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Abstract 18	
  

Extreme climatic episodes, likely those associated to climate change, often 19	
  

result in profound alterations of ecosystems and, particularly, in drastic events 20	
  

of vegetation die-off. Species attributes are expected to explain different 21	
  

biological responses to these environmental alterations. Here we explored how 22	
  

changes in plant cover and recruitment in response to an extreme climatic 23	
  

episode of drought and low temperatures were related with a set of functional 24	
  

traits (of leaves, roots and seeds) in Mediterranean shrubland species of SW 25	
  

Spain. Remaining aerial green cover (RAGC) two years after the climatic event 26	
  

was positively related with specific leaf area (SLA) and leaf proline content, and 27	
  

negatively with leaf water potential and δ13C. Plant cover resilience – i. e. the 28	
  

ability to attain pre-event values - was positively related to a syndrome of traits 29	
  

characterized by a higher efficiency in water use and uptake. Higher SLA and 30	
  

lower WUE characterized other species that were able to maintain green 31	
  

biomass for a longer time period but they were less resilient at a medium term. 32	
  

Seedling emergence was negatively associated with such syndrome, with 33	
  

small-sized species being able to produce a large number of seedlings per 34	
  

adult. Overall, recruitment was positively correlated with species die-off. This 35	
  

study demonstrates the relationship between plant traits and strong 36	
  

environmental pulses related to climatic change, providing a functional 37	
  

interpretation of the recently reported episodes of climate-induced vegetation 38	
  

die-off. Our findings also reveal the importance of selecting meaningful traits to 39	
  

interpret post-event resilience processes, particularly when combined with 40	
  

demographic attributes. 41	
  

 42	
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 46	
  

Introduction 47	
  

Plant functional traits reflect the outcome of the interactions between plant 48	
  

species and environment as a result of selection processes (Westoby et al. 49	
  

2002; Reich et al. 2003). Accordingly, trait composition in coexisting species 50	
  

would be the consequence of the biogeographical and ecological contexts (Díaz 51	
  

and Cabido 1998; Ackerly 2004). Particularly, species responses to climate 52	
  

change are expected to obey at some extent to the traits that they exhibit (e.g. 53	
  

Esther et al., 2010; Lloret et al. 2103). Some attempts have been made at the 54	
  

regional scale to relate functional traits either with species demographic rates 55	
  

(Martínez-Vilalta et al. 2011) or with expected changes of the species’ climatic 56	
  

suitability (Thuillier et al. 2006; Lloret et al. 2013). But there is still scarce 57	
  

information on the role of plant functional traits as drivers of population-level 58	
  

responses to climatic extreme events.   59	
  

There are evidences that climate change is involving an increase of 60	
  

climatic variability (IPCC, 2013), although some uncertainties remain at small 61	
  

spatial scales (Shih-Chieh and Auroop, 2011). This climatic variability implies a 62	
  

higher frequency and intensity of extreme climate episodes - including heat 63	
  

waves, cold snaps, droughts and floods - which can produce fast 64	
  

transformations in the structure, composition and functioning of ecosystems 65	
  

(Easterling et al. 2000). However, more detailed information on the relationships 66	
  

between biotic processes and these climatic disturbances is needed to better 67	
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understand the impact of future climatic changes on vegetation dynamics 68	
  

(Reyer et al. 2013). Specifically, drought events have been identified as 69	
  

responsible in some measure for some recently reported episodes of vegetation 70	
  

die-off worldwide (Allen et al., 2010; Martínez-Vilalta et al. 2012). Then, 71	
  

changes in the functional characteristics of plant communities are likely to 72	
  

occur, given the remarkable differences in species sensitivity to these climate-73	
  

driven disturbances (Lloret et al. 2012). Nevertheless, the different responses of 74	
  

coexisting species to these climate extreme events and their relationships with 75	
  

key functional traits remain poorly known (Koepke et al. 2010). These trait-76	
  

based studies might be particularly relevant for a better understanding of the 77	
  

role of plant traits on community dynamics in a context of transformations of 78	
  

ecosystems due to climate change (Chapin 2003; Suding et al. 2008).  79	
  

The demographic responses to climatic extreme episodes are expected 80	
  

to reflect the functional significance of traits in correspondence with such 81	
  

environmental stresses. Particularly, conditions derived from extreme drought 82	
  

conditions could be faced with mechanisms optimizing water acquisition, for 83	
  

instance those involving more efficient root systems. In spite of its relevance to 84	
  

understand plant strategies of resource use, root traits have been rarely 85	
  

analysed within communities (but see Pérez-Ramos et al. 2012; Prieto et al. 86	
  

2015), particularly in the context of natural pulses of water scarcity (McCormak 87	
  

2012; Saura-Mas and Lloret 2013). Analogously, traits associated to the control 88	
  

of water loss, such as water use efficiency (estimated indirectly by carbon 89	
  

isotopic discrimination) or evaporative surface reduction might be more likely 90	
  

present in those species better adapted to these drought conditions. Also, it has 91	
  

been proposed that species prone to establish in stressful, dry environments 92	
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will probably develop a more conservative resource-use strategy characterized 93	
  

by low values of specific leaf area (SLA), high-density tissues, low leaf-N 94	
  

concentration and long leaf-life span (Reich et al. 1998; Díaz et al. 2004; Villar 95	
  

et al. 2006). Finally, regenerative traits related to plant establishment, such as 96	
  

seed mass (Westoby et al. 2001), may help to understand population recovery 97	
  

after climatic extreme episodes. Then, species resilience, which measures the 98	
  

capacity of populations to recover their pre-event state, can estimate the 99	
  

delayed response to extreme drought events (Lloret et al. 2011).  100	
  

In this study we use a demographic, trait-based approach to explore how 101	
  

coexisting woody plant species respond to a climatic extreme event, and to 102	
  

evaluate whether these species-specific responses are related to particular 103	
  

plant functional traits. The study system is a Mediterranean shrubland located in 104	
  

South Spain that suffered a strong die-off as a consequence of an anomalous 105	
  

period of low precipitation and severe cold winter (Díaz-Delgado 2006). We 106	
  

monitored remaining green aboveground cover, adult survival and new 107	
  

recruitment of the main species of the community, two and eight years after the 108	
  

climatic episode. We measured traits related to light and carbon acquisition 109	
  

(plant height, SLA, leaf chlorophyll), water acquisition and use (leaf and root dry 110	
  

matter content, tissue mass root density, leaf water potential, carbon isotopic 111	
  

discrimination), nutrient acquisition and use (nitrogen leaf concentration) and 112	
  

recruitment (seed mass). Specifically, we addressed the following questions: Do 113	
  

plant functional traits of coexisting species explain: (i) differences among 114	
  

species die-off resulting from the climatic extreme episode? (ii) the different 115	
  

species resilience, in terms of plant cover, eight years after the climatic 116	
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episode? and (iii) differences in recruitment of seedlings and juveniles among  117	
  

species after the climatic episode? 118	
  

 119	
  

 120	
  

Methods 121	
  

Study site and die-off episode 122	
  

The study was carried on in the Doñana National Park (south-western Spain, 123	
  

38°13′ N, 48°10′ W), at approximately 3 km far from the Atlantic Ocean, over a 124	
  

large Quaternary eolic dune field that became stabilized during the Holocene. 125	
  

The vegetation is a mosaic of wetlands, annual grasslands, shrublands and 126	
  

woodlands dominated by Juniperus phoenicea L. subsp. turbinata (Guss.) 127	
  

Nyman (Juniperus phoenicea hereafter) and Pinus pinea L. The study was 128	
  

performed in shrublands (locally named ‘monte blanco’), which are considered 129	
  

to be a serial stage of J. phoenicea woodlands (García Murillo and Sousa 130	
  

Martín, 1999). The studied sites of ‘monte blanco‘ shrublands are dominated by 131	
  

medium-sized (1-3 m high) shrubs such as Halimium halimifolium (L.) Willk and 132	
  

Rosmarinus officinalis L.. Other common shrubs are the tall (2-4 m high) shrub 133	
  

Erica scoparia L., the medium-sized shrubs Halimium commutatum Pau, Cistus 134	
  

libanotis L., Staurancanthus genistoides (Brot.) Samp. and Ulex australis 135	
  

Clemente, and the small-sized shrubs (0.5-1 m high) Lavandula stoechas L., 136	
  

Thymus mastichina L., and Helichrysum pichardii Boiss. & Reuter. 137	
  

The climate is sub-humid Mediterranean with oceanic influence. Mean 138	
  

annual rainfall is 560 mm, with considerable between-year variability, ranging 139	
  

from less than 300 mm to almost 1000 mm. Mean annual temperature is 16.5 140	
  

ºC, with mean monthly values ranging from 10.0 ºC in January to 24.7 ºC in 141	
  



	
   7	
  

July. An episode of extreme drought occurred in the hydrological year 2004-142	
  

2005 (October 2004 to September 2005), when total rainfall was only 173 mm, 143	
  

being the second driest recorded year since 1859. Winter rainfall was 58.9 mm, 144	
  

less than one third of the historical average, while mean minimum temperatures 145	
  

in January and February 2005 were respectively 1.1ºC and 0.9ºC, substantially 146	
  

lower than the average values (5.0ºC for January and 6.1ºC for February). This 147	
  

episode resulted in a general die-off of the shrubland populations (Díaz-148	
  

Delgado 2006, Appendix 1, 2, Electronic Supplemental Material). Annual rainfall 149	
  

recovered in the years following the episode, ranging from 468.3 mm in the 150	
  

2005-2006 hydrological year to 784.2 mm in 2009-2010 (Fig. 1).  151	
  

 152	
  

Estimations of resilience and remaining green aerial biomass 153	
  

Eighteen 25-m2 (5 x 5 m) plots were established in November 2007, 2 years 154	
  

after the drought episode, covering the range of die-off, from 14% to 88% of 155	
  

green plant cover. NDVI from Landsat imagery (30 x 30 m2 pixels, n = 21) 156	
  

obtained for the site of the sampled plots did not show significant differences on 157	
  

NDVI between November 2007 (sampling data) and 2005 (data of the end of 158	
  

the climatic episode). These images showed a significant NDVI diminution in 159	
  

2005 when comparing to previous years, as well as canopy recovery after 2007 160	
  

(see Appendix 3, Electronic Supplemental Material). These data support the 161	
  

adequacy of sampling in November 2007 to assess the effect of the climatic 162	
  

event.  163	
  

The plots were distributed across an area of approximately 10 km2, 164	
  

separated by at least 50 m from each other. In November 2007 and July 2013 165	
  

we carried out two plant surveys recording the number of adults (including alive 166	
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and dead plants), juveniles (plants established at least one year ago, but 167	
  

without achieving the reproductive stage) and seedlings (less than one year old) 168	
  

of all woody species present in each of the 18 plots. Species plant cover 169	
  

(expressed as percentage) was estimated from contacts with branches 170	
  

(excluding leaves and recent shoots) at 0.5 m intervals along ten 5 m long 171	
  

transects, regularly distributed within the plot. Contacts were divided in two 172	
  

categories corresponding to living (branches supporting leaves or green shoots) 173	
  

or dead canopy (branches corresponding to recently defoliated organs, 174	
  

recognized because they bore remaining thin tips of branches and there were 175	
  

un-decomposed leaves on the ground beneath the contact). Dry organs with 176	
  

signs of old decay (stumps, decomposed stems, branches without thin tips) 177	
  

were excluded. By this sampling we could calculate an estimator of plant cover 178	
  

suitable to compare canopy state before and after the climatic episode. Thus, 179	
  

canopy prior to the episode was considered as the sum of living and dry plant 180	
  

canopy in 2007.  The increase of green canopy by growth of new shoots and 181	
  

leaves between 2005 and 2007 should be considered as irrelevant with our 182	
  

sampling, which focused on branches. Also, NDVI measures did not support a 183	
  

strong canopy recover between these dates.  184	
  

We calculated the remaining aerial green cover (RAGC hereafter) as the 185	
  

percentage of living canopy in transect contacts in the 2007 survey respective 186	
  

to the total of contacts of each species, including both living and dead canopy. 187	
  

Although our sampling in 2007 was not simultaneous to the climate extreme 188	
  

event, we consider that our estimation is a representative measurement of the 189	
  

impact of the climatic episode on vegetation cover. In fact, given that delayed 190	
  

canopy decay is common after drought episodes and disturbances, our survey 191	
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allowed integrate this phenomenon without overestimating regrowth, as 192	
  

explained above. Average RAGC values for each species were obtained 193	
  

combining the data of the eighteen plots. We used this calculation instead of the 194	
  

mean value of plant contacts in the eighteen plots to minimize the stochasticity 195	
  

associated to the low abundance of certain species in some plots. 196	
  

Species resilience to the die-off episode was estimated in 2013 from 197	
  

plant contacts measurements. We used the relative resilience index (RR 198	
  

hereafter) (Lloret et al. 2011), which estimates plant recovery to the state 199	
  

previous of a given disturbance, weighting by the impact of such disturbance: 200	
  

 201	
  

Relative Resilience = (Post-Dist) / Pre 202	
  

 203	
  

where Pre, Dist and Post indicate performance previous (Pre), immediately 204	
  

following disturbance (Dist) and after disturbance (Post). In our case the 205	
  

disturbance was the climate-induced die-off episode, and the respective values 206	
  

corresponded to species plant cover (contacts) prior to the climatic episode 207	
  

(Pre), just after the episode (2007, Dist) and eight years later (2013, Post).  208	
  

 209	
  

Measurements of Plant Functional Traits  210	
  

In late spring 2013, during the maximum peak of plant growth, healthy adults of 211	
  

the most abundant species were randomly selected (outside the plots to avoid 212	
  

disruptions) for measuring ten above-ground and four below-ground functional 213	
  

traits related with morphology, physiology, reproduction and plant chemical 214	
  

composition (Table 1). All trait measurements were carried out according with 215	
  

the criteria defined by Pérez-Harguindeguy et al. (2013). 216	
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Plant height (Phg) measurements were made on ten individuals using a 217	
  

metric tape. Leaf traits, in particular specific leaf area (SLA; leaf area per unit of 218	
  

dry leaf mass), leaf dry matter content (LDMC; dry mass per unit of water-219	
  

saturated fresh mass), leaf thickness (Lthick), leaf nitrogen concentration (LN) 220	
  

and leaf chlorophyll (LChl; concentration of chlorophyll per unit of leaf fresh 221	
  

mass) were measured in six individuals per species (see details about leaf traits 222	
  

measures in Appendix 4, Electronic Supplemental Material). Carbon isotopic 223	
  

ratio (δ13C; ‰, precision of ca. 0.2‰), which is related with plant water use 224	
  

efficiency (Farquhar et al. 1982), was obtained from a mixture of leaves 225	
  

collected from six different individuals. 226	
  

In addition we used two physiological traits, leaf water potential (Ψ) and 227	
  

leaf proline content (Prol), which are considered as an estimation of drought 228	
  

stress in plants, from the values measured by Zunzunegui et al. (2005) for most 229	
  

species (except H. picardii and T. mastichina) in the same study area.  230	
  

Roots were sampled at the individual level by excavating the first 20-30 231	
  

cm of the soil layer nearby the plant basal stem for four individuals per species. 232	
  

We selected this specific soil depth based on other studies in Doñana National 233	
  

Park (Martínez et al. 1998) that demonstrated that the largest fraction (70%) of 234	
  

fine roots appears in the first 25 cm of soil depth. These root samples were 235	
  

used to measure below-ground traits of fine roots (< 2 mm in diameter) related 236	
  

with water and nutrient uptake (McCormak 2012): specific root area (SRA, root 237	
  

area per unit of dry root mass), root dry matter content (RDMC, root dry mass 238	
  

per unit of root fresh mass), root diameter (Rdiam, mean diameter), and tissue 239	
  

mass root density (TMDr, root mass per unit of root volume). These data were 240	
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obtained by analyzing the scanned root samples with WinRHIZO 2009 (Regent 241	
  

Instruments Inc., Quebec, Canada) and further weighing the dry root mass.  242	
  

Data of seed mass (Smass) was provided by the Seed Bank in the 243	
  

Córdoba Botanical Garden.  244	
  

 245	
  

Statistical analyses 246	
  

We performed linear and quadratic polynomial fits of RAGC and RR in relation 247	
  

with the 14 plant functional traits of the eleven dominant species of the ‘monte 248	
  

blanco’ shrubland (H. halimifolium, H. commutatum, C. libanotis, S. genistoides, 249	
  

U. australis, R. officinalis, L. stoechas, T. mastichina, E scoparia, H. pichardii 250	
  

and J. phoenicea). We applied logarithmic (for SLA, Lthick, Prol, Phg and 251	
  

Smass) or reciprocal transformation (for LN) when needed to attain normality 252	
  

criteria.  253	
  

Plant functional trait syndromes (patterns of the whole set of traits) 254	
  

across species were assessed by a PCA considering the average values of 255	
  

traits for the different species. Leaf water potential (Ψ) and Leaf proline content 256	
  

(Prol) were not included in this analysis since the information was not available 257	
  

for some species. Then, we also performed linear fits of species RAGC and RR 258	
  

with the respective coordinates of the first PCA component. 259	
  

 We analysed the relationships between recruitment after the die-off 260	
  

episode and functional traits by GLMs, in which the main factor was the total 261	
  

number of seedlings recorded in 2007 or the total number of juveniles recorded 262	
  

in 2013 per species. In the 2013 survey, the number of seedlings was scarce 263	
  

due to seed bank depletion (del Cacho and Lloret 2012), and was not included 264	
  

in these analyses. We performed a GLM separately for each selected trait and 265	
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for coordinates of the first PCA component describing trait syndromes as the 266	
  

main explicative variable, and in each model we included species adult 267	
  

abundance prior to the die-off episode (considering the sum of species 268	
  

transects contacts from all plots) and species defoliation (estimated as the 269	
  

difference of living and dry plant organs in transects contacts from all plots) as 270	
  

covariates. We included these two covariates to control for the abundance of 271	
  

species on the number of recruits and to assess the effect of the loss of canopy 272	
  

cover on recruitment, respectively. We applied log-transformations to the 273	
  

number of seedlings and juveniles, as well as to adult abundance (previous to 274	
  

the die-off). We performed a step-wise selection procedure using the Akaike 275	
  

information criterion (AIC) to select the best-fitted models. 276	
  

All the analyses were performed using JMP 10.0 (SAS Institute Inc.). 277	
  

 278	
  

Results 279	
  

The climatic extreme event reduced more that 50% of aerial green cover in 280	
  

three of the most common species (R. officinalis, C. libanotis, H. commutatum) 281	
  

by 2007 (Fig. 2). Canopy of the most abundant species (H. halimifolius) was 282	
  

reduced around 25%, while loss of green canopy in other large shrubs (U. 283	
  

australis, S. genistorides, E. scoparia and J. phoenicea) ranged between 10 284	
  

and 40%. Smaller shrubs, such as L. stoechas, T. mastichina and H. picardii 285	
  

tended to be less affected, with canopy loss below 20%. In 2013, most species 286	
  

still remained with reduced canopies compared to their state before the event, 287	
  

ranging this value around 40-60% in H. halimifolium, H. commutatum, R. 288	
  

officinalis, L. stoechas, U. australis, H. picardii and E. scoparia. 289	
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The first and second axes of the PCA ordination describing trait 290	
  

syndromes in the studied species accounted for the 45.4 and 22.0 % of the 291	
  

variability, respectively. The first axis was positively related to Lthick, δ13C, 292	
  

Rdiam, Smass and negatively related to SLA, SRA, and TMDr (Fig. 3).  293	
  

Remaining aerial green cover (RAGC) was linearly and positively related 294	
  

with SLA (r2 = 0.47, P = 0.02) and leaf proline content (r2 = 0.56, P = 0.02), but 295	
  

negatively with leaf water potential (r2 = 0.46, P = 0.04) and δ13C (r2 = 0.38, P = 296	
  

0.04) (Fig. 4). RGAC showed a significant linear negative relationship with 297	
  

RDMC, after excluding R. officinalis (r2 = 0.58, P =0.01) (Fig. 4).  298	
  

Relative resilience (RR) was linearly, positively related with δ13C (r2 = 299	
  

0.43, P = 0.03), Smass (r2 = 0.53, P = 0.01), Rdiam (r2 = 0.39, P = 0.04) and the 300	
  

first PCA axis (r2 = 0.44, P = 0.03), while it was negatively with TMDr (r2 = 0.38, 301	
  

P = 0.04) (Fig. 5). Quadratic polynomial fits did not improve linear ones in the 302	
  

RAGC and RR analyses. 303	
  

The number of seedlings in 2007 for each species was positively related 304	
  

with SLA and LN and negatively with LDMC, Lthick, δ13C, Smass and the score 305	
  

in the first PCA axis (Table 2). The number of seedlings was also positively 306	
  

related to the species defoliation, except for the model analysing LN (Table 2). 307	
  

Adult abundance prior die-off was not significantly related with the number of 308	
  

seedlings and, therefore, it was removed from the models.  309	
  

The number of juveniles in 2013 was negatively related to the first PCA 310	
  

axis (r2 = 0.91, F = 28.32, P = 0.003, estimate = -0.702). But we failed to find 311	
  

significant relationships when analysing the functional traits separately, except 312	
  

for LDMC, which also exhibited a negative relationship (r2 = 0.77, F = 11.4, P = 313	
  

0.01, estimate = -20.8). The number of juveniles was again positively related 314	
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with species defoliation (F = 17.0, P = 0.009, estimate = 2.12 and F = 9.43, P = 315	
  

0.022, estimate = 0.408, for the first PCA axis and the LDMC models, 316	
  

respectively), while adult abundance prior die-off was not. 317	
  

 318	
  

Discussion 319	
  

Plant functional traits as drivers of response to the extreme climatic episode 320	
  

Results from this study demonstrated that some key functional traits of plant 321	
  

species are able to explain a relevant part of the between-species variability in 322	
  

the response to climatic extreme events. Plant functional groups based on 323	
  

certain key traits have been largely used to describe community patterns along 324	
  

ecological and biogeographical gradients (e.g. Diaz and Cabido 1998; Thuillier 325	
  

et al. 2006; Esther et al. 2010). Previous studies have analysed how key 326	
  

functional traits strongly change across local environmental gradients (e.g. 327	
  

Ackerley 2004; Pérez-Ramos et al. 2012; de la Riva et al. 2015; all of them 328	
  

under Mediterranean conditions). Our results expand these approaches by 329	
  

demonstrating that several key traits may also explain species responses to 330	
  

sporadic pulses of strong environmental stress – in our case, extreme 331	
  

conditions of drought and cold –, and might be thus act as drivers of a 332	
  

succeeding resilience.  333	
  

The observed loss of green canopy was consistent with damage caused 334	
  

by the drought in the 2004-2005 hydrological year, but also with the extreme 335	
  

cold occurring in the 2005 winter. Low temperature is a limiting factor in 336	
  

Mediterranean Basin ecosystems (Mitrakos 1980; Larcher 1981), as evidenced 337	
  

by field physiological measurements (Karavatas and Manetas 1999; Granda et 338	
  

al. 2014) and experiments under controlled conditions (Logullo and Salleo 339	
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1993; Oliveira and Peñuelas 2004; Cavender-Bares et al. 2005). Symptoms of 340	
  

cold-induced impact include foliage damage (Oliveira and Peñuelas 2004), and 341	
  

the involved physiological mechanisms comprise xylem cavitation, loss of leaf 342	
  

stomatal conductance to water vapour and decline of photochemical efficiency 343	
  

of photosystem II (Granda et al. 2014). In fact, we are not able to disentangle 344	
  

the effects of the two climatic stressors (extreme drought and cold), indeed a 345	
  

synergistic effect between them is likely to have occurred  (see other examples 346	
  

in Willson and Jackson 2006; Granda et al 2014). 347	
  

 348	
  

The role of water-use traits.- In general, the studied woody plant species 349	
  

showed a predominant conservative resource-use strategy (Reich et al. 1998; 350	
  

Díaz et al. 2004; Villar et al. 2006), likely due to the homogeneous stressful 351	
  

Mediterranean environment (with a strong seasonal water deficit) where they 352	
  

inhabit. Within this functional context, we found that several plant traits 353	
  

correlating to die-off response and their resilience after disturbance were related 354	
  

to their water acquisition strategies. Species with higher rates of defoliation (low 355	
  

RAGC) exhibited lower SLA (which indicates a lower assimilation rate per unit 356	
  

mass; Reich et al. 1997), higher δ13C (which is related with higher water use 357	
  

efficiency and stomatic control; Farquhar et al. 1982; Domínguez et al. 2012), 358	
  

and higher leaf water potential (Ψ). These results suggest that some dominant 359	
  

shrub species, such as R. officinalis and C. libanotis, in addition to stomatic 360	
  

control, massively shed their leaves to cope the extreme conditions of water 361	
  

deficit, probably as a mechanism for reducing the transpiring leaf surface and 362	
  

thereby the rate of water loss (Pérez-Ramos et al. 2013). The existence of this 363	
  

syndrome of semideciduous shrubs which drop their leaves and show very low 364	
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values of leaf water potential under high water deficit has been previously 365	
  

described in this community (Zunzunegui et al. 2005) and concurs with 366	
  

observations in Mediterranean species (Saura-Mas and Lloret 2007) and desert 367	
  

shrub communities (Smith et al.1995). The positive relationship between leaf 368	
  

proline content and green cover (RAGC) would illustrate the stress associated 369	
  

to the strategy of retaining green leaves, which in fact was negatively correlated 370	
  

with leaf water potential (Zunzunegui et al. 2005). These species with high 371	
  

defoliation and δ13C differs from those (L. stoechas, T. mastichina or H. 372	
  

halimifolium) showing higher SLA and lower water use efficiency (WUE), which 373	
  

were be able to maintain green biomass for a longer time period but were less 374	
  

resilient at the medium term.  375	
  

 376	
  

The role of root traits.-  Our results also showed a relevant role of root traits in 377	
  

species resistance to die-off. The sandy nature of the soil system facilitated the 378	
  

interpretation of the root features due to an unusually homogeneous soil 379	
  

environment. Accordingly, the most affected species by die-off (lower RGAC) in 380	
  

our study site were those having higher RDMC. Thus, we found some 381	
  

parallelism between root and above-ground traits for water-use; species with 382	
  

both high values of SLA and low of RDMC would experience relative low 383	
  

construction costs and would show a more exploitative resource-use strategy 384	
  

(Villar and Merino 2001), presented a successful strategy to withstand extreme 385	
  

climatic episodes. Also, species with higher resilience were those with wider 386	
  

roots and lower root tissue density (TMDr), indicating a likely higher efficiency of 387	
  

water uptake. Conversely, plants with high values of root tissue density are 388	
  

commonly associated to a strategy characterized by a large investment in the 389	
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structural features of roots and a limited capacity to acquire water in the upper 390	
  

soil layer (Wahl and Ryser 2000).  391	
  

 392	
  

The role of seed mass.- Resilience of species after the climatic event was also 393	
  

positively related to their seed mass, likely because this trait determined the 394	
  

success of seedling establishment and new recruits that achieved enough size 395	
  

to account for community plant cover eight years after the climatic episode. 396	
  

These successful recruits corresponded mainly to species with relatively large 397	
  

seeds (C. libanotis and R. officinalis, and to a lesser extent H. commutatum and 398	
  

H. halimifolium), which were able to remain abundantly in the soil bank and to 399	
  

produce new cohorts of seedlings after the canopy opening resulting from die-400	
  

off (del Cacho and Lloret 2012). However, other species such as J. phoenicea, 401	
  

with large-sized seeds and high rates of seedling survival, produced small seed 402	
  

banks and few recruits, reliying its recovery on adult performance, at least at the 403	
  

considered temporal scale (García et al. 2014). Conversely, species that 404	
  

produced a large number of very small seeds (H. picardii and E. scoparia) 405	
  

showed a low resilience after die-off. 406	
  

Overall, the observed relationship between seed mass and resilience 407	
  

agrees with the role of seed mass for enhancing seedling survival (Moles and 408	
  

Westoby 2006), particularly under drought stressful conditions (Westoby et al. 409	
  

2002). This relationship supports the hypothesis of trade-off between stress 410	
  

tolerance and fecundity proposing that in more stressful conditions, species with 411	
  

large seeds tend to be favoured thanks to their advantage during the 412	
  

establishment stage (Muller-Landau 2010). In the Doñana shrublands, the 413	
  

increase of light and soil resources associated to the process of gap opening in 414	
  



	
   18	
  

the years after defoliation would produce a competition release that could 415	
  

promote the successful recruitment of these particular species with larger 416	
  

seeds, as supported by the positive effect of die-off on the number of seedlings. 417	
  

Thus, species filling the soil bank with abundant, relatively large seeds would be 418	
  

better suited to obtain advantage of this opportunity window, and thus 419	
  

promoting community cover resilience. 420	
  

 421	
  

Recruitment strategies after an extreme climatic event 422	
  

Overall, the most affected plant species were those producing a higher number 423	
  

of seedlings after the climatic episode, a feature observed in other 424	
  

Mediterranean communities after natural disturbances such as fire (Lloret 425	
  

1998). In fact, many of the species of this community exhibiting high recruitment 426	
  

rates can be considered to show also a post-fire seeder strategy (Verdú and 427	
  

Pausas 2007), indicating a possible convergence of responses following 428	
  

different types of disturbances. The number of seedlings was negatively related 429	
  

to seed size, as expected according to the classical trade-off between size and 430	
  

number of seeds (Leishman 2001). However, seedlings from species producing 431	
  

abundant, small seeds will eventually exhibit high mortality rates (Lloret et al. 432	
  

1999), being other species with larger seeds such as C. libanotis and R. 433	
  

officinalis the main contributors of the recovery of the community cover from 434	
  

new recruits.  435	
  

The species that showed a higher number of seedlings (after controlling 436	
  

by the effect of canopy loss or die-off) were those having low-density, thinner 437	
  

and N-rich leaves, lower stomata control (i.e. less δ13C).. This syndrome is 438	
  

commonly associated with an acquisitive resource-use strategy. This is the 439	
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case of the short-lived shrubs L. stoechas, T. mastichina and H. picardii. In spite 440	
  

of their greater ability to establish as seedlings, these species showed a low 441	
  

resilience and eventually they did not achieve dominance in the canopy, 442	
  

probably as a result of their smaller size and their tendency to loss the canopy 443	
  

cover even several years after the climatic event.  444	
  

The significant relationship between recruitment and the main trend of 445	
  

trait variation (first PCA axis) persisted for the juvenile stage. However, when 446	
  

considering separately the different traits, it tended to disappear. Seedling 447	
  

mortality in these Mediterranean environments is high during the first seasons 448	
  

after emergence and it is subjected to a high stochasticity associated to 449	
  

microhabitats (Lloret 1998). In fact, some species (such as R. officinalis and C. 450	
  

libanotis) with intermediate scores in the first trait PCA axis were heavily 451	
  

affected by die-off but reached to produce a large number of juveniles, which 452	
  

will likely replace the damaged populations. This contrasts with species that 453	
  

experienced similar cover losses but with less capacity to establish new 454	
  

seedlings (E. scoparia and U. australis) or with high rates of seedling mortality 455	
  

(H. commutatum). Other species (S. genistoides and J. phoenicea) were more 456	
  

resistant thanks to moderate cover losses, in spite of producing few recruits. 457	
  

The case of H. halimifolium seems different because they are relatively large 458	
  

shrubs finding difficulties to restore the canopy after die-off while their quite 459	
  

abundant number of seedlings experienced high mortality rates. These patterns 460	
  

highlight the difficulties to scale-up broad species functional characterizations to 461	
  

particular demographic processes.  462	
  

 463	
  

Limitations of the trait-based approach 464	
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In spite of the contrasted patterns obtained in this study, we found that the 465	
  

relationships between species functional traits and die-off responses were 466	
  

limited to a relatively low number of functional attributes. There are several 467	
  

reasons to interpret this limited ability of the species functional traits as 468	
  

predictors of population-level processes. At the species level, within-species 469	
  

variability of functional trait values may be equally important for interpreting 470	
  

population responses to a particular environmental factor than species-471	
  

averaged values (Albert et al. 2011; Kichenin et al. 2013). Also, functional traits 472	
  

often exhibit trade-offs between them due to functional, structural or 473	
  

phylogenetic constraints (Reich et al. 2003; Cavender-Bares et al. 2009). Thus, 474	
  

the effect of environmental drivers on a single attribute may be masked if traits 475	
  

respond differently to co-occurring environmental factors. Finally, many 476	
  

functional traits simultaneously obey to different environmental factors and they 477	
  

may hardly show strong relationships with a single one – in our case, extreme 478	
  

water deficit-. Overall, species may have similar traits but differ in others, 479	
  

allowing diverse trait combinations that may promote species coexistence, for 480	
  

instance under periods of low water availability (Pivovaroff et al. 2014).  In fact, 481	
  

correlations between plant functional traits and environmental factors have 482	
  

been mainly found across wide abiotic or successional gradients or at regional 483	
  

scale (Díaz et al 2004; Wright et al. 2004). Noticeably, the studied community 484	
  

exhibited a quite homogeneous pattern of functional diversity when considered 485	
  

in the context of the plant communities of the area (de la Riva et al. 2015).  486	
  

 487	
  

Conclusions 488	
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Our study provides a functional interpretation of the responses performed by 489	
  

coexisting species to a climatic extreme episode causing vegetation die-off. 490	
  

Current climatic tendencies of increasing climatic variability in some regions, 491	
  

such as the Mediterranean basin, reinforce the relevance of studying the impact 492	
  

of these climatic anomalies on community dynamics and ecosystem processes. 493	
  

Although drought-induced die-off has caused great concern because of its large 494	
  

impact on forests, it also affects other woody plant communities, such as 495	
  

Mediterranean and semi-arid woodlands (Lloret and Granzow-de la Cerda 496	
  

2013; Breshears et al. 2005), where it produces important changes on 497	
  

ecosystem biodiversity and functioning (Royer et al. 2011). Similarly to other 498	
  

drivers of global change, here we highlight the utility of using a trait-based 499	
  

approach to assess ecosystem responses – changes in vegetation cover in this 500	
  

case -. Nevertheless, the impact on ecosystem functioning would eventually 501	
  

depend on the degree of coupling between traits sensitive to the environmental 502	
  

change and traits with relevance on ecosystem functioning (Suding et al 2008). 503	
  

Our study reveals the importance of selecting appropriate meaningful traits that 504	
  

are as directly linked as possible with the specific environmental stressor. We 505	
  

finally remark that functional traits can provide relevant insights to interpret post-506	
  

event resilience that can contribute to stabilize plant community after extreme 507	
  

climatic events, particularly when combined with demographic attributes (Lloret 508	
  

et al. 2012). 509	
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Figure Legends 740	
  

 741	
  

Figure 1. Mean annual temperature and total precipitation in Doñana NP. Right, 742	
  
upper corner: box indicating medians, 25 and 75% percentiles and extreme 743	
  
values for the period 1978-2013. Data correspond to hydrological years (from 744	
  
September until August).  Arrows indicate the die-off year (2004-05).  745	
  
 746	
  

Figure 2. Species plant cover (%) estimated from transects contacts 747	
  
intercepting plants of the plots sampled in 2007 and 2013. Values prior to the 748	
  
event correspond to the sum of living and dead plants parts in 2007. Data 749	
  
correspond to the pooled values of the eighteen surveyed plots. 750	
  
 751	
  

Figure 3. Principal Component Analysis (PCA) biplot of functional traits 752	
  
(abbreviations as in Table 1) and species (abbreviations, CL: Cistus libanotis, 753	
  
HC: Halimium commutatum, HH: Halimium halimifolium, HP: Helicrysum 754	
  
picardii, LS: Lavandula stoechas, RO: Rosmarinus officinalis, SG: 755	
  
Stauracanthus genistoides, TM: Thymus mastichina, UA: Ulex australis, ES: 756	
  
Erica scoparia, JP: Juniperus phoenicea). 757	
  
 758	
  
Figure 4. Relationship between Remaining Aerial Green Cover (RAGC) 759	
  
measured in 2007 and (a) Specific leaf area (SLA), (b) δ13C (‰), (c) Leaf water 760	
  
potential (Y) and (d) Root dry matter content (RDMC) of coexisting species in 761	
  
Doñana NP shrubland affected by climatic-induced die-off in 2005. RDMC was 762	
  
fitted to RAGC after excluding the outlier Rosmarinus officinalis (within a 763	
  
square, see Results section). 764	
  
 765	
  
Figure 5. Relationship between Relative Resilience (RR) measured in 2013 and 766	
  
(a) δ13C (‰), (b) Seed mass (Smass), (c) Root diameter (Rdiam) and (d) 767	
  
Tissue mass root density (TMDr) of coexisting species in Doñana NP shrubland 768	
  
affected by climatic-induced die-off in 2005. 769	
  

  770	
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Table 1. List of the functional traits considered in this study, their abbreviations, 806	
  
units and their main role in plant functioning.  807	
  
 808	
  
 809	
  

Trait Abbreviation Unit Functional role 

Specific leaf area SLA m²	
  kg-­‐1	
  	
   Light and carbon acquisition and water use 

Leaf dry matter content LDMC mg	
  g
-­‐1
	
  	
   Carbon acquisition and water use 

Leaf thickness Lthick mm	
   Light and carbon acquisition 

Leaf nitrogen concentration LN %	
   Nutrient acquisition and use  

Leaf chlorophyll LChl µg	
  g
-­‐1
	
   Light and carbon acquisition 

Leaf proline content Prol µg	
  g
-­‐1
	
  	
  	
   Drought stress 

Isotopic carbon fraction     δ¹³C ‰	
   Carbon acquisition and water use efficiency 

Leaf water potential Ψ MPa	
   Water acquisition and use 

Specific root area SRA m²	
  kg-­‐1	
   Water and nutrient acquisition 

Root  diameter Rdiam mm Water and nutrient acquisition 

Tissue mass root density TMDr g	
  cm
-­‐1
	
   Water and nutrient acquisition 

Root dry matter content RDMC mg	
  g
-­‐1
	
   Water and nutrient acquisition 

Plant height Phg m Light and carbon acquisition 

Seed mass Smass mg	
   Recruitment 

 810	
  
  811	
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Table 2. Results of GLMs describing the number of seedlings (log-transformed) 812	
  
recorded in 2007, two years after the die-off episode, in relation to different 813	
  
plant traits. Models included species defoliation, estimated from contacts 814	
  
transects (see Methods). Species die-off was not significant in the LN model 815	
  
and it was removed. Only traits exhibiting a significant relationship are shown. 816	
  
 817	
  
	
   	
   Trait	
   	
   	
   	
   Defoliation	
   	
   	
   Whole	
  

model	
  
	
   estimate	
   F	
  	
   p	
  	
   	
   estimate	
   F	
  	
   p	
  	
   	
   r2	
  

SLA	
   5.60	
   6.03	
   0.049	
   	
   1.12	
   10.67	
   0.017	
   	
   0.638	
  

LDMC	
   -­‐28.63	
   10.43	
   0.018	
   	
   0.50	
   6.53	
   0.043	
   	
   0.735	
  

Lthick	
   -­‐2.74	
   19.93	
   0.004	
   	
   0.62	
   15.18	
   0.08	
   	
   0.832	
  

δ¹³C -­‐0.82	
   11.16	
   0.016	
   	
   0.74	
   12.87	
   0.012	
   	
   0.746	
  

LN	
   5.35	
   6.29	
   0.036	
   	
   -­‐	
   -­‐	
   -­‐	
   	
   0.440	
  

Smass	
   -­‐0.86	
   21.32	
   0.004	
   	
   0.46	
   9.09	
   0.024	
   	
   0.841	
  

First	
  PCA	
  axis	
   -­‐0.66	
   35.38	
   0.001	
   	
   0.69	
   29.29	
   0.002	
   	
   0.895	
  

	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
  
 818	
  
 819	
  
	
  820	
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