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Abstract 

This paper is focused on the analysis and modeling of coplanar waveguide (CPW) transmission 

lines loaded with multi-section stepped impedance resonators (MS-SIRs), transversely etched 

on the back substrate side. The considered structure consists of a CPW loaded with a 5-section 

SIR (5S-SIR) with wide (capacitive) central and external sections cascaded with narrow 

(inductive) sections. The general case of a 5S-SIR with arbitrary lengths and widths of the 

different sections is considered. The structure is described by a pair of inductively coupled 

grounded series resonators coupled to the line through the capacitance of the central 5S-SIR 

section. If the structure is symmetric, the transmission coefficient exhibits a single transmission 

zero. Hence, these structures can be used as notch filters exhibiting wide bandwidths, provided 

the inductance of the 5S-SIR can be made small, and the capacitance can be enhanced by virtue 

of the broadside coupling. However, if symmetry is broken, two notches separated a distance 

that depends on the level of asymmetry and inductive coupling appear. Therefore, these 

structures are also useful for the implementation of differential sensors and comparators. The 

proposed model is validated through parameter extraction and experiment, and a proof-of-

concept of a comparator is reported. 
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1. Introduction 

 

Stepped impedance resonators (SIRs) are electrically small resonators useful for the 

implementation of planar filters [1-3]. Coupled to planar transmission lines, such resonators 

have found applications in the design of elliptic lowpass filters [4], or frequency-domain 

(spectral signature) barcodes [5], due to the transmission zeros that appear at their fundamental 

resonance frequency. Although SIRs are usually implemented as metallic resonators, the 

complementary counterparts (slotted SIRs, also called dumbbell defected ground structures) are 

also of interest for microwave circuit design [6].  

In this paper, we study in detail the electromagnetic behavior of CPW transmission lines loaded 

with multi-section stepped impedance resonators (MS-SIRs), transversely etched on the back 

substrate side, and we propose a lumped element equivalent circuit model of the structure. Such 

model accounts not only for the different semi-lumped planar (inductive and capacitive) 

elements of the MS-SIR, but also for the main coupling mechanisms between the line and the 

resonator and between the resonator elements, essential for an accurate model. The specific MS-

SIR considered is a 5-section resonator (5S-SIR) with wide (capacitive) central and external 

sections cascaded with narrow (inductive) sections. The central section is placed below the 

central strip of the CPW transmission line, whereas the external sections are allocated below the 

ground planes. This provides a large resonator capacitance that makes the particle electrically 

small. The inductive sections are etched beneath the slot region. All the sections must be 

electrically short for a correct description of the structure by means of a lumped element circuit. 

In the modeling, the general case of a 5S-SIR with arbitrary lengths and widths of the different 

sections is considered. Although for the application of these structures as wideband notch filters, 

or as part of elliptic filters, there is no reason to choose asymmetric 5S-SIRs (note that by using 

symmetric resonators the slot mode is prevented and air bridges or backside strips and vias are 

avoided), the fact that disruption of symmetry in the 5S-SIR gives rise to two transmission zero 

frequencies (frequency splitting [7]), opens the path to the implementation of differential 

sensors or comparators (e.g., for analysis of biological cells and tissues, defects or abnormalities 

in materials, etc. [8]). These sensors based on frequency splitting are robust against variable 

environmental conditions. Hence, the modeling of the 5S-SIR-loaded CPW with asymmetric 

resonators is of interest. To the best authors’ knowledge, it is the first time that a lumped 

element circuit model describing a CPW transmission line loaded with an arbitrary 5S-SIR, 

including inductive coupling between resonator elements (the two 5S-SIR inductances), is 

proposed. Nevertheless, a microstrip structure loaded with pairs of coupled SIRs was recently 

investigated as a potential candidate for differential sensing [8], and a prototype sensor 

(implemented in CPW technology) operative at Q-band was presented. As compared to the 

structures of that work, the 5S-SIR-loaded CPW structure presented in this paper exhibits more 

design flexibility as long as it is described by a circuit model where the resonant element (5S-

SIR) is electrically coupled to the line (by contrast, in the structure reported in [8] the pair of 

SIRs are in direct contact with the line).  

This work, dedicated to the analysis and modeling of CPWs loaded with MS-SIRs, represents a 

clear progress on the topic of transmission lines loaded with resonant elements, and points out 

the potential of these structures as notch filters (symmetric case) and microwave sensors and 

comparators based on frequency splitting (asymmetric case).  

2. Topology and equivalent circuit model 



In this section, the 5S-SIR-loaded CPW topology and its lumped element equivalent circuit 

model are presented, and the resonance frequencies (transmission zeros) for the general 

asymmetric case are calculated analytically. Model validation through parameter extraction and 

comparison to electromagnetically simulated and measured responses is left for next sections.  

Fig. 1(a) shows the typical topology of a CPW loaded with a 5S-SIR. The equivalent circuit 

model is depicted in Fig. 1(b), where L and C are the inductance and capacitance of the CPW 

line section, and Li and Ci (with i = 1,2) describe the inductances and capacitances of the narrow 

(inductive) and external sections, respectively, of the 5S-SIR. Two coupling mechanisms are 

considered: (i) electric coupling between the 5S-SIR and the line, through Cc (the broadside 

capacitance between the central strip of the CPW and the central section of the 5S-SIR), and (ii) 

magnetic coupling between the two inductances of the resonator, through M (such coupling is 

negative because the currents in the inductances flow in opposite directions). Losses are not 

considered in the model.  

Although for sensing purposes the structure should be symmetric and symmetry disruption 

would modify the element values of the equivalent circuit, we directly consider the more 

general case of a circuit model corresponding to an arbitrary asymmetric structure. Note that the 

considered structure is electrically short and hence it is reasonable to assume, to a first order 

approximation, that the slot mode is not generated (the ports in the electromagnetic simulation 

and the connectors in the measurement act as air bridges effectively connecting the two ground 

plane regions).   

From the analysis of the circuit model of Fig. 1(b), it follows that the transmission zeros, given 

by those frequencies that null the reactance of the shunt branch, are: 
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If the structure is symmetric (i.e., L1 = L2  Lr and C1 = C2  Cr), the mathematical solutions of 

(1) are: 
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However,  is not actually a physical solution since it nulls the denominator of the reactance. 

Thus, the mutual coupling between the two inductors of two SIRs has the effect of increasing 

the notch frequency (symmetric case). 
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Fig. 1. (a) CPW loaded with a 5S-SIRs and (b) circuit model. Relevant dimensions are indicated. 

3. Model validation through parameter extraction 

Let us now demonstrate the validity of the proposed circuit model by providing a method to 

extract the parameters of that model and by comparison of the lossless electromagnetic 

simulation with the circuit simulation of the model with the extracted parameters. As a case 

example we will consider a set of three 5S-SIR-loaded CPWs, one symmetric and the other two 

asymmetric, where the two asymmetric structures are derived from the symmetric one by 

increasing or decreasing the area of one of the external patch capacitors, while the other external 

patch capacitors for these two asymmetric structures keep the same dimensions as in the 

symmetric one. The corresponding layouts are depicted in Fig. 2 (dimensions and substrate 

parameters are indicated in the caption).  

Due to the large number of elements in the circuit model, parameter extraction is a multi-step 

process. First of all, one of the capacitances and inductances of the 5S-SIR (one half) is 

removed, and the resulting central patch is short circuited to ground by means of vias, as 

indicated in Fig. 3(a). The corresponding model, indicated in Fig. 3(b), has a reduced number of 

parameters (i.e., four) that can be inferred by means of the following four conditions. The first 

one is the transmission zero frequency, given by:  
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A pair of additional conditions are derived from the frequency that opens the shunt branch, i.e., 
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which can be inferred from the intercept of S11 with the unit resistance circle in Smith chart. 

From this intercept, the reactance of the series branch, s, can be directly obtained, and hence L, 

i.e., 
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Finally, the fourth condition is given by the frequency where the phase of S21 is 90
o
. At this 

frequency, /2, the series and shunt reactances verify [9]: 
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Fig. 2. Considered 5S-SIR-loaded CPWs: (a) symmetric; (b) asymmetric with one external patch capacitor larger; (c) 

asymmetric with one external patch capacitor smaller. Dimensions are (in reference to Fig. 1): for CPW lines:  l = 6 

mm, W = 6 mm and G= 0.96 mm, corresponding to 50 Ω. For 5S-SIRs: (a) W1 = W2 = 4.5 mm, l1 = l2 = 3 mm, W3 = 

W5 = 0.2 mm, l3 = l5 = 4 mm, W4 = 5 mm, l4 = 4 mm. For (b) W1 = l1 = 5 mm and (c) W1 = l1 = 2 mm, with the other 

dimensions the same as in (a). The considered substrate (Rogers RO3010) has thickness of h = 0.635 mm and 

dielectric constant of r = 11.2. 
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Fig. 3. Layout and circuit model of the symmetric structure of Fig. 2(a) after removing one of the halves of the 5S-

SIR and adding vias to the resulting central patch (a), and equivalent circuit model (b). 

Using (3)-(6), the parameters of the model of Fig. 3(b) are extracted, namely, L = 3.49 nH, C = 

1.21 pF, Lr = 4.20 nH, Cr = 2.65 pF. Once the inductance and capacitance of the halved 5S-SIR 

and the line parameters are known, the next step is to determine the mutual coupling between 

the two inductors of the SIRs, M, and the capacitance of the central patch in Fig. 2(a). For the 

extraction of M, we add vias in the central patch capacitor and short it to ground (see Fig. 4). 

Then, from this model we can determine M by curve fitting, i.e., M = 1.08 nH. Finally, we 

remove the vias in the central patch capacitor, the whole symmetric structure is simulated, and 

Cc, the remaining parameter, is determined by curve fitting, i.e., Cc = 3.62 pF. The comparison 

of the electromagnetic simulation (using Keysight Technologies) with the circuit simulation of 

the symmetric structure is shown in Fig. 5 (the measurement data is included as well), where 

good agreement can be appreciated, pointing out the validity of the proposed model. 

To determine the modified patch capacitances of the two considered asymmetric cases, the 

procedure is as simple as removing the opposite half of the 5S-SIR. From the resulting 

transmission zero frequency, the capacitance and inductance of the halved 5S-SIR can be 

obtained. Then, by simulating the whole structure with and without vias respectively, the mutual 

inductance M and the middle patch capacitance Cc can be inferred.  

(a) (b) (c) 

(a) (b) 



By means of this procedure, the small external patch capacitor and narrow inductive section of 

5S-SIR have been found to be 0.97 pF and 4.30, and the big external patch capacitor and narrow 

inductive section of 5S-SIR have been found to be 4.53 pF and 4.26 nH. The mutual 

inductances for these two asymmetric cases, i.e., in Fig. 2 (b) and Fig. 2(c), have been found to 

be 1.16 nH and 1.10 nH respectively, i.e., similar values, and also similar to the value 

corresponding to the symmetric structure. This indicates that M is scarcely dependent on the 

dimensions of the patch capacitances of the 5S-SIR, as expected. The agreement among the 

electromagnetic simulation, circuit simulation and measurement for the two asymmetric cases 

(Figs. 6 and 7) is reasonable. 
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Fig. 4. Layout and circuit model of the symmetric structure of Fig. 2(a) after adding vias to the central patch of the 

5S-SIR (a), and equivalent circuit model (b). 

                                      

Fig. 5. Electromagnetic simulation, circuit simulation and measurement response for the symmetric structure of 

Fig.2(a). 
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Fig. 6. Electromagnetic simulation, circuit simulation and measurement response for the asymmetric structure of 

Fig.2(b). 

                                           

Fig. 7. Electromagnetic simulation, circuit simulation and measurement response for the asymmetric structure of 

Fig.2(c). 

4. Experimental validation 

The structures of Fig. 2 have been fabricated by means of a milling machine LPKF HF100, and 

have been measured by means of the Keysight N5221A vector network analyzer. The measured 

responses are depicted in Figs. 5, 6 and 7, where it can be appreciated that the asymmetry splits 

and modifies the position of the main transmission zero, shifting it to the left and right, 

respectively, for the big and small patch capacitances, in agreement with the theory. There is 

some shift between the simulated responses and the measured responses, which is attributed to 

fabrication related tolerances. Nevertheless, it is experimentally verified that the asymmetry 

produces two notches, and the structure can be used for sensing purposes, as demonstrated in 

the next section. 

5. Demonstration of the sensing principle 

A proof-of-concept of the sensing principle is reported in this section. To this end, we have 

loaded the symmetric structure of Fig. 2(a) with a dielectric load (consisting of a small piece of 

Rogers RO3010 substrate with the copper removed from both substrate sides) placed on top of 

one of the patch capacitances. The measured response, shown in Fig. 8, exhibits two notches, 

indicative of the asymmetric loading. Then, we have repeated the experiment by using the same 

piece of substrate but keeping the metal layers (metallic loading). The measured response is also 

included in Fig. 8, where it can be seen that the depth of the first notch is superior (as compared 

to dielectric loading), since the structure is more sensitive to the effects of a metallic layer 

placed on top of one of the patch capacitances.  

6. Conclusion 

In conclusion, the modeling of CPW transmission lines loaded with multi-section (specifically 

5-section) SIRs of arbitrary dimensions (including thus asymmetric structures) has been carried 

out for the first time. The model takes into account the negative magnetic coupling between the 

two inductive elements of the 5S-SIR. A parameter extraction procedure, able to provide the 

element parameters of the proposed circuit model, considering both symmetric and asymmetric 

structures, has been reported and explained in detail. The validity of the model has been verified 

by comparing the electromagnetic responses of the considered structures with circuit 

simulations. Furthermore, we have validated the model through experiment. Finally, the sensing 



principle has been demonstrated by asymmetrically loading a symmetric 5S-SIR-loaded CPW 

with dielectric and metallic loads.  

                                              

Fig. 8. Measured responses of the structure of Fig. 2(a) with asymmetric dielectric loading and metallic loading. 
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