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Abstract 

This paper is focused on the automated synthesis of slow-wave structures based on microstrip 
lines loaded with patch capacitors. Thanks to the presence of the shunt capacitors, the effective 
capacitance of the line is enhanced, and the phase velocity of the structure can be made 
significantly smaller than the one of the unloaded line. The target is to achieve the layout of the 
slow-wave structure able to provide the required slow-wave ratio, characteristic (Bloch) 
impedance and electrical length (i.e., the usual specifications in the design of slow-wave 
transmission lines). To this end, a two-step synthesis method, based on the aggressive space 
mapping (ASM) algorithm, is proposed for the first time. Through the first ASM algorithm, the 
circuit schematic providing the target specifications is determined. Then, the second ASM 
optimizer is used to generate the layout of the structure. In order to illustrate the potential of the 
proposed synthesis method, three application examples are successfully reported. The two-step 
ASM algorithm is able to provide the layout of the considered structures from the required 
specifications, without the need of an external aid in the process. 
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1. Introduction 

Slow-wave transmission lines are wave guiding structures exhibiting a phase velocity smaller 
than the one corresponding to ordinary lines implemented in the same substrate. Owing to the 
slow-wave behavior of these lines, the wavelength is also small, as compared to ordinary lines, 
and hence the circuit size can be significantly reduced (see the recent review on artificial 
transmission lines [1], that includes slow-wave transmission lines). Typically, slow-wave 
transmission lines are implemented by periodically loading a host line with shunt connected 
capacitors, either lumped or semi-lumped (e.g., patch capacitors). By means of this capacitive 
loading, the effective capacitance of the line is enhanced and the phase velocity is reduced. 
Slow-wave transmission lines have found applications in microwave circuit miniaturization [2-
4]. However, due to periodicity, these structures exhibit stop bands, which are of interest for 
spurious suppression. Thus, slow-wave structures have been applied to the design of microwave 
circuits with reduced size and spurious suppression [5,6].  

Slow-wave transmission lines implemented by means of capacitively loaded lines are relatively 
simple structures. However, in order to satisfy the usual specifications for circuit design, 
namely, characteristic impedance, electrical length, and slow-wave ratio (i.e., the ratio between 
the phase velocity of the loaded and unloaded line), optimization is typically necessary. In this 
paper, we propose an automated synthesis process for capacitively-loaded slow-wave 
transmission lines based on space mapping (SM) [7-9]. This synthesis technique has been 
applied to the design of many planar microwave circuits [10-18]. Specifically, in this work a 
variant called aggressive space mapping (ASM) [8] is used. Recently, we have proposed a two-
step ASM technique useful for microwave circuits described by a circuit schematic, where the 
optimum schematic (i.e., the one that satisfies specifications) is first determined (first step), and 
then the circuit layout is automatically generated (second step) [19,20]. This two-step ASM 
technique has been successfully applied to the design of bandpass filters based on stepped 
impedance resonators and shunt stubs coupled through admittance inverters [19, 20]. Similarly, 
we have implemented a two-step ASM algorithm for the synthesis of slow-wave transmission 
lines. Through the first algorithm, the optimum schematic, consisting on a cascade of 
transmission line sections (host line) and shunt capacitors, is determined. Then, from the 
optimum capacitance value and host line characteristics (impedance and electrical length), the 
layout is automatically generated. 

The work is organized as follows. In the second section, the lumped element equivalent circuit 
model of the considered slow-wave structures, and the main design formulas, are provided. 
Section 3 is focused on the general formulation of ASM. Section 4 is devoted to the description 
of the new proposed two-step ASM synthesis algorithm. Finally, three illustrative synthesis 
examples of slow wave transmission lines are reported in section 5. The conclusions are 
highlighted in section 6. 

2. Slow-wave structures based on capacitively loaded lines 

The schematic of the slow-wave structures considered in this work is depicted in Fig. 1(a). The 
host line, with phase constant k (electrical length of the unit cell kl), and characteristic 
impedance Zo, is periodically loaded with shunt connected capacitances, Cls. From now on, we 
will refer to k and Zo as the phase constant and characteristic impedance of the unloaded line, 
respectively, in order to distinguish such variables from the corresponding characteristic 

impedance (actually Bloch impedance), ZB, and phase constant, , of the capacitively-loaded 



lines. The dispersion relation and Bloch impedance of the structure of Fig. 1 can be obtained 
from the ABCD matrix of the unit cell, following standard Bloch wave analysis of periodic 
structures [21]. In particular, the dispersion relation is given by: 
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and the slow-wave ratio is given by: 
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The previous expressions are cumbersome and, typically, the lumped element equivalent circuit 
model is invoked for design purposes. It is depicted in Fig. 1(b), where C and L are the per-
section capacitance and inductance of the line. According to this model, the Bloch impedance, 
the electrical length (unit cell) and the slow wave ratio are given by: 
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respectively. From the previous expressions, the elements of the circuit of Fig. 1(b) can be 
easily isolated. However, the validity of the model of Fig. 1(b) is restricted to large values of Cls 
as compared to C. Indeed, if the condition Cls >> C is satisfied, the agreement between the 
lumped element model and the schematic is good up to the cut-off frequency (at low 
frequencies, the model is valid regardless of the relative values between C and Cls). However, 
this condition (Cls >> C) is not always satisfied. This justifies the first ASM proposed in this 
work, where, from the element values provided by isolation of expressions (4)-(6), we 
determine the optimum schematic of Fig. 1(a), namely, the one that satisfies the target 
specifications. An alternative to this ASM process would be the numerical solution of 
expressions (1)-(3), but we have opted for implementing an ASM algorithm, which is simple, 
fast and accurate. Indeed, the first ASM provides a technique for the numerical solution of 
expressions (1)-(3).  



 
Fig. 1. Schematic of the slow-wave structure based on a capacitively loaded line (a), and lumped element 
equivalent circuit model (b). 
 

3. General formulation of aggressive space mapping (ASM) 

Space mapping (SM) is a technique extensively used for the synthesis and optimization of 
microwave components. It uses two simulation spaces [7]-[9]: (i) the optimization space, Xc, 
where the variables are linked to a coarse model, which is simple and computationally efficient, 
although not accurate, and (ii) the validation space, Xf, where the variables are linked to a fine 
model, typically more complex and CPU intensive, but significantly more precise. In each 
space, a vector containing the different model parameters can be defined. Let us call such 
vectors xf and xc in the fine and coarse model spaces, respectively, and let us designate by Rf(xf) 
and Rc(xc) their corresponding responses. The key idea behind any SM optimization process is 
to generate an appropriate parameter transformation 
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mapping the fine model parameter space to the coarse model parameter space such that 
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in some predefined region, ||  || being a certain suitable norm and  a small positive number 
close to zero. If P is invertible, then the inverse transformation: 
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is used to find the fine model solution, which is the image of the coarse model solution, xc
*, that 

gives the target response, Rc(xc
*).  

The determination of P according to the procedure reported in [7] follows an iterative process 
that is rather inefficient. The efficiency of the method was improved by introducing a quasi-
Newton type iteration [8], resulting in a faster convergence, and giving rise to the so-called 
aggressive space mapping (ASM) [8]. The goal in ASM is to minimize the following error 
function: 

*
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Let us assume that xf
( j ) is the j-th approximation to the solution in the validation space, and f( j ) 

the error function corresponding to f(xf
( j )). The next vector of the iterative process xf

( j+ 1) is 
obtained by a quasi-Newton iteration according to 
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and B( j) is an approximate to the Jacobian matrix which is also updated by a simplification of 
the classical Broyden formula [8, 22] at each iterative step. 
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In (13), f( j+1) is obtained by evaluating (10) using a certain parameter extraction method 
providing the coarse model parameters from the fine model parameters, and the super-index T 
stands for transpose. 

The implementation of the ASM algorithm is well reported in [8]. In the next section, the new 
proposed two-step ASM synthesis algorithm is explained in detail.  

4. The proposed two-step ASM synthesis method 

The developed ASM algorithm for the unattended synthesis of slow-wave structures based on 
capacitively loaded lines is divided in two steps: (i) the determination of the optimum 
schematic, providing the required specifications, and (ii) the generation of the layout. Let us 
now describe in detail both ASM stages. 

4.1.  First ASM: determination of the optimum schematic 

For the determination of the schematic [given by the circuit of Fig. 1(a)] providing the target 
specifications, we have developed a specific ASM algorithm. The variables of the coarse space 

are the three specifications: Bloch impedance, ZB, electrical length per unit cell, l, and slow-
wave ratio, swr. The response of these variables in the coarse space is simply given by the 
electrical simulation of the circuit of Fig. 1(b) with the element values inferred from expressions 
(4)-(6). The variables of the fine model are Zo, kl and Cls, and the response of this model is given 
by the circuit simulation of the schematic of Fig. 1(a).  

To initiate this first ASM, we must provide the values of the variables of the fine model 
according to some criterion. The most straightforward one is to identify Cls with the value of 
this variable inferred by isolation of (4)-(6). The values of C and L also provide Zo, i.e.,  

C

L
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and kl, given by: 

LCkl                                                              (15) 



Once the variables of the fine model are determined, the response is obtained by circuit 
simulation of the schematic (Fig. 1a). From this response (or by means of expressions 1-3), we 
extract the variables of the coarse model corresponding to the first iteration xc

(1). Then, we 
compare such values with the target (xc

*) and this gives the first error function (10).  Unless this 
error function is smaller than a certain predetermined value, the matrix B must be calculated. To 
obtain the first approximation to this matrix, we slightly perturb each variable of the fine model 
from the first value inferred as indicated above. Then we obtain the circuit response, and from it 
we obtain the resulting variables of the coarse model corresponding to each perturbation. The 
relative changes can be expressed in a matrix form as follows: 
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which corresponds to the initial matrix B. Once the matrix B(1) is known, the fine model 
parameters of the following iteration can be derived from (11), and the process is iterated until 
convergence is obtained. 

4.2.  Second ASM: determination of the layout 

Once the optimum schematic has been obtained, the layout is determined through a second 
iterative ASM process. The first step is the determination of the side length (lp) of the capacitive 
patch corresponding to the shunt capacitor, Cls. The geometry is depicted in Fig. 2(a), where a 
square shaped patch connected to the host line through a wide and short access strip (to avoid 
any inductive effect) is considered. In this work, the distance between the host line and the patch 
(length of the access strip, lacc) is set to a fixed value (0.583 mm), whereas its width (Wacc) is set 
to a fraction of the patch dimension lp (specifically, it has been found that 50% of the patch 
dimension is a good choice). 

To determine lp an independent one variable ASM iterative algorithm has been developed. The 
variable of the coarse model is the capacitance Cls, whereas lp is the variable of the fine model. 
The first value of lp is inferred from the target value of Cls determined from the first ASM, 
through the parallel plate capacitor formula. Then the capacitance of this patch is inferred from 
the electromagnetic simulation by considering the ports indicated in Fig. 2(a), specifically by 
inferring the admittance of the shunt load [21], and it is compared to the target value. The 
matrix B, actually composed of a single element, is initiated by varying the patch dimension lp

 

and recording the effects of this variation on the capacitance of the patch. Finally, the process is 
iterated through (11).  

The width of the host line (Whost) is not considered to be an optimization variable, since the 
value provided by well-known microstrip formulas [21] (giving the line width as a function of 
the characteristic impedance Zo and substrate parameters) are very accurate. The remaining 
parameter to be determined is the length of the host line, l. This is determined through another 
independent ASM iterative process, where the variable of the coarse model is the electrical 

length of the loaded line, i.e., l, rather than kl (the electrical length of the unloaded line). By 



this means, we correct any phase shift introduced by the capacitive patch. The first value of l is 
obtained from the optimum value of kl determined at the first ASM. Then, the phase of the 
whole loaded structure is inferred from electromagnetic simulation, and it is compared to the 

target value l, in order to determine the first error function. The iterative process is then 
initiated by calculating the first approximation to the Broyden matrix, and optimization of l is 
done through (11), as indicated before in reference to the one-variable ASM algorithm for the 
determination of lp. Two independent ASM sub-processes with only one variable have been 
considered due to the lack of interaction between Cls and βl. On this second ASM the 
optimization variables Cls and βl strongly depend on the patch dimension lp and on the length of 
the host line l, respectively. This method provides fast and accurate results. The geometry of the 
unit cell of the slow-wave structure is depicted in Fig. 2(b). 

 

 

Fig. 2.  Topology and relevant dimensions of the capacitive patch (a) and whole unit cell (b). 



For better understanding, the flow diagram of the complete two-step ASM algorithm is depicted 
in Fig. 3. Using this ASM iterative process, the synthesis of slow-wave structures from 
specifications can be carried out automatically, following a completely unattended scheme. 

 

 

Fig. 3.  Flow diagram of the proposed two-step ASM. 



 

5. Synthesis examples 

To illustrate the potential of the proposed approach, we have considered the synthesis of three 

different examples: (1) a cell with electrical length cell = l = 90o, Bloch impedance ZB = 50 , 

and slow-wave factor swr = 0.5, (2) a cell with electrical length cell = l = 45o, Bloch 

impedance ZB = 50 , and slow-wave factor swr = 0.5, and (3) a structure with electrical length 

l = 90o , Bloch impedance ZB = 50 , and slow-wave factor swr = 0.5, composed by three 

cascaded unit cells (cell = 30o). The operating frequency in all cases is fo = 1 GHz. 

5.1.  Example 1: cell = 90o, ZB = 50, swr = 0.5 

For the considered target specifications, inversion of expressions (4)-(6) provides the following 
element values for the circuit of Fig. 1(b): C = 1.25 pF, Cls = 3.75 pF and L = 12.5 nH. From 

equations (14)-(15), the values of the first iteration of the fine model, xf
(1) are: Zo = 100.0 , kl = 

45.0o, and Cls = 3.75 pF. Using the first ASM algorithm, we have determined the optimum 
schematic. Convergence, with a relative error of 0.033%, has been achieved after 5 iterations. 

The resulting values of the fine model are Zo = 120.7 , kl = 45.0o, and Cls = 2.63 pF. The 
response of the schematic (using the previous values of the fine model parameters) is depicted 
in Fig. 4 (where the insertion/return loss, characteristic impedance and electrical length can be 
observed). In view of this figure, it is clear that the target specification at the schematic level are 
satisfied to a very good approximation. i.e., the resulting electrical length, Bloch impedance and 

slow-wave factor of the cell after convergence are found to be ZB = 50.01 , cell = 89.99 o and 
swr = 0.50, respectively. 

Once the optimum schematic has been obtained, the application of the second ASM has led us 

to the layout depicted in Fig. 5 (the Rogers RO4003C substrate with dielectric constant r = 3.55 
and thickness h = 0.813 mm, has been considered). The response of this structure, inferred from 
electromagnetic simulation using the Agilent Momentum commercial simulator, is also depicted 
in Fig. 4, and reveals that the target specifications are satisfied to a very good approximation at 
the design frequency, in spite that neither the Bloch impedance nor the slow-wave factor are 
variables in the optimization process (we have simply optimized patch dimensions and the 
electrical length of the cell). The second ASM does not involve the optimization of the patch 
dimensions, length, and width of the line, simultaneously. Rather than this, we have simply 
optimized the patch dimensions and then the length of the cell, by means of two independent 
sub-processes with only one optimization variable in each case. Consequently, a very fast 
second step ASM algorithm has been proven to provide accurate results. It is important to 
mention that optimization has been done at the considered operating frequency. At sufficiently 
high frequencies (close to the cut-off frequency), discrepancies arise and are due to the fact that 
distributed effects in the patch capacitance cannot be neglected. Thus, such discrepancies are 
attributed to a limitation of the model (schematic), where the patch capacitance is described by a 
lumped element, but not to the proposed optimization algorithm.  

It is remarkable that the synthesis algorithm is very efficient, as revealed by the small number of 
iterations required to achieve the cell layout. The process is completely unattended and the time 
spent in a computer with Intel® Core™ i5-3470 Processor is about 3 minutes. It is noteworthy 
that for each electromagnetic simulation we use a high mesh density to achieve accurate results. 

 



 

 
Fig. 4. Response of the cell considered in example 1. (a) Insertion and return loss, (b) characteristic 
impedance, and (c) electrical length. 
 



 
Fig. 5. Layout (a) and photograph (b) of the synthesized cell of example 1. Dimensions are: l = 25.19 
mm, lp = 7.23 mm, Wacc = 3.61 mm (0.5lp), Whost = 0.27 mm 
 
The cell of Fig. 5 has been fabricated by means of the LPKF HF100 drilling machine and has 
been characterized by means of the Agilent E8364B vector network analyzer and the Anritsu 
Universal test fixture Model 3680-20. The measured insertion and return loss, as well as the 
characteristic impedance and electrical length, are also included in Fig. 4. There are some 
discrepancies attributed to tolerances in cell dimensions and dielectric constant, and also to the 
effects of the access lines (despite the fact that a de-embedding process has been applied). For 
most applications, the experimental results reveal that the fabricated structures can be useful 
since the required specifications, at the operating frequency, are satisfied to a reasonable 
approximation. Nevertheless, the experimental results are determined by factors (indicated 
above) external to the described synthesis process, which provides very accurate results (the 
idea and implementation of the proposed two-step ASM algorithm has been the main focus of 
this paper and has been demonstrated to be fast and accurate). 

5.2.  Example 2: cell = 45o, ZB = 50, swr = 0.5 

In this case, expressions (4)-(6) give C = 0.625 pF, Cls = 1.875 pF and L = 6.25 nH, and from 

equations (14)-(15) the values of the first iteration of the fine model, xf
(1) are: Zo = 100.0 , kl = 

22.5o, and Cls = 1.875 pF. The parameters of the optimum schematic (obtained by means of the 

first ASM algorithm after 3 iterations with a relative error of 0.074 %), are Zo = 104.10 , kl = 
22.50o, and Cls = 1.73 pF. The response of the schematic, depicted in Fig. 6, indicates that the 
target specifications at the schematic level are satisfied to a very good approximation also for 
this second example. The resulting electrical length, Bloch impedance and slow-wave factor of 

the cell after convergence are found to be ZB = 49.97 , cell = 45.01 o, and swr = 0.50, 
respectively. The application of the second ASM algorithm has provided the layout depicted in 
Fig. 7 (the same substrate has been used). The electromagnetic response is also depicted in Fig. 
6, and reveals that the target specifications are also satisfied to a very good approximation at the 
design frequency. The measured response is also in good agreement at the design frequency, 



except for the previously mentioned discrepancies. The characteristic impedance, inferred from 
the measured S-parameters, is noisy below 0.4 GHz and is not shown. 

 

 

Fig. 6. Response of the cell considered in example 2. (a) Insertion and return loss, (b) characteristic 
impedance, and (c) electrical length. 

 

 
 



 
Fig. 7. Layout (a) and photograph (b) of the synthesized cell of example 2. Dimensions are: l = 12.73 
mm, lp = 5.75 mm, Wacc = 2.87 mm (0.5lp), Whost = 0.41 mm. 
 

5.3.  Example 3: Three-cell structure, cell = 30o, ZB = 50, swr = 0.5 

In this example, three unit cells with cell = 30o are cascaded in order to obtain a structure with 

electrical length l = 90º at the operating frequency. In this case, for the unit cell, inversion of 
expressions (4)-(6) gives C = 0.417 pF, Cls = 1.25 pF and L = 4.167 nH, and from equations 

(14)-(15) the values of the first iteration of the fine model, xf
(1) are: Zo = 100.0 , kl = 15.0o, and 

Cls = 1.25 pF. On one hand, the parameters of the optimum schematic (obtained by means of the 

first ASM algorithm after 2 iterations with an error of 0.168%), are Zo = 101.79 , kl = 15.01o, 
and Cls = 1.20 pF. On the other hand, the resulting electrical length, Bloch impedance and slow-

wave factor of the unit cell after convergence are found to be ZB = 50.06 , cell = 29.99 o, and 
swr = 0.50, respectively. The circuit response of the schematic is depicted in Fig. 8. The 
application of the second ASM algorithm has provided the layout depicted in Fig. 9 (the 
considered substrate is the same as the one of previous examples). The electromagnetic response 
of whole structure is also depicted in Fig. 8, and reveals that the target specifications are also 
satisfied to a very good approximation at the design frequency. The main difference in this case 
is that two additional reflexion zeros can be observed (phase matching). This matching occurs at 
those frequencies where the electrical length of the structure is a multiple of π [23]. 



 

Fig. 8. Response of the structure considered in example 3. (a) Insertion and return loss, (b) characteristic 
impedance of the unit cell, and (c) electrical length. 

 
Fig. 9. Layout of the synthesized structure of example 3. For the unit cell, dimensions are: l = 8.62 mm, lp 
= 4.69 mm, Wacc = 2.35 mm (0.5lp), Whost = 0.44 mm. 



6. Conclusions 

In summary, we have developed an optimization algorithm for the synthesis of slow-wave 
transmission lines consisting on microstrip lines loaded with patch capacitors. The algorithm, 
based on the so-called aggressive space mapping (ASM), uses quasi-Newton type iteration, and 
has been divided in two steps. The first ASM step determines the schematic providing the target 
specifications (optimum schematic). Specifically, these are the slow-wave ratio, the Bloch 
impedance and the per-unit-cell electrical length. The second step, with two independent ASM 
sub-processes, provides the layout of the slow-wave structure from the optimum cell schematic. 
Three illustrative synthesis examples have been provided to demonstrate the potential of the 
proposed synthesis approach. The main relevant aspect of the proposed two-step ASM 
algorithm is that the layout of the structures is determined from the target specifications in a 
completely unattended scheme. 

On one hand, the first ASM determines the schematic providing the target specifications 
(optimum schematic), that is, the slow-wave ratio, the Bloch impedance and the per-unit-cell 
electrical length. On the other hand, the second step, with two independent ASM sub-processes, 
provides the layout of the slow-wave structure from the optimum cell schematic. 
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