Page 1 of 41

1

Poultry Science

2 ABSTRACT. Oxidation of polyunsaturated fatty acids leads to primary and secondary oxidation products. Compounds and amounts of these products vary, depending on the oxidative conditions. 3 As these oxidation products have different absorption and biological effects, we performed two 4 different heating treatments on sunflower oil. The first was heating the oil at 190-195°C for 28 h 5 (i.e. very oxidised oil); and the other, heating at 60°C for 12 days (i.e. peroxidised oil). 6 In the frame of this study, we compared the fatty acid composition of a refined sunflower oil (fresh oil), the peroxidised oil, the very oxidised oil, and a mixture (1+1) of fresh and very oxidised oil (i.e. oxidised oil). Oil fatty acid compositions were affected by the heating treatments. In addition, different fatty acid isomers were formed during heating at 190-195°C and significant 10 differences were found between their content in the sunflower oils. 11 12 We also studied the effect of feeding broilers with these oils and Zn and tocopherol supplements 13 on the fatty acid composition of their raw dark meat. Various trans fatty acid isomers increased in dark meat from broilers fed oxidised and very oxidised oils. In addition, discriminant analysis 14 showed that ditrans-CLA content was able to distinguish dark chicken meat from chickens fed 15 sunflower oils heated at 190-195°C. 16 17

18

19 Key words: Heated sunflower oils, fatty acid composition, trans isomers, CLA, chicken meat.

20

Scholarone, 375 Greenbrier Drive, Charlottesville, VA, 22901 (434) 817 2040 ext. 167

Poultry Science

INCREASE OF GEOMETRICAL AND POSITIONAL FATTY ACID ISOMERS IN DARK MEAT FROM BROILERS FED HEATED OILS

> geowered by ScholarOne Manuscript Central™

Heated sunflower oils, fatty acid composition, trans isomers, CLA,

Poultry Science

PS-04-00312.R1

Full-Length Article

04-Jul-2005

chicken meat

Journal:

Author:

Key Words:

Manuscript ID:

Manuscript Type:

Date Submitted by the

INTRODUCTION

Fatty acids lead to different geometrical and positional isomers after thermal treatments (Grandgirard et al., 1984; O'Keefe et al., 1993; Destaillats and Angers, 2002), though only temperatures above 180-190°C yield *trans* fatty acids (TFA) in fats and oils (Martin et al., 1998;

20

21

Wolff, 1993). During deep-fat frying these temperatures are often reached and sometimes
surpassed, which means that TFA, even though they are minor components, increase in frying oils
(Gamel et al., 1999; Sébédio et al., 1996a; Romero et al., 2000) and fried products (Sébédio et al.,
1996a; Romero et al., 2000).

Conjugated linoleic acids (CLA) are a specific group of different positional and geometrical isomers derived from linoleic acid (LA) that can be also formed by heating, refining or partial hydrogenation of oils (Sébédio et al., 1988; Destaillats and Angers, 2002; Juanéda et al., 2003; Jung et al., 2002; Fritsche et al., 1999; Jung et al., 2001).

Nevertheless, TFA also have a natural origin in the action of bacteria in the rumen of cows and
other ruminants and are found in the milk and carcass of these animals being vaccenic acid (*trans*11-octadecenoic) the main isomer (Craig-Schmidt, 1992) whereas the *cis*-9,*trans*-11octadecadienoic (9c,11t-CLA) is the main CLA isomer in the milk and carcass of ruminants (Pariza
et al., 2001).

Trans and *cis* isomers do not show significant differences in their absorptions (Sébédio and Chardigny, 1998; Holmer, 1998; Hayakawa et al., 2000). Thus, TFA in feeds can increase their content in foods derived from non-ruminant animals, which is normally lower than in foods derived from ruminant animals (Chin et al., 1992; Aro et al., 1998; Fritsche and Steinhart, 1998).

Nowadays, there is a tendency to lower TFA content, especially in margarines and fatty spreads
(Schwarz, 2000b). This is because, even though the adverse health effect of TFA is subject to
controversy, its intake has been described as a risk factor for coronary heart disease (Willett et al.,
1993; Kromhout et al., 1995; Aschiero et al., 1999; Oomen et al., 2001). This view is supported by

the less favourable LDL/HDL ratio (Mensink and Katan, 1990) and the greater concentration of
lipoprotein(a) (Mensink et al., 1992; Kritchevsky, 2000; Noone et al., 2002) caused by TFA than by
saturated fatty acids.

However, CLA, specially 9c,11t-CLA and 10t,11c-CLA, may have anticarcinogenic activity,
protect against atheroselerosis and show other positive physiological effects (Pariza et al., 2001;
Noone et al., 2002; Belury, 2002) though the positive effects of 10t,12c-CLA, remain controversial
(Larsen, et al., 2003; Rainer et al., 2004; Tricon et al., 2004; Wahle et al., 2004).

In addition, in heated oils and fats, TFA are accompanied by several lipid oxidation products
that have harmful biological effects (Esterbauer et al., 1991; Schroepfer, 2000; Cohn, 2002;
Guardiola, et al., 2002). Some of these oxidation products are absorbed and then deposited in
animal tissues (Chow, 1992; Schroepfer, 2000; Guardiola et al., 2002). In addition, these
compounds, at high doses, affect animal growth and metabolism (Billek, 2000).

Therefore, we studied the formation of geometrical and positional fatty acid isomers in sunflower oil oxidised at various heating temperatures. By adding these heated oils and α tocopheryl acetate and Zn supplements to broiler diets, we studied the deposition of these isomers in dark chicken meat, and whether their contents in meat can be used as markers of the addition of heated oils into the feeds.

MATERIALS AND METHODS

65

64

2

66 Preparation of Heated Oils

Two thermal treatments were carried out. The first was to heat 40 L of refined fresh sunflower oil¹ (FSO) in an indirect heating fryer at 55-60°C under agitation for 12 days. This reached a peroxide value of 90 milli-equivalents peroxide/kg oil, i.e. peroxidised sunflower oil (PSO). The second involved heating 90 L of FSO in a direct heating fryer at 190-195°C under agitation for 28 h

¹ Moyresa, Valencia, Spain, E-46024

	· · · · · · · · · · · · · · · · · · ·		
Poultry Science	Page 4 of 41 Page	e 5 of 4	Poultry Science
until reaching a <i>p</i> -anisidine value of 150, i.e. very oxidised sunflower oil (VOSO). By mixing 50 of FSO with 50% of VOSO, we obtained oxidised sunflower oil (OSO). Various oxidation variable and the α -tocopherol content of these sunflower oils are shown in Table 1.	% 9 cs 9 9	94 ; 95 j 96 s	according to commercial procedures. Legs with skin from all birds of each pen were hand-deboned, ground, vacuum-packed in high-barrier multilayer bags (approx. 20 g per bag) and immediately stored at -20°C till analysis.
Diets and Animals	9	97 98	Reagents and Standards
A 4 x 2 x 2 factorial design was planned and conducted in triplicate to study the influence	of 9	99	For analyses, butylated hydroxytoluene, pyrogallol, and all-rac-α-tocopherol were obtained
various dictary factors (4 types of sunflower oil, 2 levels of all-rac-a-tocopheryl aceta	te 10	50 f	rom Sigma ⁵ . 2-Amino-2-methyl-1-propanol and <i>p</i> -anisidine were obtained from Aldrich ⁶ . n-
supplementation, and 2 levels of Zn supplementation) on the fatty acid composition of raw date	rk 10	DI B	Hexane was from Merck ⁷ .
chicken meat.	10)2	A mixture of CLA methyl esters (main isomers were cis-9, trans-11, trans-9, cis-11, trans-10, cis-
336 female broiler chicks (Hubbard, 1-day old) received, up to 10 days of age, a typical bas	al 10.	03 1	2 and cis-10, cis-12; also traces of trans-9, trans-11 and other isomers were present) and standards
dict containing 6% of animal fat. The animals were then randomly assigned to 16 dictary treatmen	ts 10-)4 c	f single fatty acid methyl esters [tetradecanoate (14:0), hexadecanoate (16:0), octadecanoate
(21 chicks per treatment, 7 birds per pen) and were fed ad libitum for 42 days. Dietary treatmen	ts 10:	o5 (18:0), cicosanoate (20:0), docosanoate (24:0), cis-9-hexadecenoate (16:1 n-7), cis-9-octadecenoate
were prepared from the experimental basal diet (Table 2) by combination of the dietary facto	rs 100	6 (18:1 n-9), cis-11-cicosenoate (20:1 n-9), cis-9,cis-12-octadecadienoate (18:2 n-6), all-cis-6,9,12-
studied: the 4 previously described sunflower oils (FSO, PSO, OSO and VOSO), all-rac-to-	χ- 10 [°])7 C	ectadecatrienoate (18:3 n-6), cis-11,cis-14-eicosadienoate (20:2 n-6), all-cis-8,11,14-eicosatrienoate
tocopheryl acetate supplements' (0 and 100 mg/kg) and Zn supplements' (0 and 600 mg/kg a	as 10	98 (20:3 n-6), all-cis-5,8,11,14-eicosatetraenoate (20:4 n-6), all-cis-7,10,13,16-docosatetraenoate (22:4
ZnSO4). In addition, all dictary treatments were supplemented with 0.6 mg/kg of organic selenium	m 109	9 n	-6), all-cis-9,12,15-octadecatricnoate (18:3 n-3), all-cis-5,8,11,14,17-cicosapentaenoate (20:5 n-3),
derived from selenium-enriched yeast (Sel-plex TH) ⁴ . α -Tocopherol losses caused by therm	al 110	0 a	ll-cis-7,10,13,16,19-docosapentaenoate (22:5 n-3), all-cis-4,7,10,13,16,19-docosahexaenoate (22:6
treatments (see Table 1) were rectified by adding all-rac- α -tocopheryl acetate to feeds containing	ig 11	1 n	-3), trans-9-octadecenoate (trans-9-18:1)] were from Sigma. Methyl cis-11-octadecenoate (18:1 n-
PSO, OSO and VOSO in order to provide the same α -tocopherol amounts as feeds prepared with	ih 112	27) was from Fluka ⁸ . A mixture of the 4 geometrical isomers of LA, used as methyl esters (LA
FSO.	113	3 с	is/trans isomer mixture), and a fatty acid methyl ester (FAME) mixture from menhaden fish oil
After the 4 assayed sunflower oils were prepared (described above), they were frozen in 20-	L 114	4 v	vere purchased from Supeleo'.
capacity drums at -20°C until feed preparation, in order to reduce further oxidation. Every 10 day	s, 115	5	
oils were thawed and the 16 dietary treatments were prepared. Finally, chickens were slaughtere	d		

Scholarone, 375 Greenbrier Drive, Charlottesville, VA, 22901 (434) 817 2040 ext. 167

⁵ Sigma, St Louis, MO Aldrich, Milwaukee, WI ² Merck, Darmstadt, Germany, D-64293

Fluka, Buchs, Switzerland, CH-9471 Supleco, Bellefonte, PA

² Andrés Pintaluba, S.A., Reus, Spain, E-43280 ³ Andrés Pintaluba, S.A., Reus, Spain, E-43280

Probasa, Sta. Perpetua de la Moguda, Spain, E-08130

Page 6 of 41

6

Poultry Science

116 Oil Analyses

117 To determine the α -tocopherol content, 300 mg of oil were weighed and 5 mL of absolute 118 ethanol containing 1% pyrogallol (wt/vol), 0.012% butylated hydroxytoluene (wt/vol) and 0.4% anhydrous citric acid (wt/vol) was added. Then, 10 mL of 1.6 N methanolic KOH was added and 119 120 saponification was carried out at 70°C for 30 min. Non-saponifiable contents were then extracted 121 with petroleum ether and filtered through a 0.45 µm teflon membrane. After solvent evaporation 122 under a nitrogen stream at 30°C, the residue was redissolved in 96% ethanol. The solution was separated by chromatography, using a Hewlett-Packard10 liquid chromatograph Series 1100 123 equipped with a Rheodyne¹¹ 7725i model injector with a loop volume of 20 µL, a Teknokroma¹² 124 125 column (15 x 0.4 cm) packed with 3 µm - 80 Å Extrasil ODS2 and a pre-column (1 x 0.4 cm) packed with 5 µm - 100 Å Kromasil ODS. Sample compounds were isocratically eluted with 126 methanol and detected by means of a Hewlett Packard-1046A¹⁰ spectrofluorometric detector 127 (excitation and emission wavelengths of 288 and 330 nm, respectively). a-Tocopherol content was 128 129 determined by means of an experimental calibration curve using all-rac-a-tocopherol as external 130 standard.

Peroxide value was determined by the AOCS Official Method (AOCS, 1998a), as was *p*anisidine value (AOCS, 1998b). Oil-specific absorbances at 232 and 270 nm (K₂₃₂ and K₂₇₀) were determined as described by Grau et al. (2001). Finally, polymer content, expressed as the percentage of polymerised triacylglycerols, was determined using the IUPAC Standard Method (IUPAC, 1987). All analyses were conducted in triplicate.

136

¹¹ Rheodyne, Cotati, CA

137 Fat Extraction for Meat and Feed analysis

I g of dark chicken meat sample or 3 g of milled feed were weighed into 32 x 210 mm tubes. 20 138 mL of chloroform/methanol (2:1, v/v) was then added and the mixture was homogenized for 40 s at 139 19,800 rpm using a Polytron PT 2000¹³. Extracts were filtered through a Whatman n°1 filter paper 140 141 into 50 mL screw-capped tubes and the residues were re-extracted twice with the same solvent; first 142 with 7 mL (30 s at 19,800 rpm) and then with 5 mL (10 s at 19,800 rpm), 10 mL of water was then 143 added to these tubes, which were stoppered and shaken for 30 s before being centrifuged for 20 min at 500 g. The chloroform phase was filtered through anhydrous sodium sulphate (using a Whatman 144 145 nº1 filter paper), which was then washed twice with 5 mL of chloroform. The lipid extract obtained 146 was concentrated to 1 mL in a vacuum-rotatory evaporator at 35°C. The rest of the solvent was 147 removed in a light nitrogen stream, and then by the flask's being kept in a vacuum desiceator (10 148 mm Hg, overnight).

149

Page 7 of 41

150 Gas Chromatographic Analysis of FAME

151 FAME were prepared from sunflower oils or from extracted lipid fractions after reaction with 152 sodium methoxide followed by boron trifluoride in methanol and finally extracted with n-hexane 153 (Guardiola et al., 1994). This two-step procedure (base and acid-catalyzed methylation) allows the methylation of free fatty acids while the isomerisation of CLA by acid-catalyst is limited (Kramer et 154 155 al., 1997; Racs et al., 2002). FAME was analysed on an Agilent¹⁰ 4890D model gas chromatograph. fitted with a flame-ionization detector and split-splitless injector port, set at 300 and 270°C, 156 respectively. The split ratio was 1:30. Chromatographic separation of FAME was performed on a 157 fused-silica capillary column (60 m x 0.25 mm i.d.) coated with 0.2 µm of a stationary phase of 158 90% biscyanopropyl- plus 10% cyanopropylphenyl-polysiloxane SP-2380 model⁹, Helium, at 30 159 psi, was used as carrier gas and the oven was programmed as follows: 12 min at 170°C, then 160 161 increased at 1.4°C/min to 180°C and held for 0.5 min, thereafter increased at 7.3°C/min to 216°C

¹⁰ Hewlett-Packard, Waldbronn, Germany, D-76337

¹² Teknokroma, Sant Cugat del Vallés, Spain E-08190

¹³ Kinematica, Lucerne, Switzerland, CH-6014

Page 8 of 41

Poultry Science

and held for 2 min and, finally, increased at 5°C/min to 236°C and held for 6 min; sample volume
injected 0.5-1 µl. All samples were injected in duplicate.

- 164
- 165 Gas Chromatography/Mass Spectrometry Analysis of DMOX Derivatives

Derivatisation of FAME by reaction with 2-amino-2-methyl-1-propanol giving the 4.4-166 167 dimethyloxazoline (DMOX) derivatives was carried out in a similar way to Fay and Richli (1991). About 10 mg FAME, dissolved in n-hexane, were placed into a microreaction vial and evaporated 168 169 under nitrogen stream at room temperature. Then, 500 µl of the above-mentioned derivatising 170 reagent was added to the vial, which was immediately closed after being flushed with argon. The reaction was conducted by heating at 180°C for 18 h. After cooling, the reaction mixture was 171 dissolved in 5 mL of diethyl ether/hexane (1:1) and washed first with 5 mL and then with 3 mL of 172 173 water (1% NaCl). Afterwards, the organic solution was dried through anhydrous sodium sulphate and then filtered and subsequently evaporated under a nitrogen stream. Finally, the residue was 174 175 dissolved again in the appropriate n-hexane volume for injection.

176 Mass spectra were obtained with the Thermo Finnigan" MD800 model coupled to a Thermo 177 Finnigan 8,000 Top gas chromatograph. The same column as in FAME analysis was used. Helium was used as carrier gas and the chromatograhic conditions were as follows: oven temperature 178 179 programmed for 12 min at 180°C, increased at 1.4°C/min to 190°C and held for 1 min, then 180 increased at 7.3°C/min to 226°C and held for 2 min and, finally, increased at 5°C/min to 245°C and 181 held for 8 min; injector temperature 270°C; split ratio 1:40; head pressure 30 psi; sample volume injected 2 µl. The mass spectrometer was operated in full scan mode (45-450 m/z). Mass 182 183 spectrometry conditions were: interphase temperature 260°C; ion source temperature 200°C; 184 electron energy 70 eV.

185

°C; ion source temperature 200°C; 207 the lam 208 regressi 209 perform 210 211

- Fatty acids were identified by comparison of the relative retention times with FAME standards and by addition of these standards to the samples (co-chromatography). Fatty acids were also confirmed by gas chromatography/ mass spectrometry through DMOX derivatives. The area of each FAME peak was integrated by using ChemStation software, and total peak area was used to calculate the relative fatty acid composition.
- 192

Page 9 of 41

186

193 Determination of Crude Fat Content

Identification and Quantification of Fatty Acids

194 Fat content of the raw meat from all the experimental treatments was measured by the AOAC

- 195 Official Method 991.36 (AOAC, 2000).
- 196
- 197 Statistical Analyses

198 ANOVA (n = 16) was used to study the effect of thermal treatments on sunflower oil and feed 199 fatty acid composition. Multifactorial ANOVA (n = 48) determined whether the dictary factors 200 studied had any significant effects on the fatty acid composition of dark chicken meat, BW, feed 201 conversion ratio, and chicken meat crude fat content. Interactions between factors higher than an order of two were ignored. Means and least-squares means for the main factors with a significant 202 effect were separated by Duncan's test. A discriminant analysis, in which dark chicken meat fatty 203 acid contents were taken as the discriminant variables and the four sunflower oils as the grouping 204 205 variable, was performed. In addition, we studied the discriminating power of the variables involved 206 in the former analysis by means of Wilks' lambdas (Wilks' lambda varies from 0 to 1; the smaller the lambda for a variable, the more that variable contributes to the discriminant function). A linear regression analysis of dark chicken meat fatty acid composition versus their feed content was also performed. In all cases, $P \le 0.05$ was considered significant.

14 Thermo Finnigan, San Jose, CA

Page 10 of 41

10

Page 11 of 41

Poultry Science

• • •

	212	RESULTS	233
ļ	213		238
	214	Identification of FAME	239
	215	Identification was mainly achieved by FAME standards, and confirmed in oil and meat samples	240
	216	by means of DMOX derivatives analysed by mass spectrometry.	241
	217	Although trans-9-octadecenoic acid was tentatively identified by the corresponding FAME	242
	218	standard, this peak was found by DMOX derivative mass spectra to be a group of positional trans-	243
	219	18:1 isomers. In addition, FAME of the cis-9, trans-12- and trans-9, cis-12-LA isomers were well	244
	220	resolved when an LA isomer mixture was analysed. However, there was poor resolution between	245
	221	these isomers when oil, feed and meat were analysed, which made it necessary to take them	246
	222	together as monotrans-LA, while the trans-9, trans-12-LA (ditrans-LA) was well resolved. The	247
	223	identity of these isomers was confirmed by mass spectrometry of the DMOX derivatives.	248
	224	Through the CLA standard, 3 possible CLA peaks' were also found in samples with the DMOX	249
	225	mass spectra characteristic of a fatty acid structure of 18 carbon atoms and two double bonds (m/z	250
	226	333). The first cluted peak showed 3 intense typical diagnostic fragment ions (m/z 182, 262, 276)	251
	227	and characteristic losses of 12 amu (196, 208 and 222, 234), which led to identification of the	252
	228	compound as a CLA with the double bonds located at carbons 9 and 11. The second eluted peak	253
	229	showed 3 intense typical diagnostic fragment ions (m/z 210, 290, 304) and characteristic losses of	254
	230	12 amu (210, 222 and 236, 248), which identified the compound as a CLA with the double bonds	255
	231	located at carbons 10 and 12. Hence, the analysis of the CLA standard and the previous literature	256
	232	(Kramer et al., 2001, 2002; Roach et al., 2002) led to identification of the first peak as cis-9, trans-	257
	233	11-octadecadienoie acid (9c,111-CLA) and the second peak as trans-10, cis-12-octadecadienoic acid	258
	234	(10t,12c-CLA). However, the third eluted peak was identified as a mixture of different isomers.	259
	235	This mixture, in accordance with bibliographical data (Kramer et al., 2001, 2002; Roach et al.,	260
	236	2002; Juanéda et al., 2003), was identified as ditrans-CLA.	261
1			1

237	Moreover, traces of 13-docosenoie (probably cis-13) and 15-tetracosenoie (probably cis-15)
238	were found to elute together with 20:4 n-6 and 22:4 n-6, respectively.
239	Two more peaks with no suitable standards were identified. The first was identified by means of
240	DMOX derivative mass spectra as a hexadecenoic acid (m/z 307) with 3 intense diagnostic
241	fragment ions (m/z 180, 208, 264) and characteristic losses of 12 amu (168, 180), which led to its
242	identification as 7-hexadecenoic (16:1 n-9), probably the cis isomer according to the literature
243	(Adlof and Emken, 1986). The second peak was identified as all-cis-4,7,10,13,16-docosapentaenoic
244	acid (22:5 n-6) on the basis of bibliographical data (Guardiola et al., 1994; Simopoulos and Salem,
245	1992), because there was no suitable standard and DMOX mass spectra did not show typical ion
246	fragments for any penta or hexacnoic fatty acids. This may be due to the low amounts present for
247	these fatty acids and the harsh conditions for DMOX derivatisation.
248	
249	Oil Fatty Acid Composition
250	Thermal treatments led to significant differences in sunflower oil fatty acid composition. The
251	formation of low molecular weight compounds and other fatty acid oxidation compounds (Table 1)
251 252	formation of low molecular weight compounds and other fatty acid oxidation compounds (Table 1) will explain both total n-6 PUFA and total n-3 PUFA losses in heated oils.
251 252 253	formation of low molecular weight compounds and other fatty acid oxidation compounds (Table 1) will explain both total n-6 PUFA and total n-3 PUFA losses in heated oils. As PUFA decreased on heating, this explains the total SFA relative increase recorded in all
251 252 253 254	formation of low molecular weight compounds and other fatty acid oxidation compounds (Table 1) will explain both total n-6 PUFA and total n-3 PUFA losses in heated oils. As PUFA decreased on heating, this explains the total SFA relative increase recorded in all heated oils (Table 3). A similar trend was observed for MUFA, although the differences between
251 252 253 254 255	formation of low molecular weight compounds and other fatty acid oxidation compounds (Table 1) will explain both total n-6 PUFA and total n-3 PUFA losses in heated oils. As PUFA decreased on heating, this explains the total SFA relative increase recorded in all heated oils (Table 3). A similar trend was observed for MUFA, although the differences between treatments were not as marked as for SFA. Despite this, total MUFA and oleic acid in the VOSO
251 252 253 254 255 256	formation of low molecular weight compounds and other fatty acid oxidation compounds (Table 1) will explain both total n-6 PUFA and total n-3 PUFA losses in heated oils. As PUFA decreased on heating, this explains the total SFA relative increase recorded in all heated oils (Table 3). A similar trend was observed for MUFA, although the differences between treatments were not as marked as for SFA. Despite this, total MUFA and oleic acid in the VOSO were significantly higher than in the other oils.
251 252 253 254 255 256 257	formation of low molecular weight compounds and other fatty acid oxidation compounds (Table 1) will explain both total n-6 PUFA and total n-3 PUFA losses in heated oils. As PUFA decreased on heating, this explains the total SFA relative increase recorded in all heated oils (Table 3). A similar trend was observed for MUFA, although the differences between treatments were not as marked as for SFA. Despite this, total MUFA and oleic acid in the VOSO were significantly higher than in the other oils. Only oils heated at temperatures above 180-190°C (OSO and VOSO) had a higher content of
251 252 253 254 255 256 257 258	formation of low molecular weight compounds and other fatty acid oxidation compounds (Table 1) will explain both total n-6 PUFA and total n-3 PUFA losses in heated oils. As PUFA decreased on heating, this explains the total SFA relative increase recorded in all heated oils (Table 3). A similar trend was observed for MUFA, although the differences between treatments were not as marked as for SFA. Despite this, total MUFA and oleic acid in the VOSO were significantly higher than in the other oils. Only oils heated at temperatures above 180-190°C (OSO and VOSO) had a higher content of <i>trans</i> -18:1 than FSO or PSO (Table 3). Likewise, geometrical isomers of LA (<i>mono-</i> and <i>ditrans-</i>
251 252 253 254 255 256 257 258 259	formation of low molecular weight compounds and other fatty acid oxidation compounds (Table 1) will explain both total n-6 PUFA and total n-3 PUFA losses in heated oils. As PUFA decreased on heating, this explains the total SFA relative increase recorded in all heated oils (Table 3). A similar trend was observed for MUFA, although the differences between treatments were not as marked as for SFA. Despite this, total MUFA and oleic acid in the VOSO were significantly higher than in the other oils. Only oils heated at temperatures above 180-190°C (OSO and VOSO) had a higher content of <i>trans</i> -18:1 than FSO or PSO (Table 3). Likewise, geometrical isomers of LA (<i>mono-</i> and <i>ditrans-</i> LA) were higher in oils heated at high temperatures.
251 252 253 254 255 256 257 258 259 260	formation of low molecular weight compounds and other fatty acid oxidation compounds (Table 1) will explain both total n-6 PUFA and total n-3 PUFA losses in heated oils. As PUFA decreased on heating, this explains the total SFA relative increase recorded in all heated oils (Table 3). A similar trend was observed for MUFA, although the differences between treatments were not as marked as for SFA. Despite this, total MUFA and oleic acid in the VOSO were significantly higher than in the other oils. Only oils heated at temperatures above 180-190°C (OSO and VOSO) had a higher content of <i>trans</i> -18:1 than FSO or PSO (Table 3). Likewise, geometrical isomers of LA (<i>mono-</i> and <i>ditrans</i> - LA) were higher in oils heated at high temperatures. As for positional isomers, 9c,11t-CLA and <i>ditrans</i> -CLA content were higher as a consequence

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

Page 12 of 41

Page 13 of 41

Poultry Science

9c,11t-CLA, ditrans-CLA and the sum of positional isomers showed significant differences 288 between OSO and VOSO treatments. Meat Fatty Acid Composition 289 Total SFA, MUFA and PUFA were not affected by dietary oil source in dark chicken meat 290 Feed Fatty Acid Composition 291 (Table 5). However, a significant increase in 20:0 was observed in dark meat coming from chickens Lipid fractions from feeds, containing 6% of each sunflower oil, had more linolenic acid and fed OSO and VOSO diets, which seems to indicate that this fatty acid was largely influenced by the 292 total SFA and moderately lower total MUFA and total n-6 PUFA than their corresponding dict. Although, the slight differences between the fatty acid compositions of assayed feeds did not 293 sunflower oils (Table 3). However, as feed fatty acid composition greatly reflects sunflower oil 294 lead to other significant differences in meat fatty acid composition, apart from the differences composition, VOSO feed had less LA and increased total SFA and total MUFA than FSO feed. 295 observed for isomerised fatty acids (Table 5). However, no significant differences between feeds were observed for linolenic acid because this In relation to the *trans*-18:1 isomers, the higher relative content of these fatty acids in dark 296 fatty acid came mainly from feed ingredients other than sunflower oil. This finding confirms that 297 chicken meat (Table 5) than in feeds (Table 3) seems to indicate that they are incorporated into dark the differences for fatty acids between feeds were less clear than for oils, due to dilution of 298 chicken meat more easily than other fatty acids. sunflower oils in the basal feed lipid fraction. Monotrans-LA and ditrans-LA of dark chicken meat were also affected by the sunflower oil 299 For the content of TFA in feeds containing OSO and VOSO, compared with TFA content in 300 source added to the feed because they reflected, to some extent, the differences observed in the oils, a dilution effect, which indicates that *trans* isomers were slightly present in the basal diet, was dicts. 301 also found. In relation to positional isomers, as dietary treatments showed no differences between 9c.11t-302 This meant that the contents of 9c,11t- and 10t,12c-CLA did not differ between feeds containing 303 CLA and 10t,12c-CLA contents, they did not affect the content of these fatty acids in dark chicken OSO and VOSO (Table 3). However, for other trans isomers, there were significant differences meat. However, 9c,11t-CLA was much higher incorporated in dark chicken meat than 10t,12c-CLA 304 between feeds containing OSO and VOSO. Thus, these results led to significant differences 305 (Table 5). between OSO and VOSO feeds for total LA isomers, total CLA isomers, total octadecadienoic On the other hand, ditrans-CLA showed significant differences between dietary sunflower oil 306 (18:2) acid isomers and total isomers. sources, indicating the effect of feed fatty acid composition. However, this group of isomers were 307 incorporated into dark meat less than 9c,11t-CLA and more than 10t,12c-CLA. 308 Bird Performance and Meat Crude Fat Content 309 a-Tocopheryl acetate supplementation in diet brings about an increase in 20:3 n-6, 22:4 n-6 and Final BW, feed intake, feed conversion, and mortality were not affected by dietary treatments 22:5 n-3 and a decrease in 20:1 n-9 (Table 5). 310 after 41 d of breeding (Table 4). 311 Zn supplementation increased the trans-18:1 content (Table 5). In addition, an interaction In addition, dietary sunflower source, and Zn and α-TA supplements did not affect dark chicken 312 between Zn supplementation and sunflower oil source influenced the trans-18:1 content, meat crude fat content (Table 4).

12

Scholarone. 375 Greenbrier Drive, Charlottesville, VA, 22901 (434) 817 2040 ext. 167

Scholarone, 375 Greenbrier Drive, Charlottesville, VA, 22901 (434) 817 2040 ext. 167

Page 14 of 41

Page 15 of 41

Oil Fatty Acid Composition

339

340

341

342

343

364

365

DISCUSSION

As a result of the thermal treatments, PUFA losses occurred and caused a relative increase of

313 Canonical discriminant analysis revealed that 3 discriminant functions (Wilks' lambda = 0.037; P < 0.001) including various fatty acids (ditrans-CLA, 20:2 n-6, 22:5 n-3 and 9c,11t-CLA) 314 distinguish correctly both OSO and VOSO from the other oils in dark chicken meat fed different 315 sunflower oils (Figure 1). As can be seen, chickens fed FSO and PSO treatments were not 316 317 distinguished clearly. Isomers had the main responsibility for discriminating, because the 318 cumulative proportion of explained variance in function 1 was 98.7%. In fact, discriminant analysis 319 predicted correctly 58.3% of chickens fed FSO and 83.3% of chickens fed PSO, whereas 100% 320 correct allocation to their groups was achieved for chickens fed with oxidised oils (OSO and VOSO). 321

322 Moreover, regarding individual Wilks' lambda-obtained values (lambda varies from 0 to 1, with 0 meaning that group averages differ), it can be confirmed that ditrans-CLA content was the main 323 factor responsible for predicting group memberships (Table 6). In this table, each fatty acid or sum 324 of fatty acids was ranked by its Wilks' lambda values. As can be seen, sums of fatty acid isomers 325 326 also had low lambda values, though they were not as low as for the ditrans-CLA lambda value. 327 Moreover, the discriminant analysis run again with only ditrans-CLA distinguished fairly well dark 328 chicken meats to whose feeds heated (above 190°C) sunflower oils (OSO and VOSO) were added (Table 6). Addition of the total 18:2 isomer content to the discriminant analysis did not improve its 329 ability to distinguish groups. It was only improved after the addition of the 9c,11t-CLA isomer. 330 331 Finally, the addition of the 20:2 n-6 to the discriminant analysis led to the previously reported 332 values.

Since fatty acid isomers were able to predict groups, we also ran the regression analysis of these 333 isomers in chicken meat and its feed content (Table 7). The best linear regression analyses were for 334 ditrans-CLA dark chicken meat content versus ditrans-CLA feed content ($R^2 = 0.876$) and versus 335 total CLA feed content ($R^2 = 0.878$). However, regression analysis for chicken meat content of 336 9c,11t-CLA versus its feed content was not significant and showed a very low R². 337

- 3	3	8

14

B and an and a second
able 3), because ditrans isomers were only found in linolenic acid heated above 200°C
randgirard et al., 1984). Further, even after 30 frying operations at 220°C, Sébédio et al. (1996b)
Scholarone, 375 Greenbrier Drive, Charlottesville, VA, 22901 (434) 817 2040 ext. 167

- SFA and MUFA. This has been previously reported in heated linseed oil (Wolff, 1993) and 344 sunflower oil (Juanéda et al., 2003). TFA are formed in edible oils during refining processes (Cmolik and Pokorný, 2000; Cmolík, et 345 346 al., 2000; Schwarz, 2000a) and also during partial hydrogenation (Ackman and Mag, 1998; Jung et al., 2002; Ledoux et al., 2000). These isomers are mainly monotrans geometrical and positional 347 348 isomers (Ledoux et al., 2000; Precht and Molkentin, 2000; Wolff et al., 1998) 349 However, thermal treatments above 180°C also led to TFA formation (Martin et al., 1998; 350 Wolff, 1993, Juanéda et al., 2003). This explains the low content in isomerised fatty acids found in FSO and why their content did not increase in PSO whereas it did in oxidised oils (OSO and 351 352 VOSO). 353 Interesting results were the significant increase in trans-18:1 observed in OSO and VOSO. because monocnoic fatty acids are very resistant to trans isomerisation (Schwarz, 2000a). However, 354 355 Schedio et al. (1988) also reported the presence of cis and trans monoenes after heating sunflower
- oil above 200°C. Similar results have been reported for rapeseed and soybean oil (Grandgirard et 356 357 al., 1984).

358 On geometrical isomerisation, Juanéda et al. (2003) did not find an increase in monotrans-LA in 359 sunflower oil heated at 180°C, whereas it did increase a lot at 220°C. Similar results were described 360 by Schedio et al. (1996b) in deep-fat frying of French fries in peanut or soybean oil heated at 220°C. 361 Therefore, confirming these authors' findings, the present results show that LA isomerisation occurs 362 when sunflower oil is heated at temperatures above 190°C for 28 h. It is also worth commenting on the increase in *ditrans*-LA isomers in oxidised sunflower oils 363 (Table 3

Page 16 of 41

16

Poultry Science

found no *ditrans*-LA in oils used in deep fat frying of potatoes. Wolff (1993), heating linseed oil at different times and temperatures, only found *ditrans*-LA after 8 h at 245°C, and Martin et al. (1998) found it above 220°C after 30 h of heating. However, Sébédio et al. (1988) found *ditrans*-LA after heating sunflower oil at 200°C for 48 h in a commercial fryer and also in used frying oil.

These controversial results for *ditrans*-LA amounts could be explained by a number of factors. For example, the manner and time of heating (Grandgirard et al., 1984; Wolff, 1993), the composition and their arrangement on the triacylglycerols (Martin et al., 1998) all affect *trans* formation.

On CLA content, different authors described CLA formation after heating sunflower oil above
180°C (Sébédio et al., 1988; Juanéda et al., 2003). This was confirmed by our results for the OSO
and VOSO oils.

Unlike LA geometrical isomers, positional isomers of both oxidised oils (OSO and VOSO) had greater *ditrans*-CLA than *monotrans*-CLA. The ratio for *ditrans*-CLA/(9c,11t- and 10t,12c-CLA) in VOSO treatment was close to 2 which is similar to that reported by Juanéda et al. (2003) when sunflower oil was heated at 180°C [sum of *ditrans*-CLA/(9c,11t- and 10t,12c-CLA) = 1.9]. These former authors also reported that the relative proportions of positional isomers are temperaturedependent, with the relative *ditrans* content higher at high temperatures.

In relation to this, Juanéda et al. (2003) reported that at temperatures of 180°C the main *monotrans* positional isomers found were the 9c,11t-CLA and the 10t,12c-CLA, and the main *ditrans* isomers were the 9t,11t- and 10t,12t-CLA. In addition, these authors did not detect the presence of 8c,10t- or 11t,13c-CLA isomers in heated oils containing LA. These results confirm our results, though we only identified the 9c,11t-CLA and the 10t,12c-CLA and a peak where some *ditrans*-CLA were present, whereas other isomers were not detected.

Therefore, the reported results seemed to confirm the presence of different geometrical and positional TFA due to isomerisation at temperatures above 190°C. However, while some TFA such as *ditrans*-CLA are mainly formed during heating at high temperatures (Sébédio et al., 1988; Juanéda et al., 2003), others like 9c,11t-CLA are mainly found in ruminant animal fats (Chin et al.,

393 1992).

394

Page 17 of 41

395 Meat Fatty Acid Composition

Different authors reported decreased PUFA content in chicken meats from animals fed different vegetable oils oxidized at low temperatures (30°C) or high temperatures (140°C) (Jensen et al., 1997; Shechy et al., 1993) whereas others reported no changes in chicken meat fatty acid composition from those animals fed on oxidized sunflower oil heated for 11h at 120°C (Shechy et al., 1994). These controversial results can be mainly explained by the extent of PUFA losses in these oxidized oils added to the feeds.

402 In relation to the amounts of geometrical isomers of LA and trans-18:1 in dark chicken meat from animals fed FSO, they were much lower than those previously described in chicken meat (Aro 403 404 et al., 1998) and turkey meat (Wong and Sampugna, 1993). Aro et al. (1998), who studied various meat products from several European countries, found that chicken and turkey meats had slightly 405 406 more variable proportions of TFA than other meats. In this study, total trans content (CLA were not 407 included) ranged from 0.24 to 1.7%. This great variability was attributed to feed composition differences. Actually, the incorporation of TFA into most tissues is roughly in proportion to their 408 409 abundance in the diet of swine (Royce et al., 1983, Pettersen and Opstevedt, 1992) and rats (Bysted 410 et al., 1998).

411 Consistent with this, Emkem (1995) reported in a review that TFA are subject to the same 412 metabolic control mechanisms that regulate the metabolism of saturated and *cis* unsaturated fatty 413 acids. However, whereas adipose tissue seemed not to incorporate or exclude selectively any 414 specific fatty acid, other more specific tissues like brain have a low and relatively constant TFA 415 content (Holmer, 1998; Emken, 1995).

In addition, some *trans*-18:1 isomers are hindered from incorporation into various tissue lipid
classes, whereas other *trans*-18:1 are preferred (Holmer, 1998; Bysted et al., 1998). The higher

Page 18 of 41

18

Page 19 of 41

Poultry Science

relative content of these fatty acids in dark chicken meat (Table 5) than in feeds (Table 3) seems to
indicate that *trans*-18:1 are incorporated into dark chicken meat more easily than other fatty acids
such as oleic acid (Table 5).

In relation to *monotrans*-LA and *ditrans*-LA content in dark chicken meat, the LA/*ditrans*-LA isomer ratios in chicken meats were fairly different from those in the feeds, whereas the LA/*monotrans*-LA isomer ratios were similar to those in the diets, indicating that *monotrans*-LA isomers behave similarly to LA, which confirms previously reported results (Sébedio and Chardigny, 1998). In addition, the LA/*ditrans*-LA ratios in feeds and meats suggest that the incorporation rate in chicken meat is higher for *ditrans*-LA than for LA.

As for meat positional isomers, Chin et al. (1992) also detected CLA in commercial chicken meat samples (0.09% CLA), in which 9c,11t-CLA was about 84% of total CLA. The reported content was higher than the levels we found in meat from animals fed on FSO (Table 3).

CLA, present in all dictary treatments (Table 3), were absorbed and deposited, in line with previously reported results, in chicken meat (Szymczyk et al., 2001; Simon et al., 2000; Badinga et al., 2003) and eggs (Raes et al., 2001; Ahn et al., 1999; Du et al., 1999). However, as dietary treatments showed no differences between 9c,11t-CLA and 10t,12c-CLA contents, they did not affect the content of these fatty acids in dark chicken meat.

Nevertheless, the ratios for these CLA isomers in feeds and meats seem to indicate that they 435 were incorporated into dark meat at different rates. Thus, 9c,11t-CLA seemed to be more easily 436 437 incorporated in dark chicken meat than 10t,12c-CLA (Table 5). These results corroborate previous findings (Szymczyk et al., 2001; Simon et al., 2000; Badinga et al., 2003). However, it is not 438 completely understood whether these results are due to an increased incorporation of 9c,11t-CLA or 439 to a higher enzymatic modification (elongation, desaturation or β -oxidation) of 10t,12c-CLA 440 (Evans et al., 2002; Sébédio et al., 1997; Sergiel et al., 2001). In addition, the likely biosynthesis of 441 9c,11t-CLA via the action of Δ^9 desaturase on trans-11-18:1, described in humans (Adlof et al., 442

443	2000; Turpeinen et al., 2002) and in other animals (Pariza et al., 2001; Palmquist and Santora, 1999;
444	Gläser et al., 2000; Thompson and Christie, 1991), should be taken into account.
445	On the other hand, ditrans-CLA showed significant differences between dietary sunflower oil
446	sources, indicating the effect of feed fatty acid composition. Likewise, Yang et al. (2002) reported
447	that ditrans-CLA were preferentially incorporated into rat liver rather than other CLA and that there
448	was also discrimination between monotrans isomers. Nevertheless, these authors also reported that
449	rat milk CLA isomeric distribution reflected the distribution in the diet. In addition, these results for
450	rat liver isomer composition seemed to confirm those reported for hepatic fatty acid composition in
451	chickens fed a CLA mixture (Badinga et al., 2003).
452	In relation to the studied dictary factors, the α -tocopheryl acetate supplementation in diet brings
453	about an increase in PUFA which agreed with previously reported works (Cherian et al., 1996;
454	Ajuyah et al., 1993; Surai and Sparks, 2000). Cherian et al. (1996) suggested that these PUFA were
455	protected from oxidation by tocopherol supplementation.
456	On the other hand, the increased trans-18:1 content as a result of Zn supplementation is difficult
457	to explain, even more so when the interaction between Zn supplementation and sunflower oil source
458	in the diet is taken into account. It is not completely understood why Zn supplementation decreases
459	trans-18:1 content in dark meat coming from chickens fed PSO diet, while the trans-18:1 content is
460	increased by Zn supplementation in meat from chickens fed FSO, OSO or VOSO diets. Thus,
461	further studies are required to confirm the effect of Zn supplementation and its interaction on trans-
462	18:1 content in dark chicken meat.
463	Therefore, some TFA isomers seemed to be more easily incorporated than others and, in spite of

the reported effects and interactions caused by Zn and tocopherol supplements, the discriminant analysis showed that the content of *ditrans*-CLA and total CLA isomers are suitable markers, even at trace levels, of the addition of heated (above 190°C) sunflower oil to feeds.

However, isomers such as *trans*-18:1 and 10t,12e-CLA were not suitable for predicting group
 memberships of chicken meats to which different dictary sunflower oils were added (Table 6).

	Poultry Science	Page 20 of 41	Page 21 of	141 Poultry Science
469	Some TFA and the significantly increased content of 20:0 as a result of heating also did not incr	case	487	REFERENCES
470	the correctly predicted group membership in the discriminant analysis (Table 6). This fact can	n be	488	
471	explained by the strong correlations observed between these fatty acids and ditrans-CLA (data	not	489	Ackman, R. G., and T. K. Mag,. 1998. Trans fatty acids and the potential for less in technical
472	shown).		490	products. Pages 35-38 in Trans Fatty Acids in Human Nutrition. J. L. Sébédio and W. W. Christie,
473	Therefore, the relevance of ditrans-CLA as possible markers is due to their being ma	inly	491	eds. The Oily Press Ltd., Dundee.
474	formed during fat and oil heating at high temperatures, while other potential markers, like 9c,	11t-	492	
475	CLA, have other important origins like biohydrogenation, partial hydrogenation and refin	ing.	493	Adlof, R. O., S. Duval, and E. A. Emken. 2000. Biosynthesis of conjugated linoleic acid in humans.
476	Nevertheless, 9c,11t- and 10t,12c-CLA were not completely necessary to distinguish dark m	cats	494	Lipids 35:131-135.
477	from chickens fed these heated oils.		495	
478			496	Adlof, R. O., and E. A. Emken. 1986. Distribution of hexadecenoic-acid, octadecenoic-acid and
479	ACKNOWLEDGEMENTS		497	octadecadienoic-acid isomers in human tissues. Lipids 21:543-547.
480			498	
481	This research was funded by the Comisión Interministerial de Ciencia y Tecnología (CICY	ζ Τ) .	499	Ahn, D. U., J. L. Sell, C. Jo, M. Chamruspollert, and M. Jeffrey. 1999. Effect of dietary conjugated
482	The authors want to thank "Laboratorios Salvat" and "Frit Ravich" for allowing us to use t	heir	500	linoleic acid on the quality characteristics of chicken eggs during refrigerated storage. Poult. Sci.
483	facilities for oxidising the experimental oils. The authors would also like to thank Pilar Teixin	dor,	501	78:922-928.
484	José Navas, Javier Vicites and Vanessa González for their help with some analyses, and Mig	guel	502	
485	Cancla for his help with statistical analyses.		503	Ajuyah, A. O., D. H. Ahn, R. T. Hardin, and J. S. Sim. 1993. Dictary antioxidants and storage affect
486			504 0	chemical characteristics of ω -3 fatty acid enriched broiler chicken meats. J. Food Sci. 58:43-61.
487			505	
			506	AOCS. 1998a. Method Cd 8-53. In Official methods and recommended practices of the AOCS, 5th
			507 0	ed. American Oil Chemists' Society: Champaign, IL.
			508	
			509	AOCS. 1998b. Method Cd 18-90. In Official methods and recommended practices of the AOCS,
			510 5	5th ed. American Oil Chemists' Society: Champaign, IL.
			511	
	Scholarone, 375 Greenbrier Drive, Charlottesville, VA, 22901 (434) 817 2040 ext. 167	20		Scholarone, 375 Greenbrier Drive, Charlottesville, VA, 22901 (434) 817 2040 ext. 167 21

	Poultry Science Pa	ana 22 of 41	Page 23	of 41 Bouiller Science
		ugo 22 01 41	7 ago 20 1	
512	Aro, A., J. M. Antoine, L. Pizzoferrato, O. Reykdal, and G. van Poppel. 1998. Trans fatty acids in	n	538	
513	dairy and meat products from 14 European countries: the TRANSFAIR Study. J. Food Compos	s.	539	Chow, C. K. 1992. Biological effects of oxidized fatty acids. Pages 689-705 in Fatty Acids in
514	Anal. 11:150-160.		540	Foods and their Health Implications. C. K. Chow, ed. Marcel Dekker Inc., New York, NY.
515			541	
516	Aschiero, A., M. B. Katan, P. L. Zock, M. Stampfer, and W. C. Willett. 1999. Trans fatty acids and	đ	542	Cmolik, J., and J. Pokorný. 2000. Physical refining of edible oils. Eur. J. Lipid Sci. Technol. 102:
517	coronary heart disease. N. Engl. J. Med. 340:1994-1998.		543	472-486.
518			544	
519	Badinga, L.; Selberg, K. T.; Dinges, A. C.; Comer, C. W.; Miles, R. D. Dictary conjugated linoleic	c	545	Cmolík, J., W. Schwarz, Z. Svoboda, J. Pokorný, Z. Réblová, M. Dolezal, and H. Valentová. 2000.
520	acid alters hepatic lipid content and fatty acid composition in broiler chickens. Poult. Sci. 2003, 82	,	546	Effects of plant-scale alkali refining and physical refining on the quality of rapesced. Eur. J. Lipid
521	111-116.		547	Sci. Technol. 102:15-22.
522			548	
523	Belury, M. A. 2002. Dictary conjugated linoleic acid health: physiological effects and mechanisms	s	549	Cohn, J. S. 2002. Oxidized fat in the diet, postprandial lipaemia and cardiovascular disease. Curr.
524	of action. Annu. Rev. Nutr. 22:505-531.		550	Opin. Lipidol. 13:19-24.
525			551	
526	Billek, G. 2000. Health aspects of thermoxidized oils and fats. Eur. J. Lipid Sci. Technol. 120:587-	-	552	Craig-Schmidt, M. C. 1992. Fatty acids isomers in foods. Pages 365-398 in Fatty Acids in Foods
527	593.		553	and their Health Implications. Chow, C. K., ed. Marcel Dekker Inc., New York, NY.
528			554	and the second secon
529	Bysted, A., G. Holmer, and P. Lund. 1998. Influence of moderate amounts of trans fatty acids or	n	555	Destaillats, F., and P. Angers. 2002. Evidence for (1,5) signatropic rearrangements of CLA in
530	the formation of polyunsaturated fatty acids. J. Am. Oil Chem. Soc. 75:225-234.		556	heated oils. Lipids 37:435-438.
531			557	
532	Cherian, G., F. W. Wolfe, and J. S. Sim. 1996. Dictary oils with added tocopherols: effects on egg	g	558	Du, M., D. U. Ahn, and J. L. Sell. 1999. Effect of dietary conjugated linoleic acid on the
533	or tissue tocopherols, fatty acids, and oxidative stability. Poult. Sci. 75:423-431.		559	composition of egg yolk lipids. Poult. Sci. 78:1639-1645.
534			560	
535	Chin, S. F., W. Liu, J. M. Storkson, Y. L. Ha, and M. W. Pariza. 1992. Dictary sources of	ſ	561	Emken, E. A. 1995. Trans fatty acids and coronary heart disease risk. Physicochemical properties,
536	conjugated dienoic isomers of linoleic acid, a newly recognized class of anticarcinogens. J. Food	1	562	intake and metabolism. Am. J. Clin. Nutr. 63:659S-669S.
537	Compos. Anal. 5:185-197.		563	
	Scholarone, 375 Greenbrier Drive, Charlottesville, VA, 22901 (434) 817 2040 ext. 167 22	2		Scholarone, 375 Greenbrier Drive, Charlottesville, VA, 22901 (434) 817 2040 ext. 167 23

	Poultry Science F	Page 24 of 41	Page 25	of 41 Poultry Science
564	Esterbauer, H., R. F. Schaur, and H. Zollner. 1991. Chemistry and biochemistry of	4-	589	Grandgirard, A., J. L. Sébédio, and J. Fleury. 1984. Geometrical isomerization of linolenic acid
565	hydroxynonenal, malonaldehyde and related aldehydes. Free Radie. Biol. Med. 11:81-128.		590	during heat treatment of vegetable oils. J. Am. Oil Chem. Soc. 61:1563-1568.
566			591	
567	Evans, M. E., J. M. Brown, and M. K. Meintosh. 2002. Isomer-specific effects of conjugate	cd	592	Grau, A., R. Codony, S. Grimpa, M. D. Baucells, and F. Guardiola. 2001. Cholesterol oxidation in
568	linoleie acid (CLA) on adiposity and lipid metabolism. J. Nutr. Biochem. 13:508-516.		593	frozen dark chicken meat: influence of dictary fat source, and α -tocopherol and ascorbic acid
569			594	supplementation. Meat Sci. 57:197-208.
570	Fay, L., and U. Richli. 1991. Location of double bonds in polyunsaturated fatty acids by g	as	595	
571	chromatography-mass spectrometry after 4,4-dimethyloxazoline derivatization. J. Chromatog	gr.	596	Guardiola, F., R. Codony, M. Rafecas, J. Boatella, A. López. 1994. Fatty acid composition and
572	541:89-98.		597	nutritional value of fresh eggs, from large- and small-scale farms. J. Food Compos. Anal. 39:185-
573			598	189.
574	Fritsche, J., R. Rickert, and H. Steinhart. 1999. Formation, contents, and estimation of daily intak	(C	599	
575	of conjugated linoleic acid isomers and trans-fatty acids in foods. Pages 378-396 in Advances i	in	600	Guardiola, F., P. C. Dutta, R. Codony, G. P. Savage. 2002. Cholesterol and Phytosterol Oxidation
576	Conjugated Linolcic Acid Research. Volume 1. M. P. Yurawecz, M. M. Mossoba, J. K. G. Krame	r,	601	Products: Analysis, Occurrence, and Biological Effects. AOCS Press: Champaign, IL.
577	M. W. Pariza, and G. J. Nelson eds. AOCS Press: Champaign, IL.		602	
578			603	Hayakawa, K., Y. Linko, and P. Linko. 2000. The role of irans fatty acids in human nutrition. Eur.
579	Fritsche, J. and H. Steinhart. 1998. Analysis, occurrence, and physiological properties of trans fatt	ly	604	J. Lipid Sci. Technol. 102:419-425.
580	acids (TFA) with particular emphasis on conjugated linoleic acid isomers (CLA) - a review	v.	605	
581	Fett/Lipid 100:190-210.		606	Holmer, G. Biochemistry of trans fatty acids. 1998. Pages 163-190 in Trans Fatty Acids in Human
582			607	Nutrition. J. L. Sébédio and W. W. Christic eds. The Oily Press Ltd.: Dundee, UK.
583	Gamel, T. H., A. Kiritsakis, and Ch. Petrakis. 1999. Effect of phenolic extracts on trans fatty aci	id	608	
584	formation during frying. Grasas y Accites 50:421-425.		609	IUPAC. 1987. Standard Method 2508. In Standard methods for the analysis of oils, fats and
585			610	derivatives, 7th ed. International Union of Pure and Applied Chemistry: Blackwell, Oxford, UK.
586	Gläser, K., M. R. L. Scheeder, and C. Wenk. 2000. Dietary C18:1 trans fatty acids increas	se	611	
587	conjugated linoleic acid in adipose tissue of pigs. Eur. J. Lipid Technol. 102:684-686.		612	Juanéda, P., S. B. de la Pérrière, J. L. Sébédio, and S. Grégoire. 2003. Influence of heat and refining
588			613	on formation of CLA isomers in sunflower oil. J. Am. Oil Chem. Soc. 80:937-940.
			614	
	Scholarone. 375 Greenbrier Drive, Charlottesville, VA, 22901 (434) 817 2040 ext. 167 2	4		Scholarone, 375 Greenbrier Drive, Charlottesville, VA, 22901 (434) 817 2040 ext. 167 25

.

	Poultry Science	Page 26 of 41	Page 27	of 41 Poultry Science
615	Jung, M. O., J. W. Ju, D. S. Choi, S. H. Yoon, and M. Y. Jung. 2002. CLA formation in oils	during	640	fatty acids and cholesterol and 25-year mortality from coronary heart disease: the seven countries
616	hydrogenation process as affected by catalyst types, catalyst contents, hydrogen pressure, a	and oil	641	study. Prev. Med. 24:308-315.
617	species. J. Am. Oil Chem. Soc. 79:501-510.		642	
618			643	Larsen, T. M., S. Toubro, and A. Astrup. 2003. Efficacy and safety of dietary supplements
619	Jung, M. O., S. H. Yoon, M. Y. Jung. 2001. Effects of temperature and agitation rate	on the	644	containing CLA for the treatment of obesity: evidence from animal and human studies. J. Lipid Res.
620	formation of conjugated linoleic acids in soybean oil during hydrogenation process. J. Agric	. Food	645	44:2234-2241
621	Chem. 49:3010-3016.		646	
622			647	Ledoux, M., L. Laloux, and D. Sauvant. 2000. Trans fatty acids isomers: origin and occurrence in
623	Kramer, J. K. G., V. Fellner, M. E. R. Dugan, F. D. Sauer, M. M. Mossoba, and M. P. Yura	iweez.	648	food. Sci. Aliments 20:393-411,
624	1997. Evaluating acid and base catalyst in the methylation of milk and rumen fatty acid	s with	649	
625	special emphasis on conjugated dienes and total trans fatty acids. Lipids 32:1219-1228.		650	Martin, J. C., M. Nour, F. Lavillonnière, and J. L. Sébédio. 1998. Effect of fatty acid positional
626			651	distribution and tryacylglycerol composition on lipid by-products formation during heat treatment:
627	Kramer, J. K. G., C. B. Blackadar, and J. Zhou. 2002. Evaluation of two GC columns	(60-m	652	II. Trans isomers. J. Am. Oil Chem. Soc. 75:1073-1078.
628	SUPELCOWAX 10 and 100-m CP Sil 88) for analysis of milkfat with emphasis on CLA,	18:1,	653	
629	18:2 and 18:3 isomers, and short- and long-chain FA. Lipids 37:823-835.		654	Mensink, R. P., and M. B. Katan. 1990. Effect of dictary trans fatty acids on high-density and low-
630			655	density lipoprotein cholesterol levels in healthy subjects. N. Engl. J. Med. 33:439-445.
631	Kramer, J. K. G., C. Cruz-Hernández, and J. Zhou. 2001. Conjugated linoleie acid	s and	656	
632	octadecenoic acids: Analysis by GC. Eur. J. Lipid Sci. Technol. 103:594-632.		657	Mensink, R. P., P. L. Zock, M. B. Katan, and G. Hornstra. 1992. Effect of dietary cis and trans fatty
633			658	acids on scrum lipoprotein(a) levels in humans. J. Lipid Res. 33:1493-1501.
634	Kritchevsky, D. 2000. Antimutagenic and some other effects of conjugated linoleic acid.	Br. J.	659	
635	Nutr. 83:459-465.		660	Noone, E. J., H. M. Roche, A. P. Nugent, and M. J. Gibney. 2002. The effect of dictary
636			661	supplementation using isomeric blends of conjugated linoleic acid on lipid metabolism in healthy
637	Kromhout, D., A. Menotti, B. Bloemberg, C. Aravanis, H. Blackburn, R. Buzina, A. S. Don	tas, F.	662	human subjects. Br. J. Nutr. 88:243-251.
638	Fidanza, S. Giampaoli, A. Janse, M. Karvonen, M. Katan, A. Nissinen, S. Nedeljkovic, J. Pekk	ancn,	663	
639	M. Pekkarinen, S. Punsar, L. Räsänen, B. Simie, and H. Toshima. 1995. Dietary saturated and	trans	664	O'Keefe, S. F., V. A. Wiley, and D. Wrigh. 1993. Effect of temperature on linolenic acid loss and
			665	18:3Δ9-cis, Δ12-cis, Δ15-trans formation in soybean oil. J. Am. Oil Chem. Soc. 70:915-917.
	Scholarone. 375 Greenbrier Drive, Charlottesville, VA, 22901 (434) 817 2040 ext. 167	26		Scholarone, 375 Greenbrier Drive, Charlottesville, VA, 22901 (434) 817 2040 ext. 167 27

	Poultry Science	Page 28 of 41	Page 29	of 41 Poultry Science
666			690	Raes, K., G. Huyghebaert, S. De Smet, L. Nollet, S. Arnouts, and D. Demeyer. 2002. The
667	Oomen, C. M., M. C. Ocké, E. J. M. Freskens, M. A. J. van Erp-Baart, F. J. Kok, and D. Kron	nhout.	691	deposition of conjugated linoleic acids in eggs of laying hens fed diets varying in fat level and fatty
668	2001. Association between trans fatty acid intake and 10-year risk of coronary heart disease	in the	692	acid profile. J. Nutr. 132:182-189.
669	Zutphen elderly study: a prospective population based study. Lancet 357:746-751.		693	
670			694	Rainer, L., and C. J. Heiss. 2004. Conjugated linoleic acid: health implications and effects on body
671	Palmquist, D. L, and J. S. Santora. 1999. Endogenous synthesis of rumenic acid in roden	ts and	695	composition. J. Am. Dict. Assoc. 104:963-968.
672	humans. Pages 201-208 in Advances in Conjugated Linoleic Acid Research. Volume 1.	М. Р.	696	
673	Yuraweez, M. M. Mossoba, J. K. G. Kramer, M. W. Pariza, and G. J. Nelson, eds. AOCS	Press:	697	Roach, J. A. G., M. M. Mossoba, M. P. Yuraweez, and J. K. G. Kramer. 2002. Chromatographic
674	Champaign, IL.		698	separation and identification of conjugated linoleic acid isomers. Anal. Chim. Acta 465:207-226.
675			699	
676	Pariza, M. W., Y. Park, and M. E. Cook, 2001. The biologically active isomers of conju	igated	700	Romero, A., C. Cuesta, and F. J. Sánchez-Muniz. 2000. Trans fatty acid production in deep fat
677	linoleic acid. Prog. Lipid Res. 40:283-298.		701	frying of frozen foods with different oils and frying modalities. Nutr. Res. 20:599-608.
678			702	
679	Pettersen, J., and J. Opstevedt. 1992. Trans fatty acids. 5. Fatty acid composition of lipids	of the	703	Royce, S. M., R. P. Holmes, T. Takagi, and F. A. Kummerow. 1983. The influence of dictary
680	brain and other organs in suckling piglets. Lipids 27:761-769.		704	isomeric fatty acids on atheroselerosis and eicosanoid synthesis in swine. Am. J. Clin. Nutr. 39:215-
681			705	222.
682	Precht, D., and J. Molkentin. 2000. Recent trends in the fatty acid composition of Ge	erman	706	
683	sunflower margarines, shortenings and cooking fats with emphasis on individual C16:1, C	C18:1,	707	Schroepfer, G. J. Jr. 2000. Oxysterols: modulators of cholesterol metabolism and other processes.
684	C18:2, C18:3 and C20:1 trans isomers. Nahrung 44:222-228.		708	Physiol. Rcv. 80:362-521
685			709	
686	Racs, K., S. De Smet, and D. Demeyer. 2001. Effect of double-muscling in Belgian Blue y	oung	710	Schwarz, W. 2000a. Formation of trans polyalkenoic fatty acids during vegetable oil refining. Eur.
687	bulls on the intramuscular fatty acid composition with emphasis on conjugated linoleic acid	d and	711	J. Lipid Sci. Technol. 102:648-649.
688	polyunsaturated fatty acids. Anim. Sci. 73:253-260.		712	
689			713	Schwarz, W. 2000b. Trans unsaturated fatty acids in European nutrition. Eur. J. Lipid Sci. Technol.
			714	102:633-635.
			715	
	Scholarone, 375 Greenbrier Drive, Charlottesville, VA, 22901 (434) 817 2040 ext. 167	28		Scholarone, 375 Greenbrier Drive, Charlottesville, VA, 22901 (434) 817 2040 ext. 167 29

	Poultry Science	Page 30 of 41	Page 31	of 41 Poultry Science
716	Sébédio, J. L., M. C. Dobarganes, G. Márquez, I. Wester, W. W. Christie, G. Dobson, F. Zwo	bada,	742	
717	J. M. Chardigny, Th. Mairot, and R. Lahtine. 1996a. Industrial production of crisps and pro	efried	743	Simopoulos, A. P., and N. Salem Jr. 1992. Egg yolk as a source of long-chain polyunsaturated fatty
718	french fries using sunflower oils. Grasas y Accites 47:5-13.		744	acids in infant feeding. Am. J. Clin. Nutr. 55:411-414.
719			745	
720	Sébédio, J. L., M. Catte, M. A. Boudier, J. Prevost, and A. Grandgirard. 1996b. Formation of	fatty	746	Surai, P. F., and N. H. C. Sparks. 2000. Tissue-specific fatty acid and α -tocopherol profiles in male
721	acid geometrical isomers and of cyclic fatty acid monomers during the finish frying of fi	rozen	747	chickens depending on dietary tuna oil and vitamin E provision. Poult. Sci. 79:1132-1142.
722	prefried potatoes. Food Res. Intern. 29:109-116.		748	
723			749	Szymczyk, B., P. M. Pisulewski, W. Szczurek, and P. Hanczakowski. 2001. Effects of conjugated
724	Sébédio, J. L., and J. M. Chardigny. 1998. Biochemistry of trans polyunsaturated fatty acids. I	Pages	750	linoleic acid on growth performance, feed conversion efficiency, and subsequent carcass quality in
725	191-216 in Trans Fatty Acids in Human Nutrition. J. L. Sébédio and W. W. Christic eds. The	Oily	751	broiler chickens. Br. J. Nutr. 85:465-473.
726	Press Ltd., Dundee, UK.		752	
727			753	Thompson, G. E., and W. W. Christie. 1991. Extraction of plasma triacylglycerols by the mammary
728	Sébédio, J. L., A. Grandgirard, and J. Prevost. 1988. Linoleie acid isomers in heat treated sunfl	ower	754	gland of the lactating cow. J. Dairy Res. 58:251-255.
729	oils. J. Am. Oil Chem. Soc. 65:362-366.		755	
730			756	Tricon, S., G. C. Burdge, S. Kew, T. Banerjee, J. J. Russell, E. L. Jones, R. F. Grimble, C. M.
731	Sébédio, J. L., P. Juanéda, G. Dobson, I. Ramilison, J. C. Martin, J. M. Chardigny, and W	/. W.	757	Williams, P- Yaqoob, and P. Calder. 2004. Opposing effects of cis-9, trans-11 and trans-10, cis-12
732	Christic. 1997. Metabolites of conjugated isomers of linoleie acid (CLA) in the rat. Bioc	chim.	758	conjugated linoleic acid on blood lipids in healthy humans. Am. J. Clin. Nutr. 80:614-620
733	Biophys. Acta 1345:5-10.		759	
734			760	Turpeinen, A. M., M. Mutanen, A. Aro, I. Salminen, S. Basu, D. L. Palquist, and J. M. Griinari.
735	Sergiel, J. P., J. M. Chardigny, J. L. Sébédio, O. Berdeaux, P. Juaneda, O. Loreau, B. Pasquis	, and	761	2002. Bioconversion of vaccenic acid to conjugated linolcic acid in humans. Am. J. Clin. Nutr.
736	J. P. Noel. 2001. β -oxidation of conjugated linoleic acid isomers and linoleic acid in rats. L	ipids	762	76:504-510.
737	36:1327-1329.		763	
738			764	Wahle, K. W. J., S. D. Heys, and D. Rotondo. 2004. Conjugated linoleic acids: are they beneficial
739	Simon, O., K. Manner, K. Schafer, A. Sagredos, K. Eder. 2000. Effects of conjugated linoleic a	acids	765	or detrimental to health?. Prog. Lipid Res. 43:553-587.
740	on protein to fat proportions, fatty acids, and plasma lipids in broilers. Eur. J. Lipid Sci. Tecl	hnol.	766	
741	102:402-410.			
		30		
	Scholarone, 375 Greenbrier Drive, Charlottesville, VA, 22901 (434) 817 2040 ext. 167			Scholarone, 375 Greenbrier Drive, Charlottesville, VA, 22901 (434) 817 2040 ext. 167

.

Page 32 of 41

Poultry Science

767 Willett, W. C., M. J. Stampfer, J. E. Manson, G. A. Colditz, F. E. Speizer, B. A. Rosner, L. A.

Sampson, and C. H. Hennekens. 1993. Intake of *trans* fatty acids and risk of coronary heart disease
among women. Lancet 341:581-585.

770

771Wolff, R. L. 1993. Heat-induced geometrical isomerization of α-linolenic acid: effect of772temperature and heating time on the appearance of individual isomers. J. Am. Oil Chem. Soc.77370:425-429.

774

Wolff, R. L., D. Precht, and J. Molkentin. 1998. Occurrence and distribution profiles of *trans*-18:1
acids in edible fats of natural origin. Pages 1-34 in Trans Fatty Acids in Human Nutrition. J. L.

777 Sébédio and W. W. Christie eds. The Oily Press Ltd., Dundee, UK.

778

Wong, M. K., and J. Sampugna. 1993. Moisture, total fatty acids, and cholesterol in raw ground
turkey. J. Agric. Food Chem. 41:1229-1231.

781

Yang, L., S. Y. V. Yeung, Y. Huang, H. Q. Wang, and Z. Y. Chen. 2002. Preferential incorporation
of *trans,trans*-conjugated linoleic acid isomers into liver of suckling rats. Br. J. Nutr. 87:253-260.

784

784 TABLE 1. Oxidation Variables and α-Tocopherol Content of the Sunflower Oils Added to

Page 33 of 41

785

the Basal Dict.

Sunflower Oil	PV ^a	n AV ¹	к ²	Polymers ⁴ 232 K ³ 270 [%]	Polymers ⁴	a-tocopherol ⁵	
	• •	PAT			[%]	[mg/1]	
Fresh	2.1	6.4	3.58	1.74	0.7	683	
Peroxidised	91.9	8.5	13.66	1.78	0.7	480	
Oxidised	7.0	83.1	10.28	3.25	4.9	655	
Very oxidised	17.2	153.0	17.67	4.82	9.4	619	

786 PV: Peroxide value in millieq. peroxide/kg. AOCS Official Method (Cd 8-53).

787 ² pAV: *p*-Anisidine value. AOCS Official Method (Cd 8-90).

788 ³K₂₃₂ and K₂₇₀ are the oil-specific absorbances at 232 and 270 nm (Grau et al., 2001).

789 ⁴ Polymers expressed as percentage of polymerised triacylglycerols. IUPAC standard method 2.508.

790 ⁵ Tocopherol content analysis performed as described in Material and Methods section.

791 792

Scholarone, 375 Greenbrier Drive, Charlottesville, VA, 22901 (434) 817 2040 ext. 167

32

Page 35 of 41

797

798

Poultry Science

TABLE 3. Fatty Acid Composition (Expressed as Area Normalization in %) of the

792 TABLE 2. Ingredients and Composition of the Basal Diet Fed from 11 to 42 Days of Age.

Ingredients	Percentage	Composition ⁴	Percentage
Wheat	56.61	Dry matter	90.1
Soybean meal	24.69	Crude protein	20.9
Sunflower oil ²	6.00	Crude fat	8.2
Sunflower meal	5.03	Crude fiber	3.6
Soy grass	3.14	Ash	6.1
Calcium carbonate	1.69		
Monocalcium phosphate	1.23		
Mineral-vitamin premix ³	0.50		
L-Lysine	0.38		
DL-Methionine	0.26		
Salt	0.20		
Sodium bicarbonate	0.14		
Enzymes	0.12		
Choline chloride	0.03		

I Met 793

794 ² Four sources of sunflower oil were added to the feeds depending on the dietary treatments.

³ Include all-rac-α-tocopheryl acetate (30 mg/kg of feed) and Se-enriched yeast (0.6 mg Se/kg of feed). 795

796 797

Experimental Oils and Feeds.

Fatty acid		Sunfla	wer oils		Feed	Feeds with added sunflower of		
	FSO	PSO	OSO	voso	FSO	PSO	OSO	voso
14:0	0.0682	0.0705	0.0705	0.073c	0.114	0.118	0.111	0.114
16:0	6,148a	6.256b	6.296Ь	6.503c	9.114a	9.309bc	9.204ab	9.379c
18:0	3.982a	4.075b	4.087c	4.206d	3.920a	3.961b	3.952ab	4.019c
20:0	0.280a	0.286b	0.289c	0.296d	0.287a	0.291ab	0.2925	0.297c
22:0	0.714a	0.729b	0.737c	0.764d	0.564a	0.567a	0.5765	0.585c
24:0	0.229a	0.230ab	0.232Ъ	0.238c	0.197Ь	0.1862	0.2005	0.200b
Total SFA	11.422a	11.646b	11.710c	12.080d	14.196a	14.431b	14.334b	14.593c
16:1 n-9	0.020	0.022	0.020	0.019	0.036a	0.039Ь	0.039Ь	0.0406
16:1 n-7	0.087a	0.089ab	0.089ab	0.095Ъ	0.154	0.158	0.149	0.153
18:1 n-9	26.673a	27.152Ъ	27.1745	27.719c	24.276a	24.470bc	24.395ab	24.596c
18:1 n-7	0.549	0.529	0.544	0.558	0.748	0.758	0.786	0.785
20:1 n-9	0.156a	0.158bc	0.157ab	0.159c	0.237	0.245	0.239	0.241
Total MUFA	27.4861	27.950Ь	27.985Ь	28.551c	25.452a	25.670Ъ	25.607Ь	25.815c
18:2 n-6	60.379a	59.7106	59.463c	58.400d	57.254a	56.777Ъ	56.838Ъ	56.244c
18:3 n-6		1 -						
20:2 n-6								
20:3 n-6		÷ 1						
20:4 n-6					0.028	0.030	0.028	0.031
22:4 n-6		•	14. A					
22:5 n-6			· .					
Total n-6 PUFA	60.379a	59.710ь	59.463c	58.400d	57.282a	56.807b	56.866b	56.275c
18:3 n-3	0.171a	0.164Ь	0.160c 🗠	0.148d	2.660	2.693	2.679	2.740
20:5 n-3			(B)	1				
22:5 n-3				e y Le g				
22:6 n-3				.•	0.022	0.024	0.019	0.020
Total n-3 PUFA	0.171a	0.164Ь	0.160c	0.148d	2.683	2.716	2.698	2.760
Total PUFA	60.550a	59.8745	59.623c	58.548J	60.025a	59.523b	59.564Ъ	59.035c
Trans-18:1	0.011a	0.011a	0.042Ь	0.066c	0.034a	0.033a	0,047Ь	0.057c
Ditrans-LA	0.021a	0.021a	0.048Ь	0.071c	0.005a	0,000a	0.038b	0.051c
Monotrans-LA	0.404ab	0.382a	0.428Ь	0.471c	0.2475	0.238a	0.276c	0.285d
Total LA isomers	0.425a	0.4042	0.476Ь	0.543c	0.2525	0.2384	0.313c	0.337d
9c.11t-CLA	0.025a	0.032a	0.0366	0.041c	0.027	0.032	0.034	0.039
10t,12c-CLA	0.019	0.022	0.026	0.028	0.018	0.018	0.022	0.024
Ditrans-CLA	0.062a	0.061a	0.102b	0.144c	0.057a	0.058a	0.0786	0.100c
Total CLA	0.106a	0.115a	0.164b	0.213c	0.102a	0.1082	0.134b	0.164c
Total 18:2 isomers	0.532a	0.519a	0.640b	0.756c	0.354b	0.346a	0.447c	0.500d
Total isomers	0.543a	0.530a	0.6825	0.822c	0.3885	0.379a	0.494c	0.558d
1 1 1 1 1 1 1 1 1 1								

799 Values given in this Table for sunflower oils and feeds are means (n = 16). Values in the same row with different letters

800 differ significantly ($P \le 0.05$). FSO = fresh sunflower oil, PSO = peroxidised sunflower oil, OSO = oxidised sunflower

oil, VOSO = very oxidised sunflower oil. SFA = saturated fatty acids; MUFA = monounsaturated fatty acids; PUFA = 801

polyunsaturated fatty acids; LA = linoleic acid; CLA = conjugated linoleic acid. 802

803

804 TABLE 4. Effect of Dietary Factors on BW, Feed Conversion Ratio and Crude Fat Content of

805

Dark Meat of Chickens Fed 41 d Different Dietary Treatments.

Studied factor	BW	Feed Conversion	Fat
Studied factor	(kg)	Ratio	(g)
iunflower oil			
FSO	1.91	1.96	14.7
PSO	1.89	1.97	15.2
oso	1.92	1.97	15.7
voso	1.89	2.02	15.4
SEM	0.025	0.022	0.47
-tocophery l acetate			
upplementation (mg/kg)			
0	1.92	1.98	15.5
100	1.89	1.98	15.0
SEM	0.018	0.015	0.33
Zn supplementation (mg/kg)			
0	1.91	2.00	15.5
600	1.90	1.96	15.0
SEM	0.018	0.015	0.33

806 FSO = chicken fed fresh sunflower oil diet, PSO = chicken fed peroxidised sunflower oil diet, OSO = chicken fed

oxidised sunflower oil diet, VOSO = chicken fed very oxidised sunflower oil diet.

807 808

808	TABLE 5. Effect of Dietar	y Factors on the Fatt	y Acid Composition	(expressed as Area
		-		

Page 37 of 41

Normalization in %) of Dark Chicken Meat.

	Dark chicken meat									
Fatty acid		Sunflowe	r oil added	l — — — — —	Tocophe	rol added	Zna	dded		
		250	050	VOSO	lmg	100		7 kg		
14.0	0.370	0 173	0.140	0.364	0 1/9	0.370	0.270	0.149		
14.0	16 115	16 250	16 446	16 271	16 19 2	16 274	16.406	16 150		
19.0	5 720	5 6 259	5 710	10.275	5 450	5 (9 1	E 6 4 4	5 6 97		
20.0	0.729	0.201	0.1241	0.22()	0.214	0.215	0.211	0.007		
20.0	0.20040	0.2014	0.2240	0.2200	0.214	0.215	0.211	0.210		
22.0										
Total SEA	77 441	22 457	22 740	22.460	22 407	22.433	22 5 28	22 312		
16.1 - 0	22.441	0.420	0.400	22.400	22.407	22.435	0.415	0 107		
10:1 0-7	7 371	0.429	2 5 9 6	0.402	0.405	2 6 1 5	2 607	2 502		
18.1 0 0	20.030	30 477	2.500	30 704	2.505	2.333	2.377	30 244		
10.1 n-7	29.950	1 1 2 4	1 / 09	1171	1 106	1 1 1 9	1 097	1 1 7 6		
10:1 n-7 20:1 - 0	0.350	0.263	0.250	0.262	0.264-	0.25%	0.262	0.200		
20:1 n-9 Total MITEA	24/194	14 9 70	34.014	15 205	31047	31 610	35 009	24 5 49		
10.2 - 6	20.204	34.020	29.214	33.293	10 / 50	39.010	39.343	20 0/7		
18:2 n-0	0 100	0 100	26.292 0.100	0.106	38.438 0.109	0 109	0.109	0.104		
10:J II-0 2(h2 - 6	0.109	0.109	0.105	0.100	0.108	0.108	0.108	0.100		
20.2 11-0	0.313	0.307	0.273	0.303	0.304	0.2525	0.304	0.307		
20:5 11-0	0.230	0.247	0.242	0.2.50	0.2404	0.2320	0.245	0.247		
20.4 n-0 22.4 n 6	0.007	0.002	0.0-0	0.371	0.045	0.25.05	0.301	0.000		
22:4 11-0	0.237	0.249	0.227	0.244	0.2333	0.2340	0.241	0.247		
ZZIJ II-O Total n 6 DI UZA	41 165	40.005	40.013	30.979	AU 356	40.641	40 173	40.874		
19.3 3	1 784	1 753	1 769	1 787	1 768	1 778	1 758	1 788		
10.5 n-5 20.5 a 1	0.035	0.031	0.035	1./0/	0.033	1.770	1.736	0.03.1		
20.5 11-5	0.005	0.001	0.033	0.003	0.035	0.000	0.000	0.034		
22.3 11-3	0.070	0.075	0.004	0.075	0.0674	0.0700	0.071	0.072		
ZZ:0 II-J Tutal = 1 DUEA	1 09 2	1 0 2 7	1 0 2 9	1.076	1.0.157	1.071	1.044	1.072		
Total DISA	1.203	1.937	41 091	41.954	43 101	1.975	1.940	1.974		
10(a) FUFA	43.140	42.407	41.201	41.034	42.501	42.014	42.112	92.795		
1 rans- 10:1	0.110	0.114	0.122	0.127	0.118	0.122	0.110a	0.1290		
	0.040a	0.0454	0.031a	0.0000	0.052	0.032	0.055	0.051		
Monolrans-LA	0.18/2	0.1822	0.2010	0.2076	0.195	0.190	0.190	0.195		
Lotal LA isomers	0.23346	0.22/1	0.2550	0.2720	0.245	0.245	0.244	0.244		
90,111-CLA	0.050	0.045	0.048	0.051	0.049	0.048	0.048	0.049		
Ditan CLA	0.010	0.007	0.000	0.008	0.007	0.009	0.009	0.005		
17440015-QLA Texal CLA	0.0042	0.0204	0.0470	0.0000	0.045	0.057	0.044	0.044		
	0.0944	0.0802	0.1012	0.1190	0.100	0.101	0.102	0.100		
Total 18:2 isomers	0.32/2	0.5104	0.3546	0.3910	0.345	0.349	0.350	0.544		
Lotal isomers	U.444a	0.430a	0.4756	0.519c	0.463	0.470	0.461	0.473		

810 Values given are least-squares means obtained from MANOVA (n = 48). Values in the same row with different letters

differ significantly ($P \le 0.05$). FSO = fresh sunflower oil, PSO = peroxidised sunflower oil, OSO = oxidised sunflower

812 oil, VOSO = very oxidised sunflower oil. SFA = saturated fatty acids; MUFA = monounsaturated fatty acids; PUFA =

813 polyunsaturated fatty acids; LA = linoleic acid; CLA = conjugated linoleic acid.

Acids.

TABLE 7. Regression Equations of Selected Dark Chicken Meat Fatty Acid Contents Versus

815 TABLE 6. Wilks' Lambda and Discriminant Analysis Results for Dark Chicken Meat Fatty

			Correctly	predicted group r	nemberships [cu	mulative %]
	Wilks' lambda	Р	FSO	PSO	oso	voso
Ditrans-CLA	0.109	<0.001	58.3	50.0	83.3	100.0
Total 18:2 isomers	0.447	<0.001	58.3	50.0	83.3	100.0
Ditrans-LA	0.467	<0.001	58.3	50.0	83.3	100.0
Total LA isomers	0.491	<0.001	58.3	50.0	83.3	100.0
Total isomers	0.515	<0.001	58.3	50.0	83.3	100.0
Total CLA	0.611	<0.001	58.3	50.0	83.3	100.0
Monotrans LA	0.645	<0.001	58.3	50.0	83.3	100.0
20.0	0.834	0.044	58.3	50.0	83.3	100.0
16:1 n-7	0.836	0.046	58.3	50.0	83.3	100.0
22:6 n-3	0.846	0.059	58.3	50.0	83.3	100.0
22:5 n-3	0.868	0.098	58.3	50.0	83.3	100.0
20:5 n-3	0.880	0.127	58.3	50.0	83.3	100.0
22:4 n-6	0.881	0.131	58.3	50.0	83.3	100.0
16:1 n-9	0.886	0.144	58.3	50.0	83.3	100.0
18:1 n-9	0.887	0.150	58.3	50.0	83.3	100.0
9c,11t-CLA	0.891	0.162	58.3	83.3	91.7	100.0
18:2 n-6	0.893	0.170	58.3	83.3	91.7	100.0
20:3 n-6	0.905	0.219	58.3	83.3	91.7	100.0
20:2 n-6	0.912	0.252	58.3	83.3	100.0	100.0
20:4 п-6	0.925	0.325	58.3	83.3	100.0	100.0
22:5 n-6	0.940	0.432	58.3	83.3	100.0	100.0
18:3 n-3	0.948	0.498	58.3	83.3	100.0	100.0
Trans-18:1	0.949	0.507	58.3	83.3	100.0	100.0
18:0	0.959	0.599	58.3	83.3	100.0	100.0
14:0	0.966	0.670	58.3	83.3	100.0	100.0
16.0	0.970	0.718	58.3	83.3	100.0	100.0
18:3 n-6	0.970	0.721	58.3	83.3	100.0	100.0
10t,12c-CLA	0.976	0.784	58.3	83.3	100.0	100.0
18:1 n-7	0.979	0.815	58.3	83.3	100.0	100.0
20:1 n-9	0.986	0.890	58.3	83.3	100.0	100.0

FSO = chicken fed fresh sunflower oil diet, PSO = chicken fed peroxidised sunflower oil diet, OSO = chicken fed 817

818 oxidised sunflower oil diet, VOSO = chicken fed very oxidised sunflower oil diet, CLA = conjugated linoleic acid, LA=

819 linoleic acid.

820

38

Scholarone, 375 Greenbrier Drive, Charlottesville, VA, 22901 (434) 817 2040 ext. 167

816

Selected Feed Fatty Acid Contents.

Chicken meat fatty acid	Feed fatty acid content	Equation	D ²	
content (y)	(x)	Equation	ĸ	
ditrans-CLA	ditrans-CLA	y = 0.003 + 0.567x	0.876	
ditrans-CLA	total CLA	y = -0.008 + 0.411x	0.878	
total 18:2 isomers	total 18:2 isomers	y = 0.094 + 0.652x	0.518	
ditrans-LA	ditrans-CLA	y = 0.020 + 0.442x	0.480	
total isomers	total isomers	y = 0.233 + 0.287x	0.446	
ditrans-LA	ditrans-LA	y = 0.044 + 0.348x	0.438	
9c,121-CLA	9c,121-CLA	y = 0.044 + 0.152x	0.008	

CLA = conjugated linoleic acid, LA= linoleic acid. 822

823

Page 39 of 41

820

821

