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Abstract 40 

Plants respond locally and systemically to herbivore attack. Most of the research conducted on plant-41 

herbivore relationships at elemental and molecular levels have focused on the elemental composition 42 

or/and certain molecular compounds or specific families of defensive metabolites showing that 43 

herbivores tend to select plant individuals or species with higher nutrient concentrations and to avoid 44 

those with higher levels of defensive compounds. We performed stoichiometric and metabolomics, local 45 

and systemic, analyses in two subspecies of Pinus sylvestris under the attack by the caterpillars of the 46 

pine processionary moth, an important pest in the Mediterranean Basin.  Both pine subspecies 47 

responded locally to folivory mainly by increasing the relative concentrations of terpenes and some 48 

phenolics. Systemic responses differed between subspecies and most of the metabolites presented 49 

intermediate concentrations between those of the affected parts and unattacked trees. Our results 50 

support the hypothesis that foliar nutrient concentrations are not a key factor of an alleged plant 51 

selection by adult female processionary moths for oviposition since folivory was not associated with any 52 

of the elements analyzed. Phenolic compounds did not generally increase in the attacked trees 53 

questioning thus their commonly proposed induction by folivory attack and their anti-feeding 54 

properties. Herbivory attack produced a general systemic shift in pines, including both primary and 55 

secondary metabolisms, that was less intense and chemically different from the local responses. Local 56 

pine responses were similar between subspecies while systemic responses were more distant between 57 

them. 58 

 59 
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Introduction 68 

Carbon (C) to nitrogen (N) and C to phosphorus (P) biomass ratios are lower in herbivores than in plants 69 

(Fagan et al. 2002). Foliar nutrient concentration has been widely reported in recent decades as an 70 

important factor in the selection of foliage by insect herbivores, who usually choose plants with the 71 

highest nutrient concentrations for maintaining their internal C:N:P stoichiometric homeostasis (Elser et 72 

al. 2000; Sterner & Elser 2002; Ngai & Jefferies 2004; Cosme et al. 2011; Sardans et al. 2012) and for 73 

ensuring larval survival (Hódar et al. 2002). The location of oviposition is crucial for most herbivorous 74 

insects to ensure larval survival. However, the role of elemental composition on host selection by 75 

herbivores remains unclear (Rivas-Ubach et al. 2014; Jactel et al. 2015); other chemical and physical 76 

barriers could play even more significant roles (Tremmel & Müller 2013; Onodera et al. 2014). Onodera 77 

et al. (2014) reported that insects selected organs of a plant species with less defensive compounds than 78 

with higher nutrient concentrations, thus demonstrating the importance of defensive metabolites in 79 

host selection by herbivores. Plants have developed a wide array of resistance mechanisms against 80 

herbivores (Hanley et al. 2007; Heil 2009). Secondary plant metabolic compounds are examples of 81 

defensive compounds (Herms & Mattson 1992; Kessler & Baldwin 2001) and can be constitutive or 82 

induced by a specific stressor. Herbivorous attack induces the synthesis of defensive compounds at a 83 

local level but also at a systemic level (Karban & Baldwin 1997; Sticher et al. 1997; Heil & Bueno 2007; 84 

Heil 2009) through induced internal plant signaling (Howe & Jander 2008; Wu & Baldwin 2009) and the 85 

production of reactive oxygen species (ROS) (Orozco-Cardenas & Ryan 1999; Wu & Baldwin 2010). 86 

Studies of plant-induced chemical responses to herbivorous attack have generally focused on a 87 

single compound or families of metabolites (Sardans et al. 2011). The role of volatile organic 88 

compounds, such as terpenes, in plant defense has been extensively discussed and reviewed in recent 89 

decades (Kessler & Baldwin 2001; Mumm & Hilker 2006; Gershenzon & Dudareva 2007; Peñuelas & 90 

Staudt 2010). Low foliar terpene concentrations are often directly correlated with higher rates of 91 



 

herbivorous attack, thus showing their role in constitutive defenses (Kessler & Baldwin 2001; Hódar et 92 

al. 2004; Achotegui-Castells et al. 2013). Terpene synthesis, though, can also be induced by herbivorous 93 

attack (Pare & Tumlinson 1997; Achotegui-Castells et al. 2013; Irmisch et al. 2014). Phenolics, a diverse 94 

group of plant secondary metabolites, are commonly considered one of the most important groups of 95 

defensive molecular compounds against folivores (Bennett & Wallsgrove 1994), but evidence of their 96 

defensive role in conifers is still very limited and unclear (Mumm & Hilker 2006; Hódar et al. 2015).  97 

The metabolome is the complete set of metabolites present in an organism at a given time and is 98 

considered as the chemical phenotype of an organism (Fiehn 2002). Such metabolites include sugars, 99 

amino acids and nucleotides from primary metabolism and terpenes and phenolics from secondary 100 

metabolism. The metabolome thus represents a large variety of complex physiological processes for 101 

maintaining homeostasis and function under diverse environmental conditions. The initial functional 102 

response of an organism to biotic and abiotic stressors produces shifts in metabolomes (Peñuelas & 103 

Sardans 2009). The most recently developed metabolomic techniques in the fields of plant physiology 104 

and ecology (ecometabolomics) has not only allowed the differentiation of species-specific 105 

metabolomes (Deborde & Jacob 2014) or of specific metabolomes under different environmental 106 

situations (Robertson 2005; Bundy et al. 2009; Sardans et al. 2011; Macedo 2012; Rivas-Ubach et al. 107 

2012; Fester 2015) but has also allowed the understanding of intraspecific metabolic differences 108 

between organs (Gargallo-Garriga et al. 2014). Herbivores both increase the production of defensive 109 

chemical compounds and induce a general shift of the metabolomes of the host plant (Peñuelas & 110 

Sardans 2009; Leiss et al. 2009; Rivas-Ubach et al. 2014). Sardans et al. 2014 recently reported a 111 

systemic shift of Quercus ilex foliar metabolomes after a few hours of simulated wounding. The 112 

suitability and sensitivity of ecometabolomics for detecting local and systemic metabolomic shifts in 113 

plants under field conditions, however, are not well known but could provide an overview and 114 



 

understanding of how individual plants cope with herbivorous attack both locally and systemically, 115 

taking into account the simultaneous primary and secondary metabolisms. 116 

The caterpillar of the pine processionary moth Thaumetopoea pityocampa (Denis and 117 

Schiffermüller) (hereafter PPM) is an important defoliating pest of pines in the Mediterranean region. 118 

PPM caterpillars feed on several pine and other coniferous species (Battisti 1988; Hódar et al. 2003). The 119 

caterpillars develop through various stages from the end of summer to the beginning of spring and 120 

present an intense folivore activity that peaks in winter (Battisti et al. 2005). The PPM is geographically 121 

limited mainly by low winter temperatures (Huchon & Démolin 1971). Scots pine (Pinus sylvestris) grows 122 

at high altitudes and is exposed to low temperatures and was consequently not usually a host for the 123 

PPM (Huchon & Démolin 1971; Hódar et al. 2003), but several recent studies have shown that the global 124 

increase in temperatures have allowed a geographic and demographic expansion of the PPM, which is 125 

thus now able to access Scots pine and other pine species naturally occurring at higher altitudes (Benigni 126 

& Battisti 1999; Hódar et al. 2003; Battisti et al. 2005, 2006). Sierra Nevada Natural Park (alongside 127 

Sierra de Baza Natural Park) in Spain is the southernmost limit of distribution of Scots pine in Western 128 

Europe (Boratynski 1991). Two sympatric subspecies of P. sylvestris, P. sylvestris subsp. nevadensis 129 

(hereafter nevadensis) and P. sylvestris subsp. iberica (hereafter iberica), are currently seriously affected 130 

by the PPM (Hodar et al. 2002) to the point that PPM caterpillars constitute a serious problem for the 131 

conservation of pine populations in Sierra Nevada, especially nevadensis (Blanca et al. 1998). The rising 132 

temperatures (IPCC 2013) threaten these pines indirectly by favoring the climatic conditions for the 133 

expansion and activity of the PPM. 134 

The present study is an initial exploration of the local and systemic shifts in elemental 135 

concentrations and metabolomes induced by PPM attack in two wild pine subspecies coexisting in the 136 

same environment. This analysis allows understanding which metabolic pathways are altered as a 137 

consequence of herbivorous attack. Moreover, the elemental analyses shed light on the the still unclear 138 



 

role of foliar elemental concentrations and C:N:P:K ratios in host selection by herbivores. We sampled 139 

needles of both subspecies of Scots pine (nevadensis and iberica) in winter, when PPM folivorous 140 

activity is highest, in Sierra Nevada Natural Park where pine populations are now naturally exposed to 141 

PPM attack. The foliar elemental compositions and untargeted metabolomes were analyzed in non-142 

attacked trees, in the attacked branches of attacked trees and in the non-attacked branches of attacked 143 

trees of both subspecies.  144 

 145 

Material and Methods 146 

Study site 147 

Samples were collected in March 2011 (late winter) on Collado de Matasverdes in Sierra Nevada 148 

National Park (Granada, SE Spain) (37.05°N, 3.27°W; 1900 m a.s.l.), one of the sites where nevadensis 149 

coexists with iberica (Robledo-Arnuncio et al. 2009). The climate is Mediterranean, with hot summers, 150 

cold winters and usually a severe summer drought. The mean annual temperature is 9.8 °C, and the 151 

mean annual precipitation is 945 mm. January is the coldest month, with a mean minimum temperature 152 

of -0.1 °C, and July is the warmest, with a mean maximum temperature of 30.1 °C. Rainfall is 153 

concentrated mainly in autumn and spring. See Achotegui-Castells et al. (2013) for more details. 154 

 155 

Experimental design and sampling of needles 156 

Twenty-four adult iberica and nevadensis trees, >45 years old and >5 m in height, were randomly 157 

selected as study cases (total n = 48), 12 with no signs of caterpillar attack and 12 with caterpillars in the 158 

canopy, easily located by their winter tents (2-4 per tree). A small branch exposed to the sun was 159 

removed from the not-attacked trees, from the not-attacked area of the attacked trees and from the 160 

attacked area of the attacked trees with a pole (see Fig. S1). The needles of not-attacked trees thus 161 



 

served as controls (hereafter; Control-Ns), the not-attacked needles of the attacked trees and the 162 

attacked needles of the attacked trees were used for determining the systemic and local responses to 163 

folivory (hereafter; Systemic-Ns and Local-Ns respectively), referred to as folivory levels (FLs) throughout 164 

this article. We acknowledge that metabolomes of plants can shift due environment conditions, for this 165 

reason, in order to get robust comparative metabolomic data, needle samples were collected in a 166 

narrow window of time (from 10:30 to 14:30 local time) under sunny, non-windy and with insignificant 167 

temperature variation. A bunch of the youngest well-developed needles (over 100) from each sampled 168 

branch were collected, packed in plastic bags and quickly frozen and stored in liquid nitrogen. It took 169 

often less than 1 minute from branch sampling until needle freezing. 170 

Our selection of trees in the wild was based on the presence/absence of natural defoliation, so the 171 

pines were not assigned to the different levels of this factor completely randomly. However, this 172 

problem should not affect the reliability of our results. While many studies analyzed between-species 173 

host selection by PPM, none of them established a clear pattern of individual tree selection within 174 

species based on nutritional and/or chemical cues yet (see Jactel et al. 2015 for a recent review). Rather, 175 

it is usually admitted that moths in monospecific stands, as in our case, base their selection on  visual 176 

cues to focus on isolated or taller trees that are more likely to provide optimal microclimatic conditions 177 

(high solar radiation) for egg survival and successful development of larvae, rather than on chemical 178 

differences between individuals (Jactel et al. 2015). The assignment of attacked/unattacked levels by 179 

female moths when ovipositing can thus be reliably considered as a random selection of the prior 180 

chemistry of the trees. 181 

 182 

Foliar processing for elemental and metabolomic analyses 183 

The foliar processing is described in detail in Rivas-Ubach et al. (2013). Briefly, pine needles frozen in 184 

liquid nitrogen were lyophilized and stored in plastic cans at -20 °C. The samples were ground with a ball 185 



 

mill at 1600 rpm for 8 min (Mikrodismembrator-U, B. Braun Biotech International, Melsungen, 186 

Germany). The fine homogeneous powder produced was stored at -80 °C until the extraction of the 187 

metabolites for analyses by liquid chromatography-mass spectrometry (LC-MS).  188 

 189 

Elemental analysis 190 

C and N concentrations were determined for 1.4 mg of sample powder by elemental analysis using 191 

combustion coupled to gas chromatography with a CHNS-O Elemental Analyser (EuroVector, Milan, 192 

Italy). P and K were extracted by acid digestion in a MARSXpress microwave reaction system (CEM, 193 

Mattheus, USA) under high temperature and pressure (Sardans et al. 2010). Briefly, 250 mg of sample 194 

powder were placed in a Teflon tube with 5 mL of nitric acid and 2 mL of H2O2. The digested material 195 

was transferred to 50-mL flasks and resuspended in Milli-Q water to a final volume of 50 mL. After 196 

digestion, the P and K concentrations were determined by ICP-OES (Optic Emission Spectrometry with 197 

Inductively Coupled Plasma) (Perkin-Elmer Corporation, Norwalk, USA). See Elemental Analyses section 198 

of the supporting information for more details. 199 

 200 

Extraction of metabolites for LC-MS analysis 201 

Polar and semi-polar metabolites were extracted as described by t’Kindt et al. (2008) with some 202 

modifications. Briefly, two sets of 2-mL centrifuge tubes were labeled: set A for the metabolite 203 

extractions and set B for the extracts from set A. One hundred milligrams of needle powder for each 204 

sample were weighed into each tube of set A, and 1 mL of extractant (MeOH/H2O (80:20)) was added. 205 

All tubes were vortexed for 15 min, sonicated for 5 min at 24 °C and then centrifuged at 23 000 × g for 5 206 

min. After centrifugation, 0.6 mL of the supernatant from each tube of set A was transferred to the 207 

corresponding 2-mL centrifuge tube of set B. This procedure was repeated to perform two extractions of 208 



 

each sample. The tubes of set B were centrifuged at 23 000 × g for 5 min, and the extracts were collected 209 

by crystal syringes, filtered through 0.22-µm microfilters and transferred to a labeled set of high 210 

performance liquid chromatography (HPLC) vials. Extracts were stored at -80 °C until the LC-MS analysis. 211 

 212 

LC-MS analysis 213 

Liquid chromatography was performed with a reversed-phase C18 Hypersil gold column (150 × 2.1 mm, 214 

3 µm particle size; Thermo Scientific (150 × 2.1 mm, 3µ particle size; Thermo Scientific,  Waltham, 215 

Massachusetts, USA) and a Dionex Ultimate 3000 HPLC system (Thermo Fisher Scientific/Dionex RSLC, 216 

Dionex, Waltham, USA) at a constant temperature of 30 °C and a flow rate of 0.3 mL min-1. Five 217 

microliters of each sample were injected. We used water (0.1% acetic acid) (A) and acetonitrile (B) as 218 

mobile phases. Both A and B were previously filtered and degassed for 10 min in an ultrasonic bath. The 219 

elution gradient was initiated at 90% A  (10% B) and held for 5 min, then the solvent was linearly 220 

changed from 90% A (10% B) to 10% A (90% B) from 5 to 25 minutes. The gradient then returned linearly 221 

to the starting conditions from 25 to 30 minutes. The gradient was then held at these conditions for 5 222 

minutes to re-equilibrate the chromatographic system prior to the analysis of the next sample.  223 

HPLC was coupled to an LTQ Orbitrap XL high-resolution mass spectrometer (Thermo Fisher 224 

Scientific, Waltham, USA) equipped with an HESI II (heated electrospray ionization) source for mass 225 

spectrometric analyses. All samples were injected twice, once with the HESI operating in positive 226 

ionization mode (+H) and once in negative ionization mode (-H). The mass spectrometer was operated in 227 

FTMS (Fourier Transform Mass Spectrometry) full-scan mode with high-mass resolution (60 000) and a 228 

mass range of 50-1000 m/z. For both ionization modes, capillary temperature was set at 275 ᵒC, sheath 229 

and auxiliary gas flow rates were operated at 35 and 5 respectively (arbitrary units). Heater temperature 230 

was 250ᵒC for +H and 150ᵒC for -H. Capillary voltage operated at 4 and 10 V for +H and –H respectively.  231 

Tube lens operated at 100 and -125 V for +H and –H ionization modes respectively. A caffeine standard 232 
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was injected every 10 samples to monitor the resolution and sensitivity of the spectrometer. The 233 

resolution was further monitored with lock masses (phthalates). Blank samples were also analyzed 234 

during the sequence. Auto sampler temperature was set at 4ºC. See LC-MS analyses section of the 235 

supporting information for more details. 236 

 237 

Processing of LC-MS chromatograms 238 

The raw data files obtained from the spectrometer were processed with MZmine 2.17 (Pluskal et al. 239 

2010). The chromatograms of the positive and negative modes were always treated separately. All 240 

chromatograms were first baseline corrected and posteriorly ion chromatogram lists were extracted. 241 

Those ions chromatogram were thus deconvoluted, retention time normalized, aligned and 242 

automatically assigned (see Table S1 for parameter details). Metabolite assignation is putative since it 243 

was based on total exact mass of the metabolite, exact mass of the fragments and retention time using 244 

the measurements of standards in the LC-MS Orbitrap system (See table S2 for assigned metabolites). 245 

However, high resolution and RT allow reducing the number of false positives considerably. The 246 

numerical data sets were then exported to CSV format and posteriorly filtered. Due chromatogram 247 

builder and deconvolution, diverse ions with the same mass may present slightly different retention 248 

times among them, for this reason all those identified variables assigned to a same molecular compound 249 

were summed to obtain only one variable per metabolite. With the used chromatographic method, 250 

certain groups of carbohydrates with the same molecular mass co-elute at the same retention time 251 

making thus impossible to differentiate them at MS1, for this reason, different carbohydrates were 252 

classified in groups according their mass and retention time (Hexoses: glucose, fructose, mannose and 253 

galactose, Pentoses: arabinose, ribose and xylose, Disaccharides: Saccharose and maltose, Group of 254 

sugars 1 (S1): deoxi-gucose, deoxi-galactose and D-fucose, Group of Sugars 2 (S2): sorbitol and mannitol, 255 

and Group of sugars 3 (S3): xylitol and arabitol). Outliers and variables present in fewer than 8 256 



 

individuals were removed from the data set. Outlier variables were defined as measurements 3-fold 257 

higher than the 3rd quartile or 3-fold lower than the 1st quartile of each cell factor. The numerical values 258 

of the variables of the data sets correspond to the absolute peak areas of the chromatograms detected 259 

by the spectrometer. The area value of the deconvoluted chromatograms is directly proportional to the 260 

concentration of the variable, so it is a suitable value for comparative analyses as demonstrated in 261 

several metabolomics studies (Rivas-Ubach et al. 2012, 2013, 2014; Lee & Fiehn 2013; Mari et al. 2013; 262 

Leiss et al. 2013; Gargallo-Garriga et al. 2014) although it does not reflect the real concentration in 263 

terms of weight of metabolite per weight of the sample. For this reason, we use the term relative 264 

concentration when referring to differences in the amount of metabolites among the studied factors 265 

(season, subspecies and FL).  266 

 267 

Statistical analyses 268 

We first performed Shapiro and Levene’s tests on all variables to assess the normality and homogeneity 269 

of the variances, respectively. All identified metabolites were normally distributed, and any unidentified 270 

metabolomic variable that was not normally distributed was removed from the data set to comply with 271 

the assumptions of the statistical tests. After the processing and filtering of chromatograms, 43 (0.57%) 272 

unidentified variables were not normally distributed in the dataset. The main dataset of this study is 273 

composed by two categorical independent variables, subspecies (iberica and nevadensis) and FLs 274 

(Control-Ns, Systemic-Ns and Local-Ns), and 7595 dependent continuous variables, nine of which were 275 

elemental concentrations and stoichiometric variables (C, N, P, K, C:N, N:P, C:P, N:K and K:P) and 7586 of 276 

which were metabolomic variables, including 64 identified by our plant metabolite library.  277 

The whole dataset, including the assigned and non-assigned metabolomic variables, (7595 variables 278 

in total) of the P. sylvestris needles were subjected to PERMANOVA analysis using the Bray curtis 279 

distance to test the overall stoichiometric and metabolomic differences between subspecies and FLs. 280 



 

The number of permutations was set at 10 000. One-way ANOVAs between subspecies and FL were also 281 

performed for each individual stoichiometric or metabolite variable. ANOVAs of known metabolites are 282 

shown in table S3 and retention time and m/z for the 200 unknown metabolomic variables (ions) 283 

presenting the largest significant differences of means between SystemicNs and Control-Ns and 284 

between Local-Ns and Control-Ns are represented in the table S4. Benjamini-Hochberg correction 285 

algorithm was applied to the entire list of one-way ANOVAs (7595) for a rigorous false positive control. A 286 

heat map with the FL means of all identified variables was constructed for each subspecies. All means of 287 

each variable for each FL were scaled to the same range of values for producing a good graphical 288 

representation of the heat maps.  289 

We counted the following for each subspecies: i) the number of metabolomic variables the Control-290 

Ns had intermediate values between those of the Systemic-Ns and Local-Ns, ii) the number of 291 

metabolomic variables the Systemic-Ns had intermediate values between those of the Control-Ns and 292 

Local-Ns and iii) the number of metabolomic variables the Local-Ns had intermediate values between 293 

those of the Control-Ns and Systemic-Ns. The data was subsequently analyzed by chi-square tests to 294 

detect if any of the FLs (Control-Ns, Systemic-Ns or Local-Ns) presented overall intermediate 295 

metabolomes between those of the other two. The expected probability under the assumption of equal 296 

probability of intermediate values for each of the three FLs should thus be 1/3 of the total studied 297 

variables.  298 

The whole datasets of each one of the subspecies, including both assigned and unassigned 299 

metabolomic variables, were subjected to principal component analysis (PCA) to identify the shifts in 300 

foliar stoichiometry and metabolome between FLs for nevadensis and iberica separately. The score 301 

coordinates of the variables of the PCAs were subjected to one-way ANOVAs to identify statistical 302 

differences among the groups (see Supporting Information Rivas-Ubach et al. 2013). 303 



 

All statistical analyses were performed with R (R Core Team 2013). Benjamini-Hochberg P value 304 

corrections and Shapiro and chi-square tests were performed with the p.adjust, shapiro.test and 305 

Chisq.test functions, respectively, in the “R stats” package (R Core Team 2013). Levene’s test was 306 

performed with the leveneTest function in the “car” package (Fox & Weisberg 2011). The PERMANOVA 307 

analysis was conducted with the adonis function in the “vegan” package (Oksanen et al. 2013). Heat 308 

maps were constructed with the heatmap.2 function in the “gplots” package (Gregory 2015). The PCAs 309 

were performed by the pca function of the R “mixOmics” package (Dejean et al. 2013). The matrix data 310 

included in the PCAs was scaled by setting the parameter SCALE = T of the pca function in R. 311 

  312 
 313 

Results 314 

The PERMANOVA of the entire dataset identified significant differences in the overall stoichiometric and 315 

metabolomes among all the different levels of the studied factors (subspecies and FLs) and their 316 

interactions (Table 1).  317 

One way ANOVAs of all 73 known variables identified several significant differences (p < 0.05) after 318 

Benjamini-Hochberg correction between Control-Ns, Systemic-Ns and Local-Ns in both subspecies; 32 319 

(43.84%) for iberica and 31 (42.5%) for nevadensis (Fig. 1; Table S3). The heat map with the relative 320 

concentrations between FLs of the 73 known variables showed that Systemic-Ns of both subspecies 321 

were stoichiometrically and metabolically closer to Control-Ns than to Local-Ns (Fig. 1). Chi-square tests 322 

on the number of intermediate relative concentrations of each variable of each FL within each 323 

subspecies and season showed that Systemic-Ns had intermediate relative metabolite concentrations 324 

between those of Control-Ns and Local-Ns in 3486 of 7595 (45.9%) metabolomic variables in iberica and 325 

in 3259 of 7595 (42.9%) metabolomic variables in nevadensis, indicating that the overall intermediate 326 



 

response was not a random effect (χ2 = 543.44, P < 0.0001 for iberica and χ2 = 332.58, P < 0.0001 for 327 

nevadensis) (Table 2).   328 

The PCAs of each subspecies clearly separated the FLs (Fig. 2). The first four PCs of the PCA for 329 

iberica explained a 31.7% of the total variance, 14.4% by PC1 and 7.3% by PC2 (Fig. 2). For nevadensis, 330 

the first four PCs of the PCA explained a 30.6% of the total variance, 12.3% by PC1 and 7.8% by PC2 (Fig. 331 

2). Case plot of PCAs in both subspecies represented Systemic-Ns in an intermediate position between 332 

Control-Ns and Local-NS, but closer to Control-Ns (Fig. 2A, C). 333 

The foliar stoichiometry of both subspecies did not differ among the FLs, except Control-Ns of 334 

nevadensis which had the highest K:P ratio. The Control-Ns and Systemic-Ns of both subspecies 335 

generally had higher relative foliar concentrations of amino acids. Adenine and guanine also tended to 336 

be higher in Control-Ns and Systemic-Ns of both subspecies, but adenosine was highest only in Control-337 

Ns of nevadensis. Relative concentrations of the various sugars also differed as a function of FL and 338 

subspecies, but Control-Ns and Systemic-Ns of both subspecies generally had higher relative 339 

concentrations of hexoses and Xylitol/Arabitol (the latter two categorized as group 3 sugars), and Local-340 

Ns had higher relative concentrations of disaccharides. The identified organic acids typically related with 341 

tricarboxylic acid cycle did not show major shifts among FLs of both subspecies, but especially in 342 

nevadensis which any of them changed significantly after Benjamini-Hochberg correction. Succinic acid 343 

increased significantly in Local-Ns (Figures 1 and 2). Control-Ns and Systemic-Ns of both subspecies had 344 

higher relative concentrations of most phenolics, but Local-Ns of iberica had higher relative 345 

concentrations of catechin, epicatechin, epigallocatechin and vitexin while Local-Ns of nevadensis only 346 

had higher relative concentrations of vitexin. Local-Ns also had higher relative concentrations of d-347 

tocopherol and eugenol in both subspecies. Caryophyllene and carvone (terpenes) were also at higher 348 

relative concentrations in the Local-Ns of both subspecies. Control-Ns and Systemic-Ns in both 349 

subspecies had the highest relative concentrations of growth factors such as abscisic acid.  350 



 

 351 

Discussion 352 

Our results show clearly that pine subspecies and folivory levels presented different metabolome 353 

structure (Table 1, Figures 1 and 2). Commonly, responses of plants to folivory have been focused on 354 

changes in concentrations of defensive compounds (Karban & Baldwin 1997; Sticher et al. 1997; Heil & 355 

Bueno 2007; Heil 2009); however, our results showed that those shifts are also produced in the whole 356 

metabolome at both local and systemic levels of the plant.  357 

Elemental composition of needles 358 

PPM caterpillars only feed in the trees they hatch. The concentrations of N, P and K in pine needles were 359 

not related with PPM oviposition since the FLs did not differ significantly in either pine subspecies 360 

(Figures 1 and 2). Some studies have reported herbivore preference for plants with higher 361 

concentrations of N (Cosme et al. 2011; Loaiza et al. 2011) or P (Cosme et al. 2011), even within the 362 

same plant species. If elemental composition of needles were a key factor for stand selection, we would 363 

expect to find differences between needles of attacked and non-attacked trees. PPM is able to feed on 364 

different species of conifers (Battisti 1988; Hódar et al. 2003) which may differ in foliar elemental 365 

concentrations, however, our study was performed in a monospecific forest with two subspecies of 366 

Scots pine. The lack of significance in our elemental and stoichiometric results could be thus mainly 367 

interpreted by two different hypotheses: 1) PPM females were not able to discriminate foliar 368 

concentrations of C, N, P and K between individuals of either subspecies for oviposition, in agreement 369 

with other studies performed with this Lepidoptera species (Hódar et al. 2002; Jactel et al. 2015). This 370 

could be due the very short reproductive life of adult female moths, often mating and ovipositing within 371 

the first 24 hours after pupal emergence (Hódar et al. 2003). 2) Although adult female moths of PPM 372 

could discern the elemental differences among individuals, other factors may play more important roles 373 



 

for stand selection since there were no differences in  foliar concentrations of C, N, P and K, as other 374 

studies had also reported (Tremmel & Müller 2013; Onodera et al. 2014). However, although further 375 

research is still necessary regarding the role of elements in the plant selection by folivores, our results of 376 

wild pine populations and recent literature of PPM suggest that the concentrations of C, N, P and K are 377 

not a key factor in stand selection for female PPM moths, at least in selection of stands within the same 378 

plant-host species. 379 

 380 

Local plant responses to PPM attack 381 

Local PPM attack induced several different metabolomic responses in both subspecies (Table. 1). 382 

Phenolic compounds have usually been associated as important defensive molecular compounds in 383 

response to herbivorous attack, especially in conifers (Swain 1977; Franceschi et al. 2005). However in 384 

this study, Control-Ns and Systemic-Ns of both subspecies were the groups presenting the highest 385 

relative concentrations of most of the 18 phenolic compounds identified by our metabolomic analyses 386 

(Figures 1). Vitexin, epicatechin, catechin, luteolin, robinetin, quercetin, epigallocatechin and, myricetin 387 

are examples of phenolics that changed significantly amongst the different FLs in one or both subspecies 388 

(Figures 1). Local-Ns of both subspecies had the highest relative concentrations of vitexin and Local-Ns 389 

of iberica had also higher relative concentrations of catechin, epicatechin and epigallocatechin in Local-390 

Ns (Figures 1 and 2; Table S3). All those compounds have been described as flavonoids with strong 391 

antioxidant properties that protect lipid membranes and other cellular structures from peroxidation. 392 

They decrease the oxidative stress produced by the accumulation of cellular H2O2 and other ROS (Rice-393 

Evans et al. 1996; Kim et al. 2005) and may be directly induced by folivory (Orozco-Cardenas & Ryan 394 

1999; Wu & Baldwin 2010). The fact that most phenolics did not increase in Local-Ns suggests that these 395 

compounds are not necessarily induced by the attack of PPM and supports the premise that phenolics 396 

have multiple and diverse, even more significant, functions in plants rather than only defensive 397 



 

properties against biotic stressors (Treutter 2006). In agreement with our results, some studies with 398 

lepidopteran folivores neither detected direct relationships between folivory rate and phenolic 399 

allocation (Zou & Cates 1997; Hódar et al. 2004; 2015). Other plant-herbivore studies have reviewed a 400 

wide variety of phenolic functions diverging from defensive roles (Close & McArthur 2002; Treutter 401 

2006; Rivas-Ubach et al. 2014). Our metabolomic results, though, indicated that local-Ns of both 402 

subspecies activate metabolic pathways related with oxidative stress. PMM attack induced increases in 403 

tocopherol (vitamin E) relative concentrations in needles, with the highest values in the needles of Local-404 

Ns of both subspecies (Figures 1 and 2). Tocopherols are among the most important antioxidants, 405 

protecting the stability of biomembranes from the effects of ROS (Munné-Bosch & Peñuelas 2004; Falk 406 

& Munné-Bosch 2010) by reacting with them and forming a tocopheryl radical that is then reduced by 407 

hydrogen donors (Traber & Stevens 2011). The higher concentration of tocopherols and some end-408 

product flavonoids (epicatechin, catechin, vitexin) in Local-Ns of both subspecies support the idea of 409 

antioxidant requirement of the attacked needles.  However, other end-products such as luteolin, 410 

robinetin, quercetin, and myricetin showed lowest concentrations in Local-Ns in one or both subspecies 411 

which thus questions their induction by herbivore attack and consequently, the anti-feeding role of 412 

those flavonoids (Figure 1). Even though the common association of phenolics with deterrent function 413 

against herbivores (Swain 1977; Franceschi et al. 2005), our results suggest that phenolics should not be 414 

considered only as a group of compounds with defensive properties. Further research more focused in 415 

the anti-feeding properties of phenolic is still required (Close and McArthur 2002), especially in conifers 416 

(Mumm & Hilker 2006).  417 

Metabolomic analyses also suggested certain non-phenolic compounds related to herbivore attack. 418 

Eugenol was found in higher relative concentrations in needles of Local-Ns of both subspecies (Figures 1 419 

and 2). Eugenol is a secondary metabolite described as an essential oil with toxic properties against 420 

nematodes and insects (Sangwan et al. 1990; Isman 2000) and acting as an inhibitor of acetylcholine 421 



 

esterase (Maffei et al. 2011). On the other hand, Local-Ns had the highest relative concentrations of the 422 

two identified terpenes; carvone and caryophyllene (Figures 1 and 2), thus suggesting that their 423 

presence was induced by local attack. Terpenes are a varied class of organic secondary metabolites 424 

produced by diverse plants and are typically associated with direct and indirect defenses to insect attack 425 

(Peñuelas & Llusià 2001; Mumm & Hilker 2006; Gershenzon & Dudareva 2007; Achotegui-Castells et al. 426 

2013). Terpene production is a principal constitutive and induced defensive chemical mechanism, 427 

together with the production of phenolics, against insect folivory, especially in pines and other conifers 428 

(Mumm & Hilker 2006). Carvone is an oxygenated monoterpene with certain repellent and antifeedant 429 

properties in conifers against coleopterans and lepidopterans (Klepzig & Schlyter 1999; Schlyter et al. 430 

2004). Increases in caryophyllene, a volatile sesquiterpene, though, have been reported in wild plants in 431 

response to herbivorous damage (Gouinguené et al. 2001). Caryophyllene has been described to attract 432 

parasitoids or predators and thus act as indirect defensive compound in both above and belowground 433 

parts of the plant in response to the injuries of folivores (Rasmann et al. 2005; Köllner et al. 2008).  434 

Some studies have reported increases in glucose (hexose) in wounded plants (Widarto et al. 2006; 435 

Lafta & Fugate 2011; Peñuelas et al. 2013) that may be involved in the increases in the assimilation and 436 

efficiency of photosynthetic C (Seco et al. 2011; Sardans et al. 2014) and the changes in carbohydrate 437 

metabolism produced by the defensive responses against wounding (Ehness et al. 1997; Seco et al. 438 

2011). Hexoses did not increase in the needles of the Local-Ns in our study, but the relative 439 

concentrations of disaccharides were highest in Local-Ns in both subspecies (Figures 1 and 2). Ness (Ness 440 

2003) reported a stimulation of the rates of sucrose excretion in leaves damaged by folivores that 441 

attracted insect predators, indicating an indirect defensive mechanism. The attraction of other insect 442 

visitors due to the increase in disaccharides in our study could indicate an indirect defensive strategy in 443 

Scots pine, but the roles of the various sugars released under herbivorous attack still remain unclear and 444 

warrant further research. 445 



 

 446 

Systemic plant responses to PPM attack 447 

The heat maps (Fig. 1) and PCAs (Fig. 2) identified significant differences in several metabolites among 448 

folivory levels in both subspecies, demonstrating the general systemic response induced by PPM attack. 449 

Interestingly, chi-square tests on the number of intermediate metabolite relative concentrations in both 450 

subspecies (Table 2) indicated that Systemic-Ns tended to have intermediate metabolomes between 451 

those of Control-Ns and Local-Ns. This results is also corroborated by the dendograms of FLs in the heat-452 

map analyses (Fig. 1) and case plots of PCAs, which Systemic-Ns are represented between Control-Ns 453 

and Local-Ns (Fig. 2 ). Furthermore, Systemic-Ns in both subspecies clustered closer to Control-Ns than 454 

to Local-Ns in the case plot of the PCAs showing thus major induced metabolomic shifts in Local-Ns than 455 

in Systemic-Ns. Even so, metabolomic shifts between Systemic-Ns and Control-Ns were still significantly 456 

different (Fig. 2A, C). These results supported the premise that local PPM attack is able to trigger 457 

significant responses in Scots pine systemically by shifting a large proportion of the overall pine 458 

metabolomes (Sticher et al. 1997; Heil & Bueno 2007; Heil 2009). 459 

 Ecometabolomics has been an excellent tool for the simultaneous detection of general shifts of 460 

metabolomes induced by herbivorous attack, including primary and secondary metabolisms rather than 461 

only molecular compounds directly linked to the systemically acquired resistance (Gorlach 1996; Sticher 462 

et al. 1997; Heil & Bueno 2007; Erb et al. 2011). From the assigned metabolites, we did not detect 463 

several significant shifts of Systemic-Ns compared to Control-Ns in iberica (Table S3). An increase in the 464 

relative concentrations of flavones (Kim et al. 2005) was one clear systemic response in iberica. 465 

Although not statistically significant due its metabolomic proximity to Control-Ns, Systemic-Ns in iberica 466 

showed increases in the relative concentrations of eugenol, catechin, vitexin, epigallocatechin (Rice-467 

Evans et al. 1996), and terpenes (Rasmann et al. 2005) (Figures 1 and 2, Table S3), compounds that 468 

increased significantly in Local-Ns in iberica, supporting again the presence of a systemically acquired 469 



 

resistance. The systemic response in nevadensis nevertheless differed respect to iberica and consisted of 470 

significant higher relative concentrations of choline, robinetin and flavones relative to Control-Ns 471 

(Figures 1 and 2, Table S3). Choline has proven to act as an osmolite after membrane injury (McNeil et 472 

al. 2001), and robinetin is a flavonol with strong antioxidant properties (Sroka 2005). Similarly to 473 

Systemic-Ns of iberica, Systemic-Ns of nevadensis also showed slight increases in terpenes and eugenol 474 

respect to Control-Ns although still not significant (Fig. 1). Interestingly, the relative concentrations of 475 

several amino acids were higher in the Systemic-Ns of nevadensis, such as proline, a multifunctional 476 

amino acid with important antioxidant properties (Szabados & Savouré 2010). This overall amino acid 477 

shift did not occur in Systemic-Ns of iberica (Figures 1 and 2, Table S3). 478 

 479 

Conclusions 480 

· None of the concentrations of the elements analyzed (N, P or K) differed between attacked and non-481 

attacked trees. Although, there is no evidence of within-species selection in adult female processionary 482 

moths of PPM for oviposition, our results support the hypothesis that foliar concentrations of N, P or K 483 

are probably not key components of an alleged within-species selection by PPM moths.  484 

· Each folivory level (Control-Ns, Systemic-Ns, Local-Ns) showed increases of different phenolic 485 

compounds which questions their induction produced by folivory attack and the role of phenolics as a 486 

general group with deterrent properties .  487 

· Local-Ns had higher relative concentrations of terpenes such as carvone and caryophyllene, which were 488 

likely more directly involved as a defensive function against folivores.  489 

· The non-attacked branches of the attacked trees (Systemic-Ns) had metabolomes intermediate 490 

between those of the non-attacked trees (Control-Ns) and the attacked branches of the attacked trees 491 

(Local-Ns), demonstrating an induced gradual response of metabolomes  of the entire plant (systemic 492 

plant response) front herbivore attack.  493 



 

· There were more metabolomic similarities between Local-Ns of both subspecies than between 494 

Systemic-Ns.  495 

· The metabolomic techniques were sufficiently sensitive to distinguish between the local and systemic 496 

responses in both primary and secondary metabolisms of the trees, demonstrating their power as 497 

excellent tools for ecological studies. 498 

 499 
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Table 1. Full factorial PERMANOVA model with all stoichiometric and metabolomic variables: 773 

subspecies, folivory level (FL) and subspecies*FL. 774 

 775 

 
Df F.Model Pr(>F) 

Subspecies 1 10.0 <0.0001 

Folivory level (FL) 2 5.98 <0.0001 

Subspecies*FL 2 3.37 <0.0001 

Residuals 66 
  

Total 71 
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Table 2. Chi-square analyses comparing the expected and observed number of variables with 794 

intermediate means for each folivory level (FL), using an expected value of 33.3% of the total observed 795 

compounds. This expected value was based on the neutral supposition that each of the three levels of 796 

folivory should have the same probability of having intermediate concentrations of each variable (2530 797 

variables for each FL). The proportion of metabolites for each group with intermediate means respect to 798 

the total is represented in bold. 799 

 800 

 Number of variables with intermediate relative concentrations    

 Observed for each folivory level Expected for each folivory level   

 Control-Ns Systemic-Ns Local-Ns  χ
2
 P 

iberica 
1985 

(26.1%) 
3486 

(45.9%) 
2124 
(28%) 

2530 
(33.3%) 543.44 < 0.0001 

nevadensis 
2326 

(30.6%) 
3259 

(42.9%) 
2010 

(26.5%) 

2530 
(33.3%) 332.58 < 0.0001 
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