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Abstract

The Z2s-additive and Z2Z4-additive codes are subgroups of Zn
2s and Z

α
2 × Z

β
4 , re-

spectively. Both families can be seen as generalizations of linear codes over Z2 and
Z4. A Z2s-linear (Z2Z4-linear) Hadamard code is a binary Hadamard code which is
the Gray map image of a Z2s-additive (Z2Z4-additive) code. It is known that there
are exactly ⌊ t−1

2 ⌋ and ⌊ t
2⌋ nonequivalent Z2Z4-linear Hadamard codes of length 2t,

with α = 0 and α 6= 0, respectively, for all t ≥ 3. In this paper, new Z2s-linear
Hadamard codes are constructed for s > 2, which are not equivalent to any Z2Z4-
linear Hadamard code. Moreover, it is claimed that the new constructed nonlinear
Z2s-linear Hadamard codes are pairwise nonequivalent.
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1 Introduction

Let Z2s be the ring of integers modulo 2s with s ≥ 1. The set of n-tuples over
the ring Z2s is denoted by Z

n
2s . In this paper, the elements of Zn

2s will also be
called vectors over Z2s of length n. A binary code of length n is a nonempty
subset of Zn

2 . A nonempty subset C of Zn
2s (Zα

2 × Z
β
4 ) is a Z2s-additive (Z2Z4-

additive) code if C is a subgroup of Zn
2s (Zα

2 × Z
β
4 ). Note that, when s = 1

(β = 0), Z2s-additive (Z2Z4-additive) is a binary linear code, and when s = 2
(α = 0), it is a quaternary linear code or a linear code over Z4 [8]. For more
details about Z2Z4-additive codes see [6].

The Hamming weight of a binary vector u ∈ Z
n
2 , denoted by wtH(u),

is the number of nonzero coordinates of u. The Hamming distance of two
binary vectors u, v ∈ Z

n
2 , denoted by dH(u, v), is the number of coordinates

in which they differ. Note that dH(u, v) = wtH(v − u). The Lee weight of an
element i ∈ Z2s is wtL(i) = min{i, 2s − i}. The Lee weight of a vector u =
(u1, u2, . . . , un) ∈ Z

n
2s is wtL(u) =

∑n

j=1wtL(uj) ∈ Z2s and the Lee distance of
two vectors u, v ∈ Z

n
2s is dL(u, v) = wtL(v − u). The minimum distance of a

Z2s-additive code C is d(C) = min{dL(u, v) : u, v ∈ C, u 6= v} and the minimum
distance of a binary code C is d(C) = min{dH(u, v) : u, v ∈ C, u 6= v}.

In [8], a Gray map from Z4 to Z
2
2 is defined as φ(0) = (0, 0), φ(1) =

(0, 1), φ(2) = (1, 1) and φ(3) = (1, 0). There exist different generalizations of
this Gray map, which go from Z2s to Z

2s−1

2 [5,7]. The one given in [7] is the
map φ : Z2s → Z

2s−1

2 defined as follows:

φ(u) = (us, . . . , us) + (u1, . . . , us−1)Y,

where u ∈ Z2s , [u1, u2, . . . , us]2 is the binary expansion of u, that is u =
∑s

i=1 2
i−1ui (ui ∈ Z2), and Y is a matrix of size (s− 1)× 2s−1 which columns

are the elements of Zs−1
2 . Note that (us, . . . , us) and (u1, . . . , us−1)Y are binary

vectors of length 2s−1. Then, define Φ : Zn
2s → Z

n2s−1

2 as the component-wise
Gray map φ.

Let C be a Z2s-additive code of length n. We say that its binary image
C = Φ(C) is a Z2s-linear code of length 2s−1n. Since C is a subgroup of Zn

2s ,
it is isomorphic to an abelian structure Z

t1
2s × Z

t2
2s−1 × · · · × Z

ts−1

4 × Z
ts
2 , and

we say that C, or equivalently C = Φ(C), is of type (n; t1, . . . , ts). Note that
|C| = 2st12(s−1)t2 · · · 2ts . For linear codes over finite fields, there exists a basis,
since they are vector subspaces. For linear codes over a ring, we cannot give
a basis, but there exists a generator matrix with minimum number of rows.
If C is a Z

s
2-additive code of type (n; t1, . . . , ts), then the minimum number of

rows in a generator matrix of C is t1 + · · ·+ ts.



Let C be a Z2Z4-additive code of length n. The Gray map Φ : Zα
2 × Z

β
4 →

Z
α+2β
2 is defined as the identity in the first α coordinates and the component-

wise Gray map φ in the last β coordinates. We say that C = Φ(C) is a
Z2Z4-linear code of length α + 2β. Since C is a subgroup of Zα

2 × Z
β
4 , it is

isomorphic to an abelian structure Zt1
4 ×Z

t2
2 , and we say that C, or equivalently

C, is of type (α, β; t1, t2).

A binary code of length n, 2n codewords and minimum distance n/2 is
called a Hadamard code. Hadamard codes can be constructed from normalized
Hadamard matrices [1,11]. The Z2s-additive codes that, under the Gray map
Φ, give a Hadamard code are called Z2s-additive Hadamard codes and the
corresponding Z2s-linear codes are called Z2s-linear Hadamard codes.

The classification of Z4-linear Hadamard codes is given by the following
result. For any integer t ≥ 3 and each t1 ∈ {1, . . . , ⌊(t + 1)/2⌋}, there is a
unique (up to equivalence) Z4-linear Hadamard code of type (2t−1; t1, t+ 1−
2t1), and all these codes are pairwise nonequivalent, except for t1 = 1 and
t1 = 2, where the codes are equivalent to the linear Hadamard code, that
is, the dual of the extended Hamming code [9]. Therefore, the number of
nonequivalent Z4-linear Hadamard codes of length 2t is ⌊ t−1

2
⌋ for all t ≥ 3,

and it is 1 for t = 1 and for t = 2.

In the case of Z2Z4-linear Hadamard codes, it is known that for any integer
t ≥ 3 and each t1 ∈ {0, . . . , ⌊t/2⌋}, there is a unique (up to equivalence) Z2Z4-
linear Hadamard code of type (2t−t1 , 2t−1 − 2t−t1−1; t1, t+ 1− 2t1). Again, all
these codes are pairwise nonequivalent, except for t1 = 0 and t1 = 1, where the
codes are equivalent to the linear Hadamard code [4]. Therefore, the number
of nonequivalent Z2Z4-linear Hadamard codes of length 2t with α 6= 0 is ⌊ t

2
⌋

for all t ≥ 3. Actually, in [10], it is shown that each Z2Z4-linear Hadamard
code with α = 0 is equivalent to a Z2Z4-linear Hadamard code with α 6= 0, so
there are only ⌊ t

2
⌋ nonequivalent Z2Z4-linear Hadamard codes of length 2t.

In this paper, we construct Z2s-additive Hadamard codes, we show that
there are Z2s-linear Hadamard codes which are not equivalent to any Z2Z4-
linear Hadamard code, and we claim that the new constructed nonlinear Z2s-
linear Hadamard codes are pairwise nonequivalent.

2 Construction of Hadamard codes

Let Ti = {j · 2s−i : j ∈ {0, 1, . . . , 2i − 1}}, for all i ∈ {1, . . . , s}. Note that
Ts = {0, . . . , 2s − 1}. Let t1, t2,. . . ,ts be nonnegative integers with t1 ≥ 1.
Consider the matrix At1,...,ts whose columns are of the form zT , z ∈ {1} ×
T t1−1
s × T t2

s−1 × · · · × T ts
1 .



Example 2.1 For s = 3, for example, we have the following matrices:

A1,0,1 =

(

1 1
0 4

)

, A1,1,0 =

(

11 11
02 46

)

, A2,0,0 =

(

11 11 11 11
01 23 45 67

)

,

A1,1,1 =





11 11 11 11
02 46 02 46
00 00 44 44



 , A2,0,1 =





11 11 11 11 11 11 11 11
01 23 45 67 01 23 45 67
00 00 00 00 44 44 44 44



 ,

A2,1,0 =





11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
01 23 45 67 01 23 45 67 01 23 45 67 01 23 45 67
00 00 00 00 22 22 22 22 44 44 44 44 66 66 66 66



 .

LetHt1,...,ts be the Z2s-additive code generated by the matrixAt1,...,ts , where
t1, . . . , ts ≥ 0 with t1 ≥ 1. Let n = 2t−s+1, where t = (

∑s

i=1(s− i+ 1) · ti) −
1. It is easy to see that the Z2s -additive code Ht1,...,ts is of length n, have
|Ht1,...,ts| = 2sn = 2t+1 codewords and minimum (Lee) distance n. Note
that this code is of type (n; t1, t2, . . . , ts). Let H t1,...,ts = Φ(Ht1,...,ts) be the
corresponding Z2s-linear code.

Theorem 2.2 Let t1, . . . , ts be nonnegative integers with t1 ≥ 1. The Z2s-

linear code H t1,...,ts of type (n; t1, t2, . . . , ts) is a binary Hadamard code of length

2t, with t = (
∑s

i=1(s− i+ 1) · ti)− 1.

Example 2.3 Let H2,0,0 be the Z8-additive code generated by A2,0,0 given
in Example 2.1. The Z8-linear code H2,0,0 = Φ(H2,0,0) has length 32, 64
codewords and minimum (Hamming) distance 16. Therefore, it is a binary
Hadamard code.

3 Classification of Hadamard codes

Two structural properties of binary codes are the rank and the dimension of
the kernel. The rank of a binary code C is simply the dimension of the linear
span, 〈C〉, of C. The kernel of a binary code C is defined as K(C) = {x ∈
Z
n
2 : x+C = C} [3]. If the all-zero vector belongs to C, then K(C) is a linear

subcode of C. In general, C can be written as the union of cosets of K(C), and
K(C) is the largest linear code for which this is true [3]. We will denote the
rank of a binary code C as rank(C) and the dimension of the kernel as ker(C).
The Z2Z4-linear Hadamard codes can be classified using either the rank or the
dimension of the kernel, as it is proven in [9,12], where these parameters are
computed.



Theorem 3.1 For a fixed t ≥ 3, the Z2s-linear Hadamard codes H t1,...,ts,

with t1, . . . , ts ≥ 0, t1 ≥ 1, and t = (
∑s

i=1(s− i+ 1) · ti) − 1, are pairwise

nonequivalent binary codes of length 2t.

Example 3.2 Consider the Z8-linear Hadamard code H2,0,0 given in Example
2.3. Using Magma software, we have that ker(H2,0,0) = 3 and rank(H2,0,0) =
8. Therefore, the code H2,0,0 is a binary nonlinear Hadamard code. The
code H2,0,0 has binary length 32. There are three nonequivalent Z4-linear
Hadamard codes of length 32, C1, C2 and C3, of type (16; 5, 1), (16; 4, 2) and
(16; 3, 3), respectively. The codes C1 and C2 are linear, and C3 has rank 7 and
the dimension of the kernel is 3. Hence, there is no Z4-linear Hadamard code
equivalent to the Z8-linear Hadamard code H2,0,0.

Table 1 shows the number of Z8-linear Hadamard codes vs. Z2Z4-linear
Hadamard codes of length 2t. Moreover, for example, for t = 6 as we have seen
in Example 2.3, both binary Hadamard codes are nonequivalent. Therefore,
we can construct binary nonlinear Hadamard codes that are Z2s-linear codes
and are not equivalent to any Z2Z4-linear Hadamard codes.

t 3 4 5 6 7 8 9 10 11

Z8 0 0 1 2 3 5 6 8 10

Z2Z4 0 0 1 1 2 2 3 3 4

Table 1
Number of nonlinear Z8-linear and Z2Z4-linear Hadamard codes of length 2t.
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