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Abstract 14 

An advanced potentiometric electronic tongue and Sequential Injection Analysis (SIA) 15 

measurement system was applied for the quantitative analysis of mixtures containing 16 

three active pharmaceutical ingredients (APIs): acetaminophen, ascorbic acid and 17 

acetylsalicylic acid, in the presence of various amounts of caffeine as interferent. The 18 

flow-through sensor array was composed of miniaturized classical ion-selective 19 

electrodes based on plasticized PVC membranes containing only ion exchangers. 20 

Partial Least Squares (PLS) analysis of the steady-state sensor array responses, 21 

measured in API mixtures prepared by the SIA system permitted a correct 22 

quantitative analysis of acetylsalicylic acid and ascorbic acid. Further optimization 23 

using multiway PLS fed by dynamic responses without additional feature extraction 24 

did not improve significantly the resolution of acetaminophen. Lastly, the 25 

chemometric treatment, involving the extraction of dynamic components of the 26 

transient response employing the Wavelet transform, the removal of less-significant 27 

coefficients by means of Causal Index pruning and training of an Artificial Neural 28 

Network (ANN) with the selected coefficients, allowed the simultaneous 29 

determination of all the three studied APIs, while counterbalancing any interference 30 

due to caffeine. 31 
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1. Introduction 36 

 37 

Multidrug pharmaceutical preparations containing paracetamol and non-steroidal 38 

anti-inflammatory drugs (NSAID) such as acetylsalicylic acid or ibuprofen are 39 

commonly used for the flue treatment and flu-like illnesses. Frequently, they are 40 

combined with antihistamines e.g. diphenhydramine and pheniramine maleate and 41 

other active pharmaceutical ingredients (APIs) as caffeine, codeine, derivatives of 42 

pyrazolones, barbiturates. Paracetamol and NSAIDs are applied for treatment of mild 43 

to moderate pain and fever, while the antihistamines prevent many of the symptoms 44 

of an allergic reaction like nasal congestion. Addition of codeine or caffeine improves 45 

the pharmacological efficiency of paracematol and NSAIDs. Moreover, the multidrug 46 

formulations are less harmful to the main metabolic organs, because smaller amount 47 

of each component are introduced in comparison with monocomponent drug [1,2]. 48 

Since analgesic drugs as acetylsalicylic acid, ibuprofen or paracetamol are generally 49 

available over the counter (OTC) they are daily used by millions of people for 50 

household relief of pain and thus accidental and deliberate overdose are common. 51 

Paracetamol is a tolerable drug in standard dose, while NSAIDs often cause gastro-52 

toxicity which is depended on dose and product. High risk of gastrointestinal bleeding 53 

is especially associated with taking even low-dose of aspirin, whereas ibuprofen 54 

seems to carry lower risk of gastro-toxicity. Regarding the extended use of such 55 

formulations, the development of analytical methods for the quality assessment of 56 

these products is needed [3,4]. 57 

The analysis of pharmaceuticals involves pre-clinical and early phase clinical studies 58 

of a candidate for a new drug as well as routine analysis during production. 59 

Preclinical studies include the characterisation of a drug, identification of the effective 60 

dose and range and the tissues in which side effects may occur. During clinical trials, 61 

high-performance liquid chromatography (HPLC), UV-Vis spectrophotometry and 62 

potentiometric titration are useful to characterize drugs in 0 (preclinical) and I phase 63 

of clinical trials [5]. Moreover, several methods of API analysis in pure form, mixtures 64 

and commercial products have been reported. HPLC is the most common technique 65 

used for targeted NSAID analysis, especially coupled with MS detection employing 66 

different ionization systems [6,7]. As an example, HPLC with optical detection was 67 

applied for the determination of active pharmaceutical ingredients: paracetamol, 68 

acetylsalicylic acid, caffeine in pharmaceutical preparations [1,2,8,9]. Conventional 69 

and derivative spectrophotometry, often combined with chemometric procedures, was 70 
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also proposed for the multi- component analysis of drugs [10-14]. Voltammetric 71 

measurements at modified or unmodified electrodes enabled the resolution of various 72 

pharmaceutical compounds [15-18]. 73 

On the other hand, portable and compact electrochemical sensors, providing fast 74 

measurements with high selectivity and sensitivity, could be competitive to classical 75 

instrumental techniques dedicated for the analysis of pharmaceuticals. Among them, 76 

potentiometric sensors – ion-selective electrodes (ISEs) – are the most promising for 77 

such purpose [19,20]. ISEs based on polymer membranes doped with the ion-pair 78 

complex of tetraoctylammonium cation were developed for the analysis of ibuprofen 79 

[21,22]. Similar approach was proposed for the design of ion-selective electrodes 80 

sensitive towards: naproxen [23], ketoprofen [24] and caffeine [25]. It is worth to note, 81 

that the use of potentiometric sensors provided measurements in flow injection mode 82 

(see a review on the application of Flow Injection Analysis (FIA) and Sequential 83 

Injection Analysis (SIA) for pharmaceutical analysis in [26]). 84 

Recently, electronic tongue (e-tongue) systems composed of sensor arrays and 85 

pattern recognition tools were tested in pharmaceutical applications [27-29]. Since 86 

the majority of commonly used active pharmaceutical ingredients have a bitter taste, 87 

various methods for taste masking were developed and the e-tongue devices were 88 

exploited for the evaluation of the efficiency of such methods. An array of classical or 89 

miniaturized ISEs was proposed for the assessment of taste masking effect of 90 

selected pharmaceuticals modified with co-spray excipients (microencapsulation 91 

method) [29,30]. Potentiometric multisensor systems were employed for the 92 

quantification of the bitter taste of diverse active pharmaceutical ingredients [31,32]. 93 

Finally, the performances of commercial e-tongues dedicated to the analysis of 94 

pharmaceutical formulations were also compared [27,33,34]. 95 

In this work, an automated method for the quantitative analysis of selected active 96 

pharmaceutical ingredients (acetaminophen, ascorbic acid, and acetylsalicylic acid) 97 

involving an array of miniaturized potentiometric electrodes based on well-known 98 

lipophilic salts (ion-exchangers) was reported. Calibration and measurement with the 99 

electrode array was implemented with the aid of sequential injection analysis (SIA) 100 

system. Among different measurement conditions and data treatment, incorporation 101 

of dynamic components of the transient response is reported as the means to 102 

improve modeling capability and resolution. 103 

 104 

 105 
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2. Experimental 106 

 107 

2.1. Chemicals and membrane materials 108 

 109 

The active pharmaceutical ingredients (APIs): acetaminophen pKa=9.50 110 

(paracetamol, PARA), ascorbic acid pKa=4.17 (ASC), acetylsalicylic acid pKa=3.50 111 

(ASA) were purchased from Sigma-Aldrich, whereas hydrochloric acid, lithium 112 

acetate, tris(hydroxymethyl)aminomethane (TRIS) and caffeine pKa=0.70 (KOF) of 113 

analytical grade were purchased from Fluka. The solutions of APIs (0.04 mol/L 114 

acetaminophen, 0.014 mol/L ascorbic acid, 0.016 mol/L acetylsalicylic acid), caffeine 115 

(2.6 mmol/L), lithium acetate (1 mmol/L), TRIS buffer solution (1 mmol/L) were 116 

prepared with deionised water. The pH of solutions was adjusted by the addition of 117 

hydrochloric acid or sodium hydroxide solution. High-molecular-weight poly(vinyl 118 

chloride) (PVC), plasticizers: o-nitrophenyl octyl ether (o-NPOE), bis(2-ethylhexyl) 119 

sebacate (DOS), lipophilic salts: potassium tetrakis [3,5-bis(trifluoromethyl)phenyl] 120 

borate (KTFPB), tridodecylmethylammonium chloride (TDMAC), 121 

tributylhexadecylphosphonium bromide (TBHDPB) and ionic liquid 1-decyl-3-122 

methylimidazolium chloride (IL) were obtained from Fluka. Freshly distilled 123 

tetrahydrofuran (Fluka) was used as a solvent for the membrane components. 124 

 125 

2.2. Sensor array 126 

 127 

The flow-through sensor array consisted of 8 miniaturized electrodes based on PVC 128 

membranes (plasticized using DOS or o-NPOE), containing an appropriate lipophilic 129 

salt, exhibiting generic anion (TDMAC, TBHDPB, IL) or cation (KTFBB) response. 130 

Two electrode specimens were prepared for each membrane composition. The 131 

method of membranes preparation and electrodes conditioning were the same as for 132 

the standard ISEs. The membranes contained: 1-3.5 wt% lipophilic salt, 64-66 wt% 133 

plasticizer, 32-33 wt% high-molecular-weight PVC (see Table 1). The membrane 134 

components (200 mg in total) were dissolved in 2 mL of THF. A detailed architecture 135 

of the miniaturized ion-selective electrodes compatible with a single flow-through 136 

module was presented in [35], whereas the design of the modular flow-cell system is 137 

a subject of a polish patent application [36]. NaCl solution (0.01 mol/L) was used as 138 

an internal filling. The constructed sensors were preconditioned overnight in a dilute 139 

solution of internal electrolyte for at least 24 hours. 140 
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2.3. Instrumentation and EMF measurements 141 

 142 

All measurements were carried out in flow-through mode with cells of the following 143 

type: Ag, AgCl; KCl 3 mol/L│CH3COOLi 1 mol/L│sample solution║membrane║ 144 

internal filling solution; AgCl, Ag. 145 

Potentiometric multiplexer (EMF 16 Interface, Lawson Labs Inc., Malvern, USA) was 146 

used for the characterization of the sensors. The calibration curves of the electrodes 147 

were examined by measuring the EMFs while increasing the concentration of the 148 

APIs in steps of 0.5 log c in the range 10-5.5 – 10-1.5 mol/L (10-5.5 – 10-2 mol/L for 149 

acetylsalicylic acid). Repeatable sensor performances were recorded during at least 150 

4 weeks. 151 

For the quantitative analysis of APIs mixtures, the flow-through sensor array was 152 

connected to the Sequential Injection Analysis (SIA) system providing the automated 153 

operation and generation of API samples mixtures, thanks to the precise dosing and 154 

mixing of volumes of stock solutions. The SIA system was formed by two 155 

differentiated parts: the fluidic system and the measurement system [37,38], which 156 

were wholly controlled by a PC using a virtual instrument developed in LabView, 157 

where the other active elements were commanded through RS-232 communication 158 

lines. 159 

The fluidic system consisted of an automatic microburette (Crison 2030 microburette, 160 

Crison, Spain) equipped with a 5-mL syringe (Hamilton, Switzerland), a holding coil 161 

(5m×1mm i.d. PTFE tubing, Bioblock, France), a 8-way Hamilton MVP valve 162 

(Hamilton, Switzerland) and a 7mL Perspex mixing cell (home built) with a magnetic 163 

stirrer. The burette was connected to the multiport valve through the holding coil 164 

placed in between, and fed through a carrier solution reservoir. In this way, 165 

connection between the common port to the other ones (i.e. sample, standard stock 166 

solutions, mixing chamber or sensor array port) was achieved by an electrical 167 

rotation of the valve; all the elements being connected together using low pressure 168 

liquid chromatography connectors. 169 

The measurement system comprised the sensor array, a reference electrode 170 

(miniaturised silver/silver chloride electrode with a double junction) and an 8-channel 171 

signal conditioning circuit connected to the data acquisition analog inputs (National 172 

Instruments NI6221 Multifunction DAQ, TX, USA). 173 

 174 

 175 
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2.4. Data analysis 176 

 177 

Data analysis was performed in MatLab (The MathWorks, Inc., Natick, USA), Solo 178 

(Eigenvector Research, Inc., Wenatchee, USA) and Origin (Microcal Software, Inc, 179 

Northampton, USA) software. Chemical images of samples were processed using 180 

Partial Least Squares (PLS) analysis in the case of models involving steady-state 181 

signals, and 3-way PLS in the case of models based on dynamic responses of the 182 

sensors. Analogously, ANN models were also built employing the dynamic 183 

responses, but in this case requiring a preprocessing step aimed to the reduction of 184 

signals complexity and dimensionality [39]. This was achieved by means of Discrete 185 

Wavelet Transform (DWT) as feature extraction tool and Causal Index (CI) pruning of 186 

the inputs to remove less-significant extracted coefficients that barely contribute to 187 

the final model. 188 

 189 

 190 

3. Results and discussion 191 

 192 

The studied active pharmaceutical ingredients remain in neutral or anionic form in 193 

solution, according to their pKa values and pH conditions. Therefore, anion-sensitive 194 

electrodes based on various ion-exchangers were applied for the quantitative 195 

analysis of selected APIs. The electrodes constructed by incorporating 196 

tetraalkylammonium and phosphonium salts in the PVC/o-NPOE membranes 197 

exhibited almost theoretical values of the response slopes for acetylsalicylic acid (in 198 

the range 10-4 – 10-2 mol/L), whereas significantly worse response sensitivities (<20 199 

mV/decade) were measured for the weak acids: acetaminophen and ascorbic acid, 200 

even in alkaline conditions. Comparable, poor sensitivity was observed in the case of 201 

potentiometric sensors based on ionic liquid (1-decyl-3-methylimidazolium chloride) 202 

towards all APIs, recorded in different pH conditions. 203 

Additional cation-sensitive electrodes based on KTFPB in PVC/DOS membranes 204 

were introduced to the sensor array, since the studied mixtures of APIs contained 205 

also caffeine – a component commonly added to the pharmaceutical formulations 206 

with anti-inflammatory drugs. However, due to the very low value of pKa, the neutral 207 

form of caffeine was predominant in solution under the studied pH range [25] and 208 

thus the electrodes showed rather small and non-linear response to this component. 209 

 210 
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3.1. Quantitative analysis of APIs – PLS and 3-way PLS 211 

 212 

The measurements of the sensor array signals were conducted in 80 sample 213 

mixtures containing 3 APIs in different concentration ranges (1-20 mmol/L for 214 

acetaminophen, 0.3-7 mmol/L for ascorbic acid and 1.4-8 mmol/L for acetylsalicylic 215 

acid), prepared automatically by the Sequential Injection Analysis system (Figure 1) 216 

[36,37]. The given concentration ranges were matched to the level of such APIs in 217 

commercial drugs after their dissolution in water. Caffeine, added to each mixture 218 

(0.13-1.3 mmol/L), was considered as an interferent (see Figure 1). The experiments 219 

were performed in solutions at various pH in order to alter the structure of APIs and 220 

sense individual components in particular pH conditions. Therefore, four carriers of 221 

different pH: HCl solution (pH=1.8), lithium acetate solution (pH=5.0) and TRIS buffer 222 

solution (pH=8.0 and pH=10.5) were used. In these solutions anionic species of 223 

acetaminophen were present only at pH=10.5 (existed in small amounts at pH=8.0), 224 

whereas acetylsalicylic acid and ascorbic acid remained in appreciable amount in 225 

neutral form only at pH=1.8. 226 

Data matrices involving the steady-state signals of the sensors after step introduction 227 

of the samples were formed. Target matrices contained direct information on 3 APIs 228 

concentrations (three-column calibration) or on 1 API concentration (single-column 229 

calibration). Various variants of train data were considered (but in each case, 4:1 data 230 

division was used to form the train and the test set, respectively): 231 

 4 PLS models based on data from single measurements in the given pH, 232 

 6 PLS models based on the combination of signals recorded in solutions of 2 233 

values of pH, 234 

 4 PLS models based on the combination of signals recorded in solutions of 3 235 

values of pH, 236 

 1 PLS model based on the combination of all signals recorded in all 4 values of 237 

pH. 238 

The PLS models were built with a number of Latent Variables (1 to 8 for PLS and 20 239 

for 3-way PLS) enabling the minimization of the RMSE value. Their performance was 240 

characterized after performing the linear fitting of the obtained data (PLS predicted 241 

concentrations of API) versus the expected data (real concentrations of API). The 242 

values of the slope (“a”), intercept (“b”) and determination coefficient (“R2”), were 243 

calculated for the train and test samples, assuming that in the perfect case they 244 

should reach values of 1, 0 and 1, respectively. It was found, that the data 245 
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dimensionality i.e. the combination of data from the experiments performed in various 246 

pH conditions influenced the classification results. The best results were obtained for 247 

the fusion of signals recorded in solutions of pH: 1.8, 8.0, 10.5 (see Table 2). 248 

However, the concentration of only 2 APIs i.e. acetylsalicylic acid and ascorbic acid 249 

was properly predicted. Even though acetaminophen should be in the anionic form in 250 

the solution of highest pH value, the responses of the electrodes to this API did not 251 

provide satisfactory result. Therefore, single-column calibration was attempted i.e. 252 

separate PLS-1 models were created for each API, based on the fusion of signals 253 

recorded in the same 3 values of pH. The same train and test data matrices were 254 

used; however the target matrix was limited to one column – concentration of single 255 

API. Unfortunately, the prediction of API concentration remained unsatisfactory, 256 

especially for acetaminophen (Table 2).  257 

In the next step, dynamic responses of the sensor array were applied in the train data 258 

for multiway processing to enhance the amount of information gained by PLS model. 259 

Whole responses (1800 data points per sensor) and the initial 30s of sensors 260 

responses (first 300 data points per sensor) recorded in various combinations of pH 261 

were used in multiway models. Better results were obtained in the case of 3-way PLS 262 

analysis, but only for the train subset. Still, the results obtained for the test subsets 263 

were not satisfactory, which was caused by poor prediction abilities of the 3-way PLS 264 

models (see Table 3). However, quite better results were noticed when whole 265 

dynamic response was considered (1800 points). 266 

 267 

3.2. Quantitative analysis of APIs – DWT-ANN 268 

 269 

As an alternative approach, the usage of ANNs was also considered. Compared with 270 

PLS, ANNs are more flexible modelling methodologies, since both linear and non-271 

linear functions (or its combination) can be used in the processing units, thus being 272 

especially suited when sensor responses show non-linear behaviors [39,40]. 273 

Moreover, allowing for more complex relationships between a high-dimensional 274 

descriptor space and the given retention data, which might lead to better predictive 275 

power of the resulting ANN model compared with other linear methods, although if 276 

linearity exists, a proper behavior will be obtained also with the latter. 277 

In this way, same approaches as previously described were also followed, i.e. the 278 

usage of the steady state signal and building of models based on single- and multi-279 

pH values, with the same data division for the train and test subsets. However, none 280 
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of those approaches provided enough satisfactory results. The next step was then 281 

the usage of the dynamic profile, as previously done with 3-way PLS. Nevertheless, 282 

this was not as straightforward as in the previous case, as in here, before building the 283 

ANN model, a preprocessing step devised for reducing the input dimensionality was 284 

required. 285 

For the dynamic treatment, a two-step feature extraction process was thus followed 286 

to achieve the reduction of signals complexity and dimensionality. Firstly, the 287 

response profile of each sensor was compressed employing DWT, and afterwards 288 

ANNs were used as feature selection tool for variable selection [39]. In this way, the 289 

dynamic potentiometric response (from 2.1s to 10.0s, comprising a total of 80 values; 290 

see Figure 2) was compressed employing Daubechies wavelet mother function and a 291 

second decomposition level down to 25 coefficients, without any loss of relevant 292 

information. The obtained coefficients were then fed to an ANN model, which upon its 293 

training, was used for the removal of the less-significant coefficients by Causal Index 294 

(CI) pruning of the inputs [39,40]. This process was then iteratively repeated until 295 

selection of an optimal subset of coefficients that allows doing the prediction task as 296 

well as possible, with as few variables as possible. Lastly, the architecture of the ANN 297 

model was optimized, as usual, by systematically fine-tuning its topology (i.e. training 298 

algorithm, number of hidden layers, number of neurons, transfer functions, etc.) to 299 

achieve the correct quantification of the desired compounds. 300 

Subsequently, after pruning and optimization of the ANN model, comparison graphs 301 

of predicted vs. expected scores, both for the train and test subsets, were built 302 

(Figure 3) and the linear fitted regression parameters were calculated to easily check 303 

the performance of the model (Table 4). As can be seen, acetylsalicylic acid (ASA) 304 

can be perfectly modelled in all the cases with low difficulty, while counterbalancing 305 

the changing concentrations of caffeine. On the other side, acetaminophen (PARA) 306 

and ascorbic acid (ASC) modelling was also plausible, although obtained correlation 307 

seem to be worst. Nevertheless, in all cases the obtained regression parameters 308 

were close to the ideal ones; i.e. values of intercept close to 0, and slope and R2 309 

close to 1. 310 

 311 

 312 

 313 

 314 
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4. Conclusions 315 

 316 

HPLC systems with UV detection are commonly applied for the routine analysis of 317 

non-steroidal anti-inflammatory drugs (e.g. acetylsalicylic acid) in pharmaceutical 318 

pain relievers. However, sophisticated instrumentation and skilled personnel are 319 

essential to provide the proper chromatographic results. Therefore, a simpler 320 

analytical approach based on sensor arrays systems would be beneficial due to the 321 

automation and shortening of the analysis. 322 

In this work, a flow-through sensor array of miniaturized potentiometric electrodes 323 

containing only an ion-exchanger in polymeric membranes coupled with Sequential 324 

Injection Analysis system was proposed for the quantitative analysis of selected 325 

active pharmaceutical ingredients. Simple chemometric data processing involving 326 

Partial Least Squares (PLS) analysis of the steady-state responses of the sensors as 327 

well as multiway PLS fed by dynamic sensors responses enabled the determination 328 

of acetylsalicylic acid and ascorbic acid in mixtures, while correcting any interference 329 

derived from the presence of acetaminophen and caffeine. However, the extraction of 330 

dynamic components of the transient response employing the Wavelet transform, the 331 

removal of the less significant inputs by means of Causal Index pruning and training 332 

of an Artificial Neural Network with the selected coefficients allowed the simultaneous 333 

determination of the 3 APIs counterbalancing any interference caused by caffeine. 334 

 335 
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Table 1. Components used for the preparation of potentiometric electrodes. 410 

 411 

Electrode 
type 

Lipophilic salt Plasticizer Polymer 
Internal filling/ 

Conditioning solution 

1 3.5 wt% TDMAC 64.0 wt% o-NPOE 32.5 wt% PVC 

0.01/0.001 mol/L 
NaCl 

 

2 2.0 wt% TBHDPB 65.5 wt% o-NPOE 32.5 wt% PVC 

3 2.0 wt% IL 65.5 wt% o-NPOE 32.5 wt% PVC 

4 1.0 wt% KTFPB 66.0 wt% DOS  33.0 wt% PVC 

412 
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Table 2. Parameters of linear fitting of real and PLS-predicted concentration of APIs. 413 

 414 

 

Three-column calibration Single-column calibration 

acetaminophen ascorbic acid  
acetylsalicylic 

acid 
acetaminophen ascorbic acid  

acetylsalicylic 
acid 

TRAIN 

a 0.72±0.06 0.84±0.05 0.98±0.02 0.22±0.05 0.68±0.06 0.94±0.03 

b 0.00±0.00 0.00±0.00 0.00±0.00 0.01±0.00 0.00±0.00 0.00±0.00 

R2 0.72 0.84 0.98 0.22 0.68 0.94 

TEST 

a 0.52±0.28 0.60±0.20 0.96±0.03 0.11±0.08 0.58±0.19 0.94±0.04 

b 0.01±0.00 0.00±0.00 0.00±0.00 0.01±0.00 0.00±0.00 0.00±0.00 

R2 0.19 0.41 0.98 0.12 0.40 0.98 

415 
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Table 3. Parameters of linear fitting of real and 3-way PLS-predicted concentration of 416 

APIs. 417 

 418 

 

Calibration based on 1800 data points Calibration based on 300 data points 

acetaminophen ascorbic acid  
acetylsalicylic 

acid 
acetaminophen ascorbic acid  

acetylsalicylic 
acid 

TRAIN 

a 0.86±0.04 0.75±0.08 0.98±0.08 0.69±0.06 0.65±0.06 0.98±0.01 

b 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 

R2 0.96 0.92 0.99 0.91 0.89 0.99 

TEST 

a 0.31±0.18 0.80±0,19 0.97±0.05 0.60±0.12 0.41±0.10 0.97±0.03 

b 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 

R2 0.00 0.45 0.96 0.62 0.49 0.98 

  419 
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Table 4. Parameters of linear fitting of real and DWT-CI-ANN-predicted concentration of 420 

APIs. 421 

 422 

 acetaminophen ascorbic acid  
acetylsalicylic 

acid 

TRAIN 

a 0.96±0.02 0.96±0.01 0.98±0.01 

b 0.37±0.17 0.13±0.04 0.084±0.057 

R2 0.99 1.00 1.00 

TEST 

a 0.98±0.27 1.00±0.35 1.03±0.09 

b -0.42±3.00 0.13±1.23 -0.11±0.39 

R2 0.82 0.73 0.98 

423 
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Figure captions: 424 

Figure 1. Random distribution of concentrations of the four species for the (●) train 425 

and (★) test samples prepared automatically by the SIA system. 426 

Acetaminophen (PARA), ascorbic acid (ASC) and acetylsalicylic acid 427 

(ASA) are plotted in x,y,z coordinates respectively, whereas caffeine (KOF) 428 

is plotted as a color-scale in the scatter plot. 429 

Figure 2. Exemplary dynamic responses of the electrode based on TDMAC (PVC/o-430 

NPOE membrane) recorded in arbitrary mixture of APIs (1.4 mmol/L 431 

acetaminophen, 0.91 mmol/L ascorbic acid, 6.6 mmol/L acetylsalicylic acid 432 

and 0.68 mmol/L caffeine) in 4 carriers at various pH values  433 

Figure 3. Model performances characterized after linear fitting of the real 434 

concentrations of APIs to the predicted data by the DWT-CI-ANN model. 435 

Train set (●, solid line), test set (○, dotted line) and theoretical diagonal line 436 

(dashed line). 437 
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Figure 2. 471 
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Figure 3 483 




