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Abstract—Permutation decoding is a technique that strongly
depends on the existence of a special subset, called PD-set, of
the permutation automorphism group of a code. In this paper,
a general criterion to obtain s-PD-sets of size s + 1, which
enable correction up to s errors, for Z4-linear codes is provided.
Furthermore, some explicit constructions of s-PD-sets of size s+1
for important families of (nonlinear) Z4-linear codes such as
Hadamard and Kerdock codes are given.

I. INTRODUCTION

Let Z2 and Z4 be the rings of integers modulo 2 and
modulo 4, respectively. Let Zn2 denote the set of all binary
vectors of length n and let Zn4 be the set of all n-tuples
over the ring Z4. Any nonempty subset C of Zn2 is a binary
code and a subgroup of Zn2 is called a binary linear code.
Equivalently, any nonempty subset C of Zn4 is a quaternary
code and a subgroup of Zn4 is called a quaternary linear code.
Quaternary codes can be seen as binary codes under the usual
Gray map Φ : Zn4 → Z2n

2 defined as Φ((y1, . . . , yn)) =
(φ(y1), . . . , φ(yn)), where φ(0) = (0, 0), φ(1) = (0, 1),
φ(2) = (1, 1), φ(3) = (1, 0), for all y = (y1, . . . , yn) ∈ Zn4 .
Let C be a quaternary linear code. Then, the binary code
C = Φ(C) is said to be a Z4-linear code. Moreover, since
C is a subgroup of Zn4 , it is isomorphic to an abelian group
Zγ2 ×Zδ4 and we say that C (or equivalently, the corresponding
Z4-linear code C = Φ(C)) is of type 2γ4δ [6].

Let C be a binary code of length n. For a vector v ∈ Zn2
and a set I ⊆ {1, . . . , n}, |I| = k, we denote the restriction of
v to the coordinates in I by vI ∈ Zk2 and the set {vI : v ∈ C}
by CI . If |C| = 2k, a set I ⊆ {1, . . . , n} of k coordinate
positions such that |CI | = 2k is called an information set for
C. If such a set I exists, then C is said to be a systematic
code. In [3], it is shown that Z4-linear codes are systematic,
and a systematic encoding is given for these codes.

Let Sym(n) be the symmetric group of permutations on
the set {1, . . . , n} and let id ∈ Sym(n) be the identity
permutation. The group operation in Sym(n) is the function
composition, σ1σ2, which maps any element x to σ1(σ2(x)),
σ1, σ2 ∈ Sym(n). A σ ∈ Sym(n) acts linearly on words
of Zn2 or Zn4 by permuting their coordinates as follows:
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σ((v1, . . . , vn)) = (vσ−1(1), . . . , vσ−1(n)). The permutation
automorphism group of C or C = Φ(C), denoted by PAut(C)
or PAut(C), respectively, is the group generated by all per-
mutations that preserve the set of codewords.

Permutation decoding is a technique introduced in [9] by
MacWilliams for linear codes that involves finding a subset
of the permutation automorphism group of a code in order to
assist in decoding. A new permutation decoding method for
Z4-linear codes (not necessarily linear) was introduced in [3].
In general, the method works as follows. Given a systematic
t-error-correcting code C with information set I , we denote
the received vector by y = x + e, where x ∈ C and e is the
error vector. Suppose that at most t errors occur. Permutation
decoding consists of moving all errors in y out of I , by using
an automorphism of C. This technique is strongly based on
the existence of a special subset of PAut(C). Specifically, a
subset S ⊆ PAut(C) is said to be an s-PD-set for the code
C if every s-set of coordinate positions is moved out of I by
at least one element of S, where 1 ≤ s ≤ t. When s = t, S
is said to be a PD-set.

A binary Hadamard code of length n is a binary code with
2n codewords and minimum distance n/2. It is well-known
that there is a unique binary linear Hadamard code Hm of
length n = 2m, m ≥ 2, which is the dual of the extended
Hamming code of length 2m − 1 [10]. The quaternary linear
codes that, under the Gray map, give a binary Hadamard
code are called quaternary linear Hadamard codes and the
corresponding Z4-linear codes are called Z4-linear Hadamard
codes. For any m ≥ 3 and each δ ∈ {1, . . . ,

⌊
m+1
2

⌋
}, there is a

unique (up to equivalence) Z4-linear Hadamard code of length
2m, which is the Gray map image of a quaternary linear code
of length β = 2m−1 and type 2γ4δ , where m = γ+2δ−1. It is
known that the Z4-linear Hadamard codes are nonlinear if and
only if δ ≥ 3 [8]. These codes have been studied and classified
in [8], [13], and their permutation automorphism groups have
been characterized in [7], [12].

A binary Kerdock code of length n = 2m+1 is the Gray
map image of a quaternary Kerdock code K(m), which is a
quaternary linear code of length 2m, type 4m+1 and minimum
Lee distance 2m − 2bm/2c. For m ≥ 2, it is well known that
these Z4-linear Kerdock codes are nonlinear and better than
any linear code with the same parameters [6].
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In [5], it is shown how to find s-PD-sets of minimum size
s + 1 that satisfy the Gordon-Schönheim bound for partial
permutation decoding for the binary simplex code of length
2m−1 for all m ≥ 4 and 1 < s ≤ b 2

m−m−1
m c. In [1], [2], fol-

lowing the same technique, similar results for binary linear and
Z4-linear Hadamard codes are established. Specifically, for the
binary linear Hadamard code Hm of length 2m, m ≥ 4, s-PD-
sets of size s + 1 for all 1 < s ≤ b 2

m−m−1
m+1 c are given. For

the Z4-linear Hadamard codes, the permutation automorphism
group PAut(Hγ,δ) of a quaternary linear Hadamard codeHγ,δ
of length β = 2m−1 and type 2γ4δ is regarded as a certain
subset of GL(γ+δ,Z4). Then the question of whether a subset
S ⊆ PAut(Hγ,δ) leads to a valid s-PD-set of size s + 1 for
the Z4-linear Hadamard code Hγ,δ = Φ(Hγ,δ) is addressed by
searching for a set of invertible matrices from GL(γ + δ,Z4)
fulfilling certain conditions. Finally, for the code Hγ,δ , s-PD-
sets of size s + 1 for all δ ≥ 3 and 1 < s ≤

⌊
22δ−2−δ

δ

⌋
are

constructed. In this paper, we obtain new s-PD-sets of size
s + 1 for Hγ,δ . These sets are generated by a permutation,
unlike the s-PD-sets given in [2].

This correspondence is organized as follows. In Section II,
we introduce the main theorem that states sufficient conditions
for a permutation σ ∈ PAut(C) to generate an s-PD-set S =
{σi : 1 ≤ i ≤ s+ 1} of size s+ 1 for a Z4-linear code C. In
Section III, by using the main theorem, we obtain s-PD-sets
of size s + 1 for the Z4-linear Hadamard code Hγ,δ for all
δ ≥ 4 and 1 < s ≤ 2δ − 3. Finally, in Section IV, we obtain
s-PD-sets of size s+ 1, for all m ≥ 4 and 1 < s ≤ λ− 1, for
the binary Kerdock code of length 2m+1 such that 2m − 1 is
not prime, where λ is the greatest divisor of 2m−1 satisfying
λ ≤ 2m/(m+ 1).

II. s-PD-SETS OF SIZE s+ 1 FOR Z4-LINEAR CODES

Let C be a quaternary linear code of length β and type
2γ4δ , and let C = Φ(C) be the corresponding Z4-linear code
of length 2β. Let Φ : Sym(β)→ Sym(2β) be the map defined
as

Φ(τ)(i) =

{
2τ(i/2), if i is even,
2τ((i+ 1)/2)− 1 if i is odd,

for all τ ∈ Sym(β) and i ∈ {1, . . . , 2β}. Given a subset
S ⊆ Sym(β), we define the set Φ(S) = {Φ(τ) : τ ∈ S} ⊆
Sym(2β). It is easy to see that if S ⊆ PAut(C) ⊆ Sym(β),
then Φ(S) ⊆ PAut(C) ⊆ Sym(2β).

Lemma 2.1: The map Φ : Sym(β) → Sym(2β) is a group
monomorphism.

An ordered set I = {i1, . . . , iγ+δ} ⊆ {1, . . . , β} of γ + δ
coordinate positions is said to be a quaternary information set
for a quaternary linear code C of type 2γ4δ if |CI | = 2γ4δ . If
the elements of I are ordered in such a way that |C{i1,...,iδ}| =
4δ , then it is easy to see that the set Φ(I), defined as

Φ(I) = {2i1−1, 2i1, . . . , 2iδ−1, 2iδ, 2iδ+1−1, . . . , 2iδ+γ−1},

is an information set for C = Φ(C).
Let S be an s-PD-set of size s + 1. The set S is a nested

s-PD-set if there is an ordering of the elements of S, S =

{σ0, . . . , σs}, such that Si = {σ0, . . . , σi} ⊆ S is an i-PD-
set of size i + 1 for all i ∈ {0, . . . , s}. Note that Si ⊂ Sj if
0 ≤ i < j ≤ s and Ss = S.

Theorem 2.2: Let C be a quaternary linear code of length
β and type 2γ4δ with quaternary information set I and let
s be a positive integer. If τ ∈ PAut(C) has at least γ + δ
disjoint cycles of length s + 1 such that there is exactly one
quaternary information position per cycle of length s+1, then
S = {Φ(τ i)}s+1

i=1 is an s-PD-set of size s + 1 for the Z4-
linear code C = Φ(C) with information set Φ(I). Moreover,
any ordering of the elements of S gives a nested r-PD-set for
any r ∈ {1, . . . , s}.

Proof: The permutation τ ∈ PAut(C) can be written as

τ = (i1, x2, . . . , x(s+1))(i2, x(s+1)+2, . . . , x2(s+1)) · · ·
(iγ+δ, x(γ+δ−1)(s+1)+2, . . . , x(γ+δ)(s+1))τ

′,
(1)

where I = {i1, . . . , iγ+δ} is the quaternary information set for
C and τ ′ ∈ Sym(β). We consider the elements of I ordered
in such a way that |C{i1,...,iδ}| = 4δ . Note that each cycle
(iε, x(ε−1)(s+1)+2, . . . , xε(s+1)), ε ∈ {1, . . . , γ + δ}, of τ ∈
PAut(C) splits into two disjoint cycles of the same length via
Φ, that is,

Φ((iε, x(ε−1)(s+1)+2, . . . , xε(s+1))) =
(2iε − 1, 2x(ε−1)(s+1)+2 − 1, . . . , 2xε(s+1) − 1)
(2iε, 2x(ε−1)(s+1)+2, . . . , 2xε(s+1)).

Furthermore, the information positions of the set I = Φ(I)
are also placed in different cycles of length s + 1 of the
permutation σ = Φ(τ). There is again one information
position per cycle of length s + 1, with the exception of the
cycles of the form (2iε, 2x(ε−1)(s+1)+2− 1, . . . , 2xε(s+1)) for
all ε ∈ {δ + 1, . . . , γ + δ}.

Let S = {σi}s+1
i=1 and let P = {1, . . . , 2β} be the set of all

coordinate positions. We define the set Ai = {j ∈ P : σi(j) ∈
I} for each i ∈ {1, . . . , s + 1}. Note that |Ai| = γ + 2δ and
Ai ∩ Aj = ∅ for all i, j ∈ {1, . . . , s + 1}, i 6= j. We have
to prove that every s-set of coordinate positions, denoted by
J = {j1, . . . , js} ⊆ P , is moved out of I by at least one
element of S. Note that a coordinate position in J cannot be
in two different sets Ai, i ∈ {1, . . . , s + 1}. In the worst-
case scenario, for each k ∈ {1, . . . , s}, jk ∈ Alk for some
lk ∈ {1, . . . , s+1}. However, since |J | = s and |S| = s+1, we
can always assure that there is ϕ ∈ S such that ϕ(J)∩ I = ∅.
Thus, by Lemma 2.1, S = {Φ(τ)i}s+1

i=1 = {Φ(τ i)}s+1
i=1 is an

s-PD-set of size s+ 1 for the Z4-linear code C = Φ(C) with
information set I = Φ(I).

Corollary 2.3: Let S be an s-PD-set of size s + 1 for a
Z4-linear code C = Φ(C) of length 2β and type 2γ4δ as in
Theorem 2.2. Then s + 1 divides the order of PAut(C) and
s ≤ fC , where fC = b(β − γ − δ)/(γ + δ)c .

Let Hγ,δ be the quaternary linear Hadamard code of length
β = 2m−1 and type 2γ4δ , where m = γ+ 2δ−1. Let Hγ,δ =
Φ(Hγ,δ) be the corresponding Z4-linear code of length 2β =



2m. A generator matrix Gγ,δ for Hγ,δ can be constructed by
using the following recursive constructions:

Gγ+1,δ =

(
Gγ,δ Gγ,δ
0 2

)
, (2)

Gγ,δ+1 =

(
Gγ,δ Gγ,δ Gγ,δ Gγ,δ
0 1 2 3

)
, (3)

starting from G0,1 = (1). First, the matrix G0,δ is obtained
from G0,1 by using recursively δ − 1 times construction (3),
and then Gγ,δ is constructed from G0,δ by using γ times
construction (2).

It is known that if S = Φ(S), S ⊆ PAut(Hγ,δ), is an
s-PD-set of size s + 1 for Hγ,δ, then s ≤ fγ,δ, where
fγ,δ =

⌊
(2γ+2δ−2 − γ − δ)/(γ + δ)

⌋
. Furthermore, if S ⊆

PAut(Hγ,δ) is an s-PD-set of size s + 1 for Hγ,δ, then
s ≤ fm, where fm = b(2m −m− 1)/(1 +m)c [2]. Note that
fγ,δ ≤ fm, where m = γ + 2δ − 1. Moreover, fHγ,δ = fγ,δ
despite the fact that fHγ,δ takes into account the restrictions
given by Theorem 2.2. In practice, to require that s+1 divides
|PAut(Hγ,δ)| is more restrictive than the condition s ≤ fHγ,δ ,
as we can see in the following example.

Example 1: Let H0,3 be the quaternary linear Hadamard
code of length 16 and type 2043 with generator matrix G0,3 =(

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3

)
obtained by applying (3) two times starting from G0,1 = (1).
Let τ = (1, 16, 11, 6)(2, 7, 12, 13)(3, 14, 9, 8)(4, 5, 10, 15) ∈
PAut(H0,3) ⊆ Sym(16) [12]. Note that τ has four disjoint
cycles of length four. It is easy to see that I = {1, 2, 5} is a
quaternary information set for H0,3 [2]. Moreover, note that
each quaternary information position in I is in a different
cycle of τ . Let σ = Φ(τ) ∈ PAut(H0,3) ⊆ Sym(32), where
H0,3 = Φ(H0,3). Thus, by Lemma 2.1 and Theorem 2.2,
S = {σ, σ2, σ3, σ4} ⊆ PAut(H0,3) is a 3-PD-set of size 4
for the Z4-linear Hadamard code H0,3 with information set
Φ(I) = {1, 2, 3, 4, 9, 10}. Note that H0,3 is the smallest Z4-
linear Hadamard code which is nonlinear.

We have that f5 = f0,3 = 4. In [2], a 4-PD-set of size 5 for
H0,3 is found. Moreover, it is enough to consider permutations
in the subgroup Φ(PAut(H0,3)) ≤ PAut(H0,3) to achieve f5.
However, note that this 4-PD-set can not be generated by a
permutation σ ∈ PAut(H0,3). By using Theorem 2.2, it is not
possible to obtain 4-PD-sets of size 5, since 5 does not divide
|PAut(H0,3)| = 29 · 3 [12].

Example 2: Let H1,3 be the quaternary linear Hadamard
code of length 32 and type 2143 with generator matrix

G1,3 =

(
G0,3 G0,3
0 2

)
obtained by applying construction (2) over the matrix G0,3
given in Example 1. Let τ ∈ PAut(H1,3) ⊆ Sym(32) be

τ = (1, 24, 26, 15, 3, 22, 28, 13)(2, 23, 27, 14, 4, 21, 25, 16)
(5, 11, 32, 20, 7, 9, 30, 18)(6, 10, 29, 19, 8, 12, 31, 17),

which has four disjoint cycles of length eight. It is also easy
to see that I = {1, 2, 5, 17} is a quaternary information set
for H1,3 [2], and each quaternary information position in I
is in a different cycle of τ . Let σ = Φ(τ) ∈ PAut(H1,3) ⊆
Sym(64), where H1,3 = Φ(H1,3). Thus, by Lemma 2.1 and
Theorem 2.2, S = {σi}8i=1 is a 7-PD-set of size 8 for the
Z4-linear Hadamard code H1,3 with information set Φ(I) =
{1, 2, 3, 4, 9, 10, 33}. Note that H1,3 is a binary nonlinear code.

Since f1,3 = 7, in this case, no better s-PD-sets of size
s + 1 can be found by using permutations in the subgroup
Φ(PAut(H1,3)) ≤ PAut(H1,3). However, an 8-PD-set of size
9 could be theoretically found in PAut(H1,3) since f6 = 8.

III. CONSTRUCTION OF s-PD-SETS OF SIZE s+ 1 FOR
Z4-LINEAR HADAMARD CODES

In this section, we give a construction of s-PD-sets of
size s + 1 for Z4-linear Hadamard codes Hγ,δ , by finding
a permutation τ ∈ PAut(H0,δ) that satisfies the conditions
of Theorem 2.2. Note that high order permutations are more
suitable candidates to obtain better s-PD-sets.

The permutation automorphism group PAut(H0,δ) of H0,δ

is isomorphic to the following set of matrices over Z4:{(
1 η
0 A

)
: A ∈ GL(δ − 1,Z4), η ∈ Zδ−14

}
[2]. Let ord(A) be the order of A ∈ GL(δ−1,Z4). It is known
that max{ord(A) : A ∈ GL(δ − 1,Z4)} = 2(2δ−1 − 1) [11].
Moreover, if η = 0, then

ord(

(
1 η
0 A

)
) = ord(A).

Thus, our aim is to obtain matrices A of order 2(2δ−1−1). Al-
though we can characterize when a matrix M∈ PAut(H0,δ)
has maximum order, we do not know its cyclic structure,
regarded as a permutation τ ∈ Sym(β). Recall that, in order to
apply Theorem 2.2, we need a permutation τ ∈ PAut(H0,δ) ⊆
Sym(β) with at least δ disjoint cycles of the same length.
Next, we show how some known results on maximum length
sequences over Z4 can be used to solve this question.

Let Z4[x] and Z2[x] be the polynomial ring over Z4 and Z2,
respectively. Let µ : Z4[x]→ Z2[x] be the map that performs
a modulo 2 reduction of the coefficients of f(x) ∈ Z4[x]. A
monic polynomial f(x) ∈ Z4[x] is said to be a primitive basic
irreducible polynomial if µ(f(x)) is primitive over Z2[x].

Let f(x) = xk − ak−1x
k−1 − · · · − a1x − a0 ∈ Z4[x].

Consider the kth-order homogeneous linear recurrence relation
over Z4 with characteristic polynomial f(x), that is,

sn+k = ak−1sn+k−1 + · · ·+ a1sn+1 + a0sn, n = 0, 1, . . .
(4)

The companion matrix Af of the polynomial f(x) is the k×k
matrix defined as

Af =


0 0 0 · · · 0 a0
1 0 0 · · · 0 a1
0 1 0 · · · 0 a2
...

...
...

...
...

0 0 0 · · · 1 ak−1

 . (5)



The set of all nonzero sequences {sn}∞n=0 over Z4 satisfying
(4) whose characteristic polynomial f(x) is a primitive basic
irreducible polynomial dividing x2(2

k−1)−1 in Z4[x] is called
Family B in [14]. It is known that there are 2k−1+1 cyclically
distinct periodic sequences in each Family B: 2k−1 of them
with common least period 2(2k−1) and one with period 2k−1
[4]. Moreover, the sequence with period 2k − 1 is the unique
containing only zero-divisors. Examples of primitive basic
irreducible polynomials f(x) ∈ Z4[x] suitable for constructing
sequences of Family B for degrees 3 to 10 can be found in
[4], [14].

Let {sn}∞n=0 be a nonzero sequence over Z4 satisfying (4).
For each n ≥ 0, we define the tuple sn = (sn, . . . , sn+k−1)
over Z4. In the language of feedback shift registers, sn is
called the n-state vector. Note that if Af is the companion ma-
trix of the polynomial f(x) associated with (4), then it holds
that sn = s0A

n
f . Let G0,δ denote the generator matrix G0,δ

without the first row, (1, . . . , 1). Note that each state vector
represents a column vector of G0,δ . Moreover, we can label the
ith coordinate position of H0,δ , with the ith column vector wi
of G0,δ . Thus, any matrix Af can be seen as a permutation of
coordinate positions τ ∈ Sym(β), such that τ(i) = j as long
as wj = wiAf . Furthermore, the ordered set of all different
state vectors s0, s0Af , . . . from the same sequence {sn}∞n=0

over Z4 represents a disjoint cycle τi of the permutation
τ ∈ Sym(β) associated with Af ∈ GL(δ − 1,Z4). Finally,
we have that ord(Af ) = ord(τ) = lcm({ord(τi) : 1 ≤ i ≤
2δ−2 + 1}) = lcm({2(2δ−1 − 1), 2δ−1 − 1}) = 2(2δ−1 − 1).

Let Mf be the matrix

Mf =

(
1 0
0 Af

)
.

It is clear that Mf ∈ PAut(H0,δ) and its order is equal to
the order of the matrix Af . The matrix Mf will be denoted
by τf if it is considered as an element in Sym(β). Then we
have the following result:

Proposition 3.1: Let f(x) = xδ−1 − aδ−2x
δ−2 − · · · −

a1x − a0 ∈ Z4[x] be a primitive basic irreducible poly-
nomial dividing x2(2

δ−1−1) − 1 in Z4[x] with δ ≥ 4. Let
τf ∈ PAut(H0,δ) be the permutation associated to f(x). Then
ord(τf ) = 2(2δ−1 − 1). Moreover, τf has 2δ−2 + 1 disjoint
cycles, where 2δ−2 of them have length 2(2δ−1 − 1) and one
of them has length 2δ−1 − 1.

Corollary 3.2: Let f(x) = xδ−1 − aδ−2x
δ−2 − · · · −

a1x− a0 ∈ Z4[x] be a primitive basic irreducible polynomial
dividing xλ − 1 in Z4[x], where λ = 2(2δ−1 − 1) and δ ≥ 4.
Let τf ∈ PAut(H0,δ) be the permutation associated to f(x).
Let I be a quaternary information set for H0,δ with exactly
one quaternary information position per cycle of length λ of
τf . Then S = {Φ(τ if )}λi=1 is a (λ − 1)-PD-set of size λ for
H0,δ = Φ(H0,δ) with information set Φ(I).

Example 3: Consider the linear recurrence relation over Z4

sn+3 = 3sn+1 + 3sn, n = 0, 1, . . .

Its characteristic polynomial is f(x) = x3 + x+ 1 ∈ Z4[x]. It
is easy to see that µ(f(x)) = x3 + x+ 1 ∈ Z2[x] is primitive

over Z2[x] and f(x) divides x14 − 1 over Z4[x]. Therefore,
we have that the companion matrix of f(x),

Af =

 0 0 3
1 0 3
0 1 0

 ,

has order 14 in GL(3,Z4). Since the matrix Mf leads to a
valid permutation τf ∈ PAut(H0,4) ∈ Sym(64) that preserves
the order of Af , by Propisition 3.1, τf has also order 14. In
addition, its cyclic structure behaves as follows: four disjoint
cycles of length 14 and one cycle of length 7.

τf = (2, 49, 13, 20, 21, 54, 46, 12, 51, 45, 28, 55, 30, 8)
(3, 33, 9, 35, 41, 43, 11)
(4, 17, 5, 50, 61, 32, 40, 10, 19, 37, 58, 31, 56, 14)
(6, 34, 57, 47, 60, 63, 64, 48, 44, 59, 15, 52, 29, 24)
(7, 18, 53, 62, 16, 36, 25, 39, 26, 23, 22, 38, 42, 27).

It is easy to check that I = {2, 5, 6, 18} is a quaternary
information set for H0,4 with generator matrix G0,4 obtained
by applying (3) three times starting from G0,1 = (1). Note
that each quaternary information position in I is in a different
cycle of length 14 of τf . By Corollary 3.2, S = {Φ(τ if )}14i=1 is
a 13-PD-set of size 14 for the Z4-linear Hadamard code H0,4

with information set I = Φ(I) = {3, 4, 9, 10, 11, 12, 35, 36}.
In practice, it is not difficult to find such a set I. For example,
computations in MAGMA software package shows that there
are 10752 suitable quaternary information sets.

In terms of state vectors, if we take s0 = (0, 0, 1), we obtain
the sequence 00103312012313001... over Z4. Note that s1 =
(0, 1, 0) = s0Af . Since s0 and s1 are, respectively, the 17th
and 5th column vectors of G0,4, we obtain that τf (17) = 5. All
different state vectors of the previous sequence represent the
cycle (4, 17, 5, 50, 61, 32, 40, 10, 19, 37, 58, 31, 56, 14) of τf .

Given two permutations σ1 ∈ Sym(n1) and σ2 ∈ Sym(n2),
we define (σ1|σ2) ∈ Sym(n1 + n2), where σ1 acts on the
coordinates {1, . . . , n1} and σ2 on {n1 + 1, . . . , n1 + n2}.
The following result can be found in [2] and provides a first
approach to obtain s-PD-set of size s + 1 for the Z4-linear
Hadamard Hγ,δ .

Proposition 3.3: [2] Let S be an s-PD-set of size l for
Hγ,δ of length n and type 2γ4δ with information set I . Then
(S|S) = {(σ|σ) : σ ∈ S} is an s-PD-set of size l for Hγ+1,δ

of length 2n and type 2γ+14δ constructed from (2) and the
Gray map, with any information set I ∪ {i+ n}, i ∈ I .

We proceed as follows: First, we compute an s-PD-set S
of size s + 1 for H0,δ , for example, by using Corollary 3.2.
Then applying Proposition 3.3 recursively γ times over S, we
obtain an s-PD-set of size s+ 1 for Hγ,δ , with γ > 0.

Example 4: Let H1,4 be the quaternary linear Hadamard
code of length 128 and type 2144 with generator matrix
G1,4 obtained by applying (2) over the matrix G0,4 given in
Example 3. Let S ⊆ PAut(H0,4) and I ⊆ {1, . . . , 128} as
defined in the same example. Then (S|S) is a 13-PD-set
of size 14 for the Z4-linear Hadamard code H1,4 with any
information set of the form I ∪ {128 + i}, where i ∈ I , by
Proposition 3.3.



m 2m ρ λ µ

4 16 3 3 5
6 64 9 9 7
8 256 28 17 15
9 512 51 7 73
10 1024 93 93 11
11 2046 170 89 23
12 4096 315 315 13

TABLE I
VALUES OF PARAMETERS ρ, λ AND µ FOR QUATERNARY KERDOCK CODES

K(m) OF LENGTH 2m WITH m ∈ {4, 6, 8, 9, 10, 11, 12}.

IV. CONSTRUCTION OF s-PD-SETS OF SIZE s+ 1 FOR
BINARY KERDOCK CODES

Let h(x) be a primitive basic irreducible polynomial of
degree m over Z4 such that h(x) divides x2

m−1 − 1, and
let g(x) be the reciprocal polynomial to the polynomial
(x2

m−1 − 1)/((x − 1)h(x)). Let K(m)− be the quaternary
cyclic code of length 2m− 1 with generator polynomial g(x).
The quaternary Kerdock code K(m) is the code obtained from
K(m)− by adding a zero-sum check symbol at the end of
each codeword of K(m)−. Let K(m) = Φ(K(m)) be the
corresponding binary Kerdock code of length 2m+1, which
has size 4m+1 and minimum distance 2m − 2bm/2c.

Since K(m)− is a cyclic code of length 2m − 1, it is clear
that (1, . . . , 2m−1) ∈ PAut(K(m)−). Therefore, by definition
of K(m), we also have that (1, . . . , 2m − 1) ∈ PAut(K(m)).

Corollary 4.1: Let K(m) be the quaternary Kerdock code of
length 2m and type 4m+1 such that 2m−1 is not a prime num-
ber. Let ν = (1, . . . , 2m−1) ∈ PAut(K(m)) ⊆ Sym(2m). Let
λ be the greatest divisor of 2m−1 such that λ ≤ 2m/(m+1)
and µ satisfying that λµ = 2m − 1. Then S = {Φ(νi·µ)}λi=1

is a (λ − 1)-PD-set of size λ for K(m) = Φ(K(m)) with
information set I = {1, . . . , 2m+ 2}.

Example 5: Let K(4) be the quaternary Kerdock code of
length 16 and type 45 with generator matrix

1 1 3 0 3 3 0 2 1 2 1 0 0 0 0 3
0 1 1 3 0 3 3 0 2 1 2 1 0 0 0 3
0 0 1 1 3 0 3 3 0 2 1 2 1 0 0 3
0 0 0 1 1 3 0 3 3 0 2 1 2 1 0 3
0 0 0 0 1 1 3 0 3 3 0 2 1 2 1 3

 ,

where h(x) = x4 + 2x2 + 3x+ 1. Note that I = {1, 2, 3, 4, 5}
is a quaternary information set for K(4). In this case, we have
that λ = 3 and µ = 5. Let S = {ν5, ν10, ν15}, where ν =
(1, . . . , 15). Note that

τ = ν5 = (1, 6, 11)(2, 7, 12)(3, 8, 13)(4, 9, 14)(5, 10, 15)

has 5 disjoint cycles of length 3, where each quaternary infor-
mation position in I is placed in a different cycle of τ . Hence,
S = Φ(S) is a 2-PD-set of size 3 for the binary Kerdock code
K(4) of length 32 with information set Φ(I) = {1, . . . , 10}.

Theorem 2.2 provides the best s-PD-sets when the permuta-
tion τ ∈ PAut(C) has the minimum number of disjoint cycles
|I| = γ + δ, each one being of maximum length. Note that
the parameters µ and λ, considered in Corollary 4.1, denote
the number of disjoint cycles and the length of the cycles of

the permutation τ = νµ, respectively. Therefore, this corollary
yields the best (λ − 1)-PD-sets of size λ when µ = m + 1,
or equivalently, when λ = ρ, where ρ = b2m/(m + 1)c. For
example, when m = 4, 6, 10 or 12 as shown in Table I. Note
that fK(m) = b(2m −m− 1)/(m+ 1)c = ρ− 1.

Prime numbers of type 2m − 1 are known as Mersenne
primes and have been extensively studied. It is known that
if m is not prime, then 2m − 1 is not a Mersenne prime.
Hence, Corollary 4.1 can be applied to all nonprime values
of m. Despite this, there are also some prime values of m
(for example, m = 11) for which 2m − 1 is not a prime
number, so Corollary 4.1 can also be applied. Moreover, even
for values of m for which we can not apply this corollary,
there are permutations that verify the conditions of Theorem
2.2, as shown in the following example.

Example 6: Let K(5) be the quaternary Kerdock code of
length 32 and type 46. Note that I = {1, 2, 3, 4, 5, 6} is
a quaternary information set for K(5). The conditions of
Corollary 4.1 are not fulfilled since 31 is a Mersenne prime.
Nevertheless,

τ = (1, 32, 9, 19, 25)(2, 18, 24, 15, 31)(3, 27, 23, 28, 12)
(4, 8, 20, 30, 26)(5, 14, 16, 21, 13)(6, 10, 17, 29, 22)

satisfies the conditions of Theorem 2.2 for s = 4. Thus, S =
{Φ(τ i)}5i=1 is a 4-PD-set of size 5 for the binary Kerdock
code K(5) of length 64 with information set Φ(I).
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