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Summary

· Fruit production (NPPf), the amount of photosynthates allocated to reproduction (%GPPf) and

their controls for spatial and species-specific variability (e.g., nutrient availability, climate) are

poorly  studied  in  forest  ecosystems.  We  characterised  fruit  production  and  its  temporal

behaviour for several tree species and resolved the effects of gross primary production (GPP),

climate, and foliar nutrient concentrations.

· We used data for litterfall and foliar nutrient concentration from 126 European forests and

related it to climatic data. GPP was estimated for each forest using a regression model.  

· Mean NPPf ranged from approximately 10 to 40 g C m-2 y-1 and accounted for 0.5-3% of the

GPP. Forests with higher GPPs produced larger fruit crops. Foliar zinc (Zn) and phosphorus

(P) concentrations were associated positively with NPPf, while foliar Zn and K were negatively

related to its temporal variability. Maximum NPPf and interannual variability of NPPf was higher

in Fagaceae than in Pinaceae species. 

· NPPf and %GPPf were similar amongst the studied species despite the different reproductive

temporal behaviour of Fagaceae and Pinaceae species. We report, for the first time, that foliar

concentrations of P and Zn play an important role in determining %GPPf, NPPf and its temporal

behaviour. 

Keywords: crop size, fertility, fruiting, reproductive effort, seeds, spatial variability 
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1. Introduction

Reproductive  behaviour  in  plant  species  is  a  crucial  part  of  ecosystem  functioning,  and,

therefore, patterns of production of fruit  has received much attention from a wide range of

ecologists (Koenig & Knops, 2005). Masting is a reproductive behaviour, presented mostly by

anemophilous and long-lived plant species, consisting on the synchronised alternation of years

with extremely large fruit crops and years with little or no fruit production (Kelly & Sork, 2002).

Because of  the consequences that  masting  can entail  on  the  ecosystems (e.g.,  important

cascading effects throughout the food web (Ostfeld & Keesing, 2000)), a large array of studies

have tried to understand how and why this extreme interannual variability in fruit production

happens  (Fernández-Martínez  et  al.,  2016b).  Nonetheless,  it  remains  unclear  why  some

species  or  populations  produce  larger  fruit  crops  or  have  more  temporally  variable  fruit

production than others.  Most theories have focused on the ultimate causes (e.g.,  avoiding

seed predation) for these particular life-history traits  (Silvertown, 1980; Kelly, 1994), but the

proximate causes (e.g.,  the mechanistic effect of  temperature on pollination) of  the spatial

variability  in  fruit  production  and its  temporal  behaviour  have rarely been explored.  Some

authors have suggested that the size of the fruit crop from trees subjected to poor growing

conditions (e.g. extreme or highly variable climates or poor soil properties such as low nutrient

availability) should exhibit higher interannual variability  (Kelly & Sork, 2002) because of the

benefits of the  economy of scale  (Norton & Kelly, 1988; Smith et al., 1990). However, little

empirical  evidence  has  yet  been  found  to  confirm  that  high  interannual  variability  in  fruit

production is associated with poor growing conditions, such as drought  (Fernández-Martínez

et al., 2012) or nutrient limitations.

Most of the studies focusing on fruit or seed production have quantified the number of fruits

produced per tree  (Sork  et al.,  1993; Espelta  et al.,  2008; Crone  et al.,  2011; Fernández-

Martínez et al., 2015), and only few have provided data in units of mass produced per area

(Campioli  et al., 2010; Herbst  et al., 2015; Pérez-Ramos  et al., 2015).  This is essential for

elucidating  the  contribution  of  reproduction  to  ecosystemic  net  primary  production  (NPP),

which  is  the  sum of  aboveground (wood,  leaves,  fruits)  and belowground (roots)  biomass

production,  root  exudates  and the  emission  or  organic  volatile  compounds.  The lack  of  a

quantitative assessment of C allocation to fruit production has been an important drawback for

correctly estimating fruit NPP (NPPf) and total biomass production in, for instance, synthesis

3

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

5
6



studies on plant carbon allocation (e.g. Vicca et al., 2012; Campioli  et al., 2015a). Given that

the mean residence time of carbon is very dependent on the compartment where carbon is

allocated to  (Fernández-Martínez  et  al.,  2016a),  measures of NPPf and the percentage of

gross  primary  production  (GPP,  which  equals  net  ecosystem  photosynthesis)  allocated  to

reproduction would facilitate carbon balance closure in forest ecosystems and would improve

in-depth  understanding  of  plant  strategies  under  different  environmental  conditions  and

responses to changes in e.g., climate and nutrient availability.

Endogenous factors such as stand age,  basal  area,  or taxonomical  family and exogenous

factors  such  as  climate,  nutrient  availability,  and  anthropogenic  impacts  have  been

demonstrated to largely control GPP, NPP and carbon allocation to different NPP fractions at

the global scale (Vicca et al., 2012; Campioli  et al., 2015), and different components of NPP

(e.g. foliage, stems, or roots) may be controlled by different factors (Fernández-Martínez et al.,

2014a). These endogenous and exogenous factors may thus also have an effect on  NPPf.

Nutrient  availability,  in  particular,  may play  an  important  role  in  determining  NPPf and  its

temporal  behaviour,  because  fruits  and  seeds  are  nutrient-richer  (mostly  in  nitrogen  [N],

phosphorus [P], and potassium [K]) than vegetative tissues  (Reekie & Bazzaz, 1987). Fruit

production  may  thus  have  stronger  relationships  with  nutrient  availability  than  vegetative

tissues (Sala et al., 2012). Nitrogen, for example, is the primary limiting nutrient for vegetative

growth (Elser et al., 2007; LeBauer & Treseder, 2008) and has also been positively correlated

with investment in reproduction (Han et al., 2013; Miyazaki  et al., 2014). Nitrogen deposition

has been suggested to increase forest productivity  (Luyssaert  et al.,  2010; de Vries  et al.,

2014), but when combined with sulphur (S) deposition, the acidification of soils can have a

negative impact on productivity and soil processes (Oulehle et al., 2011; Büntgen et al., 2013).

Plants  growing  in  P-deficient  environments  may  also  have  a  lower  investment  in  sexual

reproduction than those living in P-rich environments  (Fujita  et al., 2014). Other macro- and

micronutrients,  often  rarely  studied  in  wild  plants,  may  also  play  an  important  role  in

determining fruit production and its temporal behaviour (Swietlik, 2002). 

While elemental concentrations are important, the ratios between the various elements may be

even more relevant.  The foliar  N:P ratio was suggested as  an important indicator of  plant

nutritional status and vegetative (Güsewell, 2004; McGroddy et al., 2004; Sardans et al., 2012,

2016b) and reproductive (Fujita et al., 2014) production. For example, species with low foliar
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N:P ratios tend to be fast-growing and more competitive for soil resources than species with

higher N:P ratios (Willby et al., 2001; Elser et al., 2003; Peñuelas et al., 2013). Other studies

have suggested that,  within the same species, plants or shoots producing flowers may have

lower N:P ratios than those that do not produce flowers (Eckstein & Karlsson, 1997; Güsewell,

2004).  Other  elemental  stoichiometries,  such  as  C:N  or  C:P  ratios,  may  also  indicate

limitations  of  soil  nutrients  (Fernández-Martínez  et  al.,  2014b) and  may therefore  also  be

associated with reproductive behaviour in plants. 

The general aim of this study was to characterise fruit production and its temporal behaviour

for several of the most abundant European tree species and to distinguish species-specific

variability from the effects of the taxonomical family, productivity, foliar nutrient concentrations,

climate, and atmospheric deposition of N and S. We specifically aimed i) to estimate average

NPPf and the percentage of GPP (hereafter %GPPf) allocated to fruit production of various tree

species  distributed  across  Europe,  ii)  to  parameterize  masting  by assessing  the  temporal

variation  of  NPPf of  these  species  by  calculating  the  coefficient  of  variation  (CV),  the

consecutive disparity index (D), and the temporal autocorrelation at a one-year time lag (AR1:

the correlation between fruit production in year y and year y-1), and iii) to identify the possible

determinants of the spatial and species-specific variability of fruit production and its temporal

behaviour  in relation to  GPP, foliar  nutrient  (C,  N, P,  K,  S, Fe,  Mg, Ca,  Zn, Mn, and Cu)

concentrations and C:N:P stoichiometries (C:N, N:P, and C:P ratios), climate (mean annual

temperature and precipitation and their interannual variabilities), and atmospheric deposition of

N and S. We also explored the potential differences in fruiting behaviour between species of

the Pinaceae and Fagaceae families.

2. Materials and methods

2.1. Data collection

2.1.1. Data for litterfall and foliar nutrient concentrations

We downloaded data for litterfall (Pitman et al., 2010) and foliar nutrient concentrations (Rautio

et  al.,  2010) from  the  ICP  Forests  database  (International  Co-operative  Programme  on

Assessment and Monitoring of Air Pollution Effects on Forest,  operated under the UNECE

Convention on Long-range Transboundary Air Pollution, http://icp-forests.net/), containing data

for several forest species in Europe. Fruit and foliar litterfall for each site were summed over
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entire years, and foliar nutrient concentrations  (C, N, P, K, S, Fe, Mg, Ca, Zn, Mn, and Cu)

were averaged per site. Average foliar C:N:P stoichiometries per site were calculated on a

mass basis. We used foliar nutrient concentrations instead of soil nutrient availability as the

measure of nutrient availability for plants because foliar nutrient concentrations often better

reflect nutrient availability for plants than nutrient concentration of soils because sometimes

nutrients  in  soils  are  not  available  for  plants  because  of  multiple  factors  such  as

bioimmobilization (Aber & Melillo, 1982) or complex formation (related to too high or too low

pH; Truog, 1947; Comerford, 2005). 

The original data for litterfall  were available in units of g of dry weight m -2 y-1and we used

carbon concentration data (provided by the same database) to convert these data to units of g

C m-2 y-1. We also used site information such as mean site diameter to calculate mean basal

area, as an estimation of the mean size of the trees at each site. To avoid eventual artefacts of

anomalous years dominating too short data sets, of the 210 forests originally available, we

used only 126 forests with time series with four or more years of data (Figure S1). We also

excluded  Ceratonia siliqua and  Larix decidua because of the scarcity of replicates (two and

one forest, respectively), as well as 12 multi-species forests. We provided summary values for

Pinus nigra, but  did  not  include this  species  in  the  statistical  models,  because only three

replicates were available. Because of missing data for some of the predictor variables, only 97

forests were finally used to fit the statistical models.  

2.1.2. Climatic data

We extracted mean annual temperature and precipitation data (MAT and MAP, respectively) for

our  forests  from  the  WorldClim  database  (Hijmans  et  al.,  2005).  This  database  provides

climatic data with a high spatial  resolution (30 arc seconds, ca. 1 km at the equator)  and

contains robust mean monthly climatic data derived from lengthy time series (1950-2000).

2.1.3. GPP data and the calculation of the NPPf -to-GPP percentage

We aimed to understand the relative reproductive investment of trees (relative to GPP), but the

ICP forest network did not measure GPP. We therefore developed and tested a model that

predicts average GPP from independent drivers. We used a global forest database (Luyssaert

et al., 2007; Fernández-Martínez et al., 2014b) containing carbon fluxes and productivity data

from forests. We extracted data from sites that reported both mean GPP (mainly derived from
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eddy covariance CO2 fluxes) and foliar NPP, as well as MAT, MAP, and leaf type. We chose

this set of predictors because these variables were also available for each of the ICP-forest

sites used in this study, allowing the estimation of GPP for each site. The model, containing

data for 84 forests, accounted for 74% of the variance in GPP. We cross-validated the model

using  75% of  the data  as a sampling set  and the  remaining  25% as the  testing set  and

repeated this procedure 1000 times randomising both subsets. The cross-validation indicated

that the model performed acceptably well: average errors of the model predictions were lower

than  12%  for  the  testing  set.  The  model  and  cross-validation  are  summarised  in  the

Supplementary Material  (Figure  S2 and  Section 2:  Estimating GPP).  We calculated  the

percentage of GPP allocated to NPPf (hereafter %GPPf) as: %GPPf = 100 × NPPf × GPP-1. 

2.1.4. Atmospheric deposition data

We  obtained  data  for  atmospheric  deposition  from  the  EMEP gridded  datasets  and  ICP

Forests. Modelled N and S deposition data from the EMEP gridded maps were correlated with

the  ICP  data  for  each  forest  (R=0.32  and  0.67,  P <  0.001,  for  N  and  S  deposition,

respectively). We used the EMEP data throughout in our statistical models because the ICP

data were incomplete for our database. 

2.2. Data analyses

We calculated all the average metrics of fruit production per site from the annual values per

site: average NPPf, average %GPPf, maximum NPPf recorded in each forest, NPPf CV, NPPf D

(Martín-Vide, 1986), and NPPf AR1. D was calculated in addition to CV because it was recently

suggested to improve the assessment of temporal variability relative to the CV, especially in

negatively autocorrelated time series. Further information on the D index can be found in the

Supplementary Material, Section 1: The consecutive disparity index (D). AR1 indicates the

temporal correlation between fruit crop sizes for years y-1 and y. Negative AR1 values in fruit

production time series may be a sign of depletion of resources after large fruit crops (Sork et

al., 1993; Fernández-Martínez et al., 2015). These values of fruit CV, D and AR1 were further

averaged across sites per  species to  characterise the temporal  behaviour  of  NPPf of  that

species. Using average site values as replicates, we identified differences amongst species

and families using ANOVAs and Tukey’s HSD tests for multiple comparisons.
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We fitted linear mixed models (LMMs) to characterise the relationships of the exogenous (MAT,

MAP, and N and S atmospheric deposition) and endogenous (foliar nutrient concentrations,

GPP, basal area, and family – Pinaceae or Fagaceae) variables with the temporal behaviour of

fruit production (mean NPPf, %GPPf, maximum NPPf, and the CV, D, and AR1 of NPPf). Using

the  species  as  a  random effect  (to  take  into  account,  for  example,  the  species  effect  on

stoichiometry), we tested whether the fruit production metrics were correlated with productivity

and with forest characteristics, such as GPP, basal area, family of the species, climate, foliar

nutrient concentrations, and atmospheric deposition of N and S. The saturated model used

GPP,  basal  area,  N  and  S  deposition,  MAT,  MAP,  the  CVs  of  MAT  and  MAP,  foliar

concentrations of C, N, P, K, S, Fe, Ca, Cu, Mg, and Zn, and foliar C:N, N:P, and C:P ratios as

fixed effects. We used D of MAT and MAP instead of the CV for the models predicting D of

NPPf. Variables were selected using the backwards-forwards stepwise method, starting from

the saturated model. Once the most important variables were selected, we calculated the first-

order interactions of the variables within the model and removed the non-significant terms.

Models were fitted with the lme function of the R package “nlme” (Pinheiro et al., 2013) using

restricted maximum likelihood and a Gaussian distribution. To provide a measure of goodness

of fit of our models we assessed the marginal (fixed factors) and conditional (fixed + random

factors)  variance  explained  by  the  model  (pseudo  R2)  using  the  method  proposed  by

Nakagawa & Schielzeth (2013) implemented in the MuMIn R package (Barton, 2015). We also

used generalised additive models (GAMs) to explore the non-linearities between the response

variables and the predictors using spline functions. NPPf and D of NPPf were log-transformed

to meet the assumption of normality and heteroscedasticity in the model residuals. All analyses

were performed using R statistical software (R Core Team, 2015).

3. Results

3.1. Species-specific variability in fruit production and its temporal behaviour 

Mean fruit production amongst the studied species ranged from (mean ± standard error) 6.1 ±

1.7 g C m-2 y-1 in  Pseudotsuga menziesii to 40.6 ± 9.9 g C m-2 y-1 in  Pinus nigra  (Figure 1,

Table S1). In fact, mean NPPf per year varied little amongst species and differed significantly

only  between  the  two  above  species  and between  Pinus  sylvestris and  Quercus petraea

(Figure 1). Nonetheless, when grouped  Pinaceae species had a higher average NPPf than

Fagaceae species (23.2 ± 2.1 and 15.0 ± 1.6 g C m -2 y-1, respectively; ANOVA,  P = 0.003).
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Similarly,  the  percentage  of  GPP invested  in  NPPf (%GPPf)  varied  little  amongst  species

(Figure 1) and, on average, was <3% in all species (Table S1). The only differences amongst

species were found between P. sylvestris,  P. menziesii, and Q. petraea, with %GPPf higher in

P. sylvestris than in the other two species. On the other hand,  %GPPf was different between

families,  being  higher  for  Pinaceae than  Fagaceae forests  (1.7  ±  0.2  and  1.1  ±  0.1%,

respectively; ANOVA, P = 0.004). Maximum NPPf was similar across species and averaged at

46.9 ± 3.1 g C m-2 y-1 (Figure 2, Table S1).

Temporal  variability  in  fruit  production  differed  substantially  across  species  and  between

families (Figure 3, Table S1).  The  Fagaceae species  Fagus sylvatica,  Q. petraea,  and  Q.

robur had the highest temporal variabilities, with an average CV >1.3 and D >1.5 (Table S1).

Both  these  indices  of  temporal  variability  indicated  higher  variability  in  fruit  production  in

Fagaceae than in Pinaceae forests (1.38 ± 0.05 and 0.73 ± 0.05 for CV and 1.81 ± 0.09 and

0.85  ±  0.05  for  D,  respectively; P <  0.001).  Also,  the  ANOVA  indicated  that  the  first

autocorrelation coefficient (AR1) differed amongst species (Figure 3, Table S1). Tukey’s HSD

test, however, found significant differences in AR1 only between P. menziesii and F. sylvatica.

The  former  species  had  almost  no  autocorrelation,  and  the  latter  had  a  strong  negative

autocorrelation. Autocorrelation in fruit production generally tended to be negative, suggesting

that  years  with  higher  (lower)  fruit  production tended to  be followed by a year  with  lower

(higher) fruit production.

3.2. Determinants of fruit production and of its temporal behaviour 

Our  statistical  linear  mixed  models  (LMMs)  indicated  that  GPP  and  foliar  Zn  and  P

concentrations  (Figure 4) were  positively associated  with  NPPf within  and across  species

(Table 1). We also found a statistically significant positive interaction between foliar Zn and P

concentrations (P = 0.01), indicating that the positive effect of Zn increased with increasing

foliar P concentration (and vice versa)  (Figure 5). Our analysis thus identified a synergistic

effect of foliar Zn and P concentrations, leading to higher fruit production when both nutrients

occurred at high concentrations in the leaves. The LMM accounted for 56% of the variance in

NPPf,  with  40% explained  by the  fixed  effects  (GPP,  Zn  and  P)  and  16% by differences

amongst species.
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Similar to NPPf, %GPPf was higher in forests with high foliar Zn and P concentrations (Table 1).

The  interaction  between  foliar  Zn  and  P concentrations  was  also  statistically  significantly

positively associated with  %GPPf (P = 0.025).  The model  for  %GPPf explained 44% of the

variance in  %GPPf,  with 31% accounted for by the fixed effects and the remaining 13% by

interspecific variability.  Maximum recorded NPPf was associated positively with GPP, basal

area  and  foliar  Zn  concentrations,  and  negatively  with  MAP  and  foliar  N  and  C:P

concentrations  (Table  1).  Also,  Fagaceae species  presented  larger  maximum  NPPf than

Pinaceae species (P = 0.004). The model accounted for 41% of the variance in maximum

NPPf, with 31% explained by the fixed effects and 10% by interspecific variability. 

Temporal  variability  in  fruit  production  differed  depending  on  the  index  used  to  evaluate

interannual  variation  (CV  and  D),  but  temporal  variability  in  NPP f was  clearly  larger  for

Fagaceae than for Pinaceae species (P < 0.01 for both indices; Table 1, Figure 4). The model

predicting the temporal variability of fruit production using the CV index indicated that more

productive forests with higher foliar Zn concentrations exhibited lower interannual variability in

fruit production. In contrast, the model predicting D of NPP f indicated that D was higher in

forests with larger basal areas and lower foliar K concentrations (Table 1). Overall, the CV and

D models explained 62% and 56%, respectively,  of  the variance in  the CV and D of fruit

production, with 58% and 55% explained by the fixed effects and the remaining 4% and 1% by

interspecific variability. 

Finally, the model that best predicted temporal AR1 indicated a tendency for more negative

values of temporal autocorrelation in forests with high loads of N deposition than in forests less

exposed to N deposition (P = 0.055). However, N deposition explained only 3% of the variance

in the temporal  autocorrelation of fruit  production, and species-specific variability explained

20% of the variability in AR1.

4. Discussion

Estimates of NPPf and their role in the forest C balance

Our results provide the first estimates of carbon allocation to fruit production for some of the

most abundant tree species in European forests. Despite the high variability in the estimates,

due mainly to the differences in GPP and foliar nutrient concentrations (Table 1), average NPPf

in our sample of European forests ranged from 10 to 40 g C m -2 y-1 and accounted for 0.5-3%
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of the GPP, both being higher in Pinaceae than in Fagaceae species. These estimates of NPPf

and GPP allocation are lower than those in previous studies.  Herbst et al. (2015) reported

mean NPPf estimates of 95 ± 37 and 73 ± 25 g C m-2 y-1 for managed and unmanaged stands

of F. sylvatica, respectively. GPP allocation to NPPf averaged 6.7 ± 3.4 and 4.6 ± 2.0% in the

managed  and  unmanaged  stands  respectively.  In  addition,  %GPPf reached  23%  in  the

managed stand during an exceptional mast year. Campioli et al., (2010) reported an average

NPPf for P. sylvestris of 76 ± 8 g C m-2 y-1 and an average %GPPf of 6.0 ± 0.6%.

Various reasons might be behind the differences between our results and previous reports of

NPPf and allocation to fruit. Differences in the endogenous characteristics of the stands, such

as GPP or foliar nutrient concentrations, are of major importance for fruiting NPP (Figure 4,

Table  1).  Moreover,  exogenous  factors  such  as  the  management  of  the  stand  can  also

influence carbon allocation to fruiting (Herbst et al., 2015). The assessment of average values,

however, is very dependent on the period of measurement due to the high irregularity of fruit

production, especially when analysing relatively short time series of masting species such as

those of the Fagaceae family. Different sampling methodologies could also be responsible for

these differences in average NPPf. 

NPPf is usually a relatively small component of the carbon balance of forest ecosystems, but

its high interannual variability in masting species, such as F. sylvatica or Quercus sp., identifies

NPPf as an important component to consider for a better assessment of the ecosystem carbon

balance (Herbst  et al., 2015) or the cascading effects that fruit NPP can entail on the entire

food web of an ecosystem (Ostfeld & Keesing, 2000). Mean maximum NPPf was 2- to 3-fold

higher than mean NPPf for all species  (Table S1). %GPPf can thus increase substantially in

years with large fruit  crops. Further analyses with longer time series are clearly needed to

obtain  more  robust  estimates  of  the  role  of  fruit  production  in  the  forest  carbon  cycle.

Nonetheless, our results do provide new insights on the fate of photosynthesised C in forest

ecosystems. However, because of the way in which we estimated GPP for our sites and the

error propagation, our estimates of %GPPf  may be subjected to larger error estimates than

those we calculated by mean ± SE. Therefore,  any interpretation of  the values we report

should take that uncertainty into consideration. 

The role of nutrients in NPPf and its temporal behaviour
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Our forests were in the lower range of mean concentrations of foliar Zn (Table S2), indicating

that some of the forests might have been Zn deficient (Swietlik, 2002). Zn deficiency has been

well studied in agricultural crops, but to the best of our knowledge, we are the first to report a

potential role in forest ecosystems. Zn deficiency usually occurs in plants growing on alkaline

soils because of the reduced bioavailability of Zn  (Ma & Lindsay, 1990), but can also occur in acidified

weathered soils (Alloway, 2009). Zn limitation can have a negative impact on plant vegetative

growth and especially fruit yield (Swietlik, 2002), because of the roles Zn plays in several key

metabolic processes such as protein synthesis (as a component  of  ribosomes,  Prask and

Plocke,  1971) or  in  metalloenzymes  such  as  carbonic  anhydrases  (Dell  &  Wilson,  1985)

involved  in  the  conversion  of  carbon  dioxide  and  water  to  bicarbonate  and  protons

(photosynthesis  and  biomass  production).  Cakmak  and  Marschner  (1988) found  that  Zn

deficiency in  Gossypium hirsutum,  Triticum aestivum,  Lycopersicon esculentum,  and  Malus

domestica increased  the  exudation  of  K,  amino  acids,  sugars,  and  phenolics  from  roots

because of increased membrane permeability. By exuding more carbon-rich compounds in the

soil,  Zn-deficient  plants  may  thus  have  less  photosynthates  available  for  aboveground

compartments  (Vicca  et  al.,  2012;  Fernández-Martínez  et  al.,  2014b,  2016a) and  fruit

production  (Figures  5  and  6).  These  processes  may  also  be  responsible  for  increased

temporal variability in seed production, because carbon reserves in Zn-limited trees might be

insufficient for regular production of large fruit crops (Isagi et al., 1997). 

However, despite foliar Zn concentrations have an effect within species, the effect of foliar Zn

is also associated to the different reproductive behaviour amongst taxonomical families, since

Pinaceae species present higher foliar Zn concentrations than Fagaceae species (Table S3)

and both families exhibit  different patterns of fruit  production (i.e.,  Pinaceae species invest

more on reproduction [Figure 1] while Fagaceae species present higher interannual variability

in NPPf  [Figure 3]). In that sense, high foliar Zn concentrations may be related to fast growing

species (opportunistic, the r-selected species), producing fruits every year, while low foliar Zn

concentrations  may  be  linked  to  slow  growing  species  (good  competitors,  the  k-selected

species) investing more heavily in fewer reproducing events. Thus, masting behavior could be

related to an evolutionary strategy of the k-selected species that would confer an evolutionary

advantage over their competitors (Kelly & Sork, 2002).
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Forests with higher foliar P concentrations had higher mean fruit production and allocation to

fruit production in our study, supporting the finding by Fujita et al. (2014). P had the strongest

effect in forests with high foliar Zn concentrations (Table 1). This synergistic effect of foliar P

and Zn concentrations could be a consequence of an induced limitation of one nutrient when

the other is increased, (Elser et al., 2007) in agreement with von Liebig’s law of the minimum

(Von Liebig, 1840). The close association of P  (Elser  et al., 2003) and Zn  (Prask & Plocke,

1971) with ribosomes, and therefore with metabolism and biomass production, further supports

a positive interaction between these elements. Our results also point out that both families,

Pinaceae and  Fagaceae, present a similar relationship between foliar P concentrations and

NPPf  despite  their  morphological  and functional  differences.  These results  also agree with

previous  reports  suggesting  that  higher  foliar  P  concentrations  enable  larger  fruit  crops

compared to those with lower concentrations (e.g.  in olive trees  (Erel, 2008) and amongst

multiple plant species (Fujita et al., 2014)) or, more generally, that P limitation constrains NPP

in  forests  (Perkins,  2004;  Plassard  &  Dell,  2010) and  in  freshwater,  marine,  and  other

terrestrial ecosystems (Elser et al., 2007; Peñuelas et al., 2013). Additionally, higher foliar C:P

ratios in our study were associated with lower maximum NPPf (Table 1). This finding is also

consistent with P limitation for fruit production: P-deficient forests may not be able to produce

as large fruit crops as those with sufficient P availability.

According to our statistical models, trees with higher foliar N concentrations not only did not

have higher NPPf but had lower maximum NPPf than those with lower N concentrations (Table

1). This is intriguing given the fact that foliar N concentrations are higher in Fagaceae species

than in Pinaceae species (Table S2), despite the latter presents lower maximum NPP f (Table

1).  This  may  suggest  that  the  negative  relationship  between  foliar  N  concentration  and

maximum NPPf happens only within species and not amongst species. N has been identified

as the primary limiting nutrient for vegetative growth (Elser et al., 2007; LeBauer & Treseder,

2008) and reproduction  (Han  et al., 2013; Miyazaki  et al., 2014), but the lack of association

between foliar N concentration and NPPf might be a consequence of other nutrients limiting

production, such as Zn or P. Most of Europe is exposed to high rates of N deposition, which

may increase N availability for plants, as indicated by the relatively high average values of

foliar N concentrations in European forests (Table S2). 
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The negative relationship between atmospheric N deposition and AR1 of NPP f  may indicate

that forests with higher N reserves are able to produce fruits crops with a periodic recurrence

(Isagi et al., 1997) when other factors are not limiting growth during a particular year (such as

weather, other nutrients such as Zn or P, or a combination of both (Fernández-Martínez et al.,

2015). On the other hand, our analyses revealed that foliar K concentration were negatively

related to interannual variability in fruit production (Table 1). This relationship may not remain

amongst species because foliar K concentrations were lower in the  Pinaceae family, which

presents significantly lower interannual variability (Table 1). Foliar K concentrations are related

to plant water  regulation, thus being an important  nutrient especially in arid environments,

where  water  availability  is  amongst  the  most  important  factors driving fruit  and secondary

production  (Ogaya & Peñuelas, 2007; Pérez-Ramos  et al., 2010; Garbulsky  et al., 2013). K

bioavailability  increases  with  increasing  annual  precipitation,  but,  through  conservation

mechanisms  such  as  resorption,  plants  can  increase  their  K  concentrations  (Sardans  &

Peñuelas, 2015). Hence, we hypothesise that trees with higher foliar K concentrations produce

fruits more regularly because they can cope better with eventual reduced water availability and

are thus less sensitive to interannual changes in water availability (Fernández-Martínez et al.,

2015). 

Our results thus indicate that nutrient-rich forests produce more fruits, allocate a larger fraction

of the GPP to fruit production, and produce fruit more regularly than nutrient-limited forests.

This supports previous findings that suggested higher C allocation to aboveground NPP in

nutrient-rich forests (Vicca et al., 2012; Fernández-Martínez et al., 2014b, 2016a), as well as

theory and observations suggesting that high interannual variability in fruit production is more

pronounced in environments where resources are scarce  (Kelly & Sork, 2002; Fernández-

Martínez  et  al.,  2012).  Nutrient  availability  may  thus  limit  NPPf even  more  than  it  limits

vegetative NPP, because fruits are more nutrient-demanding than vegetative tissues (Reekie &

Bazzaz, 1987). Amongst all investigated nutrients, foliar Zn and P concentrations were most

strongly associated  with  higher  fruit  production.  However,  trees growing  on  soils  with  low

nutrient availability might be forced to be more conservative in the use of nutrients and thus

present  higher  concentrations  in  their  tissues,  acting  like  nutrient  pools.  Hence,  further

research is  needed to  disentangle the effects of  soil  nutrient  availability and foliar  nutrient

concentrations on ecosystem functioning.
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Other determinants of NPPf and its temporal behaviour

Nutrient availability and stoichiometry played a very important role in determining NPP f and its

temporal  behaviour,  but site productivity and the taxonomical family were also key factors.

Higher photosynthesis (GPP) was associated with higher NPPf, higher maximum NPPf, and

lower temporal variability (CV). This result is logical, because forests with larger GPP fluxes

also typically have larger NPP fluxes  (Fernández-Martínez  et al.,  2014a). Whether all  NPP

components increase equally with increasing GPP, however, remains unresolved. In addition,

higher GPP might reduce the CV of fruit  production because more photosynthates can be

allocated to storage to later be used for reproduction and allowing more regular production of

fruit  crops.  However,  due  to  the  positive  relationship  between  NPP f and  GPP  and  the

dependence  of  the  CV  on  the  mean,  this  relationship  might  be  spurious.  This  second

hypothesis is supported by the lack of a relationship between D (which is less sensitive to the

mean than the CV (Supplementary Information 1: The consecutive disparity index) of fruit

production and GPP. A larger basal area, however, was also associated with higher maximum

NPPf, perhaps due to the competitive advantage of large trees to acquire various resources

(e.g. nutrients, water, and sunlight). 

In addition to the strong influence of foliar nutrient concentrations on NPP f  and its interannual

variability,  we  found  a  significant  taxonomic  effect  on  NPP f.  In  particular,  Fagaceae and

Pinaceae species presented a markedly different behaviour in fruit production patterns, with

the latter exhibiting lower maximum NPPf (probably because they are generally established

over nutrient poor soils) and lower interannual variability in NPP f. Based on our results, we can

consider that the Fagaceae species studied here present a clear masting behaviour (i.e., high

interannual variability, negative autocorrelation in fruit production  (Fernández-Martínez  et al.,

2016b)) while it is not that clear for some of the Pinaceae species, especially P. sylvestris, P.

nigra and  P. menziesii,  which present relatively low interannual  variability and no negative

autocorrelation in NPPf (Table S1). These differences may be related to different life-history

traits and evolutionary strategies related to avoidance of seed predation or to different patterns

of resource allocation. The different nature of fruits produced by the two families (cones in

Pinaceae and nuts in Fagaceae) might be responsible for the different allocation of resources

to fruit production in terms of biomass production.  Pinaceae species spend many resources

when producing cones (bearing the seeds),  while in  Fagaceae  species each seed (nut)  is
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usually much cheaper to produce in terms of C. This difference in the amount of resources

needed  to  produce  fruits  between  Pinaceae and  Fagaceae families  might  be  behind  the

different patterns of fruit  production in our studied species. Also, the different availability of

nutrients  between  families,  such  as  N  (higher  in  Fagaceae,  Table  S2)  or  Zn  (higher  in

Pinaceae,  Figure 4, Table S2), might also condition the different patterns of fruit production

because of different nutrient-use efficiencies amongst species from different families (Sardans

et al., 2016a).

Finally, our results also point out that masting behaviour can be well parameterised using the D

index,  because it  takes into account not  only the variability of  the time series but also its

temporal autocorrelation (Table S1). Since masting behaviour is related to high interannual

variability and negative autocorrelation in fruit production, which is exactly what the D index

accounts for (Supplementary Information 1: The consecutive disparity index), D seems to

be a good candidate to characterise masting behaviour using a single index. 

5. Conclusions

On average, NPPf ranged from approximately 10 to 40 g C m-2 y-1 and accounted for 0.5-3% of

the GPP, with little differences amongst species or between families (Fagaceae – Pinaceae).

However, mean maximum NPPf and interannual variability in NPPf differed specially between

families, being higher for Fagaceae than for Pinaceae. These differences are likely to be linked

to different life-history traits and evolutionary strategies related to avoidance of seed predation

or to different patterns of resource allocation, given the different nature of their fruits. 

More productive (higher GPPs) and nutrient rich forests produced larger and more regular fruit

crops  and  allocated  a  larger  percentage  of  photosynthates  intro  fruit  production,  which

highlights the paramount role of available reserves of nutrients and carbohydrates to allocate

into  reproduction.  Especially  foliar  zinc  (Zn)  and  phosphorus  (P)  concentrations  were

associated positively with fruit crop size, while foliar Zn and K were negatively related to its

temporal variability. To the best of our knowledge we report, for the first time, Zn deficiency in

forests. 
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Figure captions

Figure 1:  Box-and-whisker plots showing  NPPf (upper panel) and  NPPf-to-GPP percentage

(lower panel) for nine European tree species. Dark grey boxes indicate coniferous species and

light grey boxes indicate broadleaved species. The  P values of the ANOVAs for differences

amongst species are shown inside each panel. Different letters indicate significant differences

(P < 0.05) amongst species (Tukey’s HSD test for multiple comparisons). Numbers above the

letters indicate the number of replicates. Average values are presented in Table S1. 

Figure 2:  Box-and-whisker plot showing maximum fruit net primary production (NPP) (upper

panel) for nine European tree species. Dark grey boxes indicate coniferous species and light

grey boxes indicate broadleaved species. The P value of the ANOVA for differences amongst

species is shown inside the plot. Average values are presented in Table S1. 

Figure  3:  Box-and-whisker  plots  showing  the  coefficient  of  variation  (CV,  upper  panel),

disparity (D, middle panel), and autocorrelation coefficient for the first lag (AR1, lower panel) of

fruit net primary production (NPP) for nine European tree species. Dark grey boxes indicate

coniferous species and light grey boxes indicate broadleaved species. The  P values of the

ANOVAs  for  differences  amongst  species  are  shown  inside  each  panel.  Different  letters

indicate significant  differences (P <  0.05)  amongst  species  (Tukey’s  HSD test  for  multiple

comparisons). Average values are presented in Table S1. 

Figure 4: Partial residuals plots for the models of fruit net primary production (NPPf) and the

CV  of  NPPf without  interactions.  Upper  panels  show  the  relationships  of  gross  primary

production (GPP) (panel  a),  foliar  Zn (panel  b)  and P (panel  c)  concentrations with  NPPf.

Lower panels show the relationships of gross primary production (GPP) (panel d), foliar Zn

concentration (panel e) and family (panel f) with CV of NPPf. Beta weights (β ± SE) and their

significance (P)  within the model  without  interactions are shown in  each panel.  Light  blue

shading indicates 95% confidence bands. 

Figure 5: 3D plot showing the significant interaction between foliar P and Zn concentrations for

predicting fruit net primary production (NPP). The response surface was calculated using a

generalised additive model explaining 28% of the variance in NPPf. Blue and green colours of

the response surface indicate, respectively, low and high NPPf. 
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Table  1:  Summary of  the  mixed  models  predicting  fruit  net  primary  production  (NPP),  the  percentage  of  gross  primary

production allocated to NPPf (%GPPf), maximum NPPf, and the CV, D, and AR1 of NPPf. Values are beta weights ± SE. For

family, the coefficient shown indicates the change from Fagaceae to Pinaceae. Variance explained for fixed factors corresponds

to marginal R2, and interspecific variance is the variance explained by the random effects. Ln indicates the response variable

was transformed to the natural logarithm. Abbreviations: mean annual precipitation (MAP), coefficient of variation (CV), disparity

(D), and autocorrelation coefficient at lag 1 (AR1). † P < 0.1, * P < 0.05, ** P < 0.01, *** P < 0.001. All models included species as

a random variable.

Ln NPPf Ln %GPPf Max NPPf CV D AR1

Endogenous 
variableFamily 
(Pinaceae)

-
0.9

± 0.3
2

** -
0.5

± 0.1
2

** -
0.8

± 0.0
9

***

GPP 0.4
4

± 0.0
8

*** 0.2
3

± 0.1
0

* -
0.1

± 0.0
7

*

Basal area 0.3
5

± 0.1
1

** 0.1
8

± 0.0
8

*

Foliar N -
0.5

± 0.2
6

*

Foliar P -
0.2

± 0.1
8

-
0.1

± 0.2
1

*

Foliar Zn -
0.6

± 0.4
0

-
0.5

± 0.4
6

* 0.3
2

± 0.1
5

* -
0.2

± 0.1
1

**

Foliar C:P -
0.2

± 0.1
0

**

Foliar K -
0.2

± 0.0
9

***

Exogenous 
variableMAP -

0.2
± 0.1

1
*

N deposition -
0.1

± 0.1
0

†

Interactions
Foliar P:Foliar Zn 1.2

1
± 0.4

6
** 1.1

9
± 0.5

2
**

Variance 
explainedFixed factors 0.40 0.31 0.31 0.58 0.55 0.03
Interspecific 
variability

0.16 0.13 0.10 0.04 0.01 0.20
Total 0.56 0.44 0.41 0.62 0.56 0.23
Supplementary material

Figure captions:
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Figure S1: Map showing the location of the 126 forests monitored in this study. 

Figure S2: Observed versus predicted GPP values from the model used to estimate GPP for the study sites. See materials and

methods and Section 1: Estimating GPP in the supplementary material for further information about model adjustment. 

Figure S3: Comparison of the CV and D indices using two time series with equal means and standard deviations but different

autocorrelation structures. AR1, autocorrelation coefficient for lag 1; CV, coefficient of variation (standard deviation • mean-1);

and D, disparity index (see Eqs. 1 and 2 in Supplementary Material Section 1: The consecutive disparity index (D)).
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Figure S3

Table  S1:  Species  (mean  ±  SE)

fruit net primary production (NPP) (g C m-2 y-1),  allocation to  NPPf (NPPf ·  GPP-1 =  %GPPf), mean maximum  NPPf (Max NPP), and

coefficient of variation (CV), consecutive disparity (D), and first autocorrelation coefficient (AR1) of NPPf. AR1 P shows the significance of

the AR1 coefficients from a t-test, and n indicates the number of sites per species. Different letters indicate significant differences (P < 0.05)

amongst species (Tukey’s HSD test for multiple comparisons).  
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NPPf
%GP

Pf

Max
NPPf

CV D AR1
AR1

P
n

Abies alba 18.7 ±
3.3

abc
d

1.4 ±
0.3

a
b

43.1 ±
7.9

a 0.83 ±
0.08

b 1.00 ±
0.11

cd -0.15 ±
0.04

0.071
7

a
b

1
1

Fagus sylvatica 16.1 ±
2.5

abc
d

1.2 ±
0.2

a
b

49.0 ±
6.9

a 1.42 ±
0.08

a 2.02 ±
0.15

a -0.42 ±
0.04

<0.00
01

b 2
6

Picea abies 25.0 ±
5.2

abc
d

1.8 ±
0.4

a
b

46.2 ±
9.8

a 0.76 ±
0.09

b 0.89 ±
0.12

cd -0.27 ±
0.08

0.001
1

a
b

1
9

Pinus nigra 40.6 ±
9.9

cd 2.9 ±
0.7

a
b

66.6 ±
12.2

a 0.52 ±
0.08

b 0.63 ±
0.12

d -0.06 ±
0.02

0.732
2

a
b

3

Pinus pinaster 19.4 ±
2.6

abc
d

1.1 ±
0.2

a
b

42.2 ±
7.4

a 0.78 ±
0.08

b 1.17 ±
0.19

bc
d

-0.33 ±
0.12

0.006
0

a
b

5

Pinus sylvestris 26.8 ±
3.2

bd 2.1 ±
0.3

b 54.6 ±
8.3

a 0.60 ±
0.05

b 0.77 ±
0.09

d -0.09 ±
0.06

0.153
8

a
b

2
4

Pseudotsuga 
menziesii

6.1 ±
1.7 ab 0.5 ±

0.2 a 13.1 ±
4.1 a 1.06 ±

0.32
a
b

0.64 ±
0.10 d 0.07 ±

0.12
0.524

9 a 6

Quercus 
petraea

12.3 ±
1.5 ac 0.9 ±

0.1 a 44.5 ±
6.2 a 1.36 ±

0.08 a 1.71 ±
0.11 ab -0.20 ±

0.06
0.001

2
a
b

2
0

Quercus robur 16.9 ±
4.6

abc
d

1.3 ±
0.4

a
b

49.6 ±
10.8

a 1.35 ±
0.12

a 1.51 ±
0.16

ab
c

-0.10 ±
0.09

0.243
1

a
b

1
2
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Table S2: Species (mean ± SE) foliar C, N, P, and K concentrations and stoichiometries (C:N, C:P, and N:P). Concentrations have units of

mg g-1 except for C, which is per cent of dry weight. C:N, C:P, and N:P ratios are calculated on a mass basis. Different letters indicate

significant differences (P < 0.05) amongst species (Tukey’s HSD test for multiple comparisons), and n indicates the number of sites per

species.  

C N P K C:N C:P N:P n

Abies alba
52.42 ±

0.11
a
b

12.94 ±
0.31

b
c

1.16 ±
0.04

b
c

5.61 ±
0.25 bc

40.02 ±
0.75 b

452.6 ±
15.8 b

11.32 ±
0.44 c

1
1

Fagus sylvatica
53.07 ±

0.43 a
24.23 ±

0.53 a
1.17 ±
0.05

b
c

7.04 ±
0.32

ab
c

22.11 ±
0.53 c

479.9 ±
18.5 b

21.73 ±
1.02 a

2
6

Picea abies
51.35 ±

0.37
a
b

13.61 ±
0.30

b
c

1.34 ±
0.07 b

5.60 ±
0.25 bc

38.10 ±
0.74 b

397.0 ±
17.1 b

10.48 ±
0.41 c

1
9

Pinus nigra
53.50 ±

NA a
14.90 ±

3.62
b
c

1.17 ±
0.11

b
c

6.37 ±
0.49

ab
c

41.47 ±
NA b

428.0 ±
NA b

12.47 ±
2.17 c 3

Pinus pinaster
52.41 ±

0.26
a
b

9.06 ±
0.55 c

0.70 ±
0.08 c

4.60 ±
0.81 c

60.34 ±
5.00 a

808.1 ±
97.3 a

13.59 ±
1.88

b
c 5

Pinus sylvestris
52.51 ±

0.15
a
b

15.87 ±
0.58 b

1.28 ±
0.04 b

5.43 ±
0.13 bc

34.41 ±
1.23 b

429.0 ±
15.7 b

12.67 ±
0.70 c

2
4

Pseudotsuga 
menziesii

53.02 ±
0.22

a
b

16.30 ±
0.43 b

1.21 ±
0.06 b

7.44 ±
0.44 ab

32.63 ±
0.77 b

443.4 ±
23.3 b

13.65 ±
0.83

b
c 6

Quercus 
petraea

52.38 ±
0.18

a
b

23.66 ±
0.53 a

1.10 ±
0.05

b
c

7.16 ±
0.27

ab
c

22.60 ±
0.47 c

502.1 ±
24.4 b

22.11 ±
0.86 a

2
0

Quercus robur
52.56 ±

0.71
a
b

24.92 ±
1.47 a

1.33 ±
0.07 b

7.80 ±
0.76 a

22.35 ±
1.99 c

420.5 ±
34.8 b

19.99 ±
1.85

a
b

1
2
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Table S3: Species (mean ± SE) foliar S, Fe, Ca, Mg, Mn, Zn, and Cu concentrations. S, Ca, and Mg concentrations have units of mg g -1,

and Fe, Mn, Zn, and Cu have units of µg g-1. Different letters indicate significant differences (P < 0.05) amongst species (Tukey’s HSD test

for multiple comparisons), and n indicates the number of sites per species.  

S Fe Ca Mg Mn Zn Cu

Abies alba
0.95 ±
0.03 d

47.98 ±
3.09 b

8.33 ±
0.92 a

1.35 ±
0.10

ab
c

917.14 ±
305.36 b

29.42 ±
1.07 bc

4.01 ±
0.07 c

Fagus sylvatica
1.50 ±
0.04 ab

95.30 ±
3.45

a
b

7.24 ±
0.69 ab

1.12 ±
0.11

ab
c

1390.59 ±
182.55

a
b

23.91 ±
1.48

bc
d

7.16 ±
0.20 a

Picea abies
0.91 ±
0.04 d

54.76 ±
3.62 b

5.14 ±
0.58

bc
d

1.00 ±
0.07

ab
c

823.44 ±
146.23 b

22.54 ±
1.61 cd

2.98 ±
0.14 c

Pinus nigra
0.96 ±
0.19 d

89.07 ±
21.53

a
b

2.79 ±
0.47 d

0.95 ±
0.18

ab
c

512.33 ±
150.54 b

37.15 ±
7.95 ab

4.50 ±
0.56

b
c

Pinus pinaster
0.84 ±
0.04 d

53.20 ±
5.30 b

3.25 ±
0.42 d

1.48 ±
0.12 ab

182.33 ±
64.20 b

25.53 ±
3.19

bc
d

3.01 ±
0.46 c

Pinus sylvestris
1.01 ±
0.04 d

59.98 ±
5.82 b

3.30 ±
0.20 d

0.83 ±
0.05 ac

621.43 ±
66.07 b

42.64 ±
1.86 a

4.18 ±
0.23 c

Pseudotsuga 
menziesii

1.11 ±
0.02 cd

66.14 ±
3.73 b

3.47 ±
0.33 cd

1.41 ±
0.08

ab
c

904.38 ±
109.14 b

22.83 ±
1.69

bc
d

4.35 ±
0.28

b
c

Quercus 
petraea

1.36 ±
0.03

bc
d

89.69 ±
4.66

a
b

6.40 ±
0.28

ab
c

1.60 ±
0.06 a

1920.72 ±
129.54 a

11.27 ±
0.59 e

6.84 ±
0.17 a

Quercus robur
1.64 ±
0.05 a

105.82 ±
7.96 a

6.84 ±
0.41

ab
c

1.76 ±
0.21 a

1129.10 ±
136.85

a
b

14.70 ±
1.75 de

7.61 ±
0.34 a
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1. The consecutive disparity index (D)

D assesses the consecutive variations in a time series and so is sensitive to real time-step to time-step

variations, conversely to the CV index, which is insensitive to temporal autocorrelation. D has been

used in climate research to better assess interannual variability in the highly irregular precipitation time

series of the Iberian Peninsula (Martín-Vide, 1986) and is calculated as:

D=
1

n−1
∙∑
i=1

n−1

|ln pi+1

pi
|  Equation 1

where pi is the series value and n is the series length. To avoid numerical indetermination (division by 0)

when a time series contains zeros, we can sum a constant (k, usually a unit) to the entire time series

as:

D=
1

n−1
∙∑
i=1

n−1

|ln pi+1+k

pi+k |  Equation 2

The core of D lies in the assessment of the variability by taking into account the consecutive changes in

a time series (see Eqs. 1 and 2). Additionally, on the contrary to CV (standard deviation · mean-1), the

calculation of D does not take the mean of the time series into account, which makes it less dependent

on the mean. An easy example of the differences between the CV and the D indices can be seen in

Figure S3. Both time series have the same CV but completely opposite temporal behaviours. The first

time series (A) fluctuates every year, but the second time series (B) is stable during the first half and

then shifts to a second state. The higher consecutive interannual variability makes the D index to be

higher in time series A. 
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2. Estimating GPP

To estimate  GPP for  each  forest,  we  constructed  a  linear  model  using  data  from a  global  forest

database  (Luyssaert  et  al.,  2007;  Fernández-Martínez  et  al.,  2014b) containing  carbon  fluxes  and

productivity data from forests. We extracted data from sites that reported annual GPP (mainly derived

from eddy covariance CO2 fluxes) and foliar NPP, as well as MAT, MAP, and leaf type. Abbreviations:

mean annual precipitation (MAP), mean annual temperature (MAT), standard errors (SE), standardized

coefficients (β), root mean squared error (RMSE), degrees of freedom (df).

Model summary

Estima
te SE β SE t

Pr(>|
t|)

(Intercept)
985.63

7
284.82

8 0.000 0.000 3.46
0.0008

83 ***

Leaf type - conifers

-
239.18

6
236.92

5 -0.138 0.136 -1.01
0.3158

77

MAP -0.422 0.271 -0.484 0.311
-

1.556
0.1238

63

MAT -9.244 18.794 -0.068 0.137
-

0.492
0.6242

26

Foliar NPP 4.627 0.798 0.517 0.089 5.795
1.42E-

07 ***
Leaf type - 
conifers:map 0.378 0.186 0.453 0.223 2.032

0.0456
15 *

MAP:MAT 0.035 0.013 0.829 0.303 2.734
0.0077

62 **

R2

Leaf type 0.029 R2 0.7374
MAP 0.219 R2

adj 0.7169
MAT 0.222 RMSE 407.33

Foliar NPP 0.241
Error
% 9.15%

Leaf type:MAP 0.009 df 77

MAP:MAT 0.016 P
<0.00

01

Model crossvalidation (75% data as training test - 
25% validation data)

2.50% 50%
97.50

% Mean SE
R2 0.636 0.707 0.767 0.706 0.033
R2

adj 0.616 0.691 0.754 0.690 0.034
RMSE on 
crossvalidation

268.76
5

396.57
7

526.76
4

396.70
0

67.72
6

% error on 
crossvalidation 7.38%

11.52
%

17.08
%

11.40
%

2.63
%
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