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This paper investigates the effects of inter-resonator coupling in metamaterial transmission lines

loaded with split ring resonators (SRRs). The study is performed from Bloch mode theory applied

to the multiport equivalent circuit model of the unit cell of such artificial lines. From this analysis,

it follows that the stopband bandwidth, inherent to SRR-loaded lines, is enhanced as inter-resonator

coupling strengthens, and this enhancement is attributed to the presence of complex modes. The

theoretical results are corroborated through calculation of the dispersion relation using a full-wave

eigenmode solver, and also by measuring the frequency response of SRR-loaded lines with

different inter-resonator distance and, hence, coupling. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4876444]

I. INTRODUCTION

Transmission lines periodically loaded with split ring res-

onators (SRRs)1 inhibit wave propagation in the vicinity of

the SRR fundamental resonance.2,3 As long as the SRRs and

their spacing are electrically small, these SRR-loaded lines

can be considered to be one-dimensional effective media

exhibiting a negative effective permeability in a narrow band

above SRR resonance (the effective permeability of these

structures is described by the Lorenz model4,5). Actually, the

stopband of these lines includes not only the region where the

effective permeability is negative but also a narrow band

below the resonance frequency of the SRRs where the effec-

tive permeability may be interpreted to be highly positive.

Additionally, according to Ref. 6, in the event that SRRs are

coupled to each other, the effective permeability becomes

complex (under lossless conditions) within a region that

emerges in the transition from positive to negative values of

its real part. Nevertheless, in the present work the interpreta-

tion of the stopband is based on the analysis of Bloch mode

theory, rather than on the effective permeability.

SRR-loaded lines have been applied to the implementa-

tion of stopband filters, where bandwidth has been controlled

by slightly varying the dimensions of the SRR array.7 The

resulting structures can be viewed as quasi-periodic trans-

mission lines where the effective permeability varies along

the line. With this strategy, it is clear that the resonance fre-

quency of the different SRRs can be slightly tuned along the

desired frequency range, with the result of a broadened stop-

band. Alternatively, bandwidth can be enhanced by using

tightly coupled SRRs. This approach was recently consid-

ered in transmission lines periodically loaded with comple-

mentary split ring resonators (CSRRs),8 formerly proposed

in Ref. 9. Subsequently, this approach was applied in Ref. 10

to widen the common mode suppressed band of differential

microstrip lines.

In order to achieve significant inter-resonator coupling,

the CSRRs in Ref. 8 were chosen to be rectangular-shaped

(the long side being oriented along the transversal direction

of propagation) and separated by very small distances. As

found therein, the relevant feature is that rejection bandwidth

enhancement in CSRR-loaded lines with tightly coupled res-

onators can be related to the presence of complex modes sup-

ported by the corresponding periodic infinite structure. These

modes, in spite of the absence of losses, have complex prop-

agation constants and appear as conjugate pairs in reciprocal

structures. Since the power contribution of the individual

modes is in opposite direction to each other, complex modes

do not generally carry net power.11–17 The existence of these

modes in CSRR-loaded lines was demonstrated through

Bloch mode theory, by analyzing the equivalent four-port

circuit model of the unit cell, and by obtaining the modal sol-

utions through a full-wave eigenmode solver.8 Analogously,

the theoretical analysis of SRR-loaded lines with coupled

resonators carried out in Ref. 6 also leads to a pair of com-

plex propagation constants in the region where a complex

effective permeability is exhibited.

In this paper, we study the effects of coupling in trans-

mission lines loaded with pairs of SRRs magnetically

coupled to the nearest neighboring pairs of resonators. The

magnetic coupling between resonators of adjacent cells is

thus accounted for in the model. Therefore, the resulting

lumped element equivalent circuit model of the unit cell is a

four-port circuit, in parallel to the four-port circuit that

describes the unit cell of a CSRR-loaded line with inter-

resonator coupling. The dispersion relation of SRR-loaded

lines, inferred from Bloch mode analysis applied to the cir-

cuit model, was already derived in a previous publication by

the authors.18 In this paper, further details on the derivation

of such relation are given. Moreover, the modal solutions

obtained theoretically are validated by obtaining the disper-

sion relation by means of a numerical eigenmode solver.

Finally, we report the characterization of two fabricated

structures with different level of coupling between SRRs, in

order to experimentally confirm the effects of coupling on

bandwidth enhancement.
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II. TOPOLOGY AND CIRCUIT MODEL
OF THE SRR-LOADED LINES

The topology of the considered SRR-loaded lines (unit

cell) is depicted in Fig. 1. It consists of a coplanar waveguide

(CPW) transmission line loaded with pairs of rectangular

SRRs etched on the back side of the substrate. It is important

to highlight that the symmetry plane of the SRRs (crossing

the gaps) is orthogonally oriented to the line axis. This orien-

tation is necessary to guarantee that the line is only capable

of exciting the SRR fundamental resonance through the mag-

netic coupling. With different orientations, mixed coupling

is required for an accurate description of the structure, as dis-

cussed and reported in Ref. 19. Obviously, mixed coupling

between the line and resonators makes the analysis of SRR-

loaded lines with inter-resonator coupling much more cum-

bersome, and, for this reason, we have considered such SRR

orientation in the present study. Thus, with this SRR orienta-

tion, the lumped-element equivalent circuit model of these

structures, including the magnetic coupling between SRRs of

neighboring cells, is depicted in Fig. 2(a) (the nearest-

neighbor interaction approximation is considered, and losses

are neglected).

The validity of the model is restricted to those frequen-

cies where the resonators are electrically small enough; this

extends up to frequencies beyond the SRR fundamental reso-

nance, the region of interest. In the model, L and C are the

per-section line inductance and capacitance, respectively;

the SRR is described by the capacitance Cs and the induct-

ance Ls; M is the mutual inductance between the line and the

SRRs; finally, inter-resonator coupling is accounted for

through the mutual inductance MR. Note that the magnetic

coupling between coplanar SRRs of adjacent cells is nega-

tive, and the proper modeling of the magnetic coupling sign

is mandatory, i.e., the sign cannot be disregarded. Otherwise,

the frequency response predicted by the circuit will not be

able to describe correctly the behavior of the SRR-loaded

lines. It is also important to highlight that when the SRRs of

the same unit cell are close together, there can be positive

magnetic coupling between them. However, this coupling is

neglected here because its only effect is to decrease the reso-

nance frequency.

In order to simplify the analysis of the circuit model, it

is convenient to combine the parallel connection of the SRRs

belonging to the same unit cell and to transform each pair of

inductances coupled by the mutual inductance MR to its

equivalent T-circuit.20 This leads us to the circuit of

Fig. 2(b), from which it is possible to identify the four-port

unit cell of Fig. 2(c). Qualitatively, this unit cell is composed

of a conventional transmission line-type circuit magnetically

coupled to a secondary propagating structure. This latter

structure supports a kind of backward waves that have been

studied in depth in Refs. 21–26 and have been called magne-

toinductive waves (MIWs). MIWs propagate within a narrow

frequency band in the vicinity of SRR resonance, and the

associated bandwidth is dependent on how strongly the reso-

nators are coupled to each other. The stronger is the

FIG. 1. Typical unit cell of a CPW transmission line loaded with a pair of

SRRs designed to enhance coupling between resonators of neighboring cells.

Dimensions are: W¼ 9.1 mm, G¼ 1.7 mm, l¼ 3 mm, c¼ d¼ 0.15 mm,

l1¼ 2.8 mm, and l2¼ 9.8 mm. The considered substrate is Rogers RO3010
with thickness h¼ 1.27 mm and dielectric constant er¼ 11.2. The Bloch

wave propagates from port 1 to port 2.

FIG. 2. Lumped-element equivalent circuit model of a periodic structure composed of an array of unit cells as the ones shown in Fig. 1, including magnetic

coupling between resonators of adjacent cells; (a) model with mutual inductance between resonators, (b) transformed model, and (c) four-port unit cell model

indicating the port voltages and currents relative to the calculation of the transfer ABCD matrix. (a) and (b) are reprinted with permission from Naqui et al.,
International Conference on Electromagnetics Advanced Applications (ICEAA), Copyright 2013 by IEEE.18
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interaction between the resonant elements, the wider is the

passband of the MIWs.26 As multiconductor theory predicts

that the resulting unit cell can propagate two modes,27 for-

ward and backward waves are expected to coexist at some

frequency band.

III. BLOCH MODE ANALYSIS AND DISPERSION
RELATION

The dispersion characteristics of these SRR-loaded lines

can be obtained from Bloch mode theory applied to the four-

port network of Fig. 2(c). Let us denote VLi and ILi as the vol-

tages and currents at the ports (i¼ 1, 2) of the left hand-side of

the unit cell, and VRi and IRi as the variables at the right hand-

side ports. The variables at both sides of the network are linked

through a generalized order-4 transfer matrix, according to

VL

IL

� �
¼ A B

C D

� �
VR

IR

� �
; (1)

where VL, IL, VR, and IR are column vectors composed of

the pair of port variables, and A, B, C, and D are order-2

matrices.

The dispersion relation is obtained from the eigenmodes

of the system (1)

det
A� ecl � I B

C D� ecl � I

� �
¼ 0; (2)

where I is the identity matrix, the propagation factor ecl is

the eigenvalue, c¼ aþ jb is the complex propagation con-

stant, and l is the unit cell length. For reciprocal, lossless,

and symmetric networks, the eigenvalues can be simplified

to the solutions of28,29

det A� coshðclÞ � Ið Þ ¼ 0; (3)

which gives

cosh clð Þ ¼ 1

2
A11 þ A226

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA11 � A22Þ2 þ 4A12A21

q� �
; (4)

where the elements of the A matrix (inferred from the net-

work of Fig. 2(c) as detailed in Appendix A) are

A ¼ Dt ¼
1� LC

2
x2 M

MR

�MC

2
x2 1

2MR
Ls �

1

Csx2

� �
0
BB@

1
CCA: (5)

Since the network of Fig. 2(c) is lossless, the elements of A
(Aij) are real numbers. Hence, if the expression under the

square-root in (4) is positive, the propagation constant is either

purely real (a 6¼ 0, b¼ 0) or purely imaginary (a¼ 0, b 6¼ 0),

corresponding to evanescent or propagating modes, respec-

tively. However, if that expression is negative, the two solu-

tions are of the form c¼ a 6 jb, corresponding to complex

modes. The frequency band that supports complex modes is

thus obtained by forcing the expression under the square-root

in (4) to be negative. Since complex modes do not carry net

power, the frequency band supporting such modes is a rejec-

tion band, despite of being of different nature than that associ-

ated to evanescent modes (where a 6¼ 0, b¼ 0).

Inspection of (4) and (5) reveals that a necessary condi-

tion for the presence of complex modes is that M is different

from zero (this is always the case, unless the substrate of the

considered CPW is extremely thick). Notice that M¼ 0

means that the host line and the SRR array are decoupled.

Under this situation, the second term of the expression under

the square-root in (4) is null, and hence, the square root is a

real number, preventing the appearance of complex modes.

Indeed, the two modal solutions for M¼ 0 are

cosh clð Þ ¼ A11 ¼ 1� LC

2
x2; (6)

corresponding to the dispersion relation of a lossless trans-

mission line described by the well-known LC ladder net-

work, and

cosh clð Þ ¼ A22 ¼
1

2MR
Ls �

1

Csx2

� �
; (7)

that is, the dispersion of an array of inductively (edge) coupled

SRRs, where MIWs are supported in a narrow frequency band

in the vicinity of SRR resonance. Note that MIWs can exist as

long as the reactance of the series resonator (between the ports

L2 and R2) is capacitive and, obviously, this is another condi-

tion for supporting complex modes.

The dispersion relation (4) in the limit MR ! 0, corre-

sponding to negligible inter-resonator coupling, is also inter-

esting to obtain. Under these conditions, the following result

arises (see Appendix B):

cosh clð Þ ¼ 1� LC

2
x2 þ M2Cx2

Ls � 1
Csx2

� � : (8)

This is the dispersion relation of an SRR-loaded line without

coupling between SRRs, which can be inferred from the bi-

port model reported in Ref. 30 [and depicted in Fig. 3(b)] by

applying Bloch mode analysis (see also Appendix B).

Although low-loss microwave substrates and very low-

resistivity conductors are used, some losses are always present

in real SRR-loaded lines. However, the dispersion relation

given by (4) can still be considered as a reasonable approxi-

mation to the actual dispersion of the structure. Indeed, the

analysis excluding losses suffices for the purposes of this

FIG. 3. Lumped element equivalent circuit model (unit cell) of the structure

in Fig. 1 without inter-resonator coupling (a), and the corresponding trans-

formed model (b). Reprinted with permission from Naqui et al.,
International Conference on Electromagnetics Advanced Applications
(ICEAA), Copyright 2013 by IEEE.18
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paper, i.e., the investigation of the effects of inter-resonator

coupling on the dispersion characteristics and frequency

response. In any case, the effects of losses may be easily eval-

uated by merely including resistors in the circuit model.

It is also worth mentioning that the dispersion character-

istics of transmission lines loaded with SRRs (considering

coupled and decoupled SRRs) and metallic rods was ana-

lyzed in Ref. 23. It was proven that interaction between

MIWs propagating through an array of SRRs and incident

electromagnetic waves (modeled by the equivalent circuit of

a transmission line) may exist leading to the appearance of a

stopband. Subsequently, an extended analysis was reported

in Ref. 6 without the rods (i.e., by considering the same

structure as in this work), and that stopband was found to be

due to the presence of complex modes. In comparison to

Refs. 6 and 23, in this paper, we obtain the dispersion rela-

tion from the multiport equivalent circuit providing the

details of the calculation of the transfer matrix, and we con-

sider a real device based on planar transmission lines and

rings, instead of assuming a theoretical generic system.

Moreover, we provide numerical results inferred from an

eigenmode solver and experimental evidence of stopband

bandwidth enhancement caused by inter-resonator coupling.

A. Parameter extraction and equivalent circuit model
validation

We have extracted the circuit parameters of the structure

of Fig. 1. To this end, the electromagnetic simulation of an

isolated unit cell was performed (by the Agilent Momentum
commercial software). The circuit model of a decoupled unit

cell is depicted in Fig. 3(a). We have extracted the circuit ele-

ments of the transformed model of Fig. 3(b) following the pro-

cedure reported in Ref. 30. Then, Ls has been estimated as the

self-inductance of an isolated (without the CPW structure) sin-

gle split ring with the same average radius and ring width as

the considered SRRs (in a quasi-static approximation, the total

current flowing on the pair of SRR rings is independent of the

position on the SRR5). Thus, the equivalent inductance seen

between the end terminals of the single split ring has been

extracted from the electromagnetic simulation. By using the

estimated Ls (17.66 nH), the circuit elements of Fig. 3(a) have

been obtained from the indicated transformation equations.

Finally, we have inferred the mutual inductance MR of the cir-

cuits of Fig. 2 by curve fitting the circuit simulation to the

electromagnetic simulation of a 2-cell structure. It is important

to realize that since the SRRs of the input/output cells are not

externally fed, the ports L2 (input cell) and R2 (output cell)

have been left opened. Therefore, the transmission and reflec-

tion coefficients are referred to a two-port circuit (L1 and R1)

rather than to the four-port circuit of the proposed model.

The extracted parameters are listed in the caption of

Fig. 4. The comparison between the electromagnetic and cir-

cuit simulations of a unit cell and of two cascaded unit cells

is depicted in Fig. 4, where good agreement is observed in

the transmission and reflection coefficients. Concerning the

modeling of higher order structures, Fig. 5(a) shows the fre-

quency response for nine cascaded unit cells. As can be seen,

FIG. 4. Magnitude (a) and phase (b) of the lossless transmission (S21) and reflection (S11) coefficients for a unit cell and for two cascaded unit cells of the struc-

ture in Fig. 1. The extracted circuit parameters are: L¼ 1.01 nH, C¼ 1.40 pF, Ls¼ 17.66 nH, Cs¼ 0.45 pF, M¼ 0.72 nH, and MR¼ 1.17 nH. (a) is reprinted

with permission from Naqui et al., International Conference on Electromagnetics Advanced Applications (ICEAA), Copyright 2013 by IEEE.18

FIG. 5. Lossless electromagnetic and circuit simulations of the transmission and reflection coefficients (magnitude) for nine cascaded cells of the structure in

Fig. 1 for (a) l¼ 3 mm and (b) l¼ 4.8 mm (the inter-resonator separation has been increased from 0.2 mm to 2 mm). The circuit parameters are those indicated

in the caption of Fig. 4, with the exception of MR¼ 0.22 nH in (b). Furthermore, in (b), a CPW section of 1.8 mm length has been cascaded between the port

R1 and the port L1 of the contiguous cell in the circuit model.
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the central frequency of the stopband shifts upwards as the

number of cells increases, being this effect produced by the

negative inter-resonator coupling. It can also be observed that

the stopband inferred from the electromagnetic simulation is

even slightly more shifted than the one predicted by the circuit

simulation. It has been found (by including additional cou-

plings between non-adjacent cells) that this discrepancy is due

to the assumption of first neighbor approximation. In this

regard, as Fig. 5(b) confirms, an increase in the inter-resonator

distance reduces the impact on the frequency response shift

caused by such approximation. In any case, the first neighbor

approximation suffices for the purpose of the present work.

It is also important to point out that inter-resonator cou-

pling splits the SRR resonance frequencies, so that the num-

ber of transmission zeros equals the number of resonators.

Moreover, the stronger the coupling, the stronger will be the

the splitting.20 As a result, the stopband bandwidth broadens

with inter-resonator coupling, although this enhancement is

limited since it saturates with relatively few cells. For

instance, the stopband bandwidth (computed at �20 dB)

obtained from the circuit simulation for an order-9 structure

[Fig. 5(a)] ranges from 1.879 GHz to 1.966 GHz. This corre-

sponds to a bandwidth similar to the maximum achievable

bandwidth that will be given by the dispersion relation for an

infinite structure in subsection III B.

B. Dispersion relation validation

Once the circuit parameters have been extracted, we can

obtain the pair of modal propagation constants given by

expression (4). The results are depicted in Fig. 6. As in Ref.

8, in the first allowed band, there is a region with bi-valued

propagation constant: one (forward) corresponding to

transmission-line type propagation and the other (backward)

related to magnetoinductive waves. Then, a region with a

pair of conjugate complex propagation constants (complex

modes) appears where forward and backward waves interfere

with each other, followed by a region of evanescent waves.

Finally, a forward wave transmission band emerges again.

Hence, the enhancement of the stopband due to inter-

resonator coupling is explained by the appearance of com-

plex modes in the low frequency region of that stopband (the

complex modes exist from 1.843 GHz to 1.961 GHz, and

the evanescent modes extends up to 1.977 GHz). However,

the magnetic coupling between SRRs of adjacent cells is lim-

ited and so it is bandwidth broadening.

We have also obtained the dispersion relation of a peri-

odic structure composed of a cascade of the unit cell in

Fig. 1 by means of the full-wave eigenmode solver of CST
Microwave Studio. The results, also depicted in Fig. 6, reveal

that there is good agreement with the analytical dispersion

curve predicted by the circuit model (the bi-valued region is

perfectly predicted by the eigenmode solver). However,

since there is no electromagnetic field pattern with net cur-

rent transfer in the stopband, the tool is not able to provide

the dispersion curves in that region.

For comparison purposes, we have also considered a

structure with higher inter-resonator distance providing

much weaker coupling. The dispersion diagram, depicted in

the inset of Fig. 6, reveals that the stopband bandwidth is sig-

nificantly narrower. Therefore, these dispersion diagrams

indicate that most of the stopband in the structure of Fig. 1 is

related to the presence of complex, rather than evanescent,

modes. In other words, as long as inter-resonator coupling is

significant, complex modes may be the dominant mechanism

of signal rejection (in the vicinity of SRR fundamental reso-

nance) of these SRR-loaded structures.

FIG. 6. Dispersion diagram for the structure of Fig. 1 inferred from an

eigenmode solver and from its equivalent circuit model of Fig. 2(c). The cir-

cuit parameters are those indicated in the caption of Fig. 4. The dispersion

diagram for the structure of Fig. 1 with l¼ 4.8 mm is depicted in the inset.

The attenuation constant a is not provided by the eigenmode solver.

FIG. 7. Photograph of the bottom face of the fabricated order-9 structures

composed of the unit cell in Fig. 1 with (a) l¼ 3 mm and (b) l¼ 4.8 mm.

FIG. 8. Measurement and lossy electro-

magnetic simulation of the transmission

and reflection coefficients (magnitude)

of the structures in Fig. 7; (a) l¼ 3 mm

and (b) l¼ 4.8 mm. The loss tangent in

Rogers RO3010 is tan d¼ 0.0023.
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IV. EXPERIMENTAL RESULTS

To experimentally validate the effects of inter-resonator

coupling on bandwidth enhancement, two order-9 structures

have been fabricated (Fig. 7): One of them with the unit cell

of Fig. 1; the other by considering l¼ 4.8 mm. The measured

transmission and reflection coefficients are in good agree-

ment with those given by the lossy electromagnetic simula-

tion (see Fig. 8). The measured fractional stopband

bandwidth (computed at �20 dB) is 5.2% and 2.4% for the

structures of Figs. 7(a) and 7(b), respectively. The measured

stopbands are also in accordance with those obtained from

the dispersion relation. Hence, the dispersion relation

inferred from the multi-terminal circuit model is a powerful

tool to gain insight into the stopband and the effects of inter-

resonator coupling in SRR-loaded lines.

V. CONCLUSIONS

It has been demonstrated that SRR-loaded lines with

tightly coupled resonators exhibit forward (transmission

line-type), backward (magnetoinductive-related), and com-

plex modes. The structures have been analyzed using multi-

port Bloch mode theory applied to the lumped element

equivalent circuit model, and the dispersion characteristics

have been obtained. It has been found that complex modes

are responsible for bandwidth enhancement of the stopband.

These complex modes have been interpreted as the destruc-

tive interference between forward and backward waves.

Since backward waves are supported by the chain of SRRs,

inter-resonator coupling is absolutely mandatory for complex

modes to emerge. Indeed, the behavior of SRR-loaded lines

with strongly coupled resonators is very similar to that of

CSRR-loaded lines.8 The main difference is the nature of the

propagating waves in the frequency region that supports

backward waves (bi-valued region with multimode forward

and backward propagation). In CSRR-loaded lines, the back-

ward waves are electroinductive-like waves, whereas in

SRR-loaded lines, backward transmission is due to magneto-

inductive waves. The theoretical results have been validated

by means of a numerical eigenmode solver, able to provide

the dispersion relation, and also by measuring the transmis-

sion and reflection characteristics of two fabricated SRR-

loaded lines (one with weak inter-SRR coupling, and the

other one with significant coupling).
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APPENDIX A: CALCULATION OF THE A MATRIX
ELEMENTS

The A matrix is an order-2 matrix that links the voltages

of the pair of ports at both sides of the network of Fig. 2(c)

under the condition IR1¼ IR2¼ 0, that is,

VL1

VL2

� �
¼ A11 A12

A21 A22

� �
VR1

VR2

� �����
IR1¼IR2¼0

: (A1)

From (A1), it follows that

A11 ¼
VL1

VR1

����
VR2¼0

; (A2)

A22 ¼
VL2

VR2

����
VR1¼0

; (A3)

A12 ¼
VL1

VR2

����
VR1¼0

; (A4)

A21 ¼
VL2

VR1

����
VR2¼0

: (A5)

The derivation of A11 is straightforward since conditions

IR1¼ IR2¼ 0 and VR2¼ 0 means that there is not current flow

across the inductance Ls/2�MR in the circuit of Fig. 2(c).

Therefore, we can write the voltage Kirchhoff’s law between

ports L1 and R1 (in the frequency domain) as

VL1 ¼ jxL � VR1 � jx
C

2
þ VR1: (A6)

From (A6), using (A2), the expression for A11 given in (5) is

obtained.

Similarly, A22 is inferred from (A3) and

VL2 ¼ jx
Ls

2
�MR

� �
þ 1

jx2Cs

 !
� VR2 �

1

jxMR
þ VR2;

(A7)

which is simply the voltage Kirchhoff’s law between ports

L2 and R2 when IR1¼ IR2¼ 0 and VR1¼ 0.

To calculate A12, the boundary conditions in the circuit

of Fig. 2(c) are set to IR1¼ IR2¼ 0 and VR1¼ 0. Under these

conditions, the voltage at port L1 can be expressed as

VL1 ¼ jxM � VR2

jxMR
: (A8)

From (A8) and (A4), the result for A12 shown in (5) is

obtained.

Finally, to determine A21, the circuit of Fig. 2(c) is sub-

jected to IR1¼ IR2¼ 0 and VR2¼ 0. The voltage at port L2 is

then found to be

VL2 ¼ jxM � VR1 � jx
C

2
; (A9)

and A21 is deduced from (A9) and (A5).

APPENDIX B: DISPERSION OF AN SRR-LOADED LINE
IN THE LIMIT MR fi 0

By introducing the elements of (5) in (4), we obtain
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2cosh clð Þ ¼ 1� LC

2
x2 þ 1

2MR
Ls �

1

Csx2

� �
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� LC

2
x2 � 1

2MR
Ls �

1

Csx2

� �� 	2

� 2M2Cx2

MR

s
: (B1)

After some simple (but tedious) algebra, (B1) can be expressed as

2cosh clð Þ ¼ 1� LC

2
x2 þ 1

2MR
Ls �

1

Csx2

� �
6

1

2MR
Ls �

1

Csx2

� �

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

4M2
R 1� LC

2
x2

� �2

Ls �
1

Csx2

� �2
�

4MR 1� LC

2
x2

� �

Ls �
1

Csx2

� � � 8M2MRCx2

Ls �
1

Csx2

� �2

vuuuuuut : (B2)

Then, using the following Taylor series expansion up to the first order:

ffiffiffiffiffiffiffiffiffiffiffi
1� x
p

¼ 1� 1

2
xþ 1

4
x2 � � � � ; (B3)

expression (B2) can be approximated by

2cosh clð Þ ¼ 1� LC

2
x2 þ 1

2MR
Ls �

1

Csx2

� �
6

1

2MR
Ls �

1

Csx2

� �

� 1�
2M2

R 1� LC

2
x2

� �2

Ls �
1

Csx2

� �2
�

2MR 1� LC

2
x2

� �

Ls �
1

Csx2

� � � 4M2MRCx2

Ls �
1

Csx2

� �2

8>>>><
>>>>:

9>>>>=
>>>>;
; (B4)

and by choosing the “�” sign (i.e., the solution with physical

meaning) in the last term, we obtain expression (8).

To demonstrate that (8) is the dispersion relation corre-

sponding to the two-port that models the unit cell of an SRR-

loaded line without inter-resonator coupling, we apply Bloch

mode analysis to the model of Fig. 3(b), i.e.,

cosh clð Þ ¼ A ¼ 1þ Zs

Zp
; (B5)

where A is the first element of the transfer matrix of the two-

port, and Zs and Zp are the impedances of the series and shunt

branches of the network of Fig. 3(b). Calculation of (B5) for

the circuit of Fig. 3(b) gives

cosh clð Þ ¼ 1� 1

2
L0Cx2 1� 1

L0C0sx
2 1� x2

o

x2

� �0
@

1
A; (B6)

where xo¼ (LsCs)
�1/2. Using the element transformations of

Fig. 3, expression (B6) can be rewritten as

cosh clð Þ ¼ 1� 1

2
LCx2 þM2CCsx

2
ox

2 þ M2Cx2
o

Ls 1� x2
o

x2

� � ;
(B7)

which, in turn, can be simplified to the dispersion relation

shown in (8). Thus, it is clearly demonstrated that the general

dispersion relation given in (4) for the four-port network of

Fig. 2(c) is also able to account for the case of SRR-loaded

lines with negligible inter-resonator coupling (i.e., MR! 0).
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