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Abstract: We consider a family of dissipative active scalar equations outside the

L2-space. This was introduced in [7] and its velocity fields are coupled with the

active scalar via a class of multiplier operators which morally behave as derivatives
of positive order. We prove global well-posedness and time-decay of solutions, with-

out smallness assumptions, for initial data belonging to the critical Lebesgue space

L
n

2γ−β (Rn) which is a class larger than that of the above reference. Symmetry prop-
erties of solutions are investigated depending on the symmetry of initial data and

coupling operators.
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1. Introduction

We are concerned with the initial value problem (IVP) for a family of
dissipative active scalar equation, which reads as

(1.1)


∂θ

∂t
+ κ(−∆)γθ + u · ∇xθ = 0, x ∈ Rn, t > 0,

θ(x, 0) = θ0(x), x ∈ Rn,

where n ≥ 2, κ ≥ 0, and γ > 0. The fractional laplacian operator (−∆)γ

is defined by

̂[(−∆)γf ](ξ) = |ξ|2γ f̂(ξ),

where f̂ =
∫
Rn e

−ix·ξf(ξ) dξ stands for the Fourier transform of f . The
velocity field u is determined by the active scalar θ by means of the
multiplier operators

(1.2) u = P [θ] = (P̃1[θ], . . . , P̃n[θ]),
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such that ∇ · u = 0, and

(1.3) uj = P̃j [θ] =

n∑
i=1

aijRiΛ−1Pi[θ], for 1 ≤ j ≤ n,

where Λ = (−∆)
1
2 , Ri = −∂i(−∆)−

1
2 is the i-th Riesz transform,

aij ’s are constant and

(1.4) P̂i[θ](ξ) = Pi(ξ)θ̂(ξ).

Denoting I =
√
−1, it follows that

̂̃
Pj [θ](ξ) = P̃j(ξ)θ̂(ξ) with P̃j(ξ) =

n∑
i=1

aij
ξiI

|ξ|2
Pi(ξ),

and the vector field u can be expressed in Fourier variables in the shorter
form

(1.5) û = P̂ [θ] = P (ξ)θ̂(ξ) where P (ξ) = (P̃1(ξ), . . . , P̃n(ξ)).

Throughout this manuscript the symbol Pi(ξ) in (1.4) is assumed to
belong to C [n2 ]+1(Rn\{0}) with

(1.6)

∣∣∣∣∂αPi∂ξα
(ξ)

∣∣∣∣ ≤ C|ξ|β−|α|,
for all α ∈ (N ∪ {0})n, |α| ≤ [n2 ] + 1, and ξ 6= 0, where β ≥ 0. The
brackets [·] stand for the greatest integer function. In particular, for
α = 0 it follows from (1.5) and (1.6) that

(1.7) |û(ξ)| ≤ C|ξ|β−1|θ̂(ξ)|, for all ξ 6= 0.

Concerning the criticality of (1.1)–(1.3), there is an interplay between the
field u and fractional viscosity (−∆)γ expressed by means of three basic
cases: sub-critical β < 2γ, critical β = 2γ, and super-critical β > 2γ.

We could consider an arbitrary κ > 0, nevertheless κ = 1 is assumed
for the sake of simplicity. The IVP (1.1)–(1.3) can be converted into the
integral equation

(1.8) θ(t) = Gγ(t)θ0 +B(θ, θ)(t),

where

(1.9) B(θ, ϕ)(t) = −
∫ t

0

Gγ(t− s)(∇x · (P [θ]ϕ))(s) ds

and Gγ(t) is the convolution operator with kernel given in Fourier vari-

ables by ĝγ(ξ, t) = e−t|ξ|
2γ

. Solutions of (1.8) are called mild ones for
(1.1)–(1.3).
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Assuming that Pi’s are homogeneous functions of degree β, we have
formally that

θλ = λ2γ−βθ(λx, λ2γt)

verifies (1.1)–(1.3), for all λ > 0, provided that θ does so. It follows that

(1.10) θ → θλ = λ2γ−βθ(λx, λ2γt), for λ > 0,

is the scaling map for (1.1)–(1.3). Also, making t → 0+ in (1.10), one
obtains the scaling for the initial data

(1.11) θ0 → λ2γ−βθ0(λx).

In view of (1.6), even when Pi is not homogeneous, we can consider (1.10)
as an intrinsic scaling for (1.1)–(1.3) in the sense that it is useful to iden-
tify threshold indexes for functional settings and properties of solutions.
One of our aims is to provide a global well-posedness result for (1.1)–(1.3)
in a scaling invariant framework outside the L2-space.

Active scalar equations like (1.1)–(1.3) arise in a large number of
physical models in fluid mechanics and atmospheric science. Exam-
ples of those are 2D surface quasi-geostrophic equation (SQG) u =
∇⊥((−∆)−1/2θ) (β = 1), Burgers equation u = θ (β = 1), and 2D
vorticity equation u = ∇⊥(−∆)−1θ (β = 0). SQG is a famous model
with a lot of papers concerning existence, uniqueness, regularity and as-
ymptotic behavior of solutions in the inviscid case κ = 0, or in the sub-
critical (1/2 < γ < 1), critical (γ = 1/2), and supercritical (γ ∈ (0, 1/2))
ranges. Without making a complete list, we would like to mention
[1, 3, 9, 11, 12, 13, 16, 19, 21, 24, 25, 26, 33, 35] and their
references. In the case u = θ, see [25] and [17] for results on blow-
up, global existence, and regularity of solutions. One dimensional active
scalar models have also attracted the attention of many authors, see
e.g. [4, 14, 15, 29] where the reader can find global existence, finite-
time singularity, and asymptotic behavior results with velocity coupled
via singular integral operators that are zero-order multiplier ones.

In the case of SQG, notice that u can be written by using Riesz
transform as

(1.12) u = (−R2θ,R1θ)

and then the velocity is coupled to the active scalar via zero-order mul-
tiplier operators. The model (1.1)–(1.3) was introduced in [5, 7] and
covers positive-order couplings when β > 1 (see (1.7)). In this range, the
operator P [·] behaves “morally” like a positive derivative of (β − 1)-or-
der and produces more difficulties in comparison with SQG (β = 1,
zero-order) and β < 1 (negative-order).
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The paper [5] dealt mainly with the inviscid case κ = 0, while [7]
with the dissipative one κ > 0. This last work is our main motiva-
tion since we also focus in the dissipative model. The authors of [7]
showed existence of global solutions in L∞((0,∞);Y ) for (1.1)–(1.3)
where Y = L1 ∩ L∞ ∩ Bs,Mq,∞ with s > 1 and 2 ≤ q ≤ ∞. The index

M = {Mj}j≥−1 is a sequence and the space Bs,Mq,∞ is an extension of the

classical Besov space Bsq,∞ where the Bs,Mq,∞ -norm increases according to
the growth of M . The results of [7] consider couplings P [·] in (1.2) such
that Pi ∈ C∞(Rn\{0}), Pi is radially symmetric, Pi = Pi(|ξ|) is nonde-
creasing with |ξ|, and a technical growth hypothesis involving Pi(ξ) and
the sequence M . Applying their results to the special case

(1.13) u = ∇⊥(Λβ−2θ) = Λβ−1(−R2θ,R1θ)

with n = 2, 0 ≤ β < 2γ < 1 (within the sub-critical range), κ > 0, and
Mj = j+1, they obtained well-posedness of solutions with initial data in
L1∩L∞∩Bs,Mq,∞ . Roughly speaking, the technique employed in [7] for con-
structing solutions relies on a successive approximation scheme together
a priori estimates involving Besov norms. The field (1.13) corresponds
to the modified SQG that interpolates 2D vorticity equation and SQG
by varying the parameter β from 0 to 1. This model has been studied
for instance in [5, 10, 25, 30, 31, 32] where one can find existence and
regularity results with data in Sobolev spaces Hm with m ≥ 0. The con-
ditions κ > 0, β ∈ [0, 1], and β = 2γ were assumed in [10, 25, 30, 32];
κ > 0 and 1 ≤ β < 2γ < 2 in [31]; and κ = 0 and β ∈ [1, 2] in [5]. In
this last work, local well-posedness of Hm(R2)-solutions was proved for
(1.1)–(1.13) with m ≥ 4. We also would like to mention the work [18]
where the authors showed results of self-similar solutions in Fourier–
Besov–Morrey spaces for a wide class of symbols (1.4).

In this paper we prove the global well-posedness of (1.1)–(1.3) in

the Lebesgue space L
n

2γ−β (Rn) without smallness conditions (see Theo-
rem 3.1). This is the unique Lr-space whose norm is invariant by the

scaling (1.11), that is, L
n

2γ−β is the critical one in the scale of Lebesgue
spaces. We can consider initial data outside the L2-framework and, due
to the inclusion L1 ∩ L∞ ⊂ L

n
2γ−β , our initial data class is larger than

that of [7]. In comparison with [7], some new symbols Pi(ξ) are consid-
ered here (e.g. non-radially symmetric ones). Even for a singular initial

data θ0 ∈ L
n

2γ−β (Rn), the global solution θ ∈ BC([0,∞);L
n

2γ−β (Rn)) is
instantaneously C∞-smoothed out and verifies (1.1)–(1.3) classically, for
all t > 0. Here we focus in the range β ≥ 1 and consider the sub-critical



Dissipative Active Scalar Equations 529

case β < 2γ. More precisely, we assume

(1.14) 1 ≤ 2β − 1 < 2γ < min

{
2

3
(n+ β + 1), (n+ 1)

}
.

The range 0 ≤ β < 2γ with β < 1 also can be treated with an adaptation
on the proofs (see Remark 3.3).

Also, we show some decay properties in Lq-norms (see Theorem 3.1).

Precisely, for n
2γ−β ≤ q ≤ ∞ and θ0 ∈ L

n
2γ−β (Rn), we obtain the time-

polynomial decay

(1.15) ‖θ(·, t)‖Lq ≤ Ct−(
2γ−β
2γ −

n
2γq ), for all t > 0.

Assuming further θ0 ∈ L
n

2γ−β (Rn) ∩ L1(Rn), the solution θ belongs to
BC([0,∞);L1(Rn)) and the estimate (1.15) is improved to

(1.16) ‖θ(·, t)‖Lq ≤ Ct−(
2γ−β
2γ −

n
2γq )−(

n+β
2γ −1), for all t > 0,

where 1 ≤ q ≤ ∞. Notice that the decay in (1.16) is faster than those
of (1.15) due to the condition 2γ < 2

3 (n+ β + 1) < n+ β.
In view of the Lp-Lq estimate (2.5) for the semigroup Gγ(t), it is

not expected that (1.15) holds true for q < n
2γ−β and an arbitrary

θ0 ∈ L
n

2γ−β (Rn). Thus θ(·, t) may not be a L2-solution when 2 < n
2γ−β

although θ(·, t) ∈ C∞(Rn), for all t > 0. Even in the subcritical case,
this fact seems to prevent an adaptation from previous techniques based
on L2-frameworks (see e.g. the famous papers [1, 26]) in order to ob-

tain global well-posedness of L
n

2γ−β (Rn)-solutions. Roughly speaking,
the approach employed here relies on time-weighted Kato type norms,
scaling arguments, and arguments of the type parabolic De Giorgi–Nash–
Moser. These ingredients also were used in [3] in order to analyze SQG
(β = 1). However, due to the coupling between θ and u being via a
positive-order operator, the model (1.1)–(1.3) requires more involved ar-
guments and further care in comparison with SQG. For instance, since
P [·] is not continuous from Lp1 to Lp2 when β > 1, we need to em-
ploy an auxiliary time-weighted Kato-type norm based on homogeneous
Sobolev spaces Ḣs

q with q > n
2γ−β in order to control the nonlinear

term in (1.1)–(1.3). So, different from SQG, Sobolev norms play here
a crucial role for the local existence and extension of solutions with
data in Lebesgue spaces (see e.g. (5.5) and (5.27)–(5.29), respectively).

Let us also mention that there is no maximum principle for Ḣs
q -norms

when s > 0; and consequently there is a lack of global-in-time control
on these norms (see (3.2)).
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In view of the structure of (1.1), it is natural to wonder about sym-
metry properties of solutions under symmetry conditions for the sym-
bols Pi(ξ) and initial data θ0. In Theorem 3.4, we show that the global
solution given in Theorem 3.1 is radially symmetric, for all t > 0, pro-
vided that θ0 and divξ(P (ξ)) present this same property. Moreover,
results on odd and even symmetry of solutions are obtained under par-
ity conditions for θ0 and Pi’s. In Remark 3.5, we also comment about
conditions for solutions to be non-symmetric.

Let us also comment on log-type couplings which are interesting ones
covered by (1.1)–(1.3). Ohkitani [34] has presented numerical evidences
that, even with κ = 0, (1.1) with n = 2 and

(1.17) u = ∇⊥(log(I −∆))χθ, χ > 0,

may be globally well-posed. The authors of [5] have proved local well-
posedness of H4(R2)-solutions for (1.1)–(1.17) with κ > 0. As pointed
in [5], the field (1.17) is of order higher (at least logarithmically) than
derivatives of order 1 and in particular than (1.12). Another examples
are

Pi(ξ) = |ξ|σ(log(1 + |ξ|2))χ, χ ≥ 0,(1.18)

Pi(ξ) = |ξ|σ(log(1 + log(1 + |ξ|2)))χ, χ ≥ 0,(1.19)

which are of order higher than (1.17) when σ > 2. These couplings are
also treated in [7] with σ = β and χ ≥ 0. When σ = 0 and n = 2,
(1.18) and (1.19) correspond to log and log-log Navier–Stokes which are
intermediate models between 2D vorticity equation and SQG. See [6] for
further details and global existence results in the case κ = 0, 0 ≤ χ ≤ 1
and data θ0 ∈ L1∩L∞∩Bsq,∞, where Bsq,∞ stands for an inhomogeneous
Besov space with s > 1 and q > 2. An interest in log-type couplings has
also arisen in connection with other fluid mechanics models (see [8]).

Finally, we remark that our results cover the couplings (1.13), (1.18),
and (1.19). The condition (1.6) is clearly satisfied by (1.13), and if

β ∈ [1, 2] and 2β−1 < 2γ < min{2+ 2β
3 , 3} then (1.14) holds true. Also,

(1.18)–(1.19) with χ > 0 verify (1.6) with β = σ + ε and small ε > 0,
and we have (1.14) when 1

2 < γ < 4
3 and 0 < ε < γ− 1

2 . The cases (1.18)
and (1.19) with χ = 0 are similar to (1.13).

This manuscript is organized as follows. In the next section we recall
some estimates in Lq(Rn) and Sobolev homogeneous spaces for Fourier
multiplier operators and the semigroup {Gγ(t)}t≥0. Our results are
stated in Section 3 in two theorems, namely Theorems 3.1 and 3.4. Es-
timates for the bilinear operator (1.9) are obtained in Section 4. Local
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well-posedness and some properties of solutions are proved in Subsec-
tion 5.1. The proofs of Theorems 3.1 and 3.4 are performed in Subsec-
tions 5.2 and 5.3, respectively.

2. Preliminaries

In this section we recall some estimates for the fundamental solution
of the linear part of (1.1) in Lp(Rn) and Ḣs

p(Rn), whose norms will be
denoted by ‖ · ‖p and ‖ · ‖Ḣsp , respectively.

We remember that given s ∈ R and 1 < p < ∞, the homogeneous
Sobolev space Ḣs

p(Rn) is the space of all u ∈ S ′/P such that (−∆)
s
2u ∈

Lp(Rn). In other words, Ḣs
p = (−∆)−

s
2Lp and it is a Banach space with

norm

‖u‖Ḣsp = ‖(−∆)
s
2u‖p.

For s ∈ R, 1 < p1, p2, p <∞, and α ∈ (0, 1) such that 1
p = α

p1
+ 1−α

p2
, we

have the interpolation property

(2.1) Ḣs
p = (Ḣs

p1 , Ḣ
s
p2)α,p with ‖u‖Ḣsp ≤ ‖u‖

α
Ḣsp1
‖u‖1−α

Ḣsp2
.

The following Sobolev type embedding holds true

(2.2) Ḣs2
p2 (Rn) ⊂ Ḣs1

p1 (Rn),

for 1 < p2 ≤ p1 < ∞ and s1 − n
p1

= s2 − n
p2

. The reader is refereed

to [20, Chapter 6] for further details on these spaces.
The next lemma gives estimates for certain multiplier operators acting

in Ḣs
p(Rn) (see e.g. [27]).

Lemma 2.1. Let m, s ∈ R, 1 < p < ∞, and F (ξ) ∈ C [n2 ]+1(Rn\{0}),
where [·] stands for the greatest integer function. Assume that there is
L > 0 such that

(2.3)

∣∣∣∣∂αF∂ξα
(ξ)

∣∣∣∣ ≤ L|ξ|m−|α|,
for all α ∈ (N ∪ {0})n, |α| ≤ [n2 ] + 1, and ξ 6= 0. Then the multiplier

operator F (D) on S ′/P is bounded from Ḣs
p to Ḣs−m

p . Moreover, the
following estimate holds true

(2.4) ‖F (D)f‖Ḣs−mp
≤ C‖f‖Ḣsp ,

where C > 0 is independent of f .

The next lemma gives estimates for {Gγ(t)}t≥0 on spaces Lp(Rn) and

Ḣs
p(Rn).
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Lemma 2.2. Let n ≥ 2, 0 < γ <∞, 1 ≤ p ≤ q ≤ ∞, and k ∈ (N∪{0})n.
Then

(2.5) ‖∇kxGγ(t)f‖q ≤ C t−
|k|
2γ −

n
2γ (

1
p−

1
q )‖f‖p,

for all f ∈ Lp(Rn). Now, let s1 ≤ s2, si ∈ R, and 1 < p1 ≤ p2 < ∞.
There is a constant C > 0 such that

(2.6) ‖Gγ(t)f‖Ḣs2p2 ≤ Ct
− (s2−s1)

2γ − n
2γ (

1
p1
− 1
p2

)‖f‖Ḣs1p1 ,

for all f ∈ Ḣs1
p1 . Moreover, let f ∈ L

n
2γ−β (Rn) with 1 ≤ β < 2γ ≤ n+ β

and let n
2γ−β ≤ q <∞ with q 6= n

2γ−β if β = 1. Then

(2.7) sup
0<t<T

tηq‖Gγ(t)f‖Ḣβ−1
q
≤C‖f‖ n

2γ−β
and lim

t→0+
tηq‖Gγ(t)θ0‖Ḣβ−1

q
=0,

where ηq = 2γ−1
2γ −

n
2γq and C is independent of f and 0 < T ≤ ∞. The

inequality in (2.7) still holds true in the case q = n
2γ−β and β = 1.

Proof: The estimate (2.5) is well-known (see e.g. [3] for a proof). Also,

(2.5) still holds true by replacing ∇kx by (−∆)
|k|
2 . In view of the latter

comment and (−∆)
s2
2 = (−∆)

s2−s1
2 (−∆)

s1
2 , we obtain (2.6) from (2.5)

because Gγ(t) commutates with (−∆)
s1
2 . The estimate in (2.7) comes

from (2.6) with p2 = q, s2 = β− 1, p1 = n
2γ−β , and s1 = 0. Due to (2.6),

it is easy to see that the limit in (2.7) holds true for every θ0 ∈ L
n

2γ−β ∩

Ḣβ−1
q . This fact together with L

n
2γ−β ∩ Ḣβ−1

q

‖·‖ n
2γ−β = L

n
2γ−β and the

estimate in (2.7) yield the limit in (2.7), for every θ0 ∈ L
n

2γ−β (Rn).

3. Results

This section is devoted to the statements of the results whose proofs
will be performed in Section 5.

Theorem 3.1 (Global solutions). Assume the condition (1.14) and let

ηq = 2γ−1
2γ −

n
2γq and η̃q = 2γ−β

2γ −
n

2γq . If θ0 ∈ L
n

2γ−β (Rn) then there is

a unique global solution θ ∈ BC([0,∞);L
n

2γ−β (Rn)) for (1.1)–(1.3) such
that

tη̃qθ ∈ BC((0,∞), Lq(Rn)), for all
n

2γ − β
< q ≤ ∞,(3.1)

tηqθ ∈ C((0,∞); Ḣβ−1
q (Rn)), for all

n

2γ − β
≤ q <∞,(3.2)

where, as t → 0+, the limits of tηqθ in (3.2) (except the case (β, q) =
(1, n

2γ−β )) and tη̃qθ in (3.1) are zero. Moreover, if θ0 ∈ L1(Rn) ∩
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L
n

2γ−β (Rn) and 1 < q ≤ ∞, then θ ∈ BC([0,∞);L1(Rn) ∩ L
n

2γ−β (Rn))
and

(3.3) tη̃q+
n+β
2γ −1θ ∈ BC((0,∞);Lq(Rn)).

Remark 3.2 (Continuous dependence on initial data). The proof of Theo-
rem 3.1 also gives that the solution θ depends continuously on the data θ0
in finite time intervals [0, T ]. More precisely, if θk,0 → θ0 in L

n
2γ−β (Rn)

then θk → θ in C([0, T ];L
n

2γ−β (Rn)), for all 0 < T <∞, where θk is the
solution with initial data θk,0.

Remark 3.3. One can treat the range 0 ≤ β < 1 by modifying the
estimates of Section 4 (particularly (4.1) and (4.4)). For that mat-
ter, one should replace sup0<t<T t

ηl‖θ(·, t)‖Ḣβ−1
l

by sup0<t<T t
η̃l‖θ(·, t)‖l

into those estimates (l = q, r). In fact, due to Hardy–Littlewood–Sobolev
inequality, this case is easier to handling than β > 1 and it is not nec-
essary to use norms based on homogeneous Sobolev spaces in order to
prove existence of solutions.

Before proceeding, we recall the concept of even and odd symmetry. A
function h is said to be even (resp. odd) when h(x) = h(−x) (resp. h(x) =
−h(−x)).

Theorem 3.4 (Symmetry). Under the hypotheses of Theorem 3.1.

(i) The solution θ(x, t) is odd (resp. even) for all t > 0, provided that
θ0 and Pi’s are odd (resp. even).

(ii) Let P (ξ) be as in (1.5). If θ0 and divξ(P (ξ)) are radially symmetric
then θ(x, t) is radially symmetric for all t > 0.

Remark 3.5. Adapting the arguments in the proof of Theorem 3.4,
one also can prove the following non-symmetry results: if θ0 is not
odd (resp. not even) and Pi’s are odd (resp. even) then θ(x, t) is not odd
(resp. not even). Also, if θ0 is nonradial and divξ(P (ξ)) is radial, then
θ(x, t) is not radially symmetric.

4. Bilinear estimates

This part of the article is devoted to estimates for the bilinear
term (1.9).

Lemma 4.1. Let 0 < T ≤ ∞, n ≥ 2, 1 ≤ β < 2γ < ∞, and let
1 < q < ∞ be such that β−1

n < 1
q <

2γ−1
n . Denote ηq = 2γ−1

2γ −
n

2γq and

η̃q = 2γ−β
2γ −

n
2γq .
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(i) If 2γ−(β+1)
n − 1

q <
1
r ≤

1
q′ and q′ ≤ p ≤ ∞ then there are positive

constants K1, K2, K3, independent of θ, φ, and T , such that

sup
0<t<T

tη̃r‖B(θ, φ)‖r≤ K1 sup
0<t<T

tηq‖θ‖Ḣβ−1
q

sup
0<t<T

tη̃r‖φ‖r,(4.1)

sup
0<t<T

‖B(θ, φ)‖p≤ K2 sup
0<t<T

tηq‖θ‖Ḣβ−1
q

sup
0<t<T

‖φ‖p,(4.2)

sup
0<t<T

‖B(θ, φ)‖1≤ K3T
2γ−1
2γ −ηq sup

0<t<T
tηq‖θ‖Ḣβ−1

q
sup

0<t<T
‖φ‖q′ .(4.3)

(ii) If 2γ−2
n − 1

q <
1
r <

n+β−1
n − 1

q then

(4.4) sup
0<t<T

tηr‖B(θ, φ)‖Ḣβ−1
r
≤K4 sup

0<t<T
tηr‖θ‖Ḣβ−1

r
sup

0<t<T
tηq‖φ‖Ḣβ−1

q
,

where K4 > 0 is a constant independent of θ, φ, and T .

Proof: Part (i). Let p1 = p and p2 = r. Notice that piq
pi+q

≥ 1 because

p, r ≥ q′. Using Lemma 2.2 and Hölder inequality, we estimate

‖B(θ, φ)‖pi ≤
∫ t

0

‖∇xGγ(t− s)(P [θ]φ)(s)‖pi ds

≤ C
∫ t

0

(t− s)−
1
2γ−

n
2γq ‖(P [θ]φ)(s)‖ piq

pi+q
ds

≤ C
∫ t

0

(t− s)−
1
2γ−

n
2γq ‖P [θ(s)]‖q‖φ(s)‖pi ds

≤ C
∫ t

0

(t− s)−
1
2γ−

n
2γq ‖θ(s)‖Ḣβ−1

q
‖φ(s)‖pi ds,

(4.5)

where i = 1, 2 and in the third line we have used Lemma 2.1 in order to
infer

‖P [θ]‖q ≤ C‖θ‖Ḣβ−1
q

.

Therefore

‖B(θ, φ)‖p ≤ C I1(t) sup
0<t<T

‖φ(t)‖p sup
0<t<T

tηq‖θ(t)‖Ḣβ−1
q

,(4.6)

‖B(θ, φ)‖r ≤ C I2(t) sup
0<t<T

tη̃r‖φ(t)‖r sup
0<t<T

tηq‖θ(t)‖Ḣβ−1
q

,(4.7)
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where the integrals I1(t) and I2(t) can be computed as

I1(t) =

∫ t

0

(t− s)−
1
2γ−

n
2γq s−ηq ds

=

∫ 1

0

(1− s)ηq−1s−ηq ds = C <∞,
(4.8)

I2(t) =

∫ t

0

(t− s)−
1
2γ−

n
2γq s−ηq−η̃r ds

= tηq−1−ηq−η̃r+1

∫ 1

0

(1− s)ηq−1s−ηq−η̃r ds = C t−η̃r .

(4.9)

The estimates (4.1) and (4.2) follow from (4.7) with (4.9), and (4.6)
with (4.8), respectively.

Moreover, we have that

‖B(θ, φ)(t)‖1 ≤
∫ t

0

‖∇xGγ(t− s)(P [θ]φ)(s)‖1 ds

≤ C
∫ t

0

(t− s)−
1
2γ ‖P [θ]‖q‖φ‖q′ ds

≤ C
∫ t

0

(t− s)−
1
2γ ‖θ‖Ḣβ−1

q
‖φ‖q′ ds

≤ C
∫ t

0

(t− s)−
1
2γ s−ηq ds sup

0<t<T
tηq‖θ‖Ḣβ−1

q
sup

0<t<T
‖φ‖q′

≤ CT 1− 1
2γ−ηq sup

0<t<T
tηq‖θ‖Ḣβ−1

q
sup

0<t<T
‖φ‖q′ ,

which gives (4.3).

Part (ii). Consider

(4.10)
1

h
=

1

r
+

1

q
− β − 1

n
and δ =

n

h
− n

r
.
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Note that β+δ
2γ < 1 because 1

q < 2γ−1
n . We employ the continuous

inclusion Ḣβ−1+δ
h ⊂ Ḣβ−1

r , (2.6) and afterwards (2.4) to obtain

‖B(θ, φ)‖Ḣβ−1
r
≤
∫ t

0

‖Gγ(t− s)[∇x · (P [θ]φ)(s)]‖Ḣβ−1
r

ds

≤
∫ t

0

‖Gγ(t− s)[∇x · (P [θ]φ)(s)]‖Ḣβ−1+δ
h

ds

≤
∫ t

0

(t− s)−
β+δ
2γ ‖∇x · (P [θ]φ)(s)]‖Ḣ−1

h
ds

≤
∫ t

0

(t− s)−
β+δ
2γ ‖P [θ]φ(s)‖h ds.(4.11)

In view of (4.10), we can choose 1 < l < ∞ in such a way that l > q,
1
h = 1

r + 1
l , and 1

l = 1
q−

β−1
n . Then, Hölder inequality, (2.4), and Sobolev

embedding (2.2) imply that

‖P [θ]φ‖h ≤ ‖P [θ]‖r‖φ‖l

≤ ‖θ‖Ḣβ−1
r
‖φ‖Ḣβ−1

q
.

(4.12)

Inserting (4.12) into (4.11), we get

‖B(θ, φ)‖Ḣβ−1
r
≤ C

∫ t

0

(t− s)−
β+δ
2γ ‖θ‖Ḣβ−1

r
‖φ‖Ḣβ−1

q
ds

≤ C
∫ t

0

(t− s)−
β+δ
2γ s−ηr−ηq ds

×
(

sup
0<t<T

tηr‖θ(t)‖Ḣβ−1
r

sup
0<t<T

tηq‖φ(t)‖Ḣβ−1
q

)

≤ t−
β+δ
2γ −ηr−ηq+1

∫ 1

0

(1− s)−
β+δ
2γ s−ηr−ηq ds

×
(

sup
0<t<T

tηr‖θ(t)‖Ḣβ−1
r

sup
0<t<T

tηq‖φ(t)‖Ḣβ−1
q

)

≤ Ct−ηr
(

sup
0<t<T

tηr‖θ(t)‖Ḣβ−1
r

sup
0<t<T

tηq‖φ(t)‖Ḣβ−1
q

)
,

which is equivalent to (4.4).
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5. Proofs

5.1. Local in time solutions. We start by recalling an abstract lemma
in Banach spaces which is useful in order to avoid extensive fixed point
computations (see e.g. [28, Theorem 9]).

Lemma 5.1. Let X be a Banach space with norm ‖ · ‖X , and B : X ×
X → X be a continuous bilinear map, i.e., there exists K > 0 such that

‖B(x1, x2)‖X ≤ K‖x1‖X‖x2‖X ,
for all x1, x2 ∈ X. Given 0 < ε < 1

4K and y ∈ X such that ‖y‖X ≤ ε,
there exists a solution x ∈ X for the equation x = y +B(x, x) such that
‖x‖X ≤ 2ε. The solution x is unique in the closed ball {x∈X : ‖x‖X ≤
2ε}. Moreover, the solution depends continuously on y in the following
sense: If ‖ỹ‖X ≤ ε, x̃ = ỹ +B(x̃, x̃), and ‖x̃‖X ≤ 2ε, then

‖x− x̃‖X ≤
1

1− 4Kε
‖y − ỹ‖X .

Remark 5.2 (Picard sequence). The solution given by Lemma 5.1 can be
obtained as the limit in X of the Picard sequence {xk}k∈N where x1 = y
and xk+1 = y + B(xk, xk), for all k ∈ N. Moreover, ‖xk‖X ≤ 2ε for
all k ∈ N.

The following proposition shows that (1.1)–(1.3) is locally in time

well-posed for L
n

2γ−β -data.

Proposition 5.3 (Local in time solutions). Assume (1.14) and let q be
such that

(5.1) max

{
β − 1

n
,
γ − 1

n

}
<

1

q
<min

{
2γ − β
n

,
n+β − 2γ

n
,
n+β − 1

2n

}
.

If θ0 ∈ L
n

2γ−β (Rn) then there exists T > 0 such that (1.1)–(1.3) has a
unique mild solution θ in the class

(5.2) tηqθ ∈ BC((0, T ); Ḣβ−1
q (Rn)) and lim

t→0+
tηq‖θ‖Ḣβ−1

q
= 0.

Moreover, θ∈BC([0, T );L
n

2γ−β(Rn)) and t
β−1
2γ θ∈BC((0, T ); Ḣβ−1

n
2γ−β

(Rn)).

If β > 1 then the limit of t
β−1
2γ θ in Ḣβ−1

n
2γ−β

is zero, as t→ 0+.

Proof: Step 1. For T > 0, let us define the Banach space

ET =
{
θ measurable; tηqθ ∈ BC((0, T ); Ḣβ−1

q (Rn))
}

with norm given by

(5.3) ‖θ‖ET = sup
0<t<T

tηq‖θ(·, t)‖Ḣβ−1
q

.
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Due to (2.7) in Lemma 2.2 and θ0 ∈ L
n

2γ−β (Rn), for any ε > 0, there
exists a T > 0 such that

(5.4) sup
0<t<T

tηq‖Gγ(t)θ0‖Ḣβ−1
q
≤ ε.

Take 0 < ε < 1
4K4

where K4 is as in (4.4) with r = q. In view of

(5.4) and (4.4), we can apply Lemma 5.1 in ET to obtain a unique solu-
tion θ(x, t) for (1.8) such that

(5.5) sup
0<t<T

tηq‖θ‖Ḣβ−1
q
≤ 2ε.

Using (2.7) and an induction argument, one can shows that every
element θk of the Picard sequence

θ1(x, t) = Gγ(t)θ0(x),(5.6)

θk+1(x, t) = θ1(x, t) +B(θk, θk), k ∈ N,(5.7)

satisfies limt→0+ t
ηq‖θk‖Ḣβ−1

q
= 0. Then the second property in (5.2)

follows from the fact that the fixed point θ is the limit in ET of {θk}k∈N
(see Remark 5.2). Further details are left to the reader.

Step 2. In what follows we show that θ ∈ BC([0, T );L
n

2γ−β (Rn)). We
have that the recursive sequence (5.6)–(5.7) satisfies (see Remark 5.2)

(5.8) sup
0<t<T

tηq‖θk‖Ḣβ−1
q
≤ 2ε, for all k ∈ N.

Using Lemma 2.2, (4.2) with p = n
2γ−β , and (5.8), we get

sup
0<t<T

‖θ1(t)‖ n
2γ−β

≤ C‖θ0‖ n
2γ−β

,

and

sup
0<t<T

‖θk+1(t)‖ n
2γ−β

≤ C‖θ0‖ n
2γ−β

+K2 sup
0<t<T

tηq‖θk(t)‖Ḣβ−1
q

sup
0<t<T

‖θk(t)‖ n
2γ−β

≤ C‖θ0‖ n
2γ−β

+2εK2 sup
0<t<T

‖θk(t)‖ n
2γ−β

, for all k ∈ N.(5.9)

By reducing T > 0 in (5.4) if necessary, we can consider 0 < ε <
min{ 1

4K4
, 1
2K2
}. Since 2K2ε < 1, an induction argument in (5.9) shows

that {θk}k∈N is uniformly bounded in L∞((0, T );L
n

2γ−β (Rn)) and then
there exists a subsequence of {θk}k∈N (denoted in the same way) that

converges toward θ̃ weak-∗ in that space and consequently in D′(Rn ×
[0, T )). Because θk → θ in ET , which implies convergence in D′(Rn ×
[0, T )), the uniqueness of the limit in the sense of distributions yields θ =
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θ̃ ∈ L∞((0, T );L
n

2γ−β (Rn)). The time-continuity of θ follows from stan-

dard arguments by using that θ verifies (1.8), θ∈L∞((0, T );L
n

2γ−β(Rn))∩
ET , and the second property in (5.2) (see e.g. [22, 23]).

Step 3. Here we deal with the statement about t
β−1
2γ θ in Ḣβ−1

n
2γ−β

(Rn).

Noting that η n
2γ−β

= β−1
2γ , a direct application of Lemma 2.2 gives

(5.10) sup
0<t<T

t
β−1
2γ ‖θ1(t)‖Ḣβ−1

n
2γ−β

≤ C‖θ0‖ n
2γ−β

.

Next, we use (5.10), (4.4) with r = n
2γ−β , and (5.8) to obtain

sup
0<t<T

t
β−1
2γ ‖θk+1(t)‖Ḣβ−1

n
2γ−β

≤C‖θ0‖ n
2γ−β

+K4 sup
0<t<T

t
β−1
2γ ‖θk(t)‖Ḣβ−1

n
2γ−β

sup
0<t<T

tηq‖θk(t)‖Ḣβ−1
q

≤C‖θ0‖ n
2γ−β

+2εK4 sup
0<t<T

t
β−1
2γ ‖θk(t)‖Ḣβ−1

n
2γ−β

, for all k ∈ N,

(5.11)

where K4 is the constant in (4.4) when r = n
2γ−β and q > r is as

in (5.1). Now, the remainder of the proof follows similarly to Step 2 by
using (5.11) instead of (5.9).

In the next proposition we investigate the L1-persistence of the solu-
tions obtained in Proposition 5.3.

Proposition 5.4. Under the hypotheses of Proposition 5.3, there exists
T > 0 such that the solution θ belongs to BC([0, T );L1(Rn)) provided

that θ0 ∈ L1(Rn) ∩ L
n

2γ−β (Rn).

Proof: Let q be such that 1 < q′ < n
2γ−β . From interpolation, we have

that θ0 ∈ Lq
′
(Rn). Employing (5.8) and the estimate (4.2) with p = q′,

we get

sup
0<t<T

‖θ1(t)‖q′ ≤ C‖θ0‖q′ ,

and

sup
0<t<T

‖θk+1(t)‖q′ ≤ C‖θ0‖q′ +K2 sup
0<t<T

tηq‖θk(t)‖Ḣβ−1
q

sup
0<t<T

‖θk(t)‖q′

≤ C‖θ0‖q′ + 2K2ε sup
0<t<T

‖θk(t)‖q′ , for all k ∈ N.
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Again reducing T > 0 if necessary, we can consider 2K2ε < 1 and proceed
similarly to the end of the proof of Proposition 5.3 to obtain that

(5.12) θ ∈ BC([0, T );Lq
′
(Rn)).

Now we use (2.5), (4.3), (5.2), and (5.12) to estimate

sup
0<t<T

‖θ(t)‖1≤C‖θ0‖1 + sup
0<t<T

‖B(θ, θ)‖1

≤C‖θ0‖1+K3T
1− 1

2γ−ηq sup
0<t<T

tηq‖θ‖Ḣβ−1
q

sup
0<t<T

‖θ‖q′<∞,

as required.

The existence time T in Propositions 5.3 and 5.4 may depend on
index q. In the next proposition we show that indeed one can take a
same small time T > 0 for all q.

Proposition 5.5. Under the hypotheses of Proposition 5.3. Let θ be the
solution given by Proposition 5.3 with data θ0 ∈ L

n
2γ−β (Rn). There is a

T > 0 such that

tηrθ ∈ BC([0, T ); Ḣβ−1
r (Rn)), for all

n

2γ − β
≤ r <∞,(5.13)

tη̃rθ ∈ BC([0, T );Lr(Rn)), for all
n

2γ − β
≤ r <∞,(5.14)

where the values at t = 0 of tηrθ in (5.13) (except for (β, r) = (1, n
2γ−β ))

and of tη̃rθ in (5.14) (except for r = n
2γ−β )) are zero.

Proof: Let q be fixed as in Proposition 5.3. Given n
2γ−β < r < ∞

verifying 2γ−2
n − 1

q <
1
r <

n+β−1
n − 1

q , we can use (4.4) instead of (4.1)

and proceed just like as in Step 2 of the proof of Proposition 5.3 to obtain
(reducing T > 0 if necessary)

(5.15) tηrθ ∈ BC([0, T ); Ḣβ−1
r (Rn)).

Now let 2γ−2
n − 1

q <
1
r <

2γ−1
n − 1

q , and consider r < r̃ < ∞ . Taking
1
h = 1

q + 1
z = 1

q + 1
r −

β−1
n and δ = n

h −
n
r̃ , it follows that δ > 0, β+δ2γ < 1,
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and ηq + ηr < 1. Then, we can estimate

‖θ‖Ḣβ−1
r̃
≤ Ct−ηr̃‖θ0‖ n

2γ−β

+

∫ t

0

‖Gγ(t− s)∇x · (P [θ]θ)(s)‖Ḣβ−1
r̃

ds

≤ Ct−ηr̃‖θ0‖ n
2γ−β

+ C

∫ t

0

‖Gγ(t− s)∇x · (P [θ]θ)(s)‖Ḣβ−1+δ
h

ds

≤ Ct−ηr̃‖θ0‖ n
2γ−β

(5.16)

+ C

∫ t

0

(t− s)−
β+δ
2γ ‖∇x · (P [θ]θ)(s)‖Ḣ−1

h
,

where above we have used Sobolev embedding and afterwards (2.6).
Now we employ (2.4), Hölder inequality, and Sobolev embedding in

order to estimate

R.H.S. of (5.16)

≤Ct−ηr̃‖θ0‖ n
2γ−β

+C

∫ t

0

(t− s)−
β+δ
2γ ‖P [θ]θ(s)‖h ds

≤Ct−ηr̃‖θ0‖ n
2γ−β

+C

∫ t

0

(t− s)−
β+δ
2γ ‖P [θ]‖q‖θ(s)‖z ds

≤Ct−ηr̃‖θ0‖ n
2γ−β

+C

∫ t

0

(t− s)−
β+δ
2γ ‖θ‖Ḣβ−1

q
‖θ‖Ḣβ−1

r
ds

≤Ct−ηr̃‖θ0‖ n
2γ−β

+C

∫ t

0

(t− s)−
β+δ
2γ s−ηq−ηr ds(5.17)

×
(

sup
0<t<T

tηq‖θ‖Ḣβ−1
q

)(
sup

0<t<T
tηr‖θ‖Ḣβ−1

r

)

≤Ct−ηr̃‖θ0‖ n
2γ−β

+Ct−ηr̃
∫ 1

0

(1− s)−
β+δ
2γ s−ηq−ηr ds

≤Ct−ηr̃ ,

and then we arrive at (5.15) with r̃ in place of r, and with the same
existence time T > 0. In Proposition 5.3, we already have proved that

(5.18) t
β−1
2γ θ ∈ BC([0, T ); Ḣβ−1

n
2γ−β

(Rn)),



542 L. C. F. Ferreira, L. S. M. Lima

which is (5.15) with r = n
2γ−β . In view of (2.1), we can interpolate (5.15)

(with r̃ in place of r) and (5.18) in order to obtain that (5.15) holds true
for every r = l such that n

2γ−β ≤ l ≤ r̃ (and the same T > 0). Since

r̃ > r is arbitrary, we get (5.15) with r = l (and the same T > 0), for all
n

2γ−β ≤ l <∞, which gives (5.13).

The proof of (5.14) can be performed in a similar way by using (4.1)
instead of (4.4).

5.2. Proof of Theorem 3.1.

Step 1: Local smoothness and maximum principle. Since we are as-
suming (1.14), Proposition 5.3 assures the existence of a local-in-time
mild solution θ(x, t). In fact, this solution is C∞-smooth for any t > 0
belonging to the existence interval (0, T ). This smooth effect holds for
several parabolic equations in several frameworks, like e.g. Lp, weak-Lp,
Morrey, Besov–Morrey, when mild solutions are constructed by using
time-weighted norms of Kato type (see [22]). Precisely, adapting argu-
ments from [22] (see also [2]), one can obtain that the solution verifies

(5.19) ∂mt ∇kxθ(x, t) ∈ C((0, T );L
n

2γ−β (Rn) ∩ Lq(Rn)),

for all n
2γ−β < q < ∞, m ∈ {0} ∪ N, and multi-index k ∈ ({0} ∪ N)

n
,

where T > 0 is the existence time given in Proposition 5.5. In particular,
it follows that θ(x, t) ∈ C∞(Rn × (0, T )) and θ(t) ∈ L∞(Rn) with

(5.20) ‖θ(t)‖∞ ≤ C‖θ(t)‖αn2

2γ−β
‖∇xθ(t)‖1−αn2

2γ−β
,

for all 0 < t < T, where α = n+β−2γ
n . If further θ0 ∈ L1(Rn)∩L

n
2γ−β (Rn)

then q in (5.19) can be taken in the range 1 < q <∞.
Due to (5.19) we have that θ verifies (1.1)–(1.3) in the classical sense

and ∂mt ∇kxθ(x, t) → 0 when |x| → ∞, for all 0 < t < T. In view of ∇·
P [θ] = 0, we can integrate by parts to obtain

∂

∂t
‖θ(t)‖pp=p

∫
Rn
θ(t)p−1

∂

∂t
θ(t) dx

=p

∫
Rn
θ(t)p−1(−(−∆)γθ −∇x · (P [θ]θ)) dx

=−p
∫
Rn
θ(t)p−1(−∆)γθ dx ≤−

∫
Rn

∣∣∣(−∆)
γ
2 (θ

p
2 )
∣∣∣2 dx,

(5.21)

for all t ∈ (0, T ). The last inequality in (5.21) can be found in [9, 13]
(see also [21]).
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In view of the estimate (5.21), we have that Lp-norms of θ(t) are non-

increasing in (0, T ). If θ0 ∈ L
n

2γ−β (Rn) and θ0 ∈ L1(Rn) ∩ L
n

2γ−β (Rn),
we obtain respectively

(5.22) ‖θ(t)‖ n
2γ−β

≤ ‖θ(t0)‖ n
2γ−β

and ‖θ(t)‖1 ≤ ‖θ(t0)‖1,

for 0 < t0 ≤ t < T .
Making t0 → 0+ in (5.22), it follows that the solution θ(x, t) satisfies

(5.23) ‖θ(t)‖ n
2γ−β

≤ ‖θ0‖ n
2γ−β

and ‖θ(t)‖1 ≤ ‖θ0‖1,

for all t ∈ (0, T ), when θ0 ∈ L
n

2γ−β (Rn) and θ0 ∈ L1(Rn) ∩ L
n

2γ−β (Rn),
respectively.

Step 2: Extension of the local solution. We start by making the following
observation: if n

2γ−β < q <∞ and θ0 ∈ Lq(Rn) then

(5.24) tηq‖Gγ(t)θ0‖Ḣβ−1
q
≤ Ctη̃q‖θ0‖q → 0 when t→ 0+.

Therefore, for θ0 ∈ L
n

2γ−β (Rn)∩Lq0(Rn) with q0 as in (5.1), the existence
time T > 0 obtained in Proposition 5.3 can be taken depending on the
norm ‖θ0‖q0 . Indeed it can be chosen as

(5.25) T =

(
ε

C‖θ0‖q0

) 1
η̃q0

,

where 0 < ε < 1
4K4

and C > 0 is as in (5.24).

Now let θ0 ∈ L
n

2γ−β (Rn). From Propositions 5.3 and 5.5, there exists
T0 > 0 and a unique mild solution for (1.1)–(1.3) verifying (5.13)–(5.14)
in [0, T0) such that

(5.26) sup
0<t<T0

‖θ(t)‖ n
2γ−β

≤ ‖θ0‖ n
2γ−β

,

where (5.26) comes from (5.23).
Let us now denote

(5.27) T ∗ = sup
{
T̃ > 0; θ verifies (5.13)–(5.14) and (5.26) in [0, T̃ )

}
.

We desire to prove that T ∗ = ∞. Suppose by contradiction that T ∗ <
∞, and let a = θ(T ∗ − δ) where 0 < δ < T ∗ will be chosen later.

Property (5.14) gives that a ∈ L
n

2γ−β (Rn) ∩ Lq(Rn), for all n
2γ−β < q <

∞. Moreover, if δ < T∗

2 we get ‖θ(T ∗ − δ)‖q ≤ ‖θ(T
∗

2 )‖q. Therefore,

taking δ < T ∗/2 and a as initial data, we have that given 0 < ε < 1
4K4
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there exist T1 > 0 and a unique mild solution θ̃ for (1.1)–(1.3) satisfying
(5.13)–(5.14) and (5.26) in I = [T ∗ − δ, T1 + T ∗ − δ), that is,

(5.28) tηqθ ∈ BC(I; Ḣβ−1
q ) and tη̃qθ ∈ BC(I;Lq),

for all n
2γ−β ≤ q < ∞. From uniqueness part of Proposition 5.3, it

follows that θ = θ̃ in [T ∗ − δ, T ∗). In view of (5.25), we can choose

T1 = min{( ε
C‖θ(T∗2 )‖q

)
1
η̃q , T ∗}. Taking 0 < δ < min{T

∗

2 , T1} and T2 =

T1 + T ∗ − δ, we have that T ∗ < T2 and get a solution

(5.29) tηqθ ∈ BC([0, T̃ ); Ḣβ−1
q ) and tη̃qθ ∈ BC([0, T̃ );Lq),

for all n
2γ−β ≤ q < ∞, and for all 0 < T̃ < T2, which contradicts the

maximality of T ∗ in (5.27). Therefore T ∗ = ∞ and, in particular, it
follows that

(5.30) tηqθ ∈ C([0,∞); Ḣβ−1
q ) and tη̃qθ ∈ C([0,∞);Lq),

for all n
2γ−β ≤ q < ∞, where the values at t = 0+ in (5.30) are as in

Proposition 5.5.

Step 3: Global Lq-decay of solutions. In view of (5.30), it remains to
prove (3.1) and (3.3). We will prove only the part of the statement

corresponding to the case θ0 ∈ L
n

2γ−β (Rn). The estimate (3.3) for θ0 ∈
L1(Rn)∩L

n
2γ−β (Rn) follows similarly to the first one by using ‖θ(t)‖1 ≤

‖θ0‖1 and the sequence qk = 2k instead of ‖θ(t)‖ n
2γ−β

≤ ‖θ0‖ n
2γ−β

and

qk = n
2γ−β 2k.

Since we have extended the solution θ, it follows that (5.19) and (5.20)
hold true for T =∞. Then

(5.31) ‖θ(·, t)‖∞ <∞, for all t > 0.

Now we proceed as in [3] and [23]. In view of the Gagliardo–Nirenberg
inequality, we have that

(5.32) ‖φ‖2 ≤ C‖φ‖α1
∥∥∥(−∆)

γ
2 φ
∥∥∥1−α
2

with α =
2γ

n+ 2γ
.

Taking φ = θ
q
2 in (5.32), it follows that

(5.33) ‖θ‖q(
n+2γ
n )

q ≤ C‖θ‖
2qγ
n
q
2

∥∥∥(−∆)
γ
2 (θ

q
2 )
∥∥∥2
2
.
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Denoting ψq(t) = ‖θ(t)‖qq , we obtain from (5.21) and (5.33) that

(5.34)
∂

∂t
ψq ≤ −C(ψ q

2
)−

4γ
n ψ

n+2γ
n

q .

The differential inequality (5.34) can be solved by an induction proce-
dure. In fact, using the first inequality in (5.23) and considering the
sequence qk = n

2γ−β 2k for k ≥ 0, we arrive at

(5.35) ψqk(t) ≤Mqkt
−n2 ( 2k−1

γ ),

where

Mq0 = ‖θ0‖ n
2γ−β

and Mqk =

(
n(2k − 1)

2Cγ

) n
2γ

M2
qk
2
, for k ∈ N.

It follows that

M
1
qk
qk =

(
n(2k − 1)

2Cγ

) n
2γqk

M
1

qk−1
qk−1

=

(
n(2k − 1)

2Cγ

) n

2γ2kq0

(
n(2k−1 − 1)

2Cγ

) n

2γ2k−1q0

M
1

qk−2
qk−2

...

=

[
k∏
i=1

(
n(2i − 1)

2Cγ

) n

2i2γq0

]
(Mq0)

1
q0 , for all k ∈ N,

and then

‖θ(t)‖2kq0 ≤M
1
qk
qk t
−n2 ( 2k−1

γqk
)

=

(
k∏
i=1

(
n

2

2i − 1

Cγ

) n

2i2γq0

)
(Mq0)

1
q0 t−

n
2γq0

( 2k−1

2k
),

(5.36)

where q0 = n
2γ−β . In view of (5.31), we can make k → ∞ in (5.36) to

obtain

(5.37) ‖θ(t)‖∞ ≤ C‖θ0‖
2γ−β
n
n

2γ−β
t−

2γ−β
2γ , for all t > 0.

Interpolating the first inequality in (5.23) with (5.37), the result is

‖θ(t)‖q ≤ C t−η̃q , for all t > 0 and
n

2γ − β
≤ q ≤ ∞,

as required.
The uniqueness statement follows from the local uniqueness property

in Proposition 5.3.
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5.3. Proof of Theorem 3.4.

Part (i). We will prove only the odd part of the statement since the
even one follows similarly. Let θ be the solution of Proposition 5.3 with
existence time T > 0. From Step 2 of the proof of Theorem 3.1, θ can be
extended by using Proposition 5.3 and solving (1.1)–(1.3) consecutively
with initial data θ(T2 ), θ(T2 + T1), θ(T2 + 2T1), and so on, where T1 =

min{( ε
C‖θ(T2 )‖q0

)
1
η̃q0 , T}, ε = 1

8K4
, and C as in (5.24). Because of that,

it is sufficient to show the following claim: if θ0 ∈ L
n

2γ−β is odd then
so is the solution θ(x, t) given by Proposition 5.3, for all t ∈ (0, T ). In
fact, notice that we can use this claim repeatedly to show that the global
solution θ(x, t) is odd, for all t > 0.

Let ψ(x, t) = Gγ(t)θ0. We have that θ0(−x) = −θ0(x) is equivalent
to

(5.38) − θ̂0(ξ) = [θ0(−x)]∧(ξ) = θ̂0(−ξ) in S ′(Rn).

It follows from (5.38) that

[ψ(−x, t)]∧(ξ) = e−t|ξ|
2γ

θ̂0(−ξ)

= −e−t|ξ|
2γ

θ̂0(ξ) = −ψ̂(x, t)(ξ),

which shows that Gγ(t)θ0 is odd, for each fixed t > 0. Also, if θ is odd
then ∇θ is even, because

∇(θ(x, t)) = ∇(−θ(−x, t)) = (∇θ)(−x, t).
Recall that A = (aij) and

P (ξ) = (P̃1(ξ), . . . , P̃n(ξ)),

where

P̃j(ξ) =

n∑
i=1

aij
ξiI

|ξ|2
Pi(ξ).

It follows that

û(−ξ) = (û1(−ξ), . . . , ûn(−ξ)) = P (−ξ)θ̂(−ξ, t)
with

P (−ξ) =
I

|ξ|2
[−ξ1P1(−ξ), . . . ,−ξnPn(−ξ)]A

=
I

|ξ|2
[ξ1P1(ξ), . . . , ξnPn(ξ)]A = P (ξ),

because Pi’s are odd. Therefore u = P [θ] is odd when θ is odd, and then
(u · ∇θ) = (P [θ] · ∇θ) is odd too. Hence if θ is odd then so is B(θ, θ).
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So, employing an induction argument, one can prove that each ele-
ment θk of the Picard sequence (5.6)–(5.7) is odd. Since θk → θ in the
norm (5.3), then the sequence (5.6)–(5.7) also converges (up to a subse-
quence) to θ a.e. x ∈ Rn, for all t ∈ (0, T ). It follows that θ(x, t) is odd,
for each fixed t ∈ (0, T ), because pointwise convergence preserves odd
symmetry. This shows the desired claim.

Part (ii). From the same reasons given in Part (i), we need only to prove
that the local solution of Proposition 5.3 is radially symmetric whenever
θ0 and divξ(P (ξ)) are too. For that matter, we first observe that Gγ(t)θ0
is radial because θ0 and the kernel ĝγ(ξ, t) = e−|ξ|

2γt are radial, for all
t > 0. Also, for θ radially symmetric, we have that

(u · ∇θ) =

n∑
j=1

uj∂xjθ =
θ′(r)

r

n∑
j=1

ujxj

= I
θ′(r)

r

n∑
j=1

(∂ξj ûj)
∨ = I

θ′(r)

r

n∑
j=1

(
∂ξj P̃j(ξ)θ̂

)∨
= I

θ′(r)

r

(
θ̂(ξ, t)(divξ(P (ξ))

)∨
.

(5.39)

It follows from (5.39) that if θ and (divξ(P (ξ)) are radial then so is
(u · ∇θ). Using that Gγ(t) preserves radiality, we obtain that B(θ, θ)
defined in (1.9) is radially symmetric, for each t ∈ (0, T ), whenever θ is
too. Analogously to Part (i), we now can use induction in order to show
that each function θk defined in (5.6)–(5.7) is also radially symmetric.
Since θk converges (up to a subsequence) to θ a.e. x ∈ Rn, for each
t ∈ (0, T ), we obtain the required conclusion.
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Rua Sérgio Buarque de Holanda, 651
CEP 13083-859, Campinas-SP

Brazil
E-mail address: lcff@ime.unicamp.br

Lidiane S. M. Lima:

Universidade Federal de Goiás
IME - Departamento de Matemática
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