity over
F2 and ũ|(xn − 1). We define (ũ⊗ ũ)|(xn − 1) in F2[x] as the polynomial whose
roots are βi+j such that βi, βj are roots of ũ.

Let C be a Z4 cyclic code. The following theorem proved in [14] determines
the linearity of φ(C) in terms of the generator polynomials of C.

Theorem 2 Let C = 〈fh, 2fg〉 be a quaternary cyclic code, where fgh = xn−1.
Let ẽ be such that xn − 1 = (g̃ ⊗ g̃)ẽ in F2[x]. The following properties are
equivalent.

1. φ(C) is a binary linear code;

2. (g̃ ⊗ g̃) divides h̃g̃ in F2[x];

3. f̃ divides ẽ in F2[x].

Corollary 1 Let C = 〈fh, 2fg〉 be a quaternary cyclic code, where fgh = xn−1.

1. If f = 1, then φ(C) is linear.

2. If g = 1, then φ(C) is linear.

3. If g = x− 1, then φ(C) is linear.

Proof: If f = 1, then f̃ = 1 and φ(C) is linear by Theorem 2, item 3. If
g = 1 or g = x − 1, then (g̃ ⊗ g̃) = g̃ and φ(C) is linear by Theorem 2, item 2.

�

We make the standard definition of the kernel of a binary code and introduce
notation for its quaternary preimage.

If C is a binary code, define its kernel to be ker(C) = {v ∈ C | v+C = C}.
If C is a quaternary code then its kernel is defined to be K(C) = {v ∈ C | φ(v) ∈
ker(φ(C))}.
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It is well known that the kernel of a binary code is the intersection of all
maximal linear subspaces and that the code is the union of cosets of the kernel;
see [9], [10] for details.

Let C be a binary, not necessarily linear code. We denote by 〈C〉 the linear
binary code generated by the vectors in C. We shall say that rank(C) =
dim(〈C〉). For a quaternary code C we shall also say that rank(C) = rank(φ(C)).

We define the quaternary preimage of 〈φ(C)〉 as R(C), that is φ(R(C)) =
〈φ(C)〉. We have that ker(φ(C)) ⊆ φ(C) ⊆ 〈φ(C)〉.

The following appears in [9].

Lemma 1 Let C be a quaternary linear code. Then, R(C) and K(C) are qua-
ternary linear codes satisfying

K(C) ⊆ C ⊆ R(C).

In [9], [10], various bounds are put on the rank and size of the kernel for
arbitrary quaternary codes. In this work, these bounds are significantly refined
for the cyclic case. Moreover, we show that, unlike the general case, it is not true
that the intermediate dimensions for the rank and kernel between the bounds
can be achieved for some code.

Both in the case of the rank and in the case of the dimension of the kernel, we
will study subcodes of quaternary cyclic codes that are also quaternary cyclic.
We will use the following theorem that relates the generator polynomials of a
quaternary cyclic code and its quaternary cyclic subcodes.

Theorem 3 Let C0 = 〈fh, 2fg〉, C1 = 〈f ′h′, 2f ′g′〉 be quaternary cyclic codes
of odd length with C0 ⊆ C1. Then f ′ divides f .

Proof: If y ∈ C1 = 〈f ′h′, 2f ′g′〉 then y = f ′h′j′ + 2f ′g′k′ where j′ and k′

are polynomials. Then, y = f ′(h′j′ + 2g′k′). This gives that if y ∈ C1 then f ′

divides y.
Now fh ∈ C0 ⊆ C1 and 2fg ∈ C0 ⊆ C1. This gives that f ′ divides fh and f ′

divides 2fg. Then since h and g are coprime, then f ′ divides f . �

2 Kernels of Cyclic Codes

In this section, we shall examine the kernel of quaternary cyclic codes.
For vectors v,w ∈ Zn4 , define v ∗w = (v1w1, v2w2, . . . , vnwn). The following

is well known, see [11], and follows from the fact that φ(v+w) = φ(v)+φ(w)+
φ(2v ∗w).

Lemma 2 Let C be a quaternary linear code, v ∈ C. Then v ∈ K(C) if and
only if 2v ∗w ∈ C for all w ∈ C.

The following is immediate from the definitions.

Lemma 3 Let C be a quaternary cyclic code of odd length n. Then ker(φ(C))
is a linear quasi-cyclic code of index 2 and φ(C) is a quasi-cyclic code of index
2 possibly non-linear.
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It is well known that φ(C) can be expressed as the union of cosets of ker(φ(C),
specifically

φ(C) =
⋃

(φ(vi) + ker(φ(C))),

where vi is either 0 or any of the order 4 vectors in C that are not in K(C). That
is, φ(C) is the union of cosets of the kernel. The coset leaders are precisely the
images of those order 4 vectors which are not in the kernel. By the action of
π2, the quasi-cyclic shift sends coset to coset fixing only the kernel.

We already know that the kernel K(C) of any quaternary linear code is a
quaternary linear code. The next theorem will show that K(C) is cyclic when C
is cyclic.

Theorem 4 Let C be a quaternary cyclic code. Then K(C) is a quaternary
cyclic code.

Proof: Let C be a quaternary cyclic code. Since K(C) is linear, we only
have to check that π(v) ∈ K(C), for v ∈ K(C); that is, 2π(v) ∗ w ∈ C, for all
w ∈ C.

Let v ∈ K(C),w ∈ C. We have that 2π(v) ∗ w = π(2v ∗ π−1(w)). Since
v ∈ K(C) and π−1(w) ∈ C, 2v ∗ π−1(w) ∈ C by Lemma 2. Moreover, since
the code C is cyclic, π(2v ∗ π−1(w)) ∈ C, which gives that 2π(v) ∗w ∈ C, and
π(v) ∈ K(C). �

Since K(C) is a quaternary cyclic code, we can write the kernel as K(C) =
〈f ′h′, 2f ′g′〉 where f ′g′h′ = xn − 1. Moreover, since K(C) ⊆ C, if C = 〈fh, 2fg〉,
then f divides f ′ by Theorem 3.

The following theorem puts a minimal size on the kernel of the code. When
the size of the kernel of a code is the minimal size, we say that the kernel is
a minimum. First note that from Lemma 2 all order 2 codewords are in the
kernel. In the case of a quaternary cyclic code C = 〈fh, 2fg〉, the subgroup of
order 2 codewords is 〈2fh, 2fg〉. Moreover, since gcd(h, g) = 1, we have that
〈2fh, 2fg〉 = 〈2f〉 and therefore, 〈2f〉 ⊆ K(C).

Theorem 5 Let C = 〈fh, 2fg〉 be a quaternary cyclic code of odd length. If
K(C) is a minimum then K(C) = 〈2f〉 and |K(C)| = 2n−deg(f). Hence the mini-
mum size of K(C) is 2n−deg(f).

Proof: Since 〈2f〉 ⊆ K(C) = 〈f ′h′, 2f ′g′〉, the kernel of C is a minimum if
K(C) = 〈2f〉. Then invoke Theorem 1, with g′ = 1, f ′ = f and h′ = xn−1

f , and
we have the result. �

We can use this theorem to put a lower bound on the size of the kernel. The
upper bound is reached when the code is linear, and we say that the kernel is
a maximum. We can then establish an upper and a lower bound on the size of
the kernel in the following corollary.

Corollary 2 Let C be a quaternary cyclic code of odd length then

2n−deg(f) ≤ |K(C)| ≤ 4deg(g)2deg(h). (2)

It follows that

deg(g) + deg(h) ≤ dim(ker(φ(C))) ≤ 2 deg(g) + deg(h). (3)
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Proof: The lower bound follows from Theorem 5 and the upper bound
follows from Theorem 1 given that |C| = 4deg(g)2deg(h). �

Note that from [9], we know that if C is of type 4δ2γ then

γ + δ ≤ dim(ker(φ(C))) ≤ γ + 2δ.

Equation (3) simply rephrases this in terms of the degrees of the generating
polynomials.

According to Theorem 1 and Theorem 5, the kernel of a quaternary cyclic
code C is a minimum if K(C) = 〈2f〉 and it is a maximum if φ(C) is linear and
K(C) = C. Of course, it is possible that the lower bound can equal the upper
bound; for example, if C = 〈2f〉 then the kernel is both the maximum and the
minimum. In this case we prefer to say that the kernel has maximum size, since
maximum size indicates that the image is a linear binary code.

In the general linear case, we can find quaternary linear codes of length n
and all possible values for the kernel as in the following theorem.

Theorem 6 ([9]) There exists a quaternary linear code C of length n and type
4δ2γ with ker(C) = γ + 2δ − k̄ if and only if k̄ ∈ {0} ∪ {2, . . . , δ}, if s ≥ 2,

k̄ ∈ {0} ∪ {2, . . . , δ} and k̄ even, if s = 1,
k̄ = 0, if s = 0,

where s = β − (γ − κ)− δ.

As it was mentioned in the introduction, this is not true for quaternary cyclic
codes. We will establish some properties for the kernel of a quaternary cyclic
code and we will give some conditions for its dimension. After that, we can
begin to describe the kernel of a cyclic code in various cases.

We know that K(C) = 〈f ′h′, 2f ′g′〉. The following theorem proves that, in
fact, K(C) = 〈fh′, 2fg′〉.

Theorem 7 Let C = 〈fh, 2fg〉 be a quaternary cyclic code of odd length with
K(C) = 〈f ′h′, 2f ′g′〉. Then f ′ = f.

Proof: Since K(C) ⊆ C, we have that 〈f ′h′, 2f ′g′〉 ⊆ 〈fh, 2fg〉. Then, by
Theorem 3, f divides f ′.

By the proof of Theorem 5, 〈2f〉 ⊆ 〈f ′h′, 2′f ′g′〉. Since 〈2f〉 = 〈xn−1, 2f〉 =
〈f((xn−1)/f), 2f〉, then by Theorem 3 we have that f ′ divides f . Hence f ′ = f.

�

As it was mentioned in the introduction, the kernel of a binary code is the
intersection of all maximal linear subspaces. Therefore, if C1, C2, . . . Cr are all
the maximal subcodes of a quaternary linear code C such that φ(Ci) is a linear
subcode of φ(C), for 1 ≤ i ≤ r, then

K(C) = ∩ri=1Ci. (4)

We will see in Proposition 1 the relation between the generator polynomials of
the kernel and the generators polynomials of the maximal subcodes Ci. First
we need the following Lemma.
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Lemma 4 Let C1 = 〈fh1, 2fg1〉 and C2 = 〈fh2, 2fg2〉 be quaternary cyclic
codes of odd length n. Then

C1 ∩ C2 = 〈f lcm(h1, h2), 2f gcd(g1, g2)〉.

Proof: First we will prove that 〈f lcm(h1, h2), 2f gcd(g1, g2)〉 ⊆ C1 ∩ C2.

The generator f lcm(h1, h2) = fh1
lcm(h1,h2)

h1
that is in C1. Since gcd(h1, g1) = 1,

there exist λ, µ ∈ Z4[x] such that 2fgcd(g1, g2) = 2fgcd(g1, g2)(g1λ+h1µ) that
belongs to C1. Therefore 〈f lcm(h1, h2), 2f gcd(g1, g2)〉 ⊆ C1. Using the same
argument for C2 we obtain the inclusion.

Finally, we will prove the other inclusion. Since C1 ⊆ C1 ∩ C2, we have
by Therorem 3 that C1 ∩ C2 = 〈fh′, 2fg′〉. Since fh1 and fh2 divides h′, we
have that f lcm(h1, h2)|fh. Therefore 〈fh′, 2fg′〉 ⊆ 〈f lcm(h1, h2), 2 xn−1

lcm(h1,h2)
〉.

Since fh1g1 = fh2g2 = xn−1, it is easy to check that lcm(h1, h2) ·gcd(g1, g2) =
xn−1
f = h1g1 = h2g2. Hence, xn−1

lcm(h1,h2)
= 2f gcd(g1, g2) and the results follows.

�

Proposition 1 Let C = 〈fh, 2fg〉 be a quaternary cyclic code of odd length.
Let C1, C2, . . . Cr be all the maximal subcodes of a C such that φ(Ci) is a linear
subcode of φ(C). Therefore

1. Ci = 〈fhi, 2fgi〉, for i ∈ {1, . . . , r}.

2. K(C) = 〈fh′, 2fg′〉, where h′ = lcm(h1 . . . , hr) and g′ = gcd(g1, . . . , gr).

Proof: For i ∈ {1, . . . , r}, Ci is quaternary cyclic code. Hence, Ci =
〈fihi, 2figi〉. We have that 〈2f〉 ⊆ K(C) ⊆ 〈fh, 2fg〉. Then, by aplying the
same argument as in the proof of Theorem 7, we have that fi = f .

Item 2 is obteined by extending Lemma 4 to C1 ∩ · · · ∩ Cr. �

Let 1 denote the all-one vector. Note that 1 corresponds to the polynomial
xn−1 + xn−2 + . . .+ x+ 1. The following lemma was proven in a different way
in [5].

Lemma 5 Let C be a quaternary code. If 1 ∈ C then 1 ∈ K(C).

Proof: We have that 2 ·1∗v = 2v ∈ C for all vectors v in C. By Lemma 2,
this gives that if the all-one vector is in the code C then it is in the kernel K(C).

�

Note that the proof of this lemma applies to any vector over Z4 that consists
entirely of units.

Since we have that 〈2f〉 ∈ K(C), if 1 ∈ K(C), then we have that the size of
the kernel is not a minimum; that is dim(ker(φ(C))) ≥ γ + δ + 1.

With the following theorem and corollary we shall see when the size is exactly
γ + δ + 1.

Theorem 8 Let C = 〈fh, 2fg〉 be a quaternary cyclic code of odd length n.
If v ∈ K(C) is an order 4 vector, then dim(ker(φ(C)) ≥ deg(g) + deg(h) +
n− deg(v), where v is the polynomial corresponding to v.
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Proof: First we note that deg(g) + deg(h) is the minimum dimension
of the kernel, and all order 2 codewords are in the kernel by Theorem 5. If
v ∈ K(C) then all n cyclic shifts of v are in K(C) since K(C) is a cyclic code.
But n−deg(v) cyclic shifts are linearly independent over Z4, adding n−deg(v)
to the dimension of the binary kernel (noting that the order 2 codewords were
already in K(C)). �

Corollary 3 Let C = 〈fh, 2fg〉 be a quaternary cyclic code of odd length. If
dim(φ(C)) = deg(g)+deg(h)+1, then K(C) = 〈xn−1 +xn−2 + . . .+x+1, 2f(x−
1)〉.

Proof: Since the minimal kernel contains all order 2 codewords, to increase
the dimension by one a unique order 4 vector v must be added. By Theorem 8,
this vector must increase the dimension by n−deg(v) where v is the polynomial
corresponding to the vector v. However, the only polynomial divisor of xn − 1
with degree n− 1 is the polynomial xn−1 + xn−2 + . . .+ x+ 1. �

Finally, the possible values on the size of the kernel depends on the degree
of the polynomials dividing g.

Theorem 9 Let C = 〈fh, 2fg〉 be a quaternary cyclic code of odd length. Then,
there exists k dividing g such that K(C) = 〈fhk, 2f gk 〉.

Proof: From Theorem 7, we have that K(C) = 〈fh′, 2fg′〉, for some g′, h′

such that xn − 1 = fh′g′. Since fh′ ∈ C, we have that fh′ = afh + b2fg, and
hence h′ = ah + b2g, for some a, b ∈ Z4[x]. In F2[x], we have h̃′ = ãh̃, with h̃′

and h̃ dividing xn − 1 in F2[x]. Let k be the Hensel lift of ã in Z4[x]. Then we
have h′ = kh.

Finally, since xn − 1 = fgh = fg′h′ = fg′hk, we have that g′k = g and
hence K(C) = 〈fhk, 2f gk 〉 with k dividing g. �

Corollary 4 Let C = 〈fh, 2fg〉 be a quaternary cyclic code of odd length.
Hence, dim(ker(φ(C)) = 2 deg(g) + deg(h) − deg(k), where k is a polynomial
dividing g.

Proof: From Theorem 9, K(C) = 〈fhk, 2f gk 〉. Let g′ = g
k . Then,

dim(ker(φ(C)) = 2 deg(g′) + deg(hk) = 2 deg(g)− 2 deg(k) + deg(h) + deg(k) =
2 deg(g) + deg(h)− deg(k). �

But not all the possible kernels are realized as shown in the following theo-
rem.

Theorem 10 Let C = 〈fh, 2fg〉 be a quaternary cyclic code of odd length with
kernel K(C) = 〈fh′, 2fg′〉. If (x− 1) divides g then (x− 1) also divides g′.

Proof: Let C = 〈fh, 2fg〉, with (x− 1) dividing g and k(C) = 〈fh′, 2fg′〉.
Consider the maximal subcodes C1, . . . , Cr as in Equation (4). We have that
K(C) = ∩ri=0Ci, and φ(Ci) is linear.

Suppose (x−1) does not divide g′. By Proposition 1, {Ci = 〈fhi, 2fgi〉}1≤i≤r,
and there exists j ∈ {1, . . . , r} such that g does not divide gj . We have that
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(g̃j ⊗ g̃j) divides h̃j g̃j by Theorem 2. Consider g• = gj(x− 1) and h• =
hj

(x−1) .

It is easy to check that (g̃•⊗ g̃•) = lcm((g̃j ⊗ g̃j)(x− 1), gj) which divides hjgj .

Since g•h• = gjhj , we have that (g̃• ⊗ g̃•) divides h̃•g̃• and, by Therorem 2,
the image under the Gray map of the code C• = 〈fh•, 2fg•〉 is linear. Finally,
Cj ⊂ C• ⊆ C with φ(C•) linear, which is a contradiction with the fact that Cj is
a maximal subcode with linear image under the Gray map.

�

Example 1 Consider the case when C = 〈fh, 2fg〉, with g = (x− 1)a, where a
is an irreducible polynomial. From Corollary 4, the dimension of the kernel,
K(C) = 〈fh′, 2fg′〉, is 2 deg(g) + deg(h) − deg(k), where g′k = g. Hence,
the possible dimensions for the kernel are deg(g) + deg(h),deg(g) + deg(h) +
1, 2 deg(g)+deg(h)−1, and 2 deg(g)+deg(h). But by Theorem 10, we have that
(x − 1) does not divide k. Hence, k = a or k = 1, and deg(k) is deg(g) − 1 or
0. Then deg(g) + deg(h) and 2 deg(g) + deg(h)− 1 are not possible dimensions.

The next corollary describes the situation when (x − 1) divides g, but may
not be equal to g.

Corollary 5 Let C = 〈fh, 2fg〉 be a quaternary cyclic code of odd length. If
(x− 1) divides g then 1 ∈ K(C) and so K(C) is not the minimum.

Proof: If (x−1) divides g then fh divides xn−1 +xn−2 + . . .+x+1. Hence
the all-one vector is in the code and therefore 1 ∈ K(C) by Lemma 5. But 1
is not in 〈2fh, 2fg〉 since it is an order 4 vector and therefore K(C) is not the
minimum. �

Theorem 11 Let C = 〈fh, 2fg〉 be a quaternary cyclic code of odd length. If
h = 1 and f ∈ K(C) then K(C) = C and φ(C) is linear.

Proof: If h = 1 then fg = xn − 1 so C = 〈f〉. If f ∈ K(C) then as in
Theorem 4 all cyclic shifts of f are in K(C) and so K(C) = C. �

As an example, let n = 3, then x3−1 = (x−1)(x2 +x+1). If f = x2 +x+1,
g = x − 1 and h = 1, then C = 〈x2 + x + 1〉 is generated by the all-one vector
and this vector is in the kernel by Lemma 5, so C = K(C) and φ(C) is linear.

It is not true that if f is not in the kernel then the kernel is a minimum. For
example, consider n = 9 and x9−1 = (x−1)(x2 +x+1)(x6 +x3 +1). If we take
f = x6 + x3 + 1, h = 1, and g = x3 − 1 then C = 〈x6 + x3 + 1〉 and the kernel
does not contain f = x6 + x3 + 1 but does contains the all-one vector. Hence
the kernel is not a minimum by Lemma 5. In fact, in this case the dimension
of ker(φ(C)) is the minimum plus 1.

Theorem 12 Let C = 〈fh, 2fg〉 be a quaternary cyclic code of odd length with
{f, g, h} = {1, x−1, xn−1 +xn−2 + . . .+x+ 1}. If g = xn−1 +xn−2 + . . .+x+ 1
and h = 1 then K(C) = 〈2(x − 1)〉, which is the minimum. In all other cases
K(C) = C and the image is linear.
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Proof: If g is not the polynomial xn−1 + xn−2 + . . .+ x+ 1, then g = 1 or
g = x− 1, and by Corollary 1 we have that K(C) = C. In these cases the code is
either 〈xn−1 + xn−2 + . . .+ x+ 1〉, 〈2(x− 1)〉 or 〈2(xn−1 + xn−2 + . . .+ x+ 1)〉.

Let g = (xn−1 + xn−2 + . . . + x + 1). We have that h = 1 or h = x − 1. If
h = x− 1, then f = 1 and therefore K(C) = C by Corollary 1.

If h = 1, we have that C = 〈x − 1〉. Then the generator matrix of the code
in standard form is: 

1 0 0 . . . 0 3
0 1 0 . . . 0 3
...
0 0 0 . . . 1 3

 .

Let vi be the i-th row of the matrix.
Then using Lemma 2, for arbitrary rows of this matrix vi,vj we have 2vi ∗

vj = (0, 0, . . . , 0, 2) which is not in C. Let u be an order 4 vector. We can write
u = u′ + 2ū, where u′ =

∑
i∈A αivi, αi ∈ {1, 3}, A ⊆ {1, . . . , n − 1}. We have

that u ∈ K(C) if and only if u′ ∈ K(C). If there exists j ∈ {1, . . . , n − 1} \ A,
then 2u∗vj = (0, 0, . . . , 0, 2) which is not in C. If, on the other hand, there is no
j which is not in A then 2u = (2, 2, 2, . . . , 2, 0). Hence, 2u ∗ v1 = (2, 0, 0, . . . , 0)
which is not in C. Then there is no order 4 vector in the kernel. Therefore,
K(C) = 〈2(x− 1)〉 and the kernel is a minimum. �

3 Classification of the Kernels for Some Factor-
izations of xn − 1

In this section, we will take into account the factorization of xn−1. Specifically,
we shall examine the following cases. The first case is when the polynomial
xn−1 +xn−2 + . . .+x+ 1 is irreducible; that is, there are just two factors in the
factorization of xn − 1. Then, we look at the case when there are three factors
and in particular when this occurs for length n = p2, where p a prime.

If the polynomial xn−1+xn−2+. . .+x+1 is irreducible then the factorization
of xn − 1 is

xn − 1 = (xn−1 + xn−2 + . . .+ x+ 1)(x− 1)

and there are 32 = 9 possible codes. Applying Theorem 12 to this case we get
the following corollary which determines the dimension of the kernel for all nine
codes.

Corollary 6 Let C = 〈fh, 2fg〉 be a quaternary cyclic code of odd length. If
xn−1+xn−2+. . .+x+1 is irreducible over Z4, then if g = xn−1+xn−2+. . .+x+1,
f = x− 1 and h = 1 the kernel is a minimum and in all other cases K(C) = C
and the image is linear.

Therefore, if xn−1 + xn−2 + . . . + x + 1 is irreducible, the only possible
dimensions of the kernel are the minimum, γ + δ, or the maximum γ + 2δ.

For example, for n ≤ 30, the polynomial xn−1 + xn−2 + . . . + x + 1 is
irreducible for n = 3, 5, 11, 13, 19, 29. Hence for these values of n, when g =
xn−1 + xn−2 + . . .+ x+ 1 and h = 1, the kernel is a minimum, and in all other
cases we have that the image is a linear code.
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Let n = pq, p, q integers. Then (1 + xp + x2p + . . . + x(q−1)p)(xp − 1) =
xqp− 1 = xn− 1. Hence these two polynomials divide xn− 1. We shall examine
the case when fh is the first polynomial. Notice that xp− 1 has further factors.
These cases shall be examined later.

Theorem 13 Let C = 〈fh, 2fg〉 be a quaternary cyclic code of odd length. Let
n = pq, p, q integers. If fh = (1 + xp + x2p + . . .+ x(q−1)p) then K(C) = C.

Proof: The matrix given by taking p cyclic shifts of the fh, i.e. πi(fh)
for i = 0, 1, 2, . . . , p − 1, is in standard form. That is, the identity matrix is in
the first p coordinates. These are the vectors of order 4 in the generator matrix
of the code. The generator matrix in the standard form also has other order 2
vectors which are not relevant to this proof. Then if we take 2v ∗w for any of
these vectors we have 0 or 2v which are in the code. Hence, the code C satisfies
K(C) = C. �

We now consider the further factorization of xp − 1.

Theorem 14 Let C = 〈fh, 2fg〉 be a quaternary cyclic code of odd length. If
for some integer s we have that s divides n and fh = xs−1 + . . . + x + 1, then
dim(ker(φ(C))) ≥ γ + δ + 1, that is, the kernel is not a minimum.

Proof: We have seen above that (1 + xp + x2p + . . .+ x(q−1)p)(xp − 1) =
xqp − 1 = xn − 1 when n = pq, p, q integers. Let p = s + 1 then xs − 1 =
(x− 1)(xs−1 + . . .+ x+ 1) so this polynomial divides xn − 1 when s divides n.
Let v be the vector given by fh. Then

v + πs(v) + π2s(v) + . . .+ π(q−1)(s)(v) = 1.

This gives that 1 ∈ C and 1 ∈ K(C) by Lemma 5. This gives the result. �

Example 2 Consider n = 9 and s = 3. Let f = x2 + x + 1, g = x7 + 3x6 +
x4 + 3x3 + x + 3 and h = 1. Then dim(ker(φ(C)) = γ + δ + 1. If n = 15 then
letting h = 1 and f = x2 + x + 1 or f = x4 + x3 + x2 + x + 1 results in codes
with dim(ker(φ(C)) = γ + δ + 1.

Theorem 15 If there are exactly three monic irreducible factors of xn − 1, n
odd, then n = p or n = p2 where p > 2 is a prime. If there are exactly two
monic irreducible factors of xn − 1 then n = p.

Proof: If n = st with s 6= t then x − 1, x + xs + x2s + . . . + x(t−1)s, x +
xt + x2t + . . .+ x(s−1)t, 1 + x+ x2 + . . .+ xs, and 1 + x+ x2 + . . .+ xt are all
distinct factors of xn− 1 as we have shown previously. Hence the only time you
can have three factors is when n = p or n = p2, where p is a prime. If n = p2,
then x − 1, x + xp + x2p + . . . + x(p−1)p and 1 + x + x2 + . . . + xp are factors,
hence if there are only two factors then n is a prime. �

We have seen in Theorem 15 that if we have three factors in the decomposi-
tion of xn − 1 then n = p or p2. We will see some properties for these cases in
general and we will give the complete classification for the case n = p2.
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Theorem 16 Let xn−1 = (x−1)ab, where a and b are irreducible polynomials.
Let C be a quaternary cyclic code of odd length with C = 〈a, (x − 1)ab〉 = 〈a〉.
Then either K(C) = C and φ(C) is linear, or dim(φ(C)) = γ + δ + 1.

Proof: Writing C = 〈a〉 in the form C = 〈fh, 2fg〉, we have f = a,
g = (x − 1)b, h = 1. Then write K(C) = 〈fh′, 2fg′〉 by Theorem 7. Since a
divides xn−1+xn−2+. . .+x+1, we have that xn−1+xn−2+. . .+x+1 is in K(C),
that is 1 ∈ K(C). This gives that fh′ must divide xn−1 + xn−2 + . . . + x + 1.
The only possibilities are fh′ = 1 + x + x2 + . . . + xn−1 or fh′ = f since f
must divide fh′ as the kernel is a subspace. If fh′ = f then K(C) = C. If
fh′ = 1 + x + x2 + . . . + xn−1 then K(C) = 〈1 + x + x2 + . . . + xn−1, 2f〉 and
dim(φ(ker(C)) is γ + δ + 1. �

Let xn−1 = (x−1)ab, where a and b are irreducible polynomials. If n = p2,
p prime, then we can take a = 1 + x+ · · ·+ xp−1 and b = 1 + xp + · · ·+ x(p−1)p.
However, when n = p we do not have the same divisors of xn− 1. For example,
we have x7 − 1 = (x − 1)(3 + x + 2x2 + x3)(3 + 2x + 3x2 + x3) and x17 − 1 =
(x− 1)(x8 + 2x6 + 3x5 +x4 + 3x3 + 2x2 + 1)(x8 +x7 + 3x6 + 3x4 + 3x2 +x+ 1).

Remark: If n = p2, p prime, and xn−1 = (x−1)ab with a = 1+x+· · ·+xp−1
and b = 1 + xp + · · ·+ x(p−1)p, then the only self-dual Z4-cyclic code of length
n is C = 〈2〉. This is because the code C is self-dual if and only if 〈fh + 2f〉 =
〈g∗h∗ + 2g∗〉 (see [12]); that is, h = ±h∗ and f = ±g∗, where h∗ and g∗ are
the reciprocal polynomials of h and g respectively. Hence, the only option is
h = xn−1, f = g = 1. This is not true if n = p. In the case n = 7, for example,
we have that x7 − 1 = (x − 1)(3 + x + 2x2 + x3)(3 + 2x + 3x2 + x3) and the
Z4-cyclic codes C1 = 〈(x− 1)a, 2ab〉 and C2 = 〈(x− 1)b, 2ba〉 are both self-dual,
for a = (3 + 2x+ 3x2 +x3) and b = (3 +x+ 2x2 +x3) since a = −b∗. Moreover,
C1 and C2 are equivalent and, therefore the dimensions of the kernels coincide.

From now on, we will consider the case n = p2 odd, p > 2 prime and (x −
1)n = (x−1)ab, for a = 1+x+x2+. . .+xp−1 and b = 1+xp+x2p+. . .+x(p−1)p.
We will completely determine the kernel in this case for all possible values of
f, g and h.

Theorem 17 Let C = 〈fh, 2fg〉 be a quaternary cyclic code of odd length n = p2

and xn− 1 = (x− 1)ab where a and b are irreducible polynomials. Set h = 1. If
f = a, then K(C) = 〈1 + x+ · · ·+ xn−1, 2ab〉 and if f = b then K(C) = C.

Proof: Let C = 〈fh, 2fg〉 and K(C) = 〈fh′, 2fg′〉, by Theorem 7, where
fh divides fh′.

Consider h = 1 and f = a. Then C = 〈a, 2(1 + x + · · ·+ xn−1)〉. Note that
2a?π(a) 6∈ C and hence a 6∈ K(C) and K(C) 6= C. Moreover, 1+x+ · · ·+xn−1 =
a+πp(a) + · · ·+πp−1(a) =∈ C. Hence, by Lemma 5, 1 +x+ · · ·+xn−1 ∈ K(C).
Since a = fh divides fh′ and fh′ divides 1 + x+ · · ·+ xn−1 = ab, we have that
h′ = 1 or h′ = b. If h′ = 1, then K(C) = C that is not possible. Therefore,
h′ = b and K(C) = 〈1 + x+ · · ·+ xn−1, 2ab〉.

Now consider h = 1 and f = b. Then C = 〈b, 2(1 + x + · · · + xn−1)〉. Note
that for all i, 2b ? πi(b) is either 0 or 2b and, in both cases, it belongs to C.
Hence b ∈ K(C) and K(C) = C. �
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Theorem 18 Let C = 〈fh, 2fg〉 be a quaternary cyclic code of odd length n = p2

and xn − 1 = (x − 1)ab where a and b are irreducible polynomials. Set h = 1
and g = a or g = b. Then K(C) = 〈2f〉.

Proof: Let C = 〈fh, 2fg〉 and K(C) = 〈fh′, 2fg′〉, by Theorem 7, where f
divides fh′. Hence, h′ = 1 and K(C) = C or h′ = g and K(C) = 〈2f〉. That is,
if there is a codeword not in the kernel, we have that the kernel is a minimum.

First, consider g = b and f = (x − 1)a = xp − 1. Let v be the vector
corresponding to xp − 1. Since p > 2, we have that 2v ? πp(v) = πp(2, 0, . . . , 0)
that belongs to C if and only if (1, 0, . . . , 0) belongs to C, due to the fact that C
is free, where a free code is a code isomorphic to Zk4 for some k. In this case, we
have that 1 + x+ · · ·+ xn−1 is in C that is not possible. Hence, πp(2, 0, . . . , 0)
is not in the code and K(C) 6= C. Therefore, the kernel is a minimum.

Finally, consider g = a and f = (x − 1)b. Take the vector v = (130 . . . 0
130 . . . 0 . . . 130 . . . 0) corresponding to (x − 1)b. The code is free and it is
generated by p − 1 independent vectors of order 4. A generator matrix of the
code is

G =


v

π(v)
...

πp−2(v)

 =


130 . . . 0130 . . . 0 · · · 130 . . . 0
013 . . . 0013 . . . 0 · · · 013 . . . 0

. . .

0 . . . 0130 . . . 013 · · · 0 . . . 013


Note that 2v ? π(v) = (020 . . . 020 . . . 0 . . . 020 . . . 0) and it is in the code if

and only if (010 . . . 010 . . . 0 . . . 010 . . . 0) also belongs to the code which is not
true by the form of the generator matrix. Hence, 2v ? π(v) 6∈ C and v is not in
the kernel, so the kernel is a minimum. �

Theorem 19 Let C = 〈fh, 2fg〉 be a quaternary cyclic code of odd length n = p2

and xn − 1 = (x − 1)ab where a and b are irreducible polynomials. Set g = a.
If f = b then K(C) = C and the kernel is a maximum. If f = x − 1 then
K(C) = 〈2f〉 and the kernel is a minimum.

Proof: Let v be the vector corresponding to fh = (x− 1)b. Then we have
2v ∗ πj(v) is either 0, 2fh or a cyclic shift of the vector corresponding to 2b.
We note that 0 and 2fh are both in the code. So if 2b is in the code then the
kernel is a maximum. If not then it is easy to see that no linear combination of
the order 4 vectors is in the kernel and hence the kernel is a minimum.

If f = b, then C = 〈b(x−1), 2ba〉. Then since x−1 and a are relatively prime,
we have that 2b ∈ 〈2b(x− 1), 2ba〉. Hence, in this case we have that C = K(C).

If f = x− 1, then C = 〈(x− 1)b, 2(x− 1)a〉. Then 2b 6∈ 〈(x− 1)b, 2(x− 1)a〉
since (x − 1) does not divide b. Hence, in this case we have that K(C) = 〈2f〉
and is a minimum. �

Theorem 20 Let C = 〈fh, 2fg〉 be a quaternary cyclic code of odd length n = p2

and xn − 1 = (x− 1)ab where a and b are irreducible polynomials. Set g = b. If
f, h 6= 1 then K(C) = 〈2f〉 and the kernel is a minimum.
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Proof: Let v be the vector corresponding to fh. Then we have 2v ∗πj(v)
is either 0 or a cyclic shift of the vector corresponding to 2b. Moreover, we can
see that any linear combination w of order 4 vectors has a vector w′ such that
2w ∗w′ is a cyclic shift of the vector corresponding to 2b.

If f = a then C = 〈a(x−1), 2ab〉. If f = x−1 then C = 〈a(x−1), 2(x−1)b〉.
In both cases we have that 2b is not in the code, because neither a nor (x− 1)
divides b. �

In the following theorem, we will summarize all the cases when n = p2 and
xn − 1 has three factors.

Theorem 21 Let C = 〈fh, 2fg〉 be a quaternary cyclic code of length n = p2

and xn−1 = (x−1)ab where a and b are irreducible polynomials. Then K(C) is
either the minimum 〈2f〉, the maximum C or 〈1+x+x2 + . . .+xn−1, 2f〉. That
is, we have that the dimension of ker(φ(C)) is either γ + δ, γ + 2δ or γ + δ + 1.

Proof: Let xn−1 = (x−1)ab, where a and b are the irreducible polynomials
defined before. We will check all the possibilities for f, g, h, fgh = xn − 1 and
we determine, in each case if the kernel is the maximum, dimension γ + 2δ; the
minimum, dimension γ + δ or it has dimension γ + δ + 1.

• If g = 1 or g = x − 1, then K(C) = C and the kernel is a maximum by
Corollary 1. For the remainder assume g 6= 1, x− 1.

• If f = 1 then we know that K(C) = C by Corollary 1.

• Set f = a. If h = 1, then we apply Theorem 17 and K(C) = 〈1 + x +
x2 + . . .+ xn−1, 2fg〉; that is, the dimension of the kernel is γ + δ + 1. If
h = x − 1, then g = b and, by Theorem 20 the kernel is a minimum. If
h = b or h = b(x − 1), then g = 1 or x − 1 and it has been determined
before.

• Set f = b. If h = 1, then we apply Theorem 17 and K(C) = C; that is, the
kernel is a maximum. If h = x − 1, then g = a and, by Theorem 20 the
kernel is also a maximum. If h = a or h = a(x − 1), then g = 1 or x − 1
and it has been determined before.

• If f = x− 1 and g = a or g = b, then by Theorems 19 and 20 the kernel is
a minimum. If g = ab, then by Theorem 12, the kernel is also a minimum.

• Let f = (x− 1)a, or f = (x− 1)b and g 6= 1, x− 1. Then by Theorem 18
the kernel is a maximum in the case p = 2 and it is a minimum otherwise.

• If f = ab, then necessarily g = 1 or x− 1 and of f = xn − 1, then g = 1.
In all the cases, the kernel has been determined before.

�

In Table 1, we can completely determine all possible kernels from the last
theorem when n = p2 and there are only 3 irreducible factors of xn − 1. A ∗ in
the table indicates that it takes on all possible values. In this case there are 27
cyclic codes represented in the table. We consider p > 2.
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f g h Kernel dimension Reference
1 ∗ ∗ γ + 2δ Corollary 1
∗ 1 ∗ γ + 2δ Corollary 1
∗ x− 1 ∗ γ + 2δ Corollary 1
a (x− 1)b 1 γ + δ + 1 Theorem 17
a b x− 1 γ + δ Theorem 20
b (x− 1)a 1 γ + 2δ Theorem 17
b a x− 1 γ + δ Theorem 20

(x− 1) a b γ + δ Theorem 19
(x− 1) b a γ + δ Theorem 20
(x− 1) ab 1 γ + δ Theorem 12
(x− 1)a b 1 γ + 2δ Theorem 18
(x− 1)b a 1 γ + 2δ Theorem 18

Table 1: Kernel dimension of quaternary cyclic codes of length n = p2.

4 Ranks of Cyclic Codes

In this section, we shall describe the quaternary code R(C) and its binary image
which is 〈φ(C)〉. It is immediate that if K(C) = C then R(C) = C since 〈φ(C)〉 =
φ(C). We begin with a lemma.

Lemma 6 Let C be a quaternary cyclic code. Then 〈φ(C)〉 is a quasi-cyclic code
of index 2.

Proof: Let {vi} be a set of vectors in C = φ(C), then if v =
∑
αivi

then
∑
αiπ

2(vi) ∈ C and
∑
αiπ

2(vi) = π2(v). Hence the code is quasi-cyclic
of index 2. �

Note that we are not asserting that the binary image is linear, only that it
is held invariant by the action of π2.

Theorem 22 Let C be a quaternary cyclic code, then R(C) is a quaternary
cyclic code.

Proof: By Lemma 1 we have that R(C) is linear. By Lemma 6 we have
that 〈φ(C)〉 is quasi-cyclic of index 2, hence R(C) is a linear quaternary cyclic
code. �

In general, we have that R(C) = 〈f ′h′, 2f ′g′〉 for some f ′, h′, g′ satisfying
f ′g′h′ = xn − 1.

The following lemma can be found in [11] and [10].

Lemma 7 Let C be a quaternary code of type 4δ2γ . Let {v1, . . . ,vδ} and
{w1, . . . ,wγ} be the sets of generators vectors of order 4 and 2 respectively.
Then the quaternary code C′ = 〈C, {2vi ?vj}i,j∈{1,...,δ}〉 is the minimum quater-
nary linear code containig C such that φ(C′) is a binary linear code.

Note that C has a binary linear image if and only if 2vi ? vj ∈ C for any
i, j ∈ {1, . . . , δ}. Since R(C) is, by definition, the minimum quaternary linear
code containig C whose binary image is linear, then we can easily obtain the
following corollary.
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Corollary 7 Let C = 〈fh, 2fg〉 be a quaternary cyclic code of odd lenth. Then
R(C) = 〈C, 2v ∗ π(v), . . . , 2v ∗ πs(v)〉 where v is the vector corresponding to fh
and s = n− deg(fh)− 1.

Theorem 23 Let C be a quaternary cyclic code of odd length, with C = 〈fh, 2fg〉.
Then there exits a polynomial r dividing f such that R(C) = 〈fh, 2 fr g〉.

Proof: Let C = 〈fh, 2fg〉 and R(C) = 〈f ′h′, 2f ′g′〉. By Corollary 7,
we have that C and R(C) have the same number of order 4 vectors. Since
C ⊆ R(C) we have that fh = f ′h′. Then fhg = f ′h′g′ = xn − 1 which gives
that g = g′. Finally, we have that f ′ divides f by Theorem 3 and hence there
exists a polynomial r such that f ′r = f . Therefore, 〈f ′h′, 2f ′g′〉 = 〈fh, 2 fr g〉.

�

We can use these results to find a maximum for R(C).

Theorem 24 Let C be a quaternary cyclic code of odd length. If C = 〈fh, 2fg〉
then R(C) ⊆ 〈fh, 2g〉 and rank(φ(C)) ≤ γ + 2δ + (deg(f)).

Proof: Let C = 〈fh, 2fg〉, and R(C) = 〈fh, 2 fr g〉 for some polynomial r.
Then R(C) ⊆ C′ = 〈f ′h′, 2f ′g′〉 where f ′ = 1, h′ = fh and g = g′. Note that C′
has linear image by Corollary 1. Then

dim(φ(C′)) = 4deg(g
′)2deg(h

′) = 4deg(g)2deg(fh) = 4deg(g)2deg(h)2deg(f).

Hence, since C′ is the maximum code that R(C) can be, we have that the
dimension can go up at most by deg(f). �

In general, we have that

〈fh, 2fg〉 ⊆ R(C) ⊆ 〈fh, 2g〉. (5)

Theorem 25 Let C be a quaternary cyclic code of odd length with C = 〈fh, 2fg〉.
If φ(C) is not linear and f is irreducible then R(C) = 〈f, 2g〉.

Proof: We know by Theorem 23, that R(C) = 〈fh, 2 fr g〉 for some r
dividing f . But since f is irreducible, we have that r = 1 or r = f . If r = f
then the image is linear. Therefore, if φ(C) is not linear, R(C) = 〈fh, 2g〉. �

Notice that this theorem completely determines all possible cases when n =
p2 and xn− 1 = (x− 1)(1 +x2 + . . .+xp−1)(1 +xp +x2p + . . .+x(p−1)p) and all
factors are irreducible, since the only cases where the image is not linear have
f irreducible. Hence, we know the rank for every code in the Table 1.

Theorem 26 Let C = 〈fh, 2fg〉 be a quaternary cyclic code of odd length.
Assume the polynomial xn−1 + xn−2 + . . . + x + 1 is irreducible over Z4. If
g = xn−1 + xn−2 + . . .+ x+ 1, f = x− 1 and h = 1, then R(C) = 〈x− 1, 2(1 +
x+ x2 + . . .+ xn−1)〉.

In all other cases, R(C) = C.

Proof: By Corollary 6, we have that the only case when φ(C) is not linear
is when g = xn−1 + xn−2 + . . .+ x+ 1, f = x− 1 and h = 1. In this case, it is
easy to see that R(C) = 〈x − 1, 2(1 + x + . . . + xn−1)〉. This code has a linear
image by Corollary 6 and is formed by adding 2v ∗ π(v) where v is the vector
corresponding to x− 1. �
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5 Kernels and Ranks of Negacyclic Codes

We begin our study of negacyclic codes with a theorem that is similar to The-
orem 4.

Theorem 27 Let C be a negacyclic code over Z4. Then K(C) is a negacyclic
code.

Proof: The proof follows similarly to the proof of Theorem 4, replacing π
with σ. �

For odd n we have a bijective correspondence between cyclic codes and
negacyclic codes using the following map:

µ : Z4[x]/〈xn − 1〉 → Z4[x]/〈xn − 1〉, (6)

where µ(c(x)) = c(−x).
Notice that from this bijective correspondence the role played by the all-one

vector is now played by the vector (1, 3, 1, 3, 1, 3, . . . , 1). It is still true that if
this vector is in the code, then 2(1, 3, 1, 3, 1, 3, . . . , 1) ∗ v = 2v and hence in the
code. So that if this vector is in the code then this vector is in the kernel. The
same can be said for any vector whose coordinates are all ±1.

Theorem 28 Let C be a cyclic code over Z4 then µ(K(C)) = K(µ(C)).

Proof: Assume v ∈ K(C), then 2v ∗ w ∈ C, for all w ∈ C. View v,w
as polynomials. Then 2v(−x) ∗ w(−x) = 2v(x) ∗ w(x) which is in C. Note
however that if c ∈ 2Zn4 then µ(c) = c. Hence 2v ∗ w ∈ µ(C) and therefore
µ(v) ∈ K(µ(C)). Hence µ(K(C)) ⊆ K(µ(C)).

Notice that µ(µ(v)) = v. Let µ(v) ∈ K(µ(C)). Then 2µ(v) ∗ µ(w) ∈ µ(C)
for all µ(w) ∈ µ(C). Then by applying µ we have 2v ∗w ∈ C for all w ∈ C. This
gives the other direction. �

We have similar theorems for the rank.

Theorem 29 Let C be a quaternary cyclic code over Z4 then µ(R(C)) = R(µ(C)).

Proof: Consider the binary code φ(C) and the binary code φ(µ(C)).
The second binary code is formed from the first by simply permuting the two
coordinates corresponding to odd powered monomials. Let this action be given
by τ . Then τ(φ(C)) = φ(µ(C)). It is immediate that τ(〈φ(C)〉) = 〈φ(µ(C))〉.
Then by considering the inverse image under φ we have the result. �

Theorem 30 Let C be a quaternary negacyclic code then R(C) is a negacyclic
code.

Proof: If C is a quaternary negacyclic code then C = µ(C′) for some
quaternary cyclic code. Then by Theorem 29, R(C) = µ(R(C′)). Since C′ is
cyclic, we have that R(C) is cyclic by Theorem 22. Then µ(R(C)) is negacyclic
and we have the result. �

Given Theorem 28 and Theorem 29, we see that the case for negacyclic codes
is determined by the case for cyclic codes.
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6 Examples

We shall look at the rank and the kernel for some small values of n. For n =
3, 5, 11, 13, we have seen that the polynomial xn−1 + xn−2 + . . . + x + 1 is
irreducible, so these cases are trivial as described in Corollary 6 and Theorem 26.

In the cases n = 7, 9, 17, the polynomial xn− 1 factors into three irreducible
polynomials and the different values for the dimension of the kernel belong to
{γ+ δ, γ+ δ+ 1, γ+ 2δ}. We completely describe the case n = 9 at the Table 1.
We add the results for the case n = 7 in the following tables. In the first table,
the codes are linear; that is the dimension of the kernel is γ+ 2δ. In the second
table the dimension of the kernel is the minimum possible; that is, γ+δ. Finally,
there are two cases where the dimension of the kernel is γ + δ + 1.
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ker = γ + 2δ γ, δ ker
f(x) = (x− 1)(x3 + 2x2 + x+ 3)(x3 + 3x2 + 2x+ 3);

g(x) = 1; 7, 0 7
h(x) = 1.

f(x) = (x− 1)(x3 + 2x2 + x+ 3);
g(x) = 1; 3, 0 3

h(x) = (x3 + 3x2 + 2x+ 3).
f(x) = (x− 1);

g(x) = (x3 + 2x2 + x+ 3); 3, 3 9
h(x) = (x3 + 3x2 + 2x+ 3).

f(x) = (x− 1)(x3 + 3x2 + 2x+ 3);
g(x) = 1; 3, 0 3

h(x) = (x3 + 2x2 + x+ 3).
f(x) = (x− 1);

g(x) = (x3 + 3x2 + 2x+ 3); 3, 3 9
h(x) = (x3 + 2x2 + x+ 3).

f(x) = (x− 1);
g(x) = 1; 6, 0 6

h(x) = (x3 + 2x2 + x+ 3)(x3 + 3x2 + 2x+ 3).
f(x) = (x3 + 2x2 + x+ 3)(x3 + 3x2 + 2x+ 3);

g(x) = (x− 1); 0, 1 2
h(x) = 1.

f(x) = (x3 + 2x2 + x+ 3);
g(x) = (x− 1); 3, 1 5

h(x) = (x3 + 3x2 + 2x+ 3).
f(x) = 1;

g(x) = (x− 1)(x3 + 2x2 + x+ 3)(x3 + 3x2 + 2x+ 3); 0, 7 14
h(x) = 1.
f(x) = 1;

g(x) = (x− 1)(x3 + 2x2 + x+ 3); 3, 4 11
h(x) = (x3 + 3x2 + 2x+ 3).
f(x) = (x3 + 3x2 + 2x+ 3);

g(x) = (x− 1); 3, 1 5
h(x) = (x3 + 2x2 + x+ 3).

f(x) = 1;
g(x) = (x− 1)(x3 + 3x2 + 2x+ 3); 3, 4 11

h(x) = (x3 + 2x2 + x+ 3).
f(x) = 1;

g(x) = (x− 1); 6, 1 8
h(x) = (x3 + 2x2 + x+ 3)(x3 + 3x2 + 2x+ 3).
f(x) = (x3 + 2x2 + x+ 3)(x3 + 3x2 + 2x+ 3);

g(x) = 1; 1, 0 1
h(x) = (x− 1).

f(x) = (x3 + 2x2 + x+ 3);
g(x) = 1; 4, 0 4

h(x) = (x− 1)(x3 + 3x2 + 2x+ 3).
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f(x) = 1;
g(x) = (x3 + 2x2 + x+ 3)(x3 + 3x2 + 2x+ 3); 1, 6 13

h(x) = (x− 1).
f(x) = 1;

g(x) = (x3 + 2x2 + x+ 3); 4, 3 10
h(x) = (x− 1)(x3 + 3x2 + 2x+ 3).

f(x) = (x3 + 3x2 + 2x+ 3);
g(x) = 1; 4, 0 4

h(x) = (x− 1)(x3 + 2x2 + x+ 3).
f(x) = 1;

g(x) = (x3 + 3x2 + 2x+ 3); 4, 3 10
h(x) = (x− 1)(x3 + 2x2 + x+ 3).

f(x) = 1;
g(x) = 1; 7, 0 7

h(x) = (x− 1)(x3 + 2x2 + x+ 3)(x3 + 3x2 + 2x+ 3).

ker = γ + δ γ, δ ker
f(x) = (x− 1)(x3 + 2x2 + x+ 3);

g(x) = (x3 + 3x2 + 2x+ 3); 0, 3 3
h(x) = 1.

f(x) = (x− 1)(x3 + 3x2 + 2x+ 3);
g(x) = (x3 + 2x2 + x+ 3); 0, 3 3

h(x) = 1.
f(x) = (x− 1);

g(x) = (x3 + 2x2 + x+ 3)(x3 + 3x2 + 2x+ 3); 0, 6 6
h(x) = 1.

f(x) = (x3 + 2x2 + x+ 3);
g(x) = (x3 + 3x2 + 2x+ 3); 1, 3 4

h(x) = (x− 1).
f(x) = (x3 + 3x2 + 2x+ 3);
g(x) = (x3 + 2x2 + x+ 3); 1, 3 4

h(x) = (x− 1).

ker = γ + δ + 1 γ, δ ker
f(x) = (x3 + 2x2 + x+ 3);

g(x) = (x− 1)(x3 + 3x2 + 2x+ 3); 0, 4 5
h(x) = 1.

f(x) = (x3 + 3x2 + 2x+ 3);
g(x) = (x− 1)(x3 + 2x2 + x+ 3); 0, 4 5

h(x) = 1.

From Corollary 4, we know that the dimension of the kernel is γ + δ + ρ,
where ρ is the degree of a polynomial dividing g. Nevertheless, given the previous
results and examples, one may think that for all cyclic codes of odd length, the
dimension of the kernel is either the minimum, the maximum or the minimum
plus 1, that is γ + δ, γ + 2δ or γ + δ + 1. This is true for all n < 15. For
n = 3, 5, 11, 13 the polynomial xn−1 + xn−2 + . . . + x + 1 is irreducible so we
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can invoke Corollary 6. The cases for n = 7 and n = 9 are similar. However,
at n = 15 there are codes for which this is not true. In the next example we
shall show cases where the dimension of the kernel is neither the minimum,
maximum, nor the minimum plus 1. But rather where it goes up by the degree
of a factor of g.

Example 3 Let n = 15. Here x15 − 1 = (x − 1)(x2 + x + 1)(x4 + 2x2 + 3x +
1)(x4+3x3+2x2+1)(x4+x3+x2+x+1). Hence there are 35 = 243 cyclic codes
of length 15. We shall give four examples where the dimension of the binary
kernel is neither γ + δ, γ + δ + 1, nor γ + 2δ.

• The first example is when f = (x − 1), g = (x2 + x + 1)(x4 + 2x2 + 3x +
1)(x4 + x3 + x2 + x+ 1) and h = (x4 + 3x3 + 2x2 + 1) then C = 〈fh, 2fg〉
has dim(ker(φ(C))) = γ + δ + 4 = 18.

• The second example is when f = (x−1), g = (x2+x+1)(x4+2x2+3x+1)
and h = (x4 + 3x3 + 2x2 + 1)(x4 +x3 +x2 +x+ 1) then C = 〈fh, 2fg〉 has
dim(ker(φ(C))) = γ + δ + 4 = 18.

• The third example is when f = (x− 1), g = (x2 + x+ 1)(x4 + 3x3 + 2x2 +
1)(x4 + x3 + x2 + x+ 1) and h = (x4 + 2x2 + 3x+ 1) then C = 〈fh, 2fg〉
has dim(ker(φ(C))) = γ + δ + 4 = 18.

• The fourth example is when f = (x−1), g = (x2+x+1)(x4+3x3+2x2+1)
and h = (x4 + 2x2 + 3x+ 1)(x4 + x3 + x2 + x+ 1) then C = 〈fh, 2fg〉 has
dim(ker(φ(C))) = γ + δ + 4 = 18.

In all other cases for n = 15, we have that dim(ker(φ(C)) ∈ {γ + δ, γ + 2δ, γ +
δ + 1}.
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