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Abstract

We aim to determine the extent to which variables commonly used
to describe health, wellbeing, and disability in old-age vary primarily as
a function of years lived (chronological age), years left (thanatological
age), or as a function of both. We analyze data from the US Health
and Retirement Study to estimate chronological age and time-to-death
patterns in 78 such variables. We describe results from the birth cohort
born 1915-1919 in the final 12 years of life. Our results show that most
markers used to study well-being in old-age vary along both the age and
time-to-death dimensions, but some markers are exclusively a function
of either time to death or chronological age, and others display different
patterns between the sexes.
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Background

For an individual, age across the life course consists of two components: time
since birth and time to death, the chronological and thanatalogical dimen-
sions of age, respectively. In the aggregate, thanatological age is determined
by the mortality rate schedule to which a birth cohort is subject until its
extinction. Individuals do not know their thanatological age with certainty.
To guess this quantity one projects an expectation of lifespan1 based on
scenarios or extrapolations of how mortality rates might change over time.
Data classified by chronological age, like census population counts, can be
reclassified into thanatological age in this way (Brouard 1986).

Prospectively, decreasing mortality is equivalent to moving population
into higher thanatological ages, thereby increasing remaining life expectancy
(Sanderson and Scherbov 2005). In this case, the notion and measure of
future remaining lifespan is elastic, subject to uncertainty. In retrospect
(after the death of a cohort), the thanatological age structure of a cohort
at a given past point in time is a fixed characteristic. Since a closed birth
cohort is akin to a stationary population,2 one may be tempted to assume
that since chronological and thanatological age structures are symmetrical
in stationary populations (Brouard 1989, Vaupel 2009, Villavicencio and
Riffe 2016) that the patterns of demographic characteristics within cohorts
might also demonstrate an analogous kind of symmetry. This is not so; even
in the case of stationary populations or extinct cohorts, the age profiles of
other demographic characteristics in the population are decidedly different
when viewed chronologically versus thanatologically. If the demographic
characteristics in question are states, such as health states, one can confirm
that for cohorts the mean duration spent in each state is indeed identical,
no matter whether measured by chronological or thanatological age. Cohort
expectancies are immune from age classification biases. However, distinct
patterns emerge in period aggregates due to an interaction between lifespan
variation and the age profiles of demographic characteristics.

Some life transitions, states, and changes in state intensities are almost
exclusively a function of time to death. When we state that a characteristic
is a function of either age perspective we do not imply that age causes the

1Lifespan is used throughout as a synonym for chronological age at death, or thanato-
logical age at birth. These concepts are identical with length of life, which is not to be
confused with life expectancy, the mean length of life..

2The age structure of a birth cohort over time is proportional to the survivorship
column of its lifetable, which is proportional to the stable age structure determined by
the Lotka-Euler renewal model when the intrinsic growth rate is equal to zero.
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given characteristic to vary, but rather that a characteristic varies in some
smooth, regular, or parsimonious way over age. There are other instances
where chronological age captures almost all pertinent variation. In cases
where a characteristic strongly varies as a function of time to death, the
common practice of aggregation over chronological age may misrepresent
time trends and misguide analyses about change over time and expectations
for the future. Measurement of the end-of-life trajectories of characteristics
is useful in such cases as a way of separating mortality patterns from pat-
terns in characteristics themselves. Characteristic measurements are taken
while the respondent is alive, but thanatological age at each observation is
unknown until the date of death is known, and it is therefore retrospectively
assigned. This final analytical step lends clarity to the understanding of how
characteristics vary within and between lifespans.

Incorporating a time-to-death perspective in demographic studies is es-
pecially important when assessing the impact of “population aging.” To
the extent that the health, welfare, and social care demands of a popula-
tion are functions of thanatological rather than chronological age structure,
forecasts of the social and economic “costs” of aging that are based only on
chronological age profiles are prone to bias (Stearns and Norton 2004).

Research exploring time-to-death patterns has been done in other do-
mains, and topics examined can be roughly categorized into two types: 1)
things that are a function of apparent or perceived time to death (Hamer-
mesh 1985, Hurd and McGarry 1995, Carstensen 2006, Gan et al. 2004,
B́ıró 2010, Salm 2010, van Solinge and Henkens 2010, Cocco and Gomes
2012, Payne et al. 2013, Balia 2013), and 2) things that are a function of
actual time to death (Miller 2001, Seshamani and Gray 2004, Werblow et al.
2007, Wolf et al. 2015, Stearns and Norton 2004). The first kind are mostly
studies on cognitive transitions and economic or health behaviors, while
the second kind are mostly studies on health expenditure, except Wolf et al.
(2015), which proposes a model to separate latent time-to-death trajectories.
A third branch of research relates perceived and actual remaining lifetime
(Perozek 2008, Delavande and Rohwedder 2011, Post and Hanewald 2012,
Kutlu-Koc and Kalwij 2013). In this paper we will expand the second group,
focusing on a broad range of questions from ten waves of the US Health and
Retirement Study (RAND 2013).

We aim to understand the end-of-life age patterns of various dimensions
of morbidity, as measured by a set of 78 characteristics and indices. To
do this, we score the degree to which these characteristics vary in terms of
thanatological age, chronological age, or both. In all, we define four different
age and lifespan pattern families, which we use to classify the end-of-life
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prevalence of each characteristic tested. The pattern of variation exhibited
by a given characteristic ought to determine how we measure, understand,
and respond to the characteristic. We show that often chronological age
ought to be used in conjunction with thanatological age in order to classify
patterns, but in many cases chronological age provides no information at
all, and it even obfuscates true temporal patterns.

Our analytical approach is retrospective rather than prospective, mean-
ing that no lifetable assumptions are made in the measurement of thana-
tological age, and no censoring adjustments are necessary. Although more
data are available for earlier and later cohorts, we report results only for
the cohort born from 1915 to 1919, which contains the most extensive set
of observations in the dataset used. In the following section we describe the
methods in greater detail. We then demonstrate the four primary age pat-
terns by way of example, and summarize all characteristics tested in terms of
these four patterns. Finally, we discuss some implications and applications
of this work.

Data & Method

All findings reported in this paper are based on data from the US Health
and Retirement Study (HRS). We use version M of the RAND edition of
the data, which is conveniently merged across all ten waves available as of
2013. These data are free to download, and all details of data processing
and methods are made freely available in an open code repository.3

We restrict the sample to only those individuals born between 1900 and
1930 who died between 1992 and 2011, which narrows the dataset down to
37,051 interviews of 9,238 individuals. Of these interviews, 8,137 are from
the 1,919 individuals who died from the 1915-1919 cohort. Observations
from earlier and later cohorts are kept for the sake of adding information
when fitting models to the data.

Underpinning this investigation are a series of demographic surfaces in-
dicating the average prevalence of a given marker along chronological and
thanatological time axes within a series of quinquennial birth cohorts, from
which we focus only on the central 1915-1919 birth cohort. This visual tool
is similar to but orthogonal to the familiar Lexis surface. Figure 1 orients
the reader with the temporal coordinates we use. This diagram represents
the various possible lifespans within a given birth cohort, with an arbitrary

3This repository includes R code used to process data, as well as generate results and
figures: https://github.com/timriffe/ThanoEmpirical
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Figure 1: Chronological age and thanatological age over the lifecourse of a
birth cohort
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final age, ω, of 110. One’s thanatological age at birth is equal to one’s
chronological age at death, such that both axes close out with ω. Members
of the birth cohort are born on the left side of the diagram, at chronological
age zero and with an unknown y coordinate (remaining lifetime) at the time
of birth. Lifelines advance downward and to the right, where the downward
direction indicates the approach to death, and the rightward direction rep-
resents both the progression of calendar years and chronological age. The
blue arrow (B) indicates a hypothetical lifeline that will eventually expire at
age 99, although this property is unknown until death. The present study
contains only complete lifelines, such as that depicted in the color red (A) in
Figure 1, which completes its lifespan at age 71. In this diagram, diagonal
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lines represent death cohorts (or lifespan cohorts), as opposed to the birth
cohort diagonals found in the standard Lexis diagram.

We limit the current study to the 1915-1919 cohort due to the charac-
teristics of the data source. Using the HRS, enough observations are avail-
able from the 1915-1919 cohort that we can measure the patterns of within
the area outlined in green (C) in Figure 1. The left bound of this area is
chronological age 72, and the diagonal right bound belongs to the completed
lifespan of 95. Since the HRS spans 20 calendar years (1992-2011), the the-
oretical upper bound of observation of thanatological age is 20. However,
individuals in this sample between thanatological ages 13 and 20 (i.e., in-
dividuals that entered the study around 1992 and also died around 2011)
are scarce, and so we study only thanatological ages less than or equal to
12, ergo the final 12 years of life. As further waves are added to the HRS
and mortality linkage continues, the portion of the lifecourse that may be
studied in this way will expand.

The 1915-1919 birth cohort was exposed to the 1918 Spanish influenza
epidemic as toddlers (1915-1917 cohorts), as infants (1917-1918) cohort, and
in-utero (1919 cohort). There is evidence that this exposure manifested in
various ways in late life (e.g., Almond 2006, Myrskylä et al. 2013), and so the
reader may rightly question whether the results presented here are anoma-
lous. The potential anomalous effects from this cohort are “smoothed-out”
in our analysis, due both to the width of the cohort and to the nature of
the statistical method we use to estimate aggregate patterns from individ-
ual observations. Specifically, loess smoothing borrows information from
observations in earlier and later cohorts. Further, at these ages we assume
that other risk factors, some of them cumulative over the life course, and
senescence itself likely drive health patterns to a much greater extent than
might early-life selection or late-life onsets of poor health due to the Spanish
influenza.

We also verify that patterns for this cohort do not appear visually distinct
from those found in earlier and later cohorts. More importantly, our goal
here is not to describe the end-of-life experience of this particular birth
cohort, but to add resolution to the measurement and description of aging
and morbidity indicators, and contribute to the practice of demography in
general.

Age Thanatological age is calculated for each individual as the lag between
interview and death dates expressed as decimal years. Chronological age is
calculated as the lag between birth and interview date in decimal years.
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Each individual is therefore assigned a chronological and thanatological age
at each interview, along with measures of our variables of interest. Since
we are interested in viewing characteristics over both chronological age and
thanatological age simultaneously, we require observations spread over a
wide range of combinations of thanatological and chronological age.

Version M of the RAND HRS dataset runs from 1992 to 2011, which
means that each birth cohort is observed over a different range of ages. For
example, the 1925-1929 cohort enters observation in 1992 at age 62 (at the
youngest) and acheives a maximum completed age of 85 by the end of 2011.
On the other end, the 1905-1909 enters the HRS in 1992 at age 82 at the
youngest and has a maximum completed lifespan of 105 by the last wave
in 2011, albeit with few observations at the upper extreme. Results from
these and other birth cohorts are also obtained from these data, but portions
of these surfaces are based on fewer data points (lifespans > 100) or ages
in which labor market exits appear to drive patterns at least as much as
senescence (ages < 67, approximately). We focus on the 1915-1919 cohort
because its observation window is centered on the chronological ages in which
most deaths occur and in which most recent mortality improvements in low-
mortality countries have occurred,4 and because the HRS provides a good
density and spread of data points over this window. The lower and upper
age bounds vary if questions were not available in the first, second or final
waves.

Characteristics We aim for a broad overview of the age variation across
different dimensions of old-age disability and wellbeing. For this reason
we select a wide variety of questions from the HRS data. These include
questions grouped roughly into the following categories:

1. Activities of Daily Living (ADL): six items, and two composite indices.

2. Instrumental Activities of Daily Living (IADL): seven items and two
composite indices.

3. Health Behaviors: five items.

4. Functional Limitations: six items.

5. Chronic Conditions: eight items and one composite index.

4Own calculations based on UN data (United Nations, Department of Economic and
Social Affairs, Population Division 2013). The modal ages at death for the 1915−1919
cohort are 80−81 for males and around 87 for females. These calculations are based on
partially observed cohort mortality rates, M(x) (Human Mortality Database 2015).
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6. Cognitive Function: 15 items and two composite indices.

7. Psychological Wellbeing: nine items and one composite index.

8. Healthcare Use: 14 items.

The specific variables included in our survey are found in the appendix
tables following the same numbering scheme as above. In all, we summarize
results from 78 individual and composite items. We exclude variables that
were not asked continuously from at least wave 3 through 9. Variables not
available in the first or second wave have left age bounds at ages higher than
72, whereas items not asked in wave ten have upper lifespan bounds that
are below 95.

Each survey question must be in a format suitable for numeric opera-
tions. This requires some compromises in data quality, since some coded
responses are less directly quantifiable, and our translation of categorical or
ordinal responses to numeric values was at times based on selected cutpoints.
For example, respondents were asked if they felt depressed. We assigned 0
to answers of “no” and 1 to answers of “yes”. As an example of ordinate
recoding, self-reported health had possible responses of “excellent”, “very
good”, “good”, “fair”, and “poor”, which we assigned values of 0, 0, 0, 1,
and 1, respectively. In this way, population means for this kind of variable
can be interpreted as prevalences.

Variables with compact or bounded numeric responses were rescaled to
range from 0 to 1. Variables with no clear bounds or very large upper
bounds, such as body mass index or number of hospital visits were not
rescaled. These rescalings are intended to simplify the visual interpretation
of surfaces, as a diagnostic, and they do not alter the quantitative summary
measures we use later. Some response sets for particular questionnaire items
changed between waves. In these cases, we attempted to assign numerical
codes that were consistent over the transition. These recodes are imprecise,
but they are good enough to meet the goals of this study. In other words, the
surfaces we present are not exact measurements, but are meant to provide
impressions about how characteristics change over age.5

Weighting The population universe of the HRS and this study is the res-
ident population of the United States. Therefore person weights are needed

5The pre-processing of variables is full of details that would clutter this paper. Rather
than a lengthy and detailed appendix describing the case by case treatment of variables,
please consult the annotated code in the open repository.
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in order to estimate population-level means. One difficulty with the HRS
is that the institutionalized population is treated as a second target popu-
lation. In all waves but 5 and 6, there are no person weights assigned to
individuals living in institutions. We try to impute missing person-weights
according to some simple assumptions. If the individual was assigned a
weight in a previous wave, we carry this weight over as a constant, unless
there was also a non-zero weight in a future interview, in which case we as-
sign the weight according to a within-individual linear pattern. Individuals
and interviews that still have missing person-weights after this procedure are
discarded from our study. Person weights compensate for minor detectable
attrition in the HRS (Kapteyn et al. 2006), which for our purposes may be
considered unbiased 6.

Loess smoothing Direct tabulations of the weighted data are legible if
all birth cohorts are combined, but doing this distorts results due to cohort
composition bias. To overcome birth cohort heterogeneity within surfaces,
we use birth cohorts as a third time dimension. Tabulations within this three
dimensional space are noisy, and so we enhance surface legibility by using a
non-parametric local smoother. We specify a loess model of the given char-
acteristic over chronological age, thanatological age, and quinquennial birth
cohorts, using all observations of since-deceased individuals from the 1900
through the 1934 birth cohorts. We fit the model using the loess() func-
tion in base R (Cleveland et al. 1992, R Core Team 2013)7 to the weighted
individual-level data for each sex separately, and then predict a surface for
the 1915-1919 birth cohort within the study area outlined in green (C) in
Figure 1. Weighting is therefore explicit by person-weights, and implicit by
point density within the three temporal dimensions.8

6Small biases in the survey only appear with respect to baseline characteristics that
we do not consider. Attrition due to health conditions, e.g., mental impairment, is mostly
mitigated due to the use of proxy respondents in such situations (Weir et al. 2011).

7Using the fitted model, surfaces are produced using the related loess prediction func-
tion, predict.loess(). The smoothing parameter, spar, is set to 0.7 for the results we
present in the paper. All results were also produced using smoothing parameters of .5,
and .9, and we concluded that the specific choice of smoothness does not drive results.
The three predictor dimensions are not normalized, in order to preserve year units.

8Note that smoothing over these three particular time dimensions is not an overiden-
tification. Within a cohort, to smooth over thanatological age, chronological age and
completed lifespan would be an overidentification, similar to the familiar APC problem.
The full set of lifespan indices the demographer has to choose from are: birth cohort, death
cohort, chronological age, thanatological age, complete lifespan, and period. Within this
set of six lifespan dimensions, some combinations invoke overidentification and others do
not. For instance, it would be possible to smooth over years lived, years left, and period
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Results

We first present examples of four surfaces that exemplify the major ways in
which characteristics tend to vary temporally over the lifespan within a birth
cohort. These four major patterns of variation provide a way to categorize
and understand markers of aging. We summarize the results of our set of
78 characteristics by calculating Pearson correlation coefficients for each of
these four axes and display results graphically, as well as in an appendix
shaded table.

Four major surface axes In most situations it is obvious to the eye
whether a variable operates over thanatological age or over chronological
age, but there are many instances where both are at play, or where the
relationship is complex. We first present surfaces representing psychological
problems for males (Figure 2a) and back pain for females (Figure 2b). These
two surfaces are examples of thanatological and chronological characteristics,
respectively.

From the direction of the contours on the surface in Figure 2a, we con-
clude that the chances of ever having been diagnosed with psychological
problems increases with the approach to death and not with the advanc-
ing of chronological age, at least in the window of observation studied here.
However, since the risk of death itself also increases according to an ap-
proximate exponential pattern in these same ages, aggregating individual
results by chronological age produces an increasing pattern over age for this
same characteristic (see Figure 3). In this case, the apparent chronological
age pattern is due to an interaction between the thanatological pattern seen
in Figure 2a and the age pattern of mortality itself. We argue that it is
imprecise to consider chronological age a risk factor for characteristics that
display such strong thanatological patterns, as an apparent chronological age
pattern along said margin is a deceptive artifact. Instead, such characteris-
tics appear to more closely operate as effects of the body shutting down or
possibly as a signal on average that death is not far off, a demographic cor-
roboration of substantive findings in the psychology literature (Carstensen
2006). Ceteris paribum, mortality itself ought to be a good proxy for char-
acteristics that are highly thanatological. Some characteristics studied here
display patterns that are strongly thanatological.

Figure 2b tells just the opposite story about back pain for females. Back
pain is a function of chronological age, at least at the population level until

in this case, but birth cohorts are the more meaningful category for this study.
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around chronological age 85. This is the dominant way of thinking about
most aspects of the aging process. In these ages, back problems provide no
information about remaining years of life. Of the characteristics included in
this study, only current smoking, arthritis, and self reports of current versus
former memory exhibit such clear chronological patterns (both for males
and females).

Other informative patterns also exist among the set of characteristics
studied. These include characteristics that vary by lifespan, which display
downward diagonal contours in surface plots. Characteristics that vary by
lifespan appear constant within lifespans. These are often characteristics
that determine lifespan. Ever smoking displays such a pattern, as seen
in Figure 4a for females of the 1915-1919 cohort. This pattern is also a
corroboration of science and common sense: smoking kills, eventually (at
least in this range of lifespans). Other variables that display similar patterns
in this window of the lifespan include lung disease among males (this is
largely redundant with the former), dental visits in the previous two years
(females), and diabetes among females. Sometimes such patterns combine
in complex ways worthy of further study.

The fourth major pattern of contour variation runs perpendicular to
lifelines. One characteristic that clearly displays this pattern is ever having
been diagnosed with high blood pressure among males. This characteristic
varies by lifespan, and thanatological age within lifespan for this window
of study. In other words, longer lifespans display later onset but greater
eventual odds of having been diagnosed with high blood pressure. Arith-
metically, chronological age − thanatological age is the operative predictor
of blood pressure. For example, for such characteristics, the condition of a
70-year old with five remaining years of life may resemble that of an 80-year
old with 15 remaining years of life. Such characteristics are not very use-
ful alone for predicting eventual lifespan.9 Some characteristics appear to
follow this pattern, albeit with contour lines at angles less than 45◦, which
may suggest thanatological morbidity prevalence somehow proportional to
length of life. We do not measure this possibility explicitly.

9We do not have expertise to comment further on blood pressure, but instead only
provide an interpretation of the surface presented.
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Figure 2: Examples of characteristics that vary along the thanatological and
chronological age axes.

(a) Psychological problems (ever) by years lived (x axis) and years left (y axis).
Males, 1915-1919 birth cohort.
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(b) Back Problems by years lived (x axis) and years left (y axis). Females, 1915-1919
birth cohort.
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Figure 3: Psychological problems (ever) by chronological age only. Males,
1915-1919 birth cohort. With 95% confidence bands from loess fit.

75 80 85 90 95

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

chronological

pr
ev

al
en

ce
 o

f p
sy

ch
 p

ro
bl

em
s

13



Figure 4: Examples of characteristics that vary by lifespan only or by thana-
tological age within lifespan.

(a) Smoking (ever) by years lived (x axis) and years left (y axis). Females, 1915-1919
birth cohort.
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(b) Blood Pressure by years lived (x axis) and years left (y axis). Males, 1915-1919
birth cohort.
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Summary of results for all characteristics We produce surfaces such
as those in Figures 2 and 4 for all 78 variables and each sex. We distill each
of these surfaces into four Pearson correlation coefficients, each designed
to capture the variation along each of the four major patterns explained
above. We call the four patterns thanatological age (T), chronological age
(A), lifespan (A + T ) (L), and mixed (A− T ) (M). Most characteristics are
well-summarized by either one or two of these patterns. Figure 5 shows
the correlation coefficients of all 78 variables binned into count histograms
for each sex and major variation pattern separately. This view is meant
to give a feel for how common each major pattern of variation might be in
commonly measured characteristics. This statistic only captures the rough
direction of variation in characteristics, and it does not capture differences
in levels or gradient steepness.

The first row of this panel shows that variation by lifespan is weak for
most variables, and strong for only a few (ever smoking, and for females hav-
ing visited a dentist). The second row shows that chronological age is indeed
an important aspect of variation for many characteristics, but not all charac-
teristics (e.g., ever having been diagnosed with pyschological problems), and
chronological variation is more often strong for females than for males. The
third row shows that thanatological age is an important pattern of variation
for many variables: the lower tail is thinner than that of chronological age,
and there are more cases of strong correlations (r > 0.80) in the direction
of thanatological variation than of chronological variation. In the distri-
butions over these variables, males tend to more commonly show stronger
thanatological age patterns than females, and females tend to show stronger
chronological age patterns than males. Finally, the most common pattern
in these data are for characteristics to vary strongly as chronological age in-
creases and as thanatological age decreases, M (especially for many ADLs,
IADLs, functional limitations, and many variables of cognitive funciton).
For females, this is very clearly the dominant pattern among the variables
studied. For males, the pattern of variation between characteristics is sim-
ilar to that of thanatological age. In most cases, for variables with strong
patterns of variation in the M direction, there are also strong correlations
in the A and/or T directions. Of these, M is most commonly paired with
T. Characteristics that show strong correlation in both M and T display
surfaces with contour lines slanted less than 45◦. A more detailed table of
correlation results by variable, pattern, and sex is given in the appendix.
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Figure 5: Distribution of correlation coefficients for each of the four major
patterns of variation, all 78 variables examined. L indicates lifespan varia-
tion (like Figure 4a), A chronological age (like Figure 2b), T thanatological
age (like Figure 2a), and M the mixed type variation (like Figure 4b).
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Discussion

The distribution of tested characteristics with respect to the four primary
patterns of variation is striking. Chronological age describes prevalence pat-
terns for many conditions well, but time-to-death patterns are more preva-
lent among the measures tested. For measures that vary both with the
increase of age and the approach to death, the approach to death is more
often the stronger of the two measures. Characteristics that vary by length
of life are few, but their patterns are clear. The upshot, as illustrated by
comparing figures 2a and 3, is that representing morbidity or disability vari-
ables as chronological age patterns can in many or most cases be misleading
as model of morbidity processes, and biased as a basis for prediction.

These empirical findings must be tempered by noting that 1) the sum-
mary measure (correlation coefficient) used here blends out some informa-
tion, 2) these results may not extrapolate to the set of all testable questions
in the HRS, and 3) this relationship does not necessarily hold in other win-
dows of the lifespan or other birth cohorts. Comparable results for other
five-year birth cohorts in the HRS (1905-1925) are given in the manuscript
repository.

Further, the patterns presented here are valid for the whole population
(of a given sex) taken together, but were the target population broken down
by causes of death (for instance), the patterns may change. For exam-
ple, imagine hypothetically that the strong thanatological pattern shown
in Figure 2 (psychological problems) were driven by strong patterns within
individuals that eventually die of suicide, but that other causes of death
displayed entirely different patterns with respect to psychological problems.
Such cases are easily imaginable for other characteristics and causes of death.
At the time of this research, we did not have access to cause of death in-
formation from the HRS mortality followup. For detailed investigations of
particular characteristics, cause-conditioning surfaces would clearly aid in
disentangling morbidity processes, both for purposes of understanding and
for cause and time of death prediction.

Research to better document the multidimensional age variation of par-
ticular characteristics would benefit from more empirical evidence and fur-
ther model development. Despite the limitation of this study, we have been
able to demonstrate the complex variety of age and lifespan dimensions over
which some key aspects of the aging process unfold. All of the indicators we
tested are commonly used to describe population aging, and very few of them
are exclusively a function of chronological age. If this finding is sustained
in other cohorts and populations, and if other indicators here untested also
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display similar temporal complexity, we submit that the common discourse
and debate on the nature and impacts of aging ought to be better informed
by more judicious measurement and description in terms of thanatological
as well as chronological age. This would benefit scientific understanding of
health and disability processes, and it would improve the actuarial accuracy
of morbidity projections and any policies that count on accurate morbidity
projections.

That accounting for time-to-death in predictions of healthcare expendi-
ture reduces bias has already been established in the health economics liter-
ature (e.g., Stearns and Norton 2004). A common finding on healthcare ex-
penditure prediction is that in times of mortality improvements, predictions
based on chronological age patterns of healthcare expenditure (Sullivan-
style predictions (Sullivan 1971)) tend to overestimate total expenditure
(e.g., Geue et al. 2014). Since the patterns of variation among the morbid-
ity dimensions we study are similar to those of healthcare expenditure over
chronological age and time-to-death, we here infer that Sullivan-style predic-
tions of morbidity are biased in the same direction.10 The consequences of
overestimating future morbidity prevalence are complex and varied, ranging
from budget misallocations, poor design of social healthcare systems for the
elderly, through to to lowered expectations on the benefits of lengthening
life.

We hope that the conceptual model of the lifecourse presented here,
which complements the Lexis diagram, will be of use to demographers, public
health researchers, and epidemiologists. Other combinations of lifespan time
dimensions are also possible, and these would highlight different patterns in
data (Riffe et al. 2015). The variety and availability of such options, perhaps
now placed in starker relief, demands a more nuanced understanding of the
temporal accounting that relates demographic time perspectives. Further
exploration and experimentation with these formal demographic concepts
will lead to a more precise toolkit for demographic measurement and the
practice of demography, and ultimately a wiser contribution to the discourse
on population aging.

We suggest a selection of extensions to the exploration carried out here.
The present variety of analysis must be replicated for more cohorts and pop-
ulations. A few populations with long-running and fully linked population
registers already preside over such information, and we encourage a more
thorough exploration of the temporal richness in population change and
population characteristics. Large scale panel studies may be motivated to

10Other work in progress treats this point in greater detail (van Raalte and Riffe 2016).
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implement, increase, or improve the quality of mortality follow-up modules.
Information on the full age dimensions of health outcomes will be valuable.
The good news is that many unlinked panel studies may be linked to death
registers in retrospect.

If compared over calendar time, demographic work such as this will pro-
vide a more precise answer to the question of morbidity compression. Given
the chronological-age ruse exemplified in the case of psychological problems
(see Figures 3 versus 2a), it is safe to say that unless retrospective thana-
tological measurements of morbidity dimensions are undertaken, we do not
have direct information about whether compression is (or has been) happen-
ing or not. Using the techniques shown here, the researcher may directly
estimate the varieties of end-of-life profiles often seen in the literature on
morbidity compression (e.g., Fries et al. 2011).

There are also consequences for the popular understanding of aging.
By using analyses oriented by the lifecourse diagram, health care providers
better situate the association of certain health outcomes with stages of the
aging process. This is both a question of allocating resources and a question
of how individuals conceive of themselves with respect to age. In this regard,
we add to the chorus of researchers working to change the measurement
of age to reflect the changing experience of age (see e.g., Sanderson and
Scherbov 2013).

The lifecourse surfaces underlying this study highlight important sex dif-
ferences in the aggregate onset and trajectory of some aspects of morbidity.
Some of these differences may corroborate extant findings, such as the male-
female health-survival paradox, and others may provide new understanding
to sexual dimorphism in morbidity. Specifically, females have been found
to live longer but in worse health than males (e.g., Case and Paxson 2005),
and this is consistent with females having somewhat more chronologically-
varying health patterns than males. In general, these methods and mea-
surements are applicable to describe any between-group disparity in demo-
graphic or social outcomes, especially those that directly or indirectly relate
to remaining years of life. Numerous other avenues of potential investigation
may also be devised from the present work. It is our hope that these results
are strongly suggestive and orient future investigation.
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B́ıró, A. (2010). Subjective mortality hazard shocks and the adjustment of
consumption expenditures. Journal of Population Economics 26, 1–30.

Brouard, N. (1986). Structure et dynamique des populations. la pyramide
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Appendix: Variables and correlations

For tables displayed in this appendix we use a shorthand to identify axis
types. T indicates the correlation coefficient along the thanatological age
axis. A indicates the chronological age axis. L indicates the lifespan axis
(right-downward slanting isolines), the least common in these data. M indi-
cates the mixed axis, upward-right slanting isolines, the most common type
in these data. The code used to generate these and all other results, in-
cluding results for all 5-year cohorts from 1905-1925 and different degrees of
smoothing, is available freely the repository. The repository also contains a
csv of these summary results.

https://github.com/timriffe/ThanoEmpirical

Results are grouped by several major morbidity categories and presented
in heatmap tables. In these tables, darker shades of grey indicate higher
correlations (black = 1), and lighter grays indicate low correlations (white
= 0). Numbers inside the cells indicate the rounded Pearson’s correlation
coefficient × 100, and can be interpreted as percents.

Finally, it bears noting that these values say nothing of prevalence levels.
They are only intended to be rough gauges of the direction of variation in
characteristics.
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Table 1: Activities of Daily Living (ADL)

Short Description Females Males
L A T M L A T M

ADL3 ADL 3 point 25 80 80 96 9 67 84 89

ADL5 ADL 5 point 23 79 81 97 5 65 87 89

WALK
Difficulty walking
across room

16 73 83 93 6 53 86 80

DRESS
Difficulty
dressing

18 75 82 94 8 66 85 89

BATH
Difficulty bathing
or showering

17 73 81 94 7 59 83 82

EAT Difficuty eating 19 70 72 91 15 65 79 85

BED
Difficuty getting
in/out bed

14 71 82 93 8 59 80 80

TOILET
Difficulty using
toilet

31 81 73 94 0 51 81 78
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Table 2: Instrumental Activities of Daily Living (IADL)

Short Description Females Males
L A T M L A T M

IADL3 IADL 3 point 28 82 78 97 6 66 88 91

IADL5 IADL 5 point 14 74 87 96 7 68 89 92

WORK
Health limits
work

25 36 98 73 6 53 93 84

MAP
Difficulty using
maps

24 77 78 94 13 67 80 88

TEL
Difficulty using
telephone

33 83 68 96 20 75 78 95

MONEY
Difficulty
managing money

21 76 81 95 1 56 90 84

MEDS
Difficulty taking
medications

24 75 77 95 3 45 94 73

SHOP
Difficulty grocery
shopping

2 65 91 91 8 54 91 84

MEALS
Difficulty prep.
hot meals

20 76 82 95 6 60 88 85

Table 3: Health behaviors

Short Description Females Males
L A T M L A T M

ALCEV
Alcohol,
ever-drinker

40 79 62 88 8 41 78 68

ALCDAYS
Drinking days /
week

10 48 77 72 18 40 77 67

ALCDRINKS
Nr drinks per
drinking day

28 84 75 96 18 49 89 80

SMOKEEV Ever-smoker 98 81 27 48 87 68 30 37

SMOKECUR Current-smoker 83 93 16 77 91 86 10 54
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Table 4: Functional limitations

Short Description Females Males
L A T M L A T M

BMI Body mass index 34 79 72 93 4 54 91 83

BACK Back problems 56 91 43 82 79 92 17 74

MOB
Mobility
difficulty index

16 76 86 97 1 64 92 92

LGMUS
Large muscle
difficulty index

32 85 77 99 11 72 88 95

GROSSMOT
Gross motor
difficulty index

10 71 88 94 5 65 87 89

FINEMOT
Fine motor
difficulty index

22 78 81 96 14 70 81 90

27



Table 5: Chronic conditions

Short Description Females Males
L A T M L A T M

CC
Number of
chronic
conditions

34 82 77 98 7 53 95 84

BP
High blood
pressure, ever

14 67 84 89 37 84 75 98

DIAB Diabetes, ever 72 22 80 21 69 28 65 10

CANCER Cancer, ever 29 31 96 68 17 41 93 75

LUNG Lung disease 62 7 88 36 90 50 65 7

HEART
Heart problems,
ever

26 78 82 97 23 37 96 73

STROKE Stroke, ever 46 90 69 99 9 51 95 82

PSYCH
Psychological
problems , ever

33 77 69 88 24 37 96 72

ARTH Arthritis, ever 75 92 28 82 69 91 33 84
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Table 6: Cognitive function

Short Description Females Males
L A T M L A T M

SRM
Self-rated
memory

51 92 65 99 60 70 16 60

PASTMEM
Memory
compared to past

61 87 41 85 71 94 36 87

SS Serial 7s 1 64 92 91 7 48 60 65

C20B
Backwards
counting

35 81 66 90 30 79 72 93

NAMEMO Naming month 33 80 67 90 2 49 72 70

NAMEDMO
Naming day of
month

24 78 78 94 21 75 78 92

NAMEYR Naming year 44 88 64 95 19 74 80 93

NAMEDWK
Naming day of
week

16 72 80 91 20 70 73 86

NAMESCI Naming scissors 50 87 53 88 12 42 78 69

NAMECAC Naming cactus 39 86 68 95 56 86 45 84

NAMEPRES Naming president 17 74 82 93 59 3 81 37

NAMEVP
Naming vice
president

1 52 74 74 4 58 79 81

VOCAB Vocabulary score 40 10 67 42 51 13 85 53

TM
Mental status
summary

19 76 83 96 10 66 81 87

DWR
Delayed word
recall

4 59 87 85 19 71 82 92

TWR Total word recall 19 71 82 92 27 76 77 93

IWR
Delayed word
recall

33 80 76 96 35 80 71 93
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Table 7: Psychological wellbeing

Short Description Females Males
L A T M L A T M

CESD Depression score 44 19 91 58 22 43 95 78

SRH
Self-reported
health

42 14 90 53 29 33 98 70

DEPR Felt depressed 55 19 58 13 58 4 86 38

SLEEP Sleep restless 45 4 65 28 55 3 91 45

HAPPY Was happy 33 15 76 47 15 60 72 78

LONE Felt lonely 32 64 50 71 7 64 90 90

SAD Felt sad 69 39 47 7 22 35 91 69

GOING
Could not get
going

70 15 87 30 22 36 92 70

ENJOY Enjoyed life 13 40 85 70 42 85 67 95
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Table 8: Healthcare use (24 months)

Short Description Females Males
L A T M L A T M

HOSP
Overnight
hospital

26 73 75 90 11 60 77 81

HOSPSTAYS
Number hospital
stays

5 57 80 83 4 50 86 78

HOSP-
NIGHTS

Number nights in
hospitals

10 40 77 70 61 6 87 36

NH
Overnight stay in
nursing home

25 75 67 94 13 64 78 82

NHSTAYS
Nursing home
stays

26 76 67 94 10 57 77 78

NHNIGHTS
Number nights in
nursing homes

18 70 70 89 13 61 80 80

NHNOW
Nursing home at
interview

14 72 71 93 8 46 80 73

DOC Visited doctor 63 89 40 85 52 85 52 88

DOCVISITS
Number of doctor
visits

54 91 58 95 33 70 56 79

HHC Home health care 18 71 84 94 2 52 90 84

MEDS
Prescription
drugs regularly

22 40 90 73 23 41 92 75

SURG
Outpatient
surgery

32 11 31 7 30 17 18 3

DENT Visited dentist 84 33 75 14 27 11 55 35

SHF
Visited special
healthcare facility

35 87 75 99 12 71 87 94
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