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Abstract 

Growth in production and use of nanoparticles (NPs) will result increased 

concentrations of these in industrial and urban wastewaters and, consequently, in 

wastewater-treatment facilities. The effect of this increase on the performance of the 

wastewater-treatment process has not been studied systematically and including all the 

microbial communities involved in wastewater treatment. The present work 

investigates, by using respiration tests and biogas-production analysis, the inhibitory 

effect of four different commonly used metal oxide (CeO2 and TiO2) and zero-valent 

metal (Ag and Au) nanoparticles on the activity of the most important microbial 

communities present in a modern wastewater-treatment plant. Specifically, the actions 

of ordinary heterotrophic organisms, ammonia oxidizing bacteria, and thermophilic and 

mesophilic anaerobic bacteria were tested in the presence and absence of the 

nanoparticles. In general, CeO2 nanoparticles caused the greatest inhibition in biogas 

production (nearly 100%) and a strong inhibitory action of other biomasses; Ag 

nanoparticles caused an intermediate inhibition in biogas production (within 33-50%) 

and a slight inhibition in the action of other biomasses, and Au and TiO2 nanoparticles 

caused only slight or no inhibition for all tested biomasses.  

 

Keywords: Inorganic nanoparticles; inhibition; respirometry; anaerobic biomass; 

ammonia oxidizing bacteria; ordinary heterotrophic organisms. 
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1. Introduction 

The use of nanoparticles (NPs) in many industrial applications including 

commercial products and water treatment has continuously increased in recent years 

[1,2]. This increased usage means that an increasing number of nanoparticles will be 

released to the environment through production processes or after their use [3,4]. 

Uncertainty about the consequences of the presence of the nanoparticles on the 

environment has initiated studies on the effects of nanomaterials by some facilities that 

use microorganisms for environmental restoration [5,6] and, in general, on the flow of 

nanoparticles through production processes and their various applications [7]. Several 

studies have been reported which aimed to determine the toxicity of nanoparticles on 

different sentinel organisms such as Daphnia magna [8], bioluminescent bacteria, and 

different plant seeds [9-12].  

 There have been some studies on the entire lifecycle of nanoparticles including 

production, use, and release into the environment, for example, for silver and zinc oxide 

[13,14]. In these studies it was shown that a portion of the released nanoparticles finally 

ends up in the wastewater-collection systems and then enters biological wastewater-

treatment plants (WWTP) [15,16]. Currently, the concentration of silver in WWTP has 

been calculated to be in the range of 2 to 18 µg L-1 [13]. Titanium nanomaterial 

concentration has been measured in WWTP influent at 185 µg L-1 [17]. Different 

treatment operations (bar screen, grit removal, primary settling, etc.) could help to 

remove nanoparticles from wastewater [4], however, it has been demonstrated that 

nanoparticles can also be found in sewage sludge [18]. 

 Little work has been carried out on the effect of nanoparticles on the different 

microbial populations that can exist in a biological WWTP. Cerium oxide nanoparticles 
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and heterotrophic bacteria [19] or silver nanoparticles and nitrifying bacteria [20-24] are 

examples of the model nanoparticles and the model biomass assayed. Both 

respirometric assays and scanning transmission electron microscopy have been used to 

demonstrate the interaction between nanoparticles and such microorganisms [19,20]. 

Information gleaned in this way should help in the regulation of production and use of 

nanoparticles as well as to estimate the potential risk on environment. Only through 

such rigorous studies can the rational development of nanotechnology be implemented 

[4,5].  

 The aim of this work is to provide new data to evaluate if there is an inhibitory 

effect in the use of two different metal oxide (CeO2 and rutile TiO2) and two zero-valent 

metal (Ag and Au) nanoparticles on the activity of the most important microbial 

communities involved in a WWTP. The overall effect on the facility where these 

microbial communities are used is also discussed. The choice of materials and the 

methods for their preparation and synthesis was made to model even the most complex 

materials used at present. We adjusted the final characteristics of the synthesized NPs 

(size between 10 and 30 nm, and similar in shape) to be comparable as far as possible 

with each other. With the aim of observing the maximum toxicological effect that 

nanoparticles can produce in the biological activity of the microbial communities 

studied and of calculating the EC50 value, higher concentrations than those generally 

found in a WWTP were also tested. Knowledge of the EC50 value for each NP should 

enable us to anticipate changes in the performance of practical wastewater treatment 

processes when such concentrations may arise; after accidental spill, for example.  

 

2. Materials and methods 

2.1 Preparation of nanoparticles  
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Four different kinds of metal oxide and zero-valent metal nanoparticles were 

synthesized in the aqueous phase, using milli-Q grade water. All reagents were 

purchased from Sigma-Aldrich and used as received. All the synthesis procedures were 

based on existing ones available in the scientific literature, with modifications to adapt 

to the large-scale (from milligram to gram).  

 For cerium oxide nanoparticles (CeO2-NPs), the procedure was based on ref. 

[25]. Ce3+ ions from Ce(NO3)3 were oxidized under alkaline pH conditions to Ce4+ 

using hexamethylenetetramine (HMT). CeO2 nanocrystals precipitated and were 

stabilized in water with the same reagent (HMT), which forms a double electrical layer 

to prevent nanoparticle aggregation.  

For titanium dioxide nanoparticles (TiO2-NPs), the synthesis procedure was 

based on ref. [26]. Titanium tetrachloride (TiCl4) was decomposed at acidic pH (from 2 

to 6). Afterwards, the growth of the nanocrystals was carried out in an oven at 70ºC. 

Finally, a purification step involving centrifugation and re-suspension with 

tetramethylammonium hydroxide (TMAOH) was used to stabilize the nanoparticle 

dispersion. Depending on the pH during the growing step, the obtained size and shape 

of the TiO2 varied from very small and sphere-like (from 5 nm, not used in this work) to 

larger particles (around 10 nm, used in this work). 

The 10-nm gold nanoparticles (Au-NPs) were obtained by using a procedure 

based on ref. [27], which consisted of the fast injection of 1 mL of a 0.01% hydrogen 

tetrachloroaureate (III) (HAuCl4) solution to a boiling solution containing 100 mL of 

0.8 % trisodium citrate (Na3C6H5O7) under vigorous stirring.  

The same method was used to obtain the silver nanoparticles (Ag-NPs): 

injection of trisodium citrate to a solution of 1 mM silver nitrate (AgNO3) in 
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deoxygenated water resulting in a final concentration of 10 mM yielded Ag-NPs of 

about 30 nm average diameter.  

 The characteristics of the nanoparticles and the stabilizers used in this work are 

shown in Table 1. The pH values of all the nanoparticles were typically slightly alkaline 

and these were adjusted to 7.5 using citric acid (1 M) before the toxicity experiments, to 

emulate conditions in the WWTP. Some strong acids were initially used for adjustment 

of pH but these rapidly caused nanoparticle agglomeration, probably because of the 

rapid formation of acidic zones prior to total acid dilution. It seems that citric acid, 

which is a very weak acid, does not alter the structure of nanoparticles and thereby 

prevents their agglomeration and precipitation, which can be further avoided for more 

than one month by using a suitable stabilizer [28]. The amount of sodium citrate 

required to sufficiently adjust the pH value was very small (few milligrams), which 

means that the contribution to the biochemical oxygen demand (BOD) derived from this 

compound was negligible. Nanoparticles have a high surface energy and the use of 

HMT, sodium citrate, and TMAOH as nanoparticle stabilizers is needed to provide 

sufficient electrostatic charge on the surface of the nanoparticles to avoid aggregation. 

At the concentrations used, the stabilizers were found to be non-toxic towards human 

cell lines [29] and other microbial organisms similar to those tested in this study [10] 

although, to our knowledge, their toxicity on the specific microbial communities of 

WWTP still has not been tested. The specific effect of these stabilizers on the activity of 

all microbial populations considered in this study, which are necessary to maintain the 

nanomaterial structure during the toxicity tests, were separately determined by means of 

control experiments for each microbial community tested.  

 

2.2. Characterization and stability of nanoparticles 
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NPs were analyzed by using dynamic light scattering (DLS) to determine their 

size distribution and whether agglomeration had occurred at any moment during the 

experimental runs (more than 1 month). DLS is a well-known tool for determining the 

hydrodynamic diameter of colloidal particles. A Malvern ZetaSizer Nano ZS Instrument 

(Malvern Instruments Ltd, UK) was used, operating at a light-source wavelength of 532 

nm and a fixed scattering angle of 173° for detection. Zeta potential (ZP) measurements 

were also performed to study the surface properties and any changes in the surface after 

the exposure experiments. ZP is a useful technique to study stability of nanoparticles 

and their surface charge when they are electrostatically stabilized. X-ray diffraction 

spectra (using a PANalytical X´Pert diffractometer fitted with a Cu Kα radiation source) 

were also recorded to determine the crystalline phase of the samples. UV-Visible and 

XRD spectra for the Au, Ag, CeO2, and TiO2 nanoparticles used in this work are 

presented in Figure 1. Transmission electron microscope (TEM, using a JEOL 1010 

operating at an accelerating voltage of 80 kV) images of the samples are also shown.  

In all cases the nanoparticles responded similarly as with the other techniques. 

During and after the experiments none of the nanoparticles showed aggregation, 

dilution, or sedimentation, as assessed by counting the number of nanoparticles in a 

predetermined area by analyzing at least 50 TEM images in which nanoparticles 

appeared in suspension, neither sedimented nor aggregated, and in a number similar to 

that of initial samples (Table 1). The only nanoparticles that were not in solution were 

those adsorbed on the biomass; Figure 2 shows an example of this phenomenon. The 

TEM studies showed no morphological change in the NPs conformation.  

Nanoparticle concentration in solution before and after treatment was measured 

taking into account the real nanoparticle mass (by inductively coupled plasma mass 
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spectrometry, ICPMS) of the supernatant and the pellet after NP precipitation) and the 

size distribution obtained by TEM.  

 

2.3. Respirometric experiments 

2.3.1. Ordinary Heterotrophic Organisms (OHO) 

An enriched OHO sludge was obtained from a municipal wastewater treatment 

plant (Montornés del Vallès, Barcelona, Spain). The respirometer used was of a liquid-

static-static (LSS) type, in which dissolved oxygen (DO) is measured in a static and 

non-aerated liquid phase [30].  

 For each respirometric test, 500 mL of OHO sludge, with an average 

concentration of volatile suspended solids (VSS) of 1700±560 mg VSS L-1, was aerated 

and stirred overnight to ensure that all the substrate present in the OHO sludge was 

consumed. Respiration tests were performed at 25ºC. Aeration was then stopped and the 

DO decrease, without external substrate addition, was measured for 10 minutes using an 

oxygen meter (Lutron 5510, Lutron Co. Ltd., Taiwan) connected to a PC. This 

procedure was repeated three times and the average of the slope of the DO decrease was 

taken as the endogenous oxygen uptake rate (OURend in mg O2 g
-1 VSS h-1). Afterwards, 

aeration was reinitiated and a pulse (30 mg mL-1) of readily biodegradable chemical 

oxygen demand in the form of sodium acetate was added. The procedure was repeated 

three times to calculate the average OUR. The exogenous OUR (OURex) was obtained 

by subtracting the previously determined OURend from the OUR value obtained from 

the available substrate. The OUR reported in this work is the OURex. Finally, the 

biomass was left to settle for 1 hour and the upper portion (375 mL) was removed and 

substituted with the corresponding nanoparticle suspension. The loss of biomass and 

specific biological activity during this procedure was negligible when measured by 
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overall respiration [31]. The whole experimental procedure was repeated in the presence 

of stabilized nanoparticles to obtain the OURNPs and in the presence of the stabilizer 

solution alone (HMT, sodium citrate and TMAOH) to obtain the OURstb. The inhibition 

percentage was calculated as the reduction in OUR, with and without nanoparticles or 

stabilizer, and after 1 and 4 hours exposure time. This time is approximately the range 

of hydraulic residence time (HRT) of the biological reactors in a municipal WWTP. No 

significant changes in pH value were detected throughout the experimental procedure.  

  

2.3.2. Ammonia-Oxidizing Bacteria (AOB)  

An enriched AOB sludge was obtained from a partial nitrification pilot plant that 

had worked in continuous mode for more than five years [32]. By following the 

procedure described in ref. [33] for fluorescence in situ hybridization (FISH) analysis, 

the AOB population in this study accounted for 81±8% of the total biomass, whereas 

nitrite-oxidizing bacteria (NOB) accounted for less than 1%.  

 The respirometer used was a liquid-flow-static (LFS) type, where DO is 

measured in the liquid phase which was previously static and continuously aerated [30]. 

The vessel (1 L) was magnetically stirred and air flowed through a pressure 

manoreductor and a mass-flow controller (Bronckhorst HiTec 825) to ensure a constant 

airflow. The temperature of the vessel was controlled at 30±0.5ºC with a thermostatic 

bath. The pH was continuously measured with a pH probe (WTW Sentix 81) and 

controlled at 8.3±0.1 by automatic addition of acid or base by an automatic microburette 

(Crison Multiburette 2S). DO was measured with a DO probe (WTW-CellOx 325). 

Both probes were connected to multiparametric equipment (WTW-Inolab 3), which was 

connected via an RS232 interface to a PC that monitored the data and stored them in a 

Microsoft Excel worksheet through Visual Basic® 6.0 software. 
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 The average concentration of biomass in the respirometric tests was 900±200 

mg VSS L-1. The OUR reported in this work corresponded to OURex obtained by 

subtracting the OURend value from the total measured OUR. A detailed description of 

the procedure for the OUR calculation using a liquid-phase, flowing gas, static liquid 

(LFS) respirometer for AOB can be found elsewhere [31]. Each OUR value was 

corrected for possible oxygen-limitation effects by using the oxygen affinity coefficient 

for AOB (KO,AOB = 0.74 mg O2 L
-1 [34]).  

 The biomass was aerated overnight to ensure that all the substrate present in the 

AOB sludge was consumed. Then, the experiment started with the determination of the 

OURend and the oxygen transfer coefficient (kLa) following the procedure described in 

ref. [31]. Afterwards, a pulse of 50 mg N/L of ammonium chloride was added in the 

absence of nanoparticles and nanoparticle stabilizers to determine the maximum OUR 

(OURmax). The added nitrogen was completely consumed within a few minutes and the 

same pulse was repeated at 1 and 4 hours. The complete procedure was repeated in the 

presence of nanoparticles to obtain the OURNPs and in the presence of nanoparticle 

stabilizers to obtain the OURstb. The percentage inhibition was calculated as the 

reduction of OURmax with and without nanoparticles or stabilizer after 1 and 4 hours 

exposure to nanoparticles and stabilizers. Again, this time range was considered similar 

to that of the HRT of the biological reactors in a municipal WWTP.  

 In the OHO and AOB respirometric assays, EC50 was defined as the 

concentration of nanoparticles that causes an inhibition effect of 50%. Again, the 

nanoparticle concentrations were selected to determine an approximate value of EC50. 

 

2.4. Anaerobic experiments 
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Anaerobic inhibition tests were performed according to refs. [10,35]. Briefly, 

anaerobic assays were performed in 1000-mL gas-tight reactors, equipped with a 

pressure transducer to monitor biogas production [36]. Each anaerobic reactor 

contained: 250 mL inoculum (VSS=13200 ± 3000 mg L-1), 250 mL sample (stabilizer 

or nanoparticle suspension), and 1 g cellulose as substrate, to a final volume of 500 mL. 

The pH value of each reactor was adjusted with sodium citrate to 8 (if necessary) and 

nitrogen gas was used to purge oxygen prior to incubation at 37ºC (mesophilic 

conditions) or 55ºC (thermophilic conditions) over approximately 50 days. Reactors 

were manually stirred and biogas was purged every work-day. A blank and a reference 

test were also performed. The blank test (250 mL of inoculum and water to 500 mL) 

was performed to enable biogas production from any biodegradable organic matter 

contained in the inoculum to be subtracted. The control test (250 mL of inoculum, 1 g 

of microcrystalline cellulose, and water to 500 mL) was performed to allow the 

comparison of the biogas production with sample (nanoparticles or stabilizers) tests. 

Each experiment was carried out in triplicate. The results are shown as the average 

value with standard deviation. Sludge for inoculation of anaerobic experiments was 

obtained from mesophilic and thermophilic anaerobic reactors in existing wastewater-

treatment plants in the province of Barcelona. Sludge was obtained from the 

recirculation of these reactors. This sludge was maintained for two weeks at 37ºC or 

55ºC to remove any biodegradable organic matter that could interfere in the experiments 

[37].  

 

2.5. Statistical methods 

An ANOVA test was performed to compare different replications under the 

same conditions. If the ANOVA test resulted in statistically significant differences, a 
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Tukey test was performed in pairwise comparisons. A 95% confidence level was 

selected for all statistical comparisons. Statistical tests were conducted with SPSS 

15.0.1 (SPSS Inc., USA).  

 

2.6. Routine analysis 

Routine analyses such as those for volatile solids (VS), volatile suspended solids 

(VSS), or chemical oxygen demand (COD) were performed according to the standard 

procedures [37]. 

 

3. Results and discussion 

3.1. Inhibition tests on OHO biomass 

Table 2 shows the results of microbial activity inhibition obtained for the studied 

nanoparticles. In control experiments, the stabilizer solutions had no significant effect 

on the OHO sludge, except the TiO2-NPs stabilizer solution (10 mM TMAOH), which 

showed an important inhibition (83% at 4 hours of exposure). However, this effect was 

not detected in the presence of TiO2-NPs (2% inhibition at 4 hours exposure). It is 

probable that the presence of TiO2-NPs provokes stabilizer sequestration, lowering its 

effective concentration. Similar effects on serum depletion by NPs have been reported 

[29]. TiO2-NPs were synthesized at a concentration of 1016 NPs mL-1 (10-4 M) with a 

concentration of 10 mM of TMAOH used as stabilizer. Theoretically, and assuming 0.2 

nm2 as the footprint of a TMAOH molecule [38] on the surface of the particle (the ion 

and the counter-ion), a single nanoparticle might accommodate around 885 TMAOH 

molecules, which would thus decrease the free TMAOH concentration by two orders of 

magnitude. This assumption also recalls the use of nanoparticles to remove toxins from 

polluted water to make it drinkable [1]. In this case, no inhibition was observed for 

Pre-print



 13

TiO2-NPs, contrary to what was found with other organisms such as Daphnia magna 

[39] and, particularly, in chronic toxicity tests [8]. The different behavior could be 

attributed to details in the material preparation, chemical and colloidal stability of the 

NPs, and presence of different additives. 

 No inhibition was observed for Au-NPs, whereas Ag-NPs provoked 33% 

inhibition after 4 hours of exposure. Other studies have reported no inhibition by Ag-

NPs and Au-NPs with other toxicity tests, such as germination (at an Ag-NPs 

concentration of 0.1 mg mL-1) or Microtox® (at an Ag-NPs concentration of 0.045 mg 

mL-1) tests [10]. However, the growth of an OHO-type bacterium (Pseudomonas 

fluorescens) decreased 60% with 0.002 mg mL-1 of Ag-NPs and an exposure time of 3 

hours [23]. The discrepancy with the results obtained in this work could also be due to 

differences in the studied microbial populations or/and to the characteristics of the Ag-

NPs solutions used in both studies. Some Ag NP synthesis recipes do not reduce all the 

silver ions [40]; therefore the presence of a significant level of Ag+ ions could be 

responsible for the observed effects in other studies. In the present study, we 

hypothesize that only a small proportion of the silver ions could have been dissolved, as 

nanoparticles mostly remain unchanged in solution, which was confirmed by TEM 

quantification of the silver nanoparticles. Moreover, the presence of sodium citrate in 

the solution may complex and therefore detoxify any ion coming from the synthesis or 

leached from the nanoparticles.  

 The case of CeO2-NPs is the most relevant in terms of inhibition. In Figure 3, 

the results after 1 and 4 hours of exposure are presented. It is evident that CeO2-NPs 

present the highest level of inhibition of all the studied nanoparticles. Nevertheless, we 

hypothesize that the microbial population has some capacity to adapt to these NPs, since 
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the results after four hours of exposure show a slightly lower level of inhibition than 

initially (Figure 3). The EC50 values can be estimated from Figure 3 to be 0.18 and 0.28 

mg mL-1 for 1 and 4 hours of exposure, respectively, which might confirm this 

hypothesis, in the absence of more data related to the microorganism-nanoparticle 

interaction. On the contrary, an OHO biomass from a municipal WWTP in Switzerland 

was not affected by 1 mg mL-1 of CeO2-NPs [19]. Similar to the case for Ag-NPs, this 

discrepancy could be related to differences in the characteristics of the bacterial 

community and the nanoparticles used in both studies. Depending on the synthetic route 

used to produce the NPs, a difference in the number of oxygen vacancies will be present 

in the CeO2-NP, which will promote their catalytic activity as oxygen sponges [41]. 

Interestingly, it seems that while the TiO2-NPs are able to decrease the toxicity of 

TMAOH, addition of the non-toxic HMT solution is not able to prevent the toxicity of 

the CeO2 nanoparticles, which indicates the importance of the interaction between 

nanoparticles and additives [10].  

 

3.2. Inhibition tests on AOB biomass 

Table 3 shows the results of the inhibition tests on the studied nanoparticles with 

an enriched AOB population. As mentioned above, nanoparticle stabilizer solutions had 

a slight inhibitory effect on the AOB biomass (between 2 and 14%), with the TiO2-NPs 

stabilizer (10 mM TMAOH) effect being the most important. Again, the inhibitory 

effects of Ag-NPs and TiO2-NPs stabilizers were higher than the inhibition caused by 

Ag-NPs and TiO2-NPs (lower than 4%), which is similar to the results obtained with 

TiO2-NPs and OHO biomass. Indeed, the inhibitory effect of Ag-NPs and TiO2-NPs on 

AOB biomass was not significant. The case of Ag-NPs is especially important because 

it has been deeply studied by other authors [20-22,24], who found a great inhibitory 
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effect of Ag-NPs on nitrifying biomass and suggested that Ag-NPs were more toxic to 

nitrifying bacteria than were Ag ions (Ag+). Choi et al. [20] reported, at the same 

concentration, 20% of inhibition on a nitrifying suspension. Ag-NPs used in the work 

reported in ref. [20] had an average diameter of 14 nm, while in the present study the 

nanoparticles are 30 nm (mean diameter). Thus, this discrepancy could be due to the 

different characteristics of the Ag-NPs in both studies. In fact, Choi et al. [20] reported 

the importance of the nanoparticle diameter when assaying the toxicity of Ag-NPs on 

nitrifying biomass, concluding that smaller nanoparticles cause a greater inhibition 

effect. However, this result could be also explained because when comparing sizes, for 

the same mass, the nanoparticle concentration exponentially increases as their diameter 

decreases. In fact, doses can only be meaningfully compared when normalized to 

surface area or number of particles. In addition, it should be remembered that some Ag+ 

ions remain in every synthesis. In some of the commercial samples of colloidal silver 

intended for water purification, the amount of ionic silver may be as high as 90% with 

respect to the total silver content. This fact might also have an important impact on the 

toxicity of Ag-NPs. In the case of Au-NPs, in contrast to OHO biomass, an inhibitory 

effect (around 14%) was detected, but it was low and it did not increase with exposure 

time. 

 As detected with OHO biomass, the case of CeO2-NPs is the most relevant in 

terms of inhibition for AOB biomass. In Figure 4, the results after 1 and 4 hours of 

exposure are presented. The EC50 values can be estimated from Figure 4 to be 0.21 and 

0.05 mg mL-1 after 1 and 4 hours, respectively, which shows that exposure time was a 

crucial factor when dealing with inhibition by CeO2-NPs. Other authors found the 
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inhibition by zero-valent nanoparticles of other bacterial populations to be dependent on 

time [42].  

 

3.3. Inhibition test on anaerobic consortia 

Anaerobic biogas production tests were carried out for the nanoparticles studied 

in the presence of mesophilic and thermophilic communities of anaerobic populations 

obtained from large-scale anaerobic digesters. Microcrystalline cellulose was used as 

the sole substrate for anaerobic digestion as it requires the participation of all the 

microbial communities involved in the anaerobic processing of organic matter [10]. The 

results obtained for mesophilic and thermophilic populations are presented in Figure 5. 

In this case, the contribution of stabilizers was negligible; with no observable toxicity. 

Furthermore, the biogas production was not statistically different to that of control 

experiments where no nanoparticles were present and the substrate for anaerobic 

digestion was also cellulose (data not shown). 

 Statistical analysis of the data in Figure 5 gives some information about the 

influence of certain nanoparticles on the anaerobic consortia. No statistical differences 

were found among all the experiments studied under either mesophilic or thermophilic 

conditions, except for in the cases of TiO2 and CeO2 nanoparticles. In the case of TiO2-

NPs, a slight positive effect on the production of biogas (10% increase, p<0.05) was 

detected in the thermophilic anaerobic test. CeO2-NPs again caused a drastic inhibition 

(90%) in both mesophilic and thermophilic anaerobic consortia, which is characterized 

by a significant reduction of biogas production. In the case of CeO2-NPs, dilutions were 

carried out to determine the EC50 value for mesophilic populations. CeO2-NPs did not 

have toxicity effects on mesophilic anaerobic biomass at concentrations under 0.16 mg 

mL-1, and the measured EC50 value was 0.26 mg mL-1. From the experiment performed 
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with thermophilic anaerobic consortia, it can be deduced that this EC50 value will be 

lower than 0.32 mg mL-1.  

 It is important to mention that no data on the toxicological effects of 

nanoparticles on an anaerobic population have been found in the literature to compare 

with the results obtained in this work, except a study that showed no toxicity in 

mesophilic anaerobic populations exposed to fullerenes [43]. Clearly, the chemical 

structure of fullerenes is completely different to that of the inorganic nanoparticles used 

in our study. 

 

3.4. Effects of properties and doses of NPs on toxicity 

In the light of the results and discrepancies obtained in this and other works with 

Ag and CeO2-NPs for both OHO and AOB biomasses, it is evident that when reporting 

the toxicity effects of nanoparticles it is essential to describe the characterization 

parameters (size, surface charge, presence of stabilizers, etc.) and the possible changes 

in nanoparticles throughout process [44]. In this context, it is important to recall the 

unstable nature of colloids. This instability favors their aggregation and sedimentation 

as soon as they are extracted from the environment in which they were synthesized. 

Aggregation leads to sedimentation and may induce both false negatives (due to the 

nanoparticles not participating in the experiment) and false positives (microparticles 

resulting from the aggregation of the nanoparticles may show a different and increased 

toxicity profile [45]). This fact supports the inclusion of the effect of the stabilizers to 

prevent agglomeration in studies on nanotoxicology. In addition, together with the 

nanoparticles, residues from the synthesis are often present in the form of metal ions if 

the samples are not completely purified after synthesis; these could interfere with the 

nanoparticles. Coupled with this problem there is the issue of how to determine of 
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realistic doses. Firstly, colloids of inorganic nanoparticles in suspension are systems out 

of equilibrium and are difficult to prepare at any desired concentration, since at high 

concentrations the nanoparticles can be removed from the solution phase when a 

saturation concentration is reached, by an entropy effect similar to that seen in salts (at 

high concentrations, nanoparticles can constantly collide in solution, resulting in their 

precipitation). These saturation concentrations are between the micro- and the 

millimolar values, depending on the material and the preparation procedure. Therefore, 

the concentrations expected to be found in real cases (e.g., inside the body or in the 

environment) would normally be more dilute than the prepared samples, unless 

accumulation occurs. What is clear is that a large number of physicochemical 

parameters will have a strong influence on the toxicity of nanoparticles and on the 

methods used to evaluate it. The case of CeO2 deserves special attention as it is applied 

as a catalytic converter in the automotive industry for the reduction of toxic emissions 

from internal combustion engines, as antioxidant in biomedicine to treat disorders 

caused by oxygen radicals, as an additive in fuel cells, and as a UV absorber, among 

many other applications. All these applications seem to rely on the capability of CeO2 to 

store or release oxygen, depending on the surrounding conditions. This capability 

depends on the crystal structure which, at the same time, depends on the synthesis 

process. Apparently, the catalytic properties may perturb the respiration mechanisms of 

the studied microbial communities, which leads to the observed inhibition. It is also 

worth noting that these particles did not show toxicity in mammalian cells [29], which is 

probably due to the more robust structure and better defense mechanism of eukaryote 

versus prokaryote cells, although very recent studies have reported toxicity of cerium 

oxide nanoparticles on an eukaryote cell line, specifically DNA damage [46]. 
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In the case of Ag-NPs, the low toxicity found in this study compared to previous 

literature [47] can be explained since, recently, it has been demonstrated that in a 

WWTP most of the Ag in the sludge and the effluent was present in the form of Ag2S, 

which is less toxic than free Ag [48]. This hypothesis is, however, untested in the 

reported experiments. Moreover, to the best of our knowledge, this is the only published 

paper performed in similar conditions (using a pilot-scale WWTP) to those used in our 

study.  

Even if the aim of this work was not to compare toxicity between different NPs 

but to assess the toxicity of the common ones, it has to be noted that the highest 

concentration and surface area of TiO2 does not correspond to an increased toxicity, 

while gold and silver show some inhibition capacities at much lower values of number 

and surface area. This result is consistent with the normal production of both materials; 

the oxides in large quantities and the precious metals in smaller ones. The differences in 

toxicity should be attributed to composition and not size, since size-dependent 

biological effects of inorganic nanoparticles have been observed where larger size 

differences exist [49].  

 

5. Conclusions 

In the present work, respiration tests and biogas production were used to 

evaluate the effect of four different metal oxide (CeO2 and TiO2) and zero-valent metal 

(Ag and Au) nanoparticles (NPs) on the activity of the most important microbial 

communities of a wastewater treatment plant (WWTP); ordinary heterotrophic 

organisms (OHO), ammonia oxidizing bacteria (AOB), and thermophilic and 

mesophilic anaerobic bacteria. 
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 Au-NPs and TiO2-NPs obtained with the characteristics reported in this study 

present zero or low toxicity towards OHO, AOB, and anaerobic biomass, while Ag-NPs 

present an intermediate toxicity (inhibition around 33% on OHO at a concentration of 

0.13 mg mL-1 and an exposure time of 4 hours) and CeO2-NPs were the most toxic (1 

hour exposure: OHO-EC50=0.18 mg mL-1 and AOB-EC50=0.21 mg mL-1, respectively; 4 

hours exposure: OHO-EC50=0.28 mg mL-1 and AOB-EC50=0.05 mg mL-1, respectively; 

EC50 of CeO2-NPs for mesophilic anaerobic bacteria was calculated to be around 0.26 

mg mL-1, while it was lower than 0.32 mg mL-1 for the thermophilic ones). It has to be 

noted, however, that the concentrations assayed in this study are likely much higher 

than those that would be expected in a municipal WWTP and the susceptibility of those 

communities to NP formulation varies. As future work, the study of the effect of 

nanoparticles and the stabilizers used for environmental applications on the specific 

species present in wastewater would be of great interest as well as the real 

solubility/availability of NPs in several wastewaters. The effect of stabilizers on the 

catalytic properties of nanoparticles should also be studied.  
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Tables  

 

Table 1. Main characteristics of the nanoparticles used (concentrations of nanoparticles 

were obtained as they were synthesized).  

 
Nanoparticle CeO2 TiO2 Au Ag 
Concentration (mg/mL) 0.64 1.12 0.10 0.17 
Approximate number of NPs 
(NPs/mL) 

~1016 ~1016 ~1013 ~1012 

Mean size (nm) 12 7.5 20 30 
Shape spherical spherical spherical spherical 
Zeta potential (mV) +11.5 -42.5 -44.3 -39.2 
Stabilizer* HMT TMAOH S. Citr. S. Citr. 
Stabilizer concentration (mM) 8.3 10 0.89 10 
pH (original) 9 9 8.5 8.5 
Estimated surface area (m2/g) 121 186 16 19 

 

*HMT: Hexamethylene tetramine; TMAOH: Tetramethyl ammonium hydroxide; S. Citr.: Sodium citrate. 
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Table 2. Inhibition of OHO by NPs and stabilizers. 

 

 

 

Nanoparticles CeO2 TiO2 Au Ag 
Concentration (mg/mL) 0.64 0.84 0.075 0.13 
Exposure time (h) 1 4 1 4 1 4 1 4 
Inhibition of NPs (%) 100 100 1 2 0 7 0 33 
Inhibition of NPs stabilizer (%) 0 0 0 83 0 3 0 8 
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Table 3. Inhibition of AOB by NPs and stabilizers after different exposure times.  

 

Nanoparticles Au Ag TiO2 CeO2 
Concentration (mg/mL) 0.09 0 0.1 0.2 0.56 1.01 0.03 0.04 0.06 0.128 0.576 

Exposure time (h) 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 
Inhibition of NPs (%) 14 13 0 0 0 2 0 0 5 0 4 2 0 15 1 22 0 67 32 85 100 100 
Inhibition of NPs stabilizer (%) 5 9 2 7 2 7 2 7 3 14 3 14 7 7 7 7 7 7 7 7 7 7 

 

 

 

 Pre-print



 

 

31

 

Figure Legends 

 

Figure 1: UV-Visible spectra and XRD spectra for the Au, Ag, CeO2, and TiO2 

nanoparticles used in this work. Scale bar in TEM images represents 100 nm. 

 

Figure 2: Example of TEM images of anaerobic mesophilic bacterium in the presence of 

nanoparticles: a) Au nanoparticles, b) Ag nanoparticles, c) CeO2 nanoparticles and d) TiO2 

nanoparticles. Scale bar in TEM images represents 200 nm for Au and Ag nanoparticles 

and 500 nm for CeO2 and TiO2 nanoparticles, respectively. 

 

Figure 3: Inhibition of OHO by CeO2-NPs after 1 and 4 hours of exposure. The bars are 

presented as an average value of a triplicate measurement with the corresponding standard 

deviation.  

 

Figure 4: Inhibition of AOB by CeO2-NPs after 1 and 4 hours of exposure. The bars are 

presented as an average value of a triplicate measurement with the corresponding standard 

deviation.  

 

Figure 5: Biogas production (expressed as normal mL of biogas per g of initial volatile 

solid) of mesophilic and thermophilic anaerobic populations in the presence of the 

nanoparticles studied at its nominal (Table 1) concentration. The bars are presented as an 

average value of a triplicate measurement with the corresponding standard deviation.  
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Figure 1: García et al. 
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Figure 2: García et al. 
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Figure 3: García et al. 
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Figure 4: García et al. 
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Figure 5: García et al. 
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