PD-sets for Z_{4}-linear codes: Hadamard and Kerdock codes

Roland D. Barrolleta and Mercè Villanueva
Department of Information and Communications Engineering
Universitat Autònoma de Barcelona
08193-Cerdanyola del Vallès, Spain
Email: \{rolanddavid.barrolleta, merce.villanueva\} @uab.cat

Abstract

Permutation decoding is a technique that strongly depends on the existence of a special subset, called PD-set, of the permutation automorphism group of a code. In this paper, a general criterion to obtain s-PD-sets of size $s+1$, which enable correction up to s errors, for Z_{4}-linear codes is provided. Furthermore, some explicit constructions of s-PD-sets of size $s+1$ for important families of (nonlinear) Z_{4}-linear codes such as Hadamard and Kerdock codes are given.

I. Introduction

Let \mathbb{Z}_{2} and \mathbb{Z}_{4} be the rings of integers modulo 2 and modulo 4 , respectively. Let \mathbb{Z}_{2}^{n} denote the set of all binary vectors of length n and let \mathbb{Z}_{4}^{n} be the set of all n-tuples over the ring \mathbb{Z}_{4}. Any nonempty subset C of \mathbb{Z}_{2}^{n} is a binary code and a subgroup of \mathbb{Z}_{2}^{n} is called a binary linear code. Equivalently, any nonempty subset \mathcal{C} of \mathbb{Z}_{4}^{n} is a quaternary code and a subgroup of \mathbb{Z}_{4}^{n} is called a quaternary linear code. Quaternary codes can be seen as binary codes under the usual Gray map $\Phi: \mathbb{Z}_{4}^{n} \rightarrow \mathbb{Z}_{2}^{2 n}$ defined as $\Phi\left(\left(y_{1}, \ldots, y_{n}\right)\right)=$ $\left(\phi\left(y_{1}\right), \ldots, \phi\left(y_{n}\right)\right)$, where $\phi(0)=(0,0), \phi(1)=(0,1)$, $\phi(2)=(1,1), \phi(3)=(1,0)$, for all $y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{Z}_{4}^{n}$. Let \mathcal{C} be a quaternary linear code. Then, the binary code $C=\Phi(\mathcal{C})$ is said to be a \mathbb{Z}_{4}-linear code. Moreover, since \mathcal{C} is a subgroup of \mathbb{Z}_{4}^{n}, it is isomorphic to an abelian group $\mathbb{Z}_{2}^{\gamma} \times \mathbb{Z}_{4}^{\delta}$ and we say that \mathcal{C} (or equivalently, the corresponding \mathbb{Z}_{4}-linear code $C=\Phi(\mathcal{C})$) is of type $2^{\gamma} 4^{\delta}$ [6].

Let C be a binary code of length n. For a vector $v \in \mathbb{Z}_{2}^{n}$ and a set $I \subseteq\{1, \ldots, n\},|I|=k$, we denote the restriction of v to the coordinates in I by $v_{I} \in \mathbb{Z}_{2}^{k}$ and the set $\left\{v_{I}: v \in C\right\}$ by C_{I}. If $|C|=2^{k}$, a set $I \subseteq\{1, \ldots, n\}$ of k coordinate positions such that $\left|C_{I}\right|=2^{k}$ is called an information set for C. If such a set I exists, then C is said to be a systematic code. In [3], it is shown that \mathbb{Z}_{4}-linear codes are systematic, and a systematic encoding is given for these codes.

Let $\operatorname{Sym}(n)$ be the symmetric group of permutations on the set $\{1, \ldots, n\}$ and let id $\in \operatorname{Sym}(n)$ be the identity permutation. The group operation in $\operatorname{Sym}(n)$ is the function composition, $\sigma_{1} \sigma_{2}$, which maps any element x to $\sigma_{1}\left(\sigma_{2}(x)\right)$, $\sigma_{1}, \sigma_{2} \in \operatorname{Sym}(n)$. A $\sigma \in \operatorname{Sym}(n)$ acts linearly on words of \mathbb{Z}_{2}^{n} or \mathbb{Z}_{4}^{n} by permuting their coordinates as follows:

This work has been partially supported by the Spanish MINECO under Grant TIN2013-40524-P and by the Catalan AGAUR under Grant 2014SGR691.
$\sigma\left(\left(v_{1}, \ldots, v_{n}\right)\right)=\left(v_{\sigma^{-1}(1)}, \ldots, v_{\sigma^{-1}(n)}\right)$. The permutation automorphism group of \mathcal{C} or $C=\Phi(\mathcal{C})$, denoted by $\operatorname{PAut}(\mathcal{C})$ or PAut (C), respectively, is the group generated by all permutations that preserve the set of codewords.

Permutation decoding is a technique introduced in [9] by MacWilliams for linear codes that involves finding a subset of the permutation automorphism group of a code in order to assist in decoding. A new permutation decoding method for \mathbb{Z}_{4}-linear codes (not necessarily linear) was introduced in [3]. In general, the method works as follows. Given a systematic t-error-correcting code C with information set I, we denote the received vector by $y=x+e$, where $x \in C$ and e is the error vector. Suppose that at most t errors occur. Permutation decoding consists of moving all errors in y out of I, by using an automorphism of C. This technique is strongly based on the existence of a special subset of $\operatorname{PAut}(C)$. Specifically, a subset $S \subseteq \operatorname{PAut}(C)$ is said to be an s-PD-set for the code C if every s-set of coordinate positions is moved out of I by at least one element of S, where $1 \leq s \leq t$. When $s=t, S$ is said to be a PD-set.
A binary Hadamard code of length n is a binary code with $2 n$ codewords and minimum distance $n / 2$. It is well-known that there is a unique binary linear Hadamard code H_{m} of length $n=2^{m}, m \geq 2$, which is the dual of the extended Hamming code of length $2^{m}-1$ [10]. The quaternary linear codes that, under the Gray map, give a binary Hadamard code are called quaternary linear Hadamard codes and the corresponding \mathbb{Z}_{4}-linear codes are called \mathbb{Z}_{4}-linear Hadamard codes. For any $m \geq 3$ and each $\delta \in\left\{1, \ldots,\left\lfloor\frac{m+1}{2}\right\rfloor\right\}$, there is a unique (up to equivalence) \mathbb{Z}_{4}-linear Hadamard code of length 2^{m}, which is the Gray map image of a quaternary linear code of length $\beta=2^{m-1}$ and type $2^{\gamma} 4^{\delta}$, where $m=\gamma+2 \delta-1$. It is known that the \mathbb{Z}_{4}-linear Hadamard codes are nonlinear if and only if $\delta \geq 3$ [8]. These codes have been studied and classified in [8], [13], and their permutation automorphism groups have been characterized in [7], [12].
A binary Kerdock code of length $n=2^{m+1}$ is the Gray map image of a quaternary Kerdock code $\mathcal{K}(m)$, which is a quaternary linear code of length 2^{m}, type 4^{m+1} and minimum Lee distance $2^{m}-2^{\lfloor m / 2\rfloor}$. For $m \geq 2$, it is well known that these \mathbb{Z}_{4}-linear Kerdock codes are nonlinear and better than any linear code with the same parameters [6].

In [5], it is shown how to find s-PD-sets of minimum size $s+1$ that satisfy the Gordon-Schönheim bound for partial permutation decoding for the binary simplex code of length $2^{m}-1$ for all $m \geq 4$ and $1<s \leq\left\lfloor\frac{2^{m}-m-1}{m}\right\rfloor$. In [1], [2], following the same technique, similar results for binary linear and \mathbb{Z}_{4}-linear Hadamard codes are established. Specifically, for the binary linear Hadamard code H_{m} of length $2^{m}, m \geq 4, s$-PDsets of size $s+1$ for all $1<s \leq\left\lfloor\frac{2^{m}-m-1}{m+1}\right\rfloor$ are given. For the \mathbb{Z}_{4}-linear Hadamard codes, the permutation automorphism group PAut $\left(\mathcal{H}_{\gamma, \delta}\right)$ of a quaternary linear Hadamard code $\mathcal{H}_{\gamma, \delta}$ of length $\beta=2^{m-1}$ and type $2^{\gamma} 4^{\delta}$ is regarded as a certain subset of GL $\left(\gamma+\delta, \mathbb{Z}_{4}\right)$. Then the question of whether a subset $\mathcal{S} \subseteq \operatorname{PAut}\left(\mathcal{H}_{\gamma, \delta}\right)$ leads to a valid s-PD-set of size $s+1$ for the \mathbb{Z}_{4}-linear Hadamard code $H_{\gamma, \delta}=\Phi\left(\mathcal{H}_{\gamma, \delta}\right)$ is addressed by searching for a set of invertible matrices from $\mathrm{GL}\left(\gamma+\delta, \mathbb{Z}_{4}\right)$ fulfilling certain conditions. Finally, for the code $H_{\gamma, \delta}, s$-PDsets of size $s+1$ for all $\delta \geq 3$ and $1<s \leq\left\lfloor\frac{2^{2 \delta-2}-\delta}{\delta}\right\rfloor$ are constructed. In this paper, we obtain new s-PD-sets of size $s+1$ for $H_{\gamma, \delta}$. These sets are generated by a permutation, unlike the s-PD-sets given in [2].

This correspondence is organized as follows. In Section II, we introduce the main theorem that states sufficient conditions for a permutation $\sigma \in \operatorname{PAut}(C)$ to generate an s-PD-set $S=$ $\left\{\sigma^{i}: 1 \leq i \leq s+1\right\}$ of size $s+1$ for a \mathbb{Z}_{4}-linear code C. In Section III, by using the main theorem, we obtain s-PD-sets of size $s+1$ for the \mathbb{Z}_{4}-linear Hadamard code $\mathcal{H}_{\gamma, \delta}$ for all $\delta \geq 4$ and $1<s \leq 2^{\delta}-3$. Finally, in Section IV, we obtain s-PD-sets of size $s+1$, for all $m \geq 4$ and $1<s \leq \lambda-1$, for the binary Kerdock code of length 2^{m+1} such that $2^{m}-1$ is not prime, where λ is the greatest divisor of $2^{m}-1$ satisfying $\lambda \leq 2^{m} /(m+1)$.

II. s-PD-SETS OF SIZE $s+1$ FOR \mathbb{Z}_{4}-LINEAR CODES

Let \mathcal{C} be a quaternary linear code of length β and type $2^{\gamma} 4^{\delta}$, and let $C=\Phi(\mathcal{C})$ be the corresponding \mathbb{Z}_{4}-linear code of length 2β. Let $\Phi: \operatorname{Sym}(\beta) \rightarrow \operatorname{Sym}(2 \beta)$ be the map defined as

$$
\Phi(\tau)(i)= \begin{cases}2 \tau(i / 2), & \text { if } i \text { is even } \\ 2 \tau((i+1) / 2)-1 & \text { if } i \text { is odd }\end{cases}
$$

for all $\tau \in \operatorname{Sym}(\beta)$ and $i \in\{1, \ldots, 2 \beta\}$. Given a subset $\mathcal{S} \subseteq \operatorname{Sym}(\beta)$, we define the set $\Phi(\mathcal{S})=\{\Phi(\tau): \tau \in \mathcal{S}\} \subseteq$ $\operatorname{Sym}(2 \beta)$. It is easy to see that if $\mathcal{S} \subseteq \operatorname{PAut}(\mathcal{C}) \subseteq \operatorname{Sym}(\beta)$, then $\Phi(\mathcal{S}) \subseteq \operatorname{PAut}(C) \subseteq \operatorname{Sym}(2 \beta)$.

Lemma 2.1: The map $\Phi: \operatorname{Sym}(\beta) \rightarrow \operatorname{Sym}(2 \beta)$ is a group monomorphism.

An ordered set $\mathcal{I}=\left\{i_{1}, \ldots, i_{\gamma+\delta}\right\} \subseteq\{1, \ldots, \beta\}$ of $\gamma+\delta$ coordinate positions is said to be a quaternary information set for a quaternary linear code \mathcal{C} of type $2^{\gamma} 4^{\delta}$ if $\left|\mathcal{C}_{\mathcal{I}}\right|=2^{\gamma} 4^{\delta}$. If the elements of \mathcal{I} are ordered in such a way that $\left|\mathcal{C}_{\left\{i_{1}, \ldots, i_{\delta}\right\}}\right|=$ 4^{δ}, then it is easy to see that the set $\Phi(\mathcal{I})$, defined as
$\Phi(\mathcal{I})=\left\{2 i_{1}-1,2 i_{1}, \ldots, 2 i_{\delta}-1,2 i_{\delta}, 2 i_{\delta+1}-1, \ldots, 2 i_{\delta+\gamma}-1\right\}$,
is an information set for $C=\Phi(\mathcal{C})$.
Let S be an s-PD-set of size $s+1$. The set S is a nested s-PD-set if there is an ordering of the elements of $S, S=$
$\left\{\sigma_{0}, \ldots, \sigma_{s}\right\}$, such that $S_{i}=\left\{\sigma_{0}, \ldots, \sigma_{i}\right\} \subseteq S$ is an i-PDset of size $i+1$ for all $i \in\{0, \ldots, s\}$. Note that $S_{i} \subset S_{j}$ if $0 \leq i<j \leq s$ and $S_{s}=S$.

Theorem 2.2: Let \mathcal{C} be a quaternary linear code of length β and type $2^{\gamma} 4^{\delta}$ with quaternary information set \mathcal{I} and let s be a positive integer. If $\tau \in \operatorname{PAut}(\mathcal{C})$ has at least $\gamma+\delta$ disjoint cycles of length $s+1$ such that there is exactly one quaternary information position per cycle of length $s+1$, then $S=\left\{\Phi\left(\tau^{i}\right)\right\}_{i=1}^{s+1}$ is an s-PD-set of size $s+1$ for the $\mathbb{Z}_{4^{-}}$ linear code $C=\Phi(\mathcal{C})$ with information set $\Phi(\mathcal{I})$. Moreover, any ordering of the elements of S gives a nested r-PD-set for any $r \in\{1, \ldots, s\}$.

Proof: The permutation $\tau \in \operatorname{PAut}(\mathcal{C})$ can be written as

$$
\begin{align*}
\tau= & \left(i_{1}, x_{2}, \ldots, x_{(s+1)}\right)\left(i_{2}, x_{(s+1)+2}, \ldots, x_{2(s+1)}\right) \cdots \\
& \left(i_{\gamma+\delta}, x_{(\gamma+\delta-1)(s+1)+2}, \ldots, x_{(\gamma+\delta)(s+1)}\right) \tau^{\prime}, \tag{1}
\end{align*}
$$

where $\mathcal{I}=\left\{i_{1}, \ldots, i_{\gamma+\delta}\right\}$ is the quaternary information set for \mathcal{C} and $\tau^{\prime} \in \operatorname{Sym}(\beta)$. We consider the elements of \mathcal{I} ordered in such a way that $\left|\mathcal{C}_{\left\{i_{1}, \ldots, i_{\delta}\right\}}\right|=4^{\delta}$. Note that each cycle $\left(i_{\epsilon}, x_{(\epsilon-1)(s+1)+2}, \ldots, x_{\epsilon(s+1)}\right), \epsilon \in\{1, \ldots, \gamma+\delta\}$, of $\tau \in$ PAut (\mathcal{C}) splits into two disjoint cycles of the same length via Φ, that is,

$$
\begin{aligned}
& \Phi\left(\left(i_{\epsilon}, x_{(\epsilon-1)(s+1)+2}, \ldots, x_{\epsilon(s+1)}\right)\right)= \\
& \left(2 i_{\epsilon}-1,2 x_{(\epsilon-1)(s+1)+2}-1, \ldots, 2 x_{\epsilon(s+1)}-1\right) \\
& \left(2 i_{\epsilon}, 2 x_{(\epsilon-1)(s+1)+2}, \ldots, 2 x_{\epsilon(s+1)}\right)
\end{aligned}
$$

Furthermore, the information positions of the set $I=\Phi(\mathcal{I})$ are also placed in different cycles of length $s+1$ of the permutation $\sigma=\Phi(\tau)$. There is again one information position per cycle of length $s+1$, with the exception of the cycles of the form $\left(2 i_{\epsilon}, 2 x_{(\epsilon-1)(s+1)+2}-1, \ldots, 2 x_{\epsilon(s+1)}\right)$ for all $\epsilon \in\{\delta+1, \ldots, \gamma+\delta\}$.
Let $S=\left\{\sigma^{i}\right\}_{i=1}^{s+1}$ and let $P=\{1, \ldots, 2 \beta\}$ be the set of all coordinate positions. We define the set $A_{i}=\left\{j \in P: \sigma^{i}(j) \in\right.$ $I\}$ for each $i \in\{1, \ldots, s+1\}$. Note that $\left|A_{i}\right|=\gamma+2 \delta$ and $A_{i} \cap A_{j}=\emptyset$ for all $i, j \in\{1, \ldots, s+1\}, i \neq j$. We have to prove that every s-set of coordinate positions, denoted by $J=\left\{j_{1}, \ldots, j_{s}\right\} \subseteq P$, is moved out of I by at least one element of S. Note that a coordinate position in J cannot be in two different sets $A_{i}, i \in\{1, \ldots, s+1\}$. In the worstcase scenario, for each $k \in\{1, \ldots, s\}, j_{k} \in A_{l_{k}}$ for some $l_{k} \in\{1, \ldots, s+1\}$. However, since $|J|=s$ and $|S|=s+1$, we can always assure that there is $\varphi \in S$ such that $\varphi(J) \cap I=\emptyset$. Thus, by Lemma 2.1, $S=\left\{\Phi(\tau)^{i}\right\}_{i=1}^{s+1}=\left\{\Phi\left(\tau^{i}\right)\right\}_{i=1}^{s+1}$ is an s-PD-set of size $s+1$ for the \mathbb{Z}_{4}-linear code $C=\Phi(\mathcal{C})$ with information set $I=\Phi(\mathcal{I})$.

Corollary 2.3: Let S be an s-PD-set of size $s+1$ for a \mathbb{Z}_{4}-linear code $C=\Phi(\mathcal{C})$ of length 2β and type $2^{\gamma} 4^{\delta}$ as in Theorem 2.2. Then $s+1$ divides the order of $\operatorname{PAut}(\mathcal{C})$ and $s \leq f_{\mathcal{C}}$, where $f_{\mathcal{C}}=\lfloor(\beta-\gamma-\delta) /(\gamma+\delta)\rfloor$.

Let $\mathcal{H}_{\gamma, \delta}$ be the quaternary linear Hadamard code of length $\beta=2^{m-1}$ and type $2^{\gamma} 4^{\delta}$, where $m=\gamma+2 \delta-1$. Let $H_{\gamma, \delta}=$ $\Phi\left(\mathcal{H}_{\gamma, \delta}\right)$ be the corresponding \mathbb{Z}_{4}-linear code of length $2 \beta=$
2^{m}. A generator matrix $\mathcal{G}_{\gamma, \delta}$ for $\mathcal{H}_{\gamma, \delta}$ can be constructed by using the following recursive constructions:

$$
\begin{align*}
\mathcal{G}_{\gamma+1, \delta} & =\left(\begin{array}{cc}
\mathcal{G}_{\gamma, \delta} & \mathcal{G}_{\gamma, \delta} \\
\mathbf{0} & \mathbf{2}
\end{array}\right), \tag{2}\\
\mathcal{G}_{\gamma, \delta+1} & =\left(\begin{array}{cccc}
\mathcal{G}_{\gamma, \delta} & \mathcal{G}_{\gamma, \delta} & \mathcal{G}_{\gamma, \delta} & \mathcal{G}_{\gamma, \delta} \\
\mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{3}
\end{array}\right), \tag{3}
\end{align*}
$$

starting from $\mathcal{G}_{0,1}=(1)$. First, the matrix $\mathcal{G}_{0, \delta}$ is obtained from $\mathcal{G}_{0,1}$ by using recursively $\delta-1$ times construction (3), and then $\mathcal{G}_{\gamma, \delta}$ is constructed from $\mathcal{G}_{0, \delta}$ by using γ times construction (2).
It is known that if $S=\Phi(\mathcal{S}), \mathcal{S} \subseteq \operatorname{PAut}\left(\mathcal{H}_{\gamma, \delta}\right)$, is an s-PD-set of size $s+1$ for $H_{\gamma, \delta}$, then $s \leq f_{\gamma, \delta}$, where $f_{\gamma, \delta}=\left\lfloor\left(2^{\gamma+2 \delta-2}-\gamma-\delta\right) /(\gamma+\delta)\right\rfloor$. Furthermore, if $S \subseteq$ $\operatorname{PAut}\left(H_{\gamma, \delta}\right)$ is an s-PD-set of size $s+1$ for $H_{\gamma, \delta}$, then $s \leq f_{m}$, where $f_{m}=\left\lfloor\left(2^{m}-m-1\right) /(1+m)\right\rfloor[2]$. Note that $f_{\gamma, \delta} \leq f_{m}$, where $m=\gamma+2 \delta-1$. Moreover, $f_{\mathcal{H}_{\gamma, \delta}}=f_{\gamma, \delta}$ despite the fact that $f_{\mathcal{H}_{\gamma, \delta}}$ takes into account the restrictions given by Theorem 2.2. In practice, to require that $s+1$ divides $\left|\operatorname{PAut}\left(\mathcal{H}_{\gamma, \delta}\right)\right|$ is more restrictive than the condition $s \leq f_{\mathcal{H}_{\gamma, \delta}}$, as we can see in the following example.

Example 1: Let $\mathcal{H}_{0,3}$ be the quaternary linear Hadamard code of length 16 and type $2^{0} 4^{3}$ with generator matrix $\mathcal{G}_{0,3}=$
$\left(\begin{array}{llllllllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 & 0 & 1 & 2 & 3 & 0 & 1 & 2 & 3 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 3 & 3 & 3 & 3\end{array}\right)$
obtained by applying (3) two times starting from $\mathcal{G}_{0,1}=(1)$. Let $\tau=(1,16,11,6)(2,7,12,13)(3,14,9,8)(4,5,10,15) \in$ $\operatorname{PAut}\left(\mathcal{H}_{0,3}\right) \subseteq \operatorname{Sym}(16)$ [12]. Note that τ has four disjoint cycles of length four. It is easy to see that $\mathcal{I}=\{1,2,5\}$ is a quaternary information set for $\mathcal{H}_{0,3}$ [2]. Moreover, note that each quaternary information position in \mathcal{I} is in a different cycle of τ. Let $\sigma=\Phi(\tau) \in \operatorname{PAut}\left(H_{0,3}\right) \subseteq \operatorname{Sym}(32)$, where $H_{0,3}=\Phi\left(\mathcal{H}_{0,3}\right)$. Thus, by Lemma 2.1 and Theorem 2.2, $S=\left\{\sigma, \sigma^{2}, \sigma^{3}, \sigma^{4}\right\} \subseteq \operatorname{PAut}\left(H_{0,3}\right)$ is a 3-PD-set of size 4 for the \mathbb{Z}_{4}-linear Hadamard code $H_{0,3}$ with information set $\Phi(\mathcal{I})=\{1,2,3,4,9,10\}$. Note that $H_{0,3}$ is the smallest $\mathbb{Z}_{4}{ }^{-}$ linear Hadamard code which is nonlinear.

We have that $f_{5}=f_{0,3}=4$. In [2], a 4-PD-set of size 5 for $H_{0,3}$ is found. Moreover, it is enough to consider permutations in the subgroup $\Phi\left(\operatorname{PAut}\left(\mathcal{H}_{0,3}\right)\right) \leq \operatorname{PAut}\left(H_{0,3}\right)$ to achieve f_{5}. However, note that this 4-PD-set can not be generated by a permutation $\sigma \in \operatorname{PAut}\left(H_{0,3}\right)$. By using Theorem 2.2, it is not possible to obtain 4-PD-sets of size 5 , since 5 does not divide $\left|\operatorname{PAut}\left(\mathcal{H}_{0,3}\right)\right|=2^{9} \cdot 3$ [12].

Example 2: Let $\mathcal{H}_{1,3}$ be the quaternary linear Hadamard code of length 32 and type $2^{1} 4^{3}$ with generator matrix

$$
\mathcal{G}_{1,3}=\left(\begin{array}{cc}
\mathcal{G}_{0,3} & \mathcal{G}_{0,3} \\
\mathbf{0} & \mathbf{2}
\end{array}\right)
$$

obtained by applying construction (2) over the matrix $\mathcal{G}_{0,3}$ given in Example 1. Let $\tau \in \operatorname{PAut}\left(\mathcal{H}_{1,3}\right) \subseteq \operatorname{Sym}(32)$ be

$$
\begin{aligned}
\tau= & (1,24,26,15,3,22,28,13)(2,23,27,14,4,21,25,16) \\
& (5,11,32,20,7,9,30,18)(6,10,29,19,8,12,31,17)
\end{aligned}
$$

which has four disjoint cycles of length eight. It is also easy to see that $\mathcal{I}=\{1,2,5,17\}$ is a quaternary information set for $\mathcal{H}_{1,3}$ [2], and each quaternary information position in \mathcal{I} is in a different cycle of τ. Let $\sigma=\Phi(\tau) \in \operatorname{PAut}\left(H_{1,3}\right) \subseteq$ $\operatorname{Sym}(64)$, where $H_{1,3}=\Phi\left(\mathcal{H}_{1,3}\right)$. Thus, by Lemma 2.1 and Theorem 2.2, $S=\left\{\sigma^{i}\right\}_{i=1}^{8}$ is a 7-PD-set of size 8 for the \mathbb{Z}_{4}-linear Hadamard code $H_{1,3}$ with information set $\Phi(\mathcal{I})=$ $\{1,2,3,4,9,10,33\}$. Note that $H_{1,3}$ is a binary nonlinear code.
Since $f_{1,3}=7$, in this case, no better s-PD-sets of size $s+1$ can be found by using permutations in the subgroup $\Phi\left(\operatorname{PAut}\left(\mathcal{H}_{1,3}\right)\right) \leq \operatorname{PAut}\left(H_{1,3}\right)$. However, an 8-PD-set of size 9 could be theoretically found in $\operatorname{PAut}\left(H_{1,3}\right)$ since $f_{6}=8$.

III. Construction of s-PD-SETS of Size $s+1$ FOR \mathbb{Z}_{4}-LINEAR Hadamard codes

In this section, we give a construction of s-PD-sets of size $s+1$ for \mathbb{Z}_{4}-linear Hadamard codes $H_{\gamma, \delta}$, by finding a permutation $\tau \in \operatorname{PAut}\left(\mathcal{H}_{0, \delta}\right)$ that satisfies the conditions of Theorem 2.2. Note that high order permutations are more suitable candidates to obtain better s-PD-sets.
The permutation automorphism group $\operatorname{PAut}\left(\mathcal{H}_{0, \delta}\right)$ of $\mathcal{H}_{0, \delta}$ is isomorphic to the following set of matrices over \mathbb{Z}_{4} :

$$
\left\{\left(\begin{array}{cc}
1 & \eta \\
\mathbf{0} & A
\end{array}\right): A \in \mathrm{GL}\left(\delta-1, \mathbb{Z}_{4}\right), \eta \in \mathbb{Z}_{4}^{\delta-1}\right\}
$$

[2]. Let $\operatorname{ord}(A)$ be the order of $A \in \mathrm{GL}\left(\delta-1, \mathbb{Z}_{4}\right)$. It is known that $\max \left\{\operatorname{ord}(A): A \in \mathrm{GL}\left(\delta-1, \mathbb{Z}_{4}\right)\right\}=2\left(2^{\delta-1}-1\right)[11]$. Moreover, if $\eta=\mathbf{0}$, then

$$
\operatorname{ord}\left(\left(\begin{array}{cc}
1 & \eta \\
\mathbf{0} & A
\end{array}\right)\right)=\operatorname{ord}(A)
$$

Thus, our aim is to obtain matrices A of order $2\left(2^{\delta-1}-1\right)$. Although we can characterize when a matrix $\mathcal{M} \in \operatorname{PAut}\left(\mathcal{H}_{0, \delta}\right)$ has maximum order, we do not know its cyclic structure, regarded as a permutation $\tau \in \operatorname{Sym}(\beta)$. Recall that, in order to apply Theorem 2.2 , we need a permutation $\tau \in \operatorname{PAut}\left(\mathcal{H}_{0, \delta}\right) \subseteq$ $\operatorname{Sym}(\beta)$ with at least δ disjoint cycles of the same length. Next, we show how some known results on maximum length sequences over \mathbb{Z}_{4} can be used to solve this question.
Let $\mathbb{Z}_{4}[x]$ and $\mathbb{Z}_{2}[x]$ be the polynomial ring over \mathbb{Z}_{4} and \mathbb{Z}_{2}, respectively. Let $\mu: \mathbb{Z}_{4}[x] \rightarrow \mathbb{Z}_{2}[x]$ be the map that performs a modulo 2 reduction of the coefficients of $f(x) \in \mathbb{Z}_{4}[x]$. A monic polynomial $f(x) \in \mathbb{Z}_{4}[x]$ is said to be a primitive basic irreducible polynomial if $\mu(f(x))$ is primitive over $\mathbb{Z}_{2}[x]$.
Let $f(x)=x^{k}-a_{k-1} x^{k-1}-\cdots-a_{1} x-a_{0} \in \mathbb{Z}_{4}[x]$. Consider the k th-order homogeneous linear recurrence relation over \mathbb{Z}_{4} with characteristic polynomial $f(x)$, that is,

$$
\begin{equation*}
s_{n+k}=a_{k-1} s_{n+k-1}+\cdots+a_{1} s_{n+1}+a_{0} s_{n}, \quad n=0,1, \ldots \tag{4}
\end{equation*}
$$

The companion matrix A_{f} of the polynomial $f(x)$ is the $k \times k$ matrix defined as

$$
A_{f}=\left(\begin{array}{cccccc}
0 & 0 & 0 & \cdots & 0 & a_{0} \tag{5}\\
1 & 0 & 0 & \cdots & 0 & a_{1} \\
0 & 1 & 0 & \cdots & 0 & a_{2} \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & a_{k-1}
\end{array}\right)
$$

The set of all nonzero sequences $\left\{s_{n}\right\}_{n=0}^{\infty}$ over \mathbb{Z}_{4} satisfying (4) whose characteristic polynomial $f(x)$ is a primitive basic irreducible polynomial dividing $x^{2\left(2^{k}-1\right)}-1$ in $\mathbb{Z}_{4}[x]$ is called Family \mathcal{B} in [14]. It is known that there are $2^{k-1}+1$ cyclically distinct periodic sequences in each Family $\mathcal{B}: 2^{k-1}$ of them with common least period $2\left(2^{k}-1\right)$ and one with period $2^{k}-1$ [4]. Moreover, the sequence with period $2^{k}-1$ is the unique containing only zero-divisors. Examples of primitive basic irreducible polynomials $f(x) \in \mathbb{Z}_{4}[x]$ suitable for constructing sequences of Family \mathcal{B} for degrees 3 to 10 can be found in [4], [14].
Let $\left\{s_{n}\right\}_{n=0}^{\infty}$ be a nonzero sequence over \mathbb{Z}_{4} satisfying (4). For each $n \geq 0$, we define the tuple $\mathbf{s}_{n}=\left(s_{n}, \ldots, s_{n+k-1}\right)$ over \mathbb{Z}_{4}. In the language of feedback shift registers, s_{n} is called the n-state vector. Note that if A_{f} is the companion matrix of the polynomial $f(x)$ associated with (4), then it holds that $\mathbf{s}_{n}=\mathbf{s}_{0} A_{f}^{n}$. Let $\overline{\mathcal{G}_{0, \delta}}$ denote the generator matrix $\mathcal{G}_{0, \delta}$ without the first row, $(1, \ldots, 1)$. Note that each state vector represents a column vector of $\overline{\mathcal{G}_{0, \delta}}$. Moreover, we can label the i th coordinate position of $\mathcal{H}_{0, \delta}$, with the i th column vector w_{i} of $\overline{\mathcal{G}_{0, \delta}}$. Thus, any matrix A_{f} can be seen as a permutation of coordinate positions $\tau \in \operatorname{Sym}(\beta)$, such that $\tau(i)=j$ as long as $w_{j}=w_{i} A_{f}$. Furthermore, the ordered set of all different state vectors $\mathbf{s}_{0}, \mathbf{s}_{0} A_{f}, \ldots$ from the same sequence $\left\{s_{n}\right\}_{n=0}^{\infty}$ over \mathbb{Z}_{4} represents a disjoint cycle τ_{i} of the permutation $\tau \in \operatorname{Sym}(\beta)$ associated with $A_{f} \in \operatorname{GL}\left(\delta-1, \mathbb{Z}_{4}\right)$. Finally, we have that $\operatorname{ord}\left(A_{f}\right)=\operatorname{ord}(\tau)=\operatorname{lcm}\left(\left\{\operatorname{ord}\left(\tau_{i}\right): 1 \leq i \leq\right.\right.$ $\left.\left.2^{\delta-2}+1\right\}\right)=\operatorname{lcm}\left(\left\{2\left(2^{\delta-1}-1\right), 2^{\delta-1}-1\right\}\right)=2\left(2^{\delta-1}-1\right)$.

Let \mathcal{M}_{f} be the matrix

$$
\mathcal{M}_{f}=\left(\begin{array}{cc}
1 & \mathbf{0} \\
\mathbf{0} & A_{f}
\end{array}\right) .
$$

It is clear that $\mathcal{M}_{f} \in \operatorname{PAut}\left(\mathcal{H}_{0, \delta}\right)$ and its order is equal to the order of the matrix A_{f}. The matrix \mathcal{M}_{f} will be denoted by τ_{f} if it is considered as an element in $\operatorname{Sym}(\beta)$. Then we have the following result:

Proposition 3.1: Let $f(x)=x^{\delta-1}-a_{\delta-2} x^{\delta-2}-\cdots-$ $a_{1} x-a_{0} \in \mathbb{Z}_{4}[x]$ be a primitive basic irreducible polynomial dividing $x^{2\left(2^{\delta-1}-1\right)}-1$ in $\mathbb{Z}_{4}[x]$ with $\delta \geq 4$. Let $\tau_{f} \in \operatorname{PAut}\left(\mathcal{H}_{0, \delta}\right)$ be the permutation associated to $f(x)$. Then $\operatorname{ord}\left(\tau_{f}\right)=2\left(2^{\delta-1}-1\right)$. Moreover, τ_{f} has $2^{\delta-2}+1$ disjoint cycles, where $2^{\delta-2}$ of them have length $2\left(2^{\delta-1}-1\right)$ and one of them has length $2^{\delta-1}-1$.

Corollary 3.2: Let $f(x)=x^{\delta-1}-a_{\delta-2} x^{\delta-2}-\cdots-$ $a_{1} x-a_{0} \in \mathbb{Z}_{4}[x]$ be a primitive basic irreducible polynomial dividing $x^{\lambda}-1$ in $\mathbb{Z}_{4}[x]$, where $\lambda=2\left(2^{\delta-1}-1\right)$ and $\delta \geq 4$. Let $\tau_{f} \in \operatorname{PAut}\left(\mathcal{H}_{0, \delta}\right)$ be the permutation associated to $f(x)$. Let \mathcal{I} be a quaternary information set for $\mathcal{H}_{0, \delta}$ with exactly one quaternary information position per cycle of length λ of τ_{f}. Then $S=\left\{\Phi\left(\tau_{f}^{i}\right)\right\}_{i=1}^{\lambda}$ is a $(\lambda-1)$-PD-set of size λ for $H_{0, \delta}=\Phi\left(\mathcal{H}_{0, \delta}\right)$ with information set $\Phi(\mathcal{I})$.

Example 3: Consider the linear recurrence relation over \mathbb{Z}_{4}

$$
s_{n+3}=3 s_{n+1}+3 s_{n}, \quad n=0,1, \ldots
$$

Its characteristic polynomial is $f(x)=x^{3}+x+1 \in \mathbb{Z}_{4}[x]$. It is easy to see that $\mu(f(x))=x^{3}+x+1 \in \mathbb{Z}_{2}[x]$ is primitive
over $\mathbb{Z}_{2}[x]$ and $f(x)$ divides $x^{14}-1$ over $\mathbb{Z}_{4}[x]$. Therefore, we have that the companion matrix of $f(x)$,

$$
A_{f}=\left(\begin{array}{lll}
0 & 0 & 3 \\
1 & 0 & 3 \\
0 & 1 & 0
\end{array}\right)
$$

has order 14 in $\mathrm{GL}\left(3, \mathbb{Z}_{4}\right)$. Since the matrix \mathcal{M}_{f} leads to a valid permutation $\tau_{f} \in \operatorname{PAut}\left(\mathcal{H}_{0,4}\right) \in \operatorname{Sym}(64)$ that preserves the order of A_{f}, by Propisition 3.1, τ_{f} has also order 14. In addition, its cyclic structure behaves as follows: four disjoint cycles of length 14 and one cycle of length 7 .

$$
\begin{aligned}
\tau_{f}= & (2,49,13,20,21,54,46,12,51,45,28,55,30,8) \\
& (3,33,9,35,41,43,11) \\
& (4,17,5,50,61,32,40,10,19,37,58,31,56,14) \\
& (6,34,57,47,60,63,64,48,44,59,15,52,29,24) \\
& (7,18,53,62,16,36,25,39,26,23,22,38,42,27)
\end{aligned}
$$

It is easy to check that $\mathcal{I}=\{2,5,6,18\}$ is a quaternary information set for $\mathcal{H}_{0,4}$ with generator matrix $\mathcal{G}_{0,4}$ obtained by applying (3) three times starting from $\mathcal{G}_{0,1}=(1)$. Note that each quaternary information position in \mathcal{I} is in a different cycle of length 14 of τ_{f}. By Corollary $3.2, S=\left\{\Phi\left(\tau_{f}^{i}\right)\right\}_{i=1}^{14}$ is a 13-PD-set of size 14 for the \mathbb{Z}_{4}-linear Hadamard code $H_{0,4}$ with information set $I=\Phi(I)=\{3,4,9,10,11,12,35,36\}$. In practice, it is not difficult to find such a set \mathcal{I}. For example, computations in MAGMA software package shows that there are 10752 suitable quaternary information sets.

In terms of state vectors, if we take $\mathrm{s}_{0}=(0,0,1)$, we obtain the sequence $00103312012313001 \ldots$ over \mathbb{Z}_{4}. Note that $\mathbf{s}_{1}=$ $(0,1,0)=\mathbf{s}_{0} A_{f}$. Since \mathbf{s}_{0} and \mathbf{s}_{1} are, respectively, the 17th and 5 th column vectors of $\overline{\mathcal{G}_{0,4}}$, we obtain that $\tau_{f}(17)=5$. All different state vectors of the previous sequence represent the cycle $(4,17,5,50,61,32,40,10,19,37,58,31,56,14)$ of τ_{f}.

Given two permutations $\sigma_{1} \in \operatorname{Sym}\left(n_{1}\right)$ and $\sigma_{2} \in \operatorname{Sym}\left(n_{2}\right)$, we define $\left(\sigma_{1} \mid \sigma_{2}\right) \in \operatorname{Sym}\left(n_{1}+n_{2}\right)$, where σ_{1} acts on the coordinates $\left\{1, \ldots, n_{1}\right\}$ and σ_{2} on $\left\{n_{1}+1, \ldots, n_{1}+n_{2}\right\}$. The following result can be found in [2] and provides a first approach to obtain s-PD-set of size $s+1$ for the \mathbb{Z}_{4}-linear Hadamard $H_{\gamma, \delta}$.

Proposition 3.3: [2] Let S be an s-PD-set of size l for $H_{\gamma, \delta}$ of length n and type $2^{\gamma} 4^{\delta}$ with information set I. Then $(S \mid S)=\{(\sigma \mid \sigma): \sigma \in S\}$ is an s-PD-set of size l for $H_{\gamma+1, \delta}$ of length $2 n$ and type $2^{\gamma+1} 4^{\delta}$ constructed from (2) and the Gray map, with any information set $I \cup\{i+n\}, i \in I$.
We proceed as follows: First, we compute an s-PD-set S of size $s+1$ for $H_{0, \delta}$, for example, by using Corollary 3.2. Then applying Proposition 3.3 recursively γ times over S, we obtain an s-PD-set of size $s+1$ for $H_{\gamma, \delta}$, with $\gamma>0$.

Example 4: Let $\mathcal{H}_{1,4}$ be the quaternary linear Hadamard code of length 128 and type $2^{1} 4^{4}$ with generator matrix $\mathcal{G}_{1,4}$ obtained by applying (2) over the matrix $\mathcal{G}_{0,4}$ given in Example 3. Let $S \subseteq \operatorname{PAut}\left(H_{0,4}\right)$ and $I \subseteq\{1, \ldots, 128\}$ as defined in the same example. Then $(S \mid S)$ is a 13 -PD-set of size 14 for the \mathbb{Z}_{4}-linear Hadamard code $H_{1,4}$ with any information set of the form $I \cup\{128+i\}$, where $i \in I$, by Proposition 3.3.

m	2^{m}	ρ	λ	μ
4	16	3	3	5
6	64	9	9	7
8	256	28	17	15
9	512	51	7	73
10	1024	93	93	11
11	2046	170	89	23
12	4096	315	315	13

TABLE I
Values of parameters ρ, λ and μ For quaternary Kerdock codes $\mathcal{K}(m)$ OF LENGTH 2^{m} with $m \in\{4,6,8,9,10,11,12\}$.

IV. Construction of s-PD-SETS of SIZE $s+1$ FOR binary Kerdock codes

Let $h(x)$ be a primitive basic irreducible polynomial of degree m over \mathbb{Z}_{4} such that $h(x)$ divides $x^{2^{m}-1}-1$, and let $g(x)$ be the reciprocal polynomial to the polynomial $\left(x^{2^{m}-1}-1\right) /((x-1) h(x))$. Let $\mathcal{K}(m)^{-}$be the quaternary cyclic code of length $2^{m}-1$ with generator polynomial $g(x)$. The quaternary Kerdock code $\mathcal{K}(m)$ is the code obtained from $\mathcal{K}(m)^{-}$by adding a zero-sum check symbol at the end of each codeword of $\mathcal{K}(m)^{-}$. Let $K(m)=\Phi(\mathcal{K}(m))$ be the corresponding binary Kerdock code of length 2^{m+1}, which has size 4^{m+1} and minimum distance $2^{m}-2^{\lfloor m / 2\rfloor}$.

Since $\mathcal{K}(m)^{-}$is a cyclic code of length $2^{m}-1$, it is clear that $\left(1, \ldots, 2^{m}-1\right) \in \operatorname{PAut}\left(\mathcal{K}(m)^{-}\right)$. Therefore, by definition of $\mathcal{K}(m)$, we also have that $\left(1, \ldots, 2^{m}-1\right) \in \operatorname{PAut}(\mathcal{K}(m))$.

Corollary 4.1: Let $\mathcal{K}(m)$ be the quaternary Kerdock code of length 2^{m} and type 4^{m+1} such that $2^{m}-1$ is not a prime number. Let $\nu=\left(1, \ldots, 2^{m}-1\right) \in \operatorname{PAut}(\mathcal{K}(m)) \subseteq \operatorname{Sym}\left(2^{m}\right)$. Let λ be the greatest divisor of $2^{m}-1$ such that $\lambda \leq 2^{m} /(m+1)$ and μ satisfying that $\lambda \mu=2^{m}-1$. Then $S=\left\{\Phi\left(\nu^{i \cdot \mu}\right)\right\}_{i=1}^{\lambda}$ is a $(\lambda-1)$-PD-set of size λ for $K(m)=\Phi(\mathcal{K}(m))$ with information set $I=\{1, \ldots, 2 m+2\}$.

Example 5: Let $\mathcal{K}(4)$ be the quaternary Kerdock code of length 16 and type 4^{5} with generator matrix
$\left(\begin{array}{llllllllllllllll}1 & 1 & 3 & 0 & 3 & 3 & 0 & 2 & 1 & 2 & 1 & 0 & 0 & 0 & 0 & 3 \\ 0 & 1 & 1 & 3 & 0 & 3 & 3 & 0 & 2 & 1 & 2 & 1 & 0 & 0 & 0 & 3 \\ 0 & 0 & 1 & 1 & 3 & 0 & 3 & 3 & 0 & 2 & 1 & 2 & 1 & 0 & 0 & 3 \\ 0 & 0 & 0 & 1 & 1 & 3 & 0 & 3 & 3 & 0 & 2 & 1 & 2 & 1 & 0 & 3 \\ 0 & 0 & 0 & 0 & 1 & 1 & 3 & 0 & 3 & 3 & 0 & 2 & 1 & 2 & 1 & 3\end{array}\right)$,
where $h(x)=x^{4}+2 x^{2}+3 x+1$. Note that $\mathcal{I}=\{1,2,3,4,5\}$ is a quaternary information set for $\mathcal{K}(4)$. In this case, we have that $\lambda=3$ and $\mu=5$. Let $\mathcal{S}=\left\{\nu^{5}, \nu^{10}, \nu^{15}\right\}$, where $\nu=$ $(1, \ldots, 15)$. Note that

$$
\tau=\nu^{5}=(1,6,11)(2,7,12)(3,8,13)(4,9,14)(5,10,15)
$$

has 5 disjoint cycles of length 3 , where each quaternary information position in \mathcal{I} is placed in a different cycle of τ. Hence, $S=\Phi(\mathcal{S})$ is a 2 -PD-set of size 3 for the binary Kerdock code $K(4)$ of length 32 with information set $\Phi(\mathcal{I})=\{1, \ldots, 10\}$.

Theorem 2.2 provides the best s-PD-sets when the permutation $\tau \in \operatorname{PAut}(\mathcal{C})$ has the minimum number of disjoint cycles $|\mathcal{I}|=\gamma+\delta$, each one being of maximum length. Note that the parameters μ and λ, considered in Corollary 4.1, denote the number of disjoint cycles and the length of the cycles of
the permutation $\tau=\nu^{\mu}$, respectively. Therefore, this corollary yields the best $(\lambda-1)$-PD-sets of size λ when $\mu=m+1$, or equivalently, when $\lambda=\rho$, where $\rho=\left\lfloor 2^{m} /(m+1)\right\rfloor$. For example, when $m=4,6,10$ or 12 as shown in Table I. Note that $f_{\mathcal{K}(m)}=\left\lfloor\left(2^{m}-m-1\right) /(m+1)\right\rfloor=\rho-1$.

Prime numbers of type $2^{m}-1$ are known as Mersenne primes and have been extensively studied. It is known that if m is not prime, then $2^{m}-1$ is not a Mersenne prime. Hence, Corollary 4.1 can be applied to all nonprime values of m. Despite this, there are also some prime values of m (for example, $m=11$) for which $2^{m}-1$ is not a prime number, so Corollary 4.1 can also be applied. Moreover, even for values of m for which we can not apply this corollary, there are permutations that verify the conditions of Theorem 2.2, as shown in the following example.

Example 6: Let $\mathcal{K}(5)$ be the quaternary Kerdock code of length 32 and type 4^{6}. Note that $\mathcal{I}=\{1,2,3,4,5,6\}$ is a quaternary information set for $\mathcal{K}(5)$. The conditions of Corollary 4.1 are not fulfilled since 31 is a Mersenne prime. Nevertheless,

$$
\begin{aligned}
\tau= & (1,32,9,19,25)(2,18,24,15,31)(3,27,23,28,12) \\
& (4,8,20,30,26)(5,14,16,21,13)(6,10,17,29,22)
\end{aligned}
$$

satisfies the conditions of Theorem 2.2 for $s=4$. Thus, $S=$ $\left\{\Phi\left(\tau^{i}\right)\right\}_{i=1}^{5}$ is a 4 -PD-set of size 5 for the binary Kerdock code $K(5)$ of length 64 with information set $\Phi(\mathcal{I})$.

References

[1] R. D. Barrolleta and M. Villanueva, "Partial permutation decoding for binary linear Hadamard codes," Electronic Notes in Discrete Mathematics, vol. 46, 35-42, 2014.
[2] R. D. Barrolleta and M. Villanueva, "Partial permutation decoding for binary linear and \mathbb{Z}_{4}-linear Hadamard codes, submitted to Des. Codes and Cryptogr., 2016. arXiv:1512.01839
[3] J. J. Bernal, J. Borges, C. Fernández-Córboda, and M. Villanueva, "Permutation decoding of $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear codes," Des. Codes and Cryptogr., vol. 76(2), 269-277, 2015.
[4] S. Botzas, R. Hammons, and P. V. Kumar, "4-phase sequences with nearoptimum correlations propierties," IEEE Trans. Inform. Theory, vol. 38, 1101-1113, 1992.
[5] W. Fish, J. D. Key, and E. Mwambene, "Partial permutation decoding for simplex codes," Advances in Mathematics of Comunications, vol. 6(4), 505-516, 2012.
[6] A. R. Hammons, Jr, P. V. Kumar, A. R. Calderbank, N. J. A. Sloane, and P. Solé, "The Z_{4}-linearity of Kerdock, Preparata, Goethals, and related codes," IEEE Trans. Inform. Theory, vol. 40(2), 301-319, 1994.
[7] D. S. Krotov and M. Villanueva "Classification of the $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear Hadamard codes and their automorphism groups," IEEE Trans. Inform. Theory, vol. 61(2), 887-894, 2015.
[8] D. S. Krotov, " \mathbb{Z}_{4}-linear Hadamard and extended perfect codes," Electronic Notes in Discrete Mathematics, vol. 6, 107-112, 2001.
[9] F. J. MacWilliams, "Permutation decoding of systematics codes," Bell System Tech. J., vol. 43, 485-505, 1964.
[10] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland Publishing Company, Amsterdam, 1977.
[11] M. W. Maxfield, "The order of a matrix under multiplication (modulo m)," Duke Math. J., vol. 18(3), 619-621, 1951.
[12] J. Pernas, J. Pujol, and M. Villanueva. "Characterization of the automorphism group of quaternary linear Hadamard codes," Des. Codes Cryptogr., vol. 70(1-2), 105-115, 2014.
[13] K.T. Phelps, J. Rifà, and M. Villanueva, "On the additive \mathbb{Z}_{4}-linear and non- \mathbb{Z}_{4}-linear Hadamard codes. Rank and kernel," IEEE Trans. Inform. Theory, vol. 52(1), 316-319, 2005.
[14] H.-J. Zepernick and A. Finger, Pseudo Random Signal Processing: Theory and Application, John Wiley \& Sons Ltd, 2015.

