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Point and interval estimation for the logistic

distribution based on record data
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Abstract

In this paper, based on record data from the two-parameter logistic distribution, the maximum

likelihood and Bayes estimators for the two unknown parameters are derived. The maximum like-

lihood estimators and Bayes estimators can not be obtained in explicit forms. We present a simple

method of deriving explicit maximum likelihood estimators by approximating the likelihood func-

tion. Also, an approximation based on the Gibbs sampling procedure is used to obtain the Bayes

estimators. Asymptotic confidence intervals, bootstrap confidence intervals and credible intervals

are also proposed. Monte Carlo simulations are performed to compare the performances of the

different proposed methods. Finally, one real data set has been analysed for illustrative purposes.

MSC: 62G30, 62F10, 62F15, 62E15.
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1. Background and statistical context

Let {Yi, i ≥ 1} be a sequence of independent and identically distributed (iid) random

variables with cumulative distribution function (cdf) G(y;θ) and probability density

function (pdf) g(y;θ), where θ is a vector of parameters. An observation Yj is called

an upper record value if Yj >Yi for all i = 1,2, . . . , j−1. An analogous definition can be

given for lower record values. Generally, if {U(n), n ≥ 1} is defined by

U(1) = 1, U(n) = min{ j : j >U(n−1), Yj >YU(n−1)},
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for n ≥ 2, then the sequence {YU(n), n ≥ 1} provides a sequence of upper record statis-

tics. The sequence {U(n), n ≥ 1} represents the record times.

Suppose we observe the first m upper record valuesYU(1) = y1,YU(2) = y2, · · · ,YU(m) =
ym from the cdf G(y;θ) and pdf g(y;θ). Then, the joint pdf of the first m upper record

values is given (see Ahsanullah, 1995) by

h(y;θ) = g(ym;θ)
m−1

∏
i=1

g(yi;θ)

1−G(yi;θ)
, −∞ < y1 < y2 < ... < ym < ∞, (1.1)

where y = (y1, . . . ,ym). The marginal pdf of the nth record YU(n) is

hn(y;θ) =
[− ln(1−G(y;θ))]n−1

(n−1)!
g(y;θ).

The definition of record statistics was formulated by Chandler (1952). These statis-

tics are of interest and important in many real life problems involving weather, eco-

nomics, sports data and life testing studies. In reliability and life testing experiments,

many products fail under stress. For example, an electronic component ceases to func-

tion in an environment of too high temperature, a wooden beam breaks when sufficient

perpendicular force is applied to it, and a battery dies under the stress of time. Hence, in

such experiments, measurements may be made sequentially and only the record values

(lower or upper) are observed. For more details and applications of record values, one

may refer to Arnold et al. (1998) and Nevzorov (2001).

The logistic distribution has been used for growth models in the biological sciences,

and is used in a certain type of regression known as the logistic regression. It has many

applications in technological problems including reliability, studies on income, gradua-

tion of mortality statistics, modeling agriculture production data, and analysis of cate-

gorical data. The shape of the logistic distribution is very similar to that of the normal

distribution, but it is more peaked in the center and has heavier tails than the normal

distribution. Because of the similarity of the two distributions, the logistic model has

often been selected as a substitute for the normal model. For more details and other

applications, see Balakrishnan (1992) and Johnson et al. (1995).

Although extensive work has been done on inferential procedures for logistic distri-

bution based on complete and censored data, but not much attention has been paid on

inference based on record data. In this article, we consider the point and interval estima-

tion of the unknown parameters of the logistic distribution based on record data. We first

consider the maximum likelihood estimators (MLEs) of the unknown parameters. It is

observed the MLEs can not be obtained in explicit forms. We present a simple method of

deriving explicit MLEs by approximating the likelihood function. We further consider

the Bayes estimators of the unknown parameters and it is observed the Bayes estimators

and the corresponding credible intervals can not be obtained in explicit forms. We use an
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approximation based on the Gibbs sampling procedure to compute the Bayes estimators

and the corresponding credible intervals.

The rest of the paper is organized as follows. In Section 2, we discuss the MLEs

of the unknown parameters of the logistic distribution. In Section 3, we provide the

approximate maximum likelihood estimators (AMLEs). Bayes estimators and the cor-

responding credible intervals are provided in Section 4. The Fisher information and

different confidence confidence intervals are presented in Section 5. Finally, in Section

4, one numerical example and a Monte Carlo simulation study are given to illustrate the

results.

2. Maximum likelihood estimation

Let the failure time distribution be a logistic distribution with probability density func-

tion (pdf)

g(y;µ,σ) =
e−(y−µ)/σ

σ(1+ e−(y−µ)/σ)2
, −∞ < y < ∞, µ ∈ R, σ > 0, (2.1)

and cumulative distribution function (cdf)

G(y;µ,σ) =
1

1+ e−(y−µ)/σ
, −∞ < y < ∞, µ ∈ R, σ > 0. (2.2)

Consider the random variable X = (Y − µ)/σ. Then, X has the standard logistic

distribution with pdf and cdf as

f (x) =
e−x

(1+ e−x)2
, −∞ < x < ∞, (2.3)

and

F(x) =
1

1+ e−x
, −∞ < x < ∞, (2.4)

respectively. Note that g(y;µ,σ) = 1
σ

f ((y− µ)/σ) and G(y;µ,σ) = F((y− µ)/σ). It

should also be noted that f (x) and F(x) satisfy the following relationships:

f (x) = F(x)[1−F(x)], f ′(x) = f (x)[1−2F(x)]. (2.5)

Suppose we observe the first m upper record valuesYU(1) = y1,YU(2) = y2, · · · ,YU(m) =

ym from the logistic distribution with pdf (2.1) and cdf (2.2). The likelihood function is
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given by

L(µ,σ) = g(ym,µ,σ)
m−1

∏
i=1

g(yi;µ,σ)

1−G(yi;µ,σ)
. (2.6)

By using Eqs. (2.3), (2.4) and (2.5), the likelihood function may be rewritten as

L(µ,σ) = σ−m f (xm)
m−1

∏
i=1

F(xi) , (2.7)

where xi = (yi −µ)/σ. Subsequently, the log-likelihood function is

lnL(µ,σ) =−m lnσ+ ln f (xm)+
m−1∑

i=1

lnF(xi). (2.8)

Again, by using Eq. (2.5), we derive the likelihood equations for µ and σ from (2.8), as

∂ lnL(µ,σ)

∂µ
=− 1

σ

[
m−F(xm)−

m∑

i=1

F(xi)

]
= 0, (2.9)

∂ lnL(µ,σ)

∂σ
=− 1

σ

[
m+

m∑

i=1

xi − xmF(xm)−
m∑

i=1

xiF(xi)

]
= 0. (2.10)

The MLES µ̂ and σ̂, respectively of µ and σ, are solution of the system of Eqs. (2.9) and

(2.10). They can not be obtained in closed forms and so some iterative methods such as

Newton’s method are required to compute these estimators.

3. Approximate maximum likelihood estimation

It is observed that the likelihood equations (2.9) and (2.10) do not yield explicit estima-

tors for the MLEs, because of the presence of the term F(xi), i = 1, . . . ,m, and they have

to be solved by some iterative methods. However, as mentioned by Tiku and Akkaya

(2004), solving the likelihood equations by iterative methods can be problematic for

reasons of (i) multiple roots, (ii) nonconvergence of iterations, or (iii) convergence to

wrong values. Moreover, these methods are usually very sensitive to their initiate values.

Here, we present a simple method to derive approximate MLEs for µ and σ by lineariz-

ing the term F(xi) using Taylor series expansion. Approximate solutions for MLEs have

been discussed in the book by Tiku and Akkaya (2004) for several specific distributions.
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Balakrishnan and Aggarwala (2000), Balakrishnan and Kannan (2000), Balakrishnan

and Asgharzadeh (2005), Agharzadeh (2006), Raqab et al. (2010) and Asgharzadeh et

al. (2011) used approximate solutions for the MLEs, when the data are progressively

censored.

We approximate the term F(xi) by expanding it in a Taylor series around E(Xi) = δi.

From Arnold et al. (1998), it is known that

F(Xi)
d
= Ui,

where Ui is the i-th record statistic from the uniform U(0,1) distribution. We then have

Xi
d
= F−1(Ui),

and hence

δi = E(Xi)≈ F−1(E(Ui)).

From Arnold et al. (1998), it is known that

E(Ui) = 1−
(

1

2

)i+1

, i = 1, . . . ,m.

Since, for the standard logistic distribution, we have

F−1(u) = ln

(
u

1−u

)
,

we can approximate δi by F−1[1− ( 1
2
)i+1] = ln(2i+1 −1).

Now, by expanding the function F(xi) around the point δi and keeping only the first

two terms, we have the following approximation

F(xi)≃ F(δi)+(xi− δi) f (δi)

= αi +βixi, (3.1)

where
αi = F(δi)− δi f (δi),

and
βi = f (δi)≥ 0,

for i = 1, · · · ,m.
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Using the expression in (3.1), we approximate the likelihood equations in (2.9) and

(2.10) by

∂ lnL∗(µ,σ)

∂µ
=− 1

σ

[
m− (αm +βmxm)−

m∑

i=1

(αi +βixi)

]
= 0, (3.2)

∂ lnL∗(µ,σ)

∂σ
=− 1

σ

[
m+

m∑

i=1

xi − xm(αm +βmxm)−
m∑

i=1

xi(αi +βixi)

]
= 0, (3.3)

which can be rewritten as

[
m−αm −

m∑

i=1

αi

]
− 1

σ

[
βmym +

m∑

i=1

βiyi

]
+

1

σ

[
βm +

m∑

i=1

βi

]
µ= 0, (3.4)

m+
1

σ

[
(

m∑

i=1

yi −αmym −
m∑

i=1

αiyi)+
(βmym +

∑m
i=1βiyi)(αm +

∑m
i=1αi −m)

βm +
∑m

i=1βi

]

+
1

σ2

[
−(βmy2

m +
m∑

i=1

βiy
2
i )+

(βmym +
∑m

i=1βiyi)
2

βm +
∑m

i=1βi

]
= 0, (3.5)

respectively. By solving the quadratic equation in (3.5) for σ, we obtain the approximate

MLE of σ as

σ̃ =
−A+

√
A2 −4mB

2m
, (3.6)

where

A = (

m∑

i=1

yi −αmym −
m∑

i=1

αiyi)+
(βmym +

∑m
i=1βiyi)(αm +

∑m
i=1αi −m)

βm +
∑m

i=1βi

, (3.7)

B =−(βmy2
m +

m∑

i=1

βiy
2
i )+

(βmym +
∑m

i=1βiyi)
2

βm +
∑m

i=1βi

. (3.8)

Now, by using (3.4), we obtain the approximate MLE of µ as

µ̃=C+Dσ̃, (3.9)
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where

C =
βmym +

∑m
i=1βiyi

βm +
∑m

i=1βi

, D =
αm +

∑m
i=1αi −m

βm +
∑m

i=1βi

. (3.10)

Note that Eq. (3.5) has two roots but since B ≤ 0, only one root in (3.6) is admissible.

The proof of B ≤ 0 is given in Appendix A.

Note that, the AMLE method has an advantage over the MLE method as the for-

mer provides explicit estimators. The AMLEs in (3.6) and (3.9) can be used as good

starting values for the iterative solution of the likelihood equations (2.9) and (2.10) to

obtain the MLEs. As mentioned in Tiku and Akkaya (2004), the AMLEs of the loca-

tion an scale parameters µ and σ are asymptotically equivalent to the corresponding

MLEs for any location-scale distribution. This is due to the asymptotic equivalence of

the approximate likelihood and the likelihood equations. The approximate MLEs have

all desirable asymptotic properties of MLEs. They are asymptotically unbiased and ef-

ficient. They have also robustness properties for all the three types distributions: skew,

short-tailed symmetric and long-tailed symmetric distributions. For more details, see

Tiku and Akkaya (2004).

4. Bayesian estimation and credible intervals

In this section, the Bayes estimators of the unknown parameters µ and σ are derived

under the squared error loss function. Further, the corresponding credible intervals of µ

and σ are also obtained. It is assumed that joint prior distribution for µ and σ is in the

form

π(µ,σ) = π1(µ|σ)π2(σ),

where σ has an inverse gamma prior IG(a,b), with the pdf

π2(σ) ∝ e−
b
σσ−(a+1), σ > 0, a,b > 0,

and µ given σ has the logistic prior with parameters µ0 and σ

π1(µ|σ) =
e−

µ−µ0
σ

σ
[
1+ e−

µ−µ0
σ

]2
,

This joint prior is suitable for deriving the posterior distribution in a location and

scale parameter estimation.



96 Point and interval estimation for the logistic distribution based on record data

From (2.6), for the logistic distribution, the likelihood function of µ and σ for the

given record sample y = (y1,y2, . . . ,ym) is given by

L(µ,σ|y) = e−
ym−µ

σ σ−m ∏
m
i=1(1+ e−

yi−µ

σ )−1

1+ e−
ym−µ

σ

. (4.1)

By combining the likelihood function in (4.1) and the joint prior distribution, we obtain

the joint posterior distribution of µ and σ as

π(µ,σ|y) ∝ e−
b+ym−µ0

σ σ−(m+a+2) ∏
m
i=1(1+ e−

yi−µ

σ )−1

[
1+ e−

ym−µ

σ

][
1+ e−

µ−µ0
σ

]2
. (4.2)

Therefore, the Bayes estimators of µ and σ are respectively obtained as

µ̂BS = E(µ|y) = k

∞∫

−∞

∞∫

0

µ e−
b+ym−µ0

σ σ−(m+a+2) ∏
m
i=1(1+ e−

yi−µ

σ )−1

[
1+ e−

ym−µ

σ

][
1+ e−

µ−µ0
σ

]2
dσdµ,

and

σ̂BS = E(σ|y) = k

∞∫

−∞

∞∫

0

e−
b+ym−µ0

σ σ−(m+a+1) ∏
m
i=1(1+ e−

yi−µ

σ )−1

[
1+ e−

ym−µ

σ

][
1+ e−

µ−µ0
σ

]2
dσdµ,

where k is the normalizing constant.

It is seen that the Bayes estimators can not be obtained in closed forms. In what

follows, similarly as in Kundu (2007, 2008), we provide the approximate Bayes estima-

tors using a rejection-sampling within the Gibbs sampling procedure. Note that the joint

posterior distribution of µ and σ given y in (4.2), can be written as

π(µ,σ|y) ∝ g1(σ|y)g2(µ|σ,y). (4.3)

Here g1(σ|y) is an inverse gamma density function with the shape and scale parameters

as m+ a+ 1 and b+ ym −µ0, respectively, and g2(µ|σ,y) is a proper density function

given by

g2(µ|σ,y) ∝
∏

m
i=1(1+ e−

yi−µ

σ )−1

[
1+ e−

ym−µ

σ

][
1+ e−

µ−µ0
σ

]2
. (4.4)
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To obtain the Bayes estimates using the Gibbs sampling procedure, we need the

following result.

Theorem 1. The conditional distribution of µ given σ and y, g2(µ|σ,y), is log-concave.

Proof: See the Appendix B.

Thus, the samples of µ can be generated from (4.4) using the method proposed by

Devroye (1984). Now, using Theorem 1, and adopting the method of Devroye (1984),

we can generate the samples (µ,σ) from the posterior density function (4.3), using the

Gibbs sampling procedure as follows:

1. Generate σ1 from g1(.|y).

2. Generate µ1 from g2(.|σ1,y) using the method developed by Devroye (1984).

3. Repeat steps 1 and 2 N times and obtain (µ1,σ1), · · · ,(µN ,σN).

Note that in step 2, we use the Devroye algorithm as follows:

i) Compute c = g2(m|σ,y). ( m is the mode of g2(.|σ,y) ).

ii) Generate U uniform on [0,2], and V uniform on [0,1].

iii) If U ≤ 1 then µ=U and T =V , else µ= 1− ln(U −1) and T =V (U −1).

iv) Let µ= m+ µ

c
.

v) If T ≤ g2(µ|σ,y)
c

, then µ is a sample from g2(.|σ,y), else go to Step (ii).

Now, the Bayesian estimators of µ and σ under the squared error loss function are

obtained as

µ̂BS =

∑N
j=1µ j

N
, σ̂BS =

∑N
j=1σ j

N
. (4.5)

Now we obtain the credible intervals of µ and σ using the idea of Chen and Shao

(1999). To compute the credible intervals of µ and σ, we generateµ1, . . . ,µN and σ1, . . . ,σN

as described above. We then order µ1, . . . ,µN and σ1, . . . ,σN as µ(1), . . . ,µ(N) and σ(1), . . . ,σ(N).

Then, the 100(1−γ)% credible intervals µ and σ can be constructed as

(
µ( γ2 N), µ((1−γ

2 )N)

)
,

(
σ( γ2 N), σ((1−γ

2 )N)

)
. (4.6)
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5. Fisher information and different confidence intervals

In this section, we derive the Fisher information matrix based on the likelihood as well as

the approximate likelihood functions. Using the Fisher information matrix and based on

the asymptotic distribution of MLEs, we can obtain the asymptotic confidence intervals

of µ and σ. We further, propose two confidence intervals based on the bootstrap method.

5.1. Fisher information

From (2.9) and (2.10), the expected Fisher information matrix of θθθ = (µ,σ) is

I(θθθ) =−


 E( ∂ 2 lnL(µ,σ)

∂µ2 ) E( ∂ 2 lnL(µ,σ)
∂µ∂σ

)

E( ∂ 2 lnL(µ,σ)
∂σ∂µ

) E( ∂ 2 lnL(µ,σ)

∂σ2 )


=

(
I11 I12

I12 I22

)
, (5.1)

where

I11 =
1

σ2

[
E[ f (Xm)]+

m∑

i=1

E[ f (Xi)]

]
,

I12 =
1

σ2

[
m−E[F(Xm)]−

m∑

i=1

E[F(Xi)]−E[Xm f (Xm)]−
m∑

i=1

E[Xi f (Xi)]

]
,

I22 =− 1

σ2

[
m+2

m∑

i=1

E[Xi(1−F(Xi))]−2E[XmF(Xm)]

− E[X2
m f (Xm)]−

m∑

i=1

E[X2
i f (Xi)]

]
.

Similarly, the expected approximate Fisher information matrix of θθθ = (µ,σ) is ob-

tained to be

I∗(θθθ) =−


 E( ∂ 2 lnL∗(µ,σ)

∂µ2 ) E( ∂ 2 lnL∗(µ,σ)
∂µ∂σ

)

E( ∂ 2 lnL∗(µ,σ)
∂σ∂µ

) E( ∂ 2 lnL∗(µ,σ)
∂σ2 )


=

(
I∗11 I∗12

I∗12 I∗22

)
, (5.2)

where

I∗11 =
1

σ2

[
βm +

m∑

i=1

βi

]
,

I∗12 =− 1

σ2

[
m−αm −

m∑

i=1

αi −2βmE[Xm]−2

m∑

i=1

βiE[Xi]

]
,
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I∗22 =− 1

σ2

[
m+2

m∑

i=1

(1−αi)E[Xi]−2αmE[Xm]−3βmE[X2
m]−3

m∑

i=1

βiE[X2
i ]

]
.

From Ahsanullah (1995), since

E[X1] = 0, E[Xi] =
i∑

l=2

ζ(l), i ≥ 2,

and

E[X2
i ] = 2i

i+1∑

l=2

ζ(l)− i(i+1)+
∞∑

l=2

Bl

(l+1)i
,

where ζ(.) is Riemann zeta function ζ(n) =
∑∞

k=1 k−n and for n ≥ 2

Bn =
1

n
(1+

1

2
+ · · ·+ 1

n−1
),

we can derive the elements of Fisher information matrix in (5.2). Now, to derive the

elements of Fisher information matrix in (5.1), we need to calculate the expectations

E[ f (Xi)], E[F(Xi)], E[Xi(1−F(Xi))], E[Xi f (Xi)], E[XiF(Xi)] and E[X2
i f (Xi)]. We use

the following lemma to compute these expectations.

Lemma 1. Let X1 < X2 < · · · < Xm is the first m upper record values from the standard

logistics distribution with pdf (2.3). Then we have

E[ f (Xi)] =
1

2i
− 1

3i
, (5.3)

E[F(Xi)] = 1− 1

2i
, (5.4)

E[Xi f (Xi)] =
∞∑

l=1

[
1

l(l+3)i
− 1

l(l+2)i

]
+ i

[
1

2i
− 1

3i

]
, (5.5)

E [Xi(1−F(Xi))] =
i

2i+1
−

∞∑

l=1

1

l(l+2)i
, (5.6)
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and

E
[
X2

i f (Xi)
]
=

∞∑

l=1

[
1

l2(2l+2)i
− 1

l2(2l+3)i

]

+2
∑∑

1≤l<k<∞

[
1

lk(l+ k+2)i
− 1

lk(l+ k+3)i

]

+2i

∞∑

l=1

[
1

l(l+3)i+1
− 1

l(l+2)i+1

]

+ i(i+1)

[
1

2i+2
− 1

3i+2

]
. (5.7)

Proof. See the Appendix C.

Moreover, E[XiF(Xi)] can be obtained from the expression

E[XiF(Xi)] = E[Xi]−E[Xi(1−F(Xi))].

It should be mentioned here that the loss of information due to using record data in-

stead of the complete logistic data can be discussed by comparing the Fisher information

contained in record data with that of the Fisher information contained in the complete

data. Since θθθ = (µ,σ) is a vector parameter, the comparison is not a trivial issue. One

method is that to compare the Fisher information matrices for the two data using their

traces. Based on a given data, the trace of Fisher information matrix of θθθ = (µ,σ) is

the sum of the Fisher information measures of µ, when σ is known, and σ, when µ is

known. For the logistic distribution, the Fisher information matrix of θθθ = (µ,σ) based

on the first m record observations can be obtained from (5.1). On the other hand, the

Fisher information matrix based on the m complete logistic observations is (see Nadara-

jah (2004))

J(θθθ) =

(
J11 J12

J12 J22

)
,

where

J11 =
m

3σ2

(
π2

3
+1

)
,

J12 = J12 =− m

σ2
,

J22 =
m

3σ2
.
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Table 1: The trace of the Fisher information matrix based on

complete and record observations for different values of m.

Complete observations Record observations

m = 2 3.526 3.149

m = 3 5.289 4.502

m = 5 8.816 6.916

m = 10 17.633 12.131

m = 15 26.450 19.175

m = 20 35.265 27.917

We have computed the traces of the corresponding Fisher information matrices for

both data and the results are reported in Table 1. From Table 1, as expected, we see that

the Fisher information contained in the m complete observations is greater than that the

Fisher information contained in the m record observations.

5.2. Different confidence intervals

Now, the variances of the MLEs µ̂ and σ̂, can be approximated by inverting the Fisher

information matrix in (5.1), i.e,

(
Var(µ̂) Cov(µ̂, σ̂)

Cov(µ̂, σ̂) Var(σ̂)

)
≈
(

I11 I12

I12 I22

)−1

. (5.8)

The approximate asymptotic variance covariance matrices are valid only if asymptotic

normality holds. For the asymptotic normality, the certain regularity conditions must

be satisfied (see, for example, the conditions in Theorem 4.17 of Shao (2003)). These

conditions mainly relate to differentiability of the density and the ability to interchange

differentiation and integration. In most reasonable problems, the regularity conditions

are often satisfied. Since the logistic distribution satisfies all the the regularity condi-

tions (see Shao (2005), Pages 198-200), we can obtain the approximate 100(1− γ)%

confidence intervals of µ and σ using the asymptotic normality of MLEs as

(
µ̂− z1−γ/2

√
V̂ar(µ̂) , µ̂+ z1−γ/2

√
V̂ar(µ̂)

)
, (5.9)

and

(
σ̂− z1−γ/2

√
V̂ar(σ̂) , σ̂+ z1−γ/2

√
V̂ar(σ̂)

)
. (5.10)
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Similarly, the approximate confidence intervals can be obtained based on the AMLEs

also, by inverting the approximate Fisher information in (5.2).

Now, we present two confidence intervals based on the parametric bootstrap meth-

ods: (i) percentile bootstrap method (we call it Boot-p) based on the idea of Efron

(1982), (ii) bootstrap-t method (we refer to it as Boot-t) based on the idea of Hall (1988).

The algorithms for these two bootstrap procedures are briefly described as follows.

(i) Boot-p method:

1. Estimate µ and σ, say µ̂ and σ̂, from sample based on the MLE procedure.

2. Generate a bootstrap sample {X∗
1 , · · · ,X∗

m} , using µ̂ and σ̂. Obtain the bootstrap

estimates of µ and σ, say µ̂∗ and σ̂∗ using the bootstrap sample.

3. Repeat Step 2 NBOOT times.

4. Order µ̂∗
1, · · · , µ̂∗

NBOOT as µ̂∗
(1), · · · , µ̂∗

(NBOOT ) and σ̂∗
1, · · · , σ̂∗

NBOOT as σ̂∗
(1), · · · ,

σ̂∗
(NBOOT ) . Then, the approximate 100(1− γ)% confidence intervals for µ and σ

become, respectively, as

(
µ̂∗

Boot−p(
γ

2
) , µ̂∗

Boot−p(1−
γ

2
)
)
,

(
σ̂∗

Boot−p(
γ

2
) , σ̂∗

Boot−p(1−
γ

2
)
)
. (5.11)

(ii) Boot-t method:

1. Estimate µ and σ, say µ̂ and σ̂, from sample based on the MLE method.

2. Generate a bootstrap sample {X∗
1 , · · · ,X∗

m} , using µ̂ and σ̂ and obtain the bootstrap

estimates of µ and σ, say µ̂∗ and σ̂∗ using the bootstrap sample.

3. Determine

T ∗
µ
=

(µ̂∗− µ̂)√
V̂ar(µ̂∗)

, T ∗
σ
=

(σ̂∗− σ̂)√
V̂ar(σ̂∗)

,

where V̂ar(µ̂∗) and V̂ar(σ̂∗) are obtained using (5.8)

4. Repeat Steps 2 and 3 NBOOT times.

5. Define µ̂∗
Boot−t = µ̂+

√
V̂ar(µ̂∗)T ∗

µ
and σ̂∗

Boot−t = σ̂+

√
V̂ar(σ̂∗)T ∗

σ
. Order µ̂∗

1, · · · ,
µ̂∗

NBOOT as µ̂∗
(1), · · · , µ̂∗

(NBOOT ) and σ̂∗
1 , · · · , σ̂∗

NBOOT as σ̂∗
(1), · · · , σ̂∗

(NBOOT ). Then, the

approximate 100(1− γ)% confidence intervals for µ and σ become respectively

as

(
µ̂∗

Boot−t (
γ

2
) , µ̂∗

Boot−t(1−
γ

2
)
)
,

(
σ̂∗

Boot−t(
γ

2
) , σ̂∗

Boot−t(1−
γ

2
)
)
. (5.12)
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6. Data analysis and simulation

In this section, we analyze a real data set to illustrate the estimation methods presented in

the preceding sections. Further, a Monte Carlo simulation study is conducted to compare

the performance of proposed estimators.

6.1. Data analysis

The following data are the total annual rainfall (in inches) during March recorded at

Los Angeles Civic Center from 1973 to 2006 (see the website of Los Angeles Almanac:

www.laalman-ac.com/weather/we08aa.htm).

2.70 3.78 4.83 1.81 1.89 8.02 5.85 4.79 4.10 3.54

8.37 0.28 1.29 5.27 0.95 0.26 0.81 0.17 5.92 7.12

2.74 1.86 6.98 2.16 0.00 4.06 1.24 2.82 1.17 0.32

4.31 1.17 2.14 2.87

The Los Angeles rainfall data have been used earlier by some authors. See for exam-

ple, Raqab (2006), Madi and Raqab (2007) and Raqab et al. (2010).

We analyzed the above rainfall data by using the logistic distribution with µ= 2.905

and σ = 1.367. It is observed that the Kolmogorov-Smirnov (KS) distance and the cor-

responding p-value are respectively

KS = 0.1066, and p-value = 0.8120.

Hence the logistic model (2.1) fits quite well to the above data.

For the above data, we observe the following five upper record values

2.70 3.78 4.83 8.02 8.37

We shall use the above rainfall records to obtain the different estimators discussed in

this paper. Here, we have m = 5,A =−3.644,B =−1.436,C = 4.089 and D =−0.742.

From (3.6), we obtain the AMLE of σ as

σ̃ =
−A+

√
A2 −4mB

2m
= 1.012.

Now, by using (3.9), the AMLE of µ becomes

µ̃=C+Dσ̃ = 3.338.
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The MLEs of µ and σ are then respectively as µ̂ = 2.929 and σ̂ = 0.998. Note that

the MLEs were obtained by solving the nonlinear equations (2.9) and (2.10) using the

Maple package, in which the AMLEs were used as starting values for the iterations. To

ensure that the solution (µ̂ = 2.929, σ̂ = 0.998) of the likelihood equations (2.9) and

(2.10) is indeed a maximum, it must be shown that the matrix of second-order partial

derivatives (Hessian matrix)

H =




∂ 2 lnL(µ,σ)

∂µ2

∂ 2 lnL(µ,σ)
∂µ∂σ

∂ 2 lnL(µ,σ)
∂σ∂µ

∂ 2 lnL(µ,σ)

∂σ2


 ,

is a negative definite when µ= µ̂ and σ= σ̂. Based on the above rainfall records and for

µ̂= 2.929 and σ̂ = 0.998, the Hessian matrix is

H =

(
−0.5857 0.4156

0.4156 −5.0194

)
,

which can be shown that is negative definite. Therefore, we have indeed found a maxi-

mum. On the other hand, we have also plotted the likelihood function of µ and σ for the

given record data in Figure 1. From Figure 1, one can observe that the likelihood surface

has curvature in both µ and σ directions. This leads to the interpretation that MLEs of µ

and σ are exist and unique.

Figure 1: Likelihood function of µ and σ.
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Table 2: Point and interval estimators of µ and σ.

Point estimators 95% Confidence intervals

MLE AMLE Bayes MLE AMLE p-boot t-boot Bayes

µ 2.929 3.338 3.649 (2.059,3.798) (1.785,4.889) (0.643,5.554) (1.501,3.641) (2.831,4.239)

σ 0.998 1.012 1.370 (0.625,1.371) (0.689,1.335) (0.251,0.936) (0.719,0.992) (0.592,1.604)
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Figure 2: Trace and autocorrelation plots of µ and σ.

We also computed the Bayes estimators of µ and σ using Gibbs sampling procedure.

To compute the Bayes estimators, since we do not have any prior information, we have

used very small (close to zero) values of the hyper-parameters on σ, i.e. a= b= 0.00001.

In this case, the prior on σ is a proper prior but it is almost improper. Since µ0 is a loca-

tion parameter for the logistic prior of µ given σ, without loss of generality, we assumed

that µ0 = 0. For Gibbs sampling procedure we use N = 5000 and we have checked the

convergence of generated samples of µ and σ. We have used the graphical diagnostics

tools like trace plots and autocorrelation function (ACF) plots for this purpose. Figure

2 shows the trace plots and ACF plots for the parameters. The trace plots look like a

random scatter and show the fine mixing of the chains for both parameters µ and σ.

ACF plots show that chains have very low autocorrelations. Based on these plots, we

can fairly conclude that convergence has been attained.

We also computed different confidence intervals namely the approximate confidence

intervals based MLEs and AMLEs, p-boot and t-boot confidence intervals and credible

intervals. All results are reported in Table 2.
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6.2. Simulation study

In this section, a Monte Carlo simulation is conducted to compare the performance of the

different estimators. In this simulation, we have randomly generated 1000 upper record

sample X1,X2, . . . ,Xm from the standard logistic distribution (i.e., µ= 0 and σ = 1) and

then computed the MLEs, AMLEs and Bayes estimators of µ and σ. We then compared

the performances of these estimators in terms of biases, and mean square errors (MSEs).

For computing Bayes estimators, we take µ0 = 0. We use both non-informative and

informative priors for the scale parameter σ. In case of non-informative prior, we take

a = b = 0. We call it as Prior 1. For the informative prior, we chose a = 3 and b = 1. We

call it as Prior 2. Clearly Prior 2 is more informative than the non-informative Prior 1.

In Table 3, for different values of m, we reported the average biases, and MSEs of

the MLEs, AMLEs and Bayes estimators over 1000 replications. All the computations

are performed using Visual Maple (V16) package.

Table 3: Biases and MSEs of the MLEs, AMLEs and Bayes estimators for different values of m.

Estimation of µ Estimation of σ

MLE AMLE Bayes MLE AMLE Bayes

Prior 1 Prior 2 Prior 1 Prior 2

m = 2 Bias −0.732 −0.749 −0.635 −0.608 0.362 0.386 0.310 0.286

MSE 2.619 2.654 2.574 2.543 0.510 0.538 0.497 0.467

m = 3 Bias −0.653 −0.681 −0.568 −0.534 0.284 0.297 0.261 0.242

MSE 2.468 2.492 2.419 2.397 0.451 0.468 0.416 0.402

m = 5 Bias −0.558 −0.579 −0.488 −0.443 0.142 0.166 0.123 0.107

MSE 2.129 2.171 1.938 1.903 0.109 0.139 0.087 0.073

m = 10 Bias −0.313 −0.366 −0.265 −0.244 0.067 0.084 0.041 0.016

MSE 1.567 1.636 1.510 1.482 0.059 0.067 0.049 0.041

m = 15 Bias −0.238 −0.250 −0.197 −0.170 0.059 0.063 0.053 0.048

MSE 1.148 1.176 1.125 1.107 0.043 0.051 0.034 0.027

m = 20 Bias −0.150 −0.177 −0.121 −0.104 0.033 0.045 0.021 0.018

MSE 0.999 1.024 0.956 0.937 0.024 0.033 0.018 0.011

From Table 3, we observe that the AMLEs and the MLEs are almost identical in

terms of both bias and MSEs. The AMLEs are almost as efficient as the MLEs for

all sample sizes. Comparing the two Bayes estimators based on two priors 1 and 2, it

is observed that the Bayes estimators based on prior 2 perform better than the Bayes

estimators based on non-informative prior 1. In addition, the Bayes estimators perform

better than the classical estimators MLEs and AMLEs. It is also noted as m increases,

the performances of all estimators better in terms of biases and MSEs.

We also computed the 95% confidence/credible intervals for µ and σ based on the

asymptotic distributions of the MLEs and AMLEs. We further computed Boot-p, and
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Table 4: Average confidence/credible lengths and coverage probabilities for different values of m.

MLE AMLE p-boot t-boot Bayes

Prior 1 Prior 2

E
st

im
at

io
n

o
f
µ

m = 2 Length 1.964 1.972 1.937 1.925 1.916 1.892

Cov. Prob. 0.937 0.936 0.938 0.939 0.939 0.940

m = 3 Length 1.729 1.741 1.709 1.686 1.681 1.669

Cov. Prob. 0.938 0.937 0.940 0.941 0.940 0.941

m = 5 Length 1.411 1.424 1.384 1.377 1.358 1.345

Cov. Prob. 0.939 0.937 0.941 0.942 0.941 0.943

m = 10 Length 1.097 1.110 1.068 1.046 1.028 1.009

Cov. Prob. 0.941 0.940 0.943 0.943 0.943 0.944

m = 15 Length 0.804 0.811 0.794 0.783 0.752 0.739

Cov. Prob. 0.943 0.942 0.944 0.945 0.945 0.946

m = 20 Length 0.653 0.673 0.634 0.625 0.605 0.590

Cov. Prob. 0.945 0.943 0.945 0.947 0.947 0.948

E
st

im
at

io
n

o
f
σ

m = 2 Length 1.310 1.328 1.286 1.279 1.271 1.260

Cov. Prob. 0.939 0.936 0.939 0.940 0.939 0.941

m = 3 Length 1.186 1.197 1.172 1.164 1.152 1.140

Cov. Prob. 0.941 0.939 0.941 0.941 0.942 0.943

m = 5 Length 0.924 0.931 0.907 0.902 0.894 0.887

Cov. Prob. 0.942 0.940 0.943 0.944 0.944 0.945

m = 10 Length 0.716 0.724 0.701 0.694 0.680 0.671

Cov. Prob. 0.943 0.941 0.943 0.944 0.945 0.946

m = 15 Length 0.543 0.560 0.530 0.522 0.516 0.505

Cov. Prob. 0.944 0.942 0.944 0.945 0.946 0.948

m = 20 Length 0.375 0.383 0.366 0.359 0.352 0.345

Cov. Prob. 0.946 0.945 0.945 0.947 0.948 0.949

Boot-t confidence intervals, and the credible intervals. Table 4 presents the average con-

fidence/credible lengths and the corresponding coverage probability over 1000 replica-

tions. The nominal level for the confidence intervals is 0.95 in each case.

From Table 4, the length of the 95% confidence interval based on the asymptotic

distribution of the MLE, is slightly smaller than the corresponding length of the interval

based on the asymptotic distribution of the AMLE. We also observe that the Bayesian

credible intervals work slightly better than the bootstrap and asymptotic confidence in-

tervals in terms of both confidence length and coverage probability. Also, Boot-t confi-

dence intervals perform very similarly to the Bayesian credible intervals. The bootstrap

confidence intervals work better than the asymptotic confidence intervals. The Boot-t

confidence intervals perform better than the Boot-p confidence intervals. Also, it is ob-

served that all the simulated coverage probabilities are very close to the nominal level
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95%. Also, for all interval estimators, the confidence lengths and the simulated coverage

percentages decrease as m increases.

Overall speaking, from Tables 3 and 4, we would recommend the use of Bayesian

method for point and interval estimation, especially when reliable prior information

about the logistic parameters is available.

Appendix A

To prove B ≤ 0, we need to show that

(βmym +
∑m

i=1βiyi)
2

βm +
∑m

i=1βi

≤ (βmy2
m +

m∑

i=1

βiy
2
i ),

or equivalently

2βmym

m∑

i=1

βiyi +

(
m∑

i=1

βiyi

)2

≤ βm

m∑

i=1

βiy
2
i +βmy2

m

m∑

i=1

βi +

(
m∑

i=1

βi

)(
m∑

i=1

βiy
2
i

)
.

(A.1)
We can rewrite (A.1) as

βm

(
m∑

i=1

βi[2ymyi]

)
+

(
m∑

i=1

βiyi

)2

≤ βm

(
m∑

i=1

βi[y
2
i + y2

m]

)
+

(
m∑

i=1

βi

)(
m∑

i=1

βiy
2
i

)
.

(A.2)

Now, since y2
i + y2

j ≥ 2yiy j, we have

βm

(
m∑

i=1

βi[2ymyi]

)
≤ βm

(
m∑

i=1

βi[y
2
i + y2

m]

)
, (A.3)

and

(
m∑

i=1

βiyi

)2

≤
(

m∑

i=1

βi

)(
m∑

i=1

βiy
2
i

)
. (A.4)

Now by using (A.3) and (A.4), (A.2) is true and the proof is thus obtained.
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Appendix B (Proof of Theorem 1)

The log-likelihood function of g2(µ|σ) is

lng2(µ|σ,y) ∝ −
m∑

i=1

ln(1+ e−(yi−µ)/σ)− ln(1+ e−(ym−µ)/σ)−2ln(1+ e−(µ−µ0)/σ).

The second derivative of lng2(µ|σ,y) is obtained as

− 1

σ2

[
m∑

i=1

e−(yi−µ)/σ

(1+ e−(yi−µ)/σ)2
+

e−(ym−µ)/σ

(1+ e−(ym−µ)/σ)2
+

2 e−(µ−µ0)/σ

(1+ e−(µ−µ0)/σ)2

]
,

which is negative. So, the result follows.

Appendix C (Proof of Lemma 1)

Using the relation (2.5), we have

E [ f (Xi)] = E [F(Xi)(1−F(Xi))]

=

∞∫

−∞

F(x)[1−F(x)]
[− ln(1−F(x))]i−1

(i−1)!
f (x)dx

=

1∫

0

u(1−u)
[− ln(1−u)]i−1

(i−1)!
du

=

∞∫

0

(1− e−t)e−2t t i−1

(i−1)!
dt =

1

2i
− 1

3i
,

and

E [F(Xi)] =

∞∫

−∞

F(x)
[− ln(1−F(x))]i−1

(i−1)!
f (x)dx

=

1∫

0

u
[− ln(1−u)]i−1

(i−1)!
du

=

∞∫

0

(1− e−t)e−t t i−1

(i−1)!
dt = 1− 1

2i
.
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We also have

E [Xi f (Xi)] = E [XiF(Xi)(1−F(Xi))]

=

∞∫

−∞

xF(x)[1−F(x)]
[− ln(1−F(x))]i−1

(i−1)!
f (x)dx

=

1∫

0

[lnu− ln(1−u)]u(1−u)
[− ln(1−u)]i−1

(i−1)!
du,

since F−1(u) = lnu− ln(1−u). Setting t =− ln(1−u), we get

E [Xi f (Xi)] =

∞∫

0

ln(1− e−t)e−2t(1− e−t)
t i−1

(i−1)!
dt +

∞∫

0

e−2t(1− e−t)
t i

(i−1)!
dt

=
∞∑

l=1

[
1

l(l +3)i
− 1

l(l+2)i

]
+ i

[
1

2i
− 1

3i

]
.

The two other expectations E [Xi(1−F(Xi))] and E[X2
i f (Xi)], can be obtained in the

same manner using the binomial expansion and writing ln(1− e−t) =−∑∞
l=1

e−lt

l
.

Acknowledgements

We would like to thank the editor for his encouragement and the referees for their con-

structive suggestions and comments that substantially improved the paper.

References

Ahsanullah, M. (1995). Record Values-Theory and Applications. New York, University Press of America

Inc.

Arnold, B. C., Balakrishnan, N., Nagaraja, H. N. (1998). Records. New York, John Wiley and Sons.

Asgharzadeh, A. (2006). Point and interval estimation for a generalized logistic distribution under progres-

sive Type II censoring. Communications in Statistics-Theory and Methods 35, 1685–1702.

Asgharzadeh, A., Valiollahi, R. and Raqab, M. Z. (2011). Stress-strength reliability of Weibull distribution

based on progressively censored samples. SORT, 35, 103–124.

Balakrishnan, N. (1992). Handbook of Logistic Distribution. New York, Dekker.

Balakrishnan, N. and Aggarwala, R. (2000). Progressive Censoring: Theory Methods and Applications.
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