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Abstract Our work is a contribution to the model theory of fuzzy predicate logics. In

this paper we characterize elementary equivalence between models of fuzzy predicate

logic using elementary mappings. Refining the method of diagrams we give a solution

to an open problem of P. Hájek and P. Cintula (Conjectures 1 and 2 of [HaCi06]).

We investigate also the properties of elementary extensions in witnessed and quasi-

witnessed theories, generalizing some results of Section 7 of [HaCi06] and of Section 4

of [CeEs09] to non-exhaustive models.
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1 Introduction

This work is a contribution to the model theory of fuzzy predicate logics. Model theory

is the branch of mathematical logic that studies the construction and classification

of structures. Construction means building structures or families of structures, which

have some feature that interests us. Classifying a class of structures means grouping

the structures into subclasses in a useful way, and then proving that every structure

in the collection does belong in just one of the subclasses. The most basic classifica-

tion in classical model theory is given by the relations of elementary equivalence and

isomorphism. Our purpose in the present article is to characterize the relation of ele-

mentary equivalence between two structures of a fuzzy predicate language in terms of

elementary extensions.

The basic notion of elementary equivalence between models is due to A. Tarski

(see [Ta35]) and the fundamental results on elementary extensions and elementary
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chains were introduced by A. Tarski and R. Vaught in [TaVa57]. For a general survey

on the subject and an historical overview we refer the reader to [ChKe90]. In the

context of fuzzy predicate logics, elementarily equivalent structures were defined in

[HaCi06] (Definition 10), our starting point is the research done in this article. There

the authors presented a characterization of conservative extension theories using the

elementary equivalence relation (see Theorems 6 and 11 of [HaCi06]). Future work will

be devoted to analise the relationship of our investigation with other approaches, for

instance the one presented in [NoPerMo99], where a notion of elementary equivalent

models in a degree d was introduced (Definition 4.33).

P. Hájek and P. Cintula proved in Theorem 6 of [HaCi06] that, in core fuzzy logics, a

theory T2 is a conservative extension of another theory T1 if and only if each exhaustive

model of T1 is elementarily embedded in a model of T2. Then, they conjectured the

same result to be true for arbitrary structures (Conjectures 1 and 2 of [HaCi06]). In

this paper we present a counterexample to Conjectures 1 and 2, using a refinement of

the method of diagrams developed in [De11].

Special attention is devoted to witnessed and quasi-witnessed elementary exten-

sions. The interest for the study of this kind of structure has grown recently (cf. [Ha07a],

[Ha07b], [HaCi06] and [CeEs09]). The aforementioned papers show the importance of

witnessed and quasi-witnessed models for applications in logic-based knowledge repre-

sentation in artificial intelligence. In this article we prove that these classes of models

have some good model-theoretic properties, allowing us to generalize some results of

Section 7 of [HaCi06] and of Section 4 of [CeEs09] to non-exhaustive models.

This paper is a revised and extended version of the contribution [DeEs10] of the

authors to the IPMU’10 Conference. The article is structured as follows: Section 2 is

devoted to preliminaries on fuzzy predicate logics. In Section 3 we study the basic

properties of elementary extensions and we present an analog to the Tarski-Vaught

Test in the fuzzy context. By using this test, in Section 4 we provide new proofs for

the Löwenheim-Skolem Theorems in fuzzy predicate logics. In Section 5 we introduce

some known definitions and basic facts on canonical models (see section 4 and 5 of

[HaCi06]) and of the method of diagrams developed in [De11]. Later on in this section,

we prove some new propositions related to canonical models and diagrams. Section 6

is devoted to the study of witnessed and quasi-witnessed extensions, and in Section 7

we present a counterexample to Conjectures 1 and 2 of [HaCi06], using the results of

Section 4. Finally, in Section 8 we present a characterization theorem of elementary

equivalence in fuzzy predicate logics. We conclude the article with a section of work in

progress and future work.

2 Preliminaries

In his seminal book [Ha98], Hájek considered the problem of finding a common base

for the most important fuzzy logics, namely  Lukasiewicz, Gödel and product logics.

There, he introduced a logic, named BL, and he proposed it for the role of basic fuzzy

logic. Hájek’s proposal was greatly supported by the proof that BL is the logic of all

continuous t-norms of their residua. But in [EsGo01] the authors observed that the

minimal condition for a t-norm to have a residuum, and therefore to determine a logic,

is left-continuity (continuity is not necessary). There, they proposed a weaker logic,

called MTL (monoidal t-norm based logic), and conjectured that MTL is the logic of

left-continuous t-norms and their residua. This conjecture was proved in [JeMo02].
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In the literature of t-norm based logics, one can find not only a number of ax-

iomatic extensions of MTL but also extensions by means of expanding the language

with new connectives such as the ∆ connective or with an involutive negation. All of

MTL extensions and most of its expansions defined elsewhere share the property of

being complete with respect to a corresponding class of linearly ordered algebras. To

encompass all these logics and prove general results common to all of them, Cintula

introduced in [Ci05] the notion of core fuzzy logics (he also defines the class of ∆-core

fuzzy logics to capture all expansions having the ∆ connective).

Our study of the model theory of fuzzy predicate logics is focused on the basic fuzzy

predicate logic MTL∀ and some of its expansions based on propositional (∆-)core fuzzy

logics. We start by introducing the definition of propositional (∆-)core fuzzy logic:

Definition 1 A propositional logic L is a core fuzzy logic iff L satisfies:

– L expands MTL.

– (Cong) For all formulas φ, ϕ, α,

ϕ↔ φ `L α(ϕ)↔ α(φ)

– (LDT ) Local Deduction Theorem: for each theory T and formulas φ, ϕ:

T, ϕ `L φ iff there is a natural number n such that T `L ϕ
n → φ.

and we say that L is a ∆-core fuzzy logic if

– L expands MTL∆.

– (Cong) For all formulas φ, ϕ, α,

ϕ↔ φ `L α(ϕ)↔ α(φ)

– (DT ∆) Delta Deduction Theorem: for each theory T and formulas φ, ϕ:

T, ϕ `L φ iff T `L ∆ϕ→ φ.

So defined (∆-)core fuzzy logics are axiomatic extensions of MTL (of MTL∆, re-

spectively). We state now, without proof, a useful property of (∆-)core fuzzy logics

that we will use later on (for a proof of this result see Theorem 1 of [CiHa10]).

Theorem 2 [Proof by Cases Property] If T, φ ` χ and T, ψ ` χ, then T, φ ∨ ψ ` χ.

For a thorough treatment of (∆-)core fuzzy logics we refer to [CiHa10], [HaCi06] and

[CiEsGiGoMoNo09].

Following [Ha98] we introduce the syntax of fuzzy predicate logics. A predicate

language Γ is a triple (P,F,A) where P is a non-empty set of predicate symbols, F is

a set of function symbols and A is a mapping assigning to each predicate and function

symbol a natural number called the arity of the symbol. The function symbols F for

which A(F ) = 0 are called the object constants. The predicate symbols P for which

A(P ) = 0 are called the truth constants.

Formulas of the predicate language Γ are built up from the symbols in (P,F,A), the

connectives and truth constants of a fixed (∆-)core fuzzy logic L, the logical symbols ∀
and ∃, variables and punctuation. From now on, the formulas of a predicate language

Γ will be called Γ -formulas. A Γ -sentence is a Γ -formula without free variables.

Throughout the paper we consider the equality symbol as a binary predicate sym-

bol not as a logical symbol, we work in equality-free fuzzy predicate logics. That is,
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the equality symbol is not necessarily present in all the languages and its interpreta-

tion is not fixed. Given a propositional (∆-)core fuzzy logic L, we denote by L∀ the

corresponding fuzzy predicate logic.

Let L be a fixed (∆-)core fuzzy logic, we introduce now an axiomatic system for

the predicate logic L∀:

(P) the axioms resulting from the axioms of L by the substitution of the propositional

variables by the Γ -formulas.

(∀1) ∀xφ(x)→ φ(t), where t is substitutable for x in φ.

(∃1) φ(t)→ ∃xφ(x), where t is substitutable for x in φ.

(∀2) ∀x(φ→ ϕ)→ (φ→ ∀xϕ), where x is not free in φ.

(∀3) ∀x(φ ∨ ϕ)→ (φ ∨ ∀xϕ), where x is not free in φ.

The deduction rules are those of L (modus ponens and, in the case where L is a ∆-core

fuzzy logic, necessitation for the Baaz-Monteiro connective ∆: from φ infer ∆φ) and

generalization: from φ infer ∀xφ. By Σ `L∀ α we denote that the formula α follows

from the set of formulas Σ in the axiomatic system of the fuzzy predicate logic L∀.
When it is clear by the context we omit the subscript L∀.

Let L be a fixed propositional (∆-)core fuzzy logic, we introduce now the semantics

for the fuzzy predicate logic L∀:

Definition 3 Given an L-algebra B, a B-structure for a predicate language Γ is a

tuple

M = (M, (PM)P∈Γ , (FM)F∈Γ )

where:

1. M is a non-empty set.

2. For each n-ary predicate P ∈ Γ , if n > 0, PM is a B-fuzzy relation PM : Mn → B.

If n = 0, PM is an element of B.

3. For each n-ary function symbol F ∈ Γ , if n > 0, FM : Mn →M is a crisp function.

If n = 0, FM is an element of M .

Given an L-algebra B and a B-structure M, an M-evaluation of the object variables

is a mapping v which assigns to each variable an element from M . By φ(x1, . . . , xk) we

mean that all the free variables of φ are among x1, . . . , xk. Let v be an M-evaluation,

x a variable, and d ∈ M , we denote by v[x → d] the M-evaluation such that v[x →
d](x) = d and for each variable y different from x, v[x→ d](y) = v(y).

Let B be an L-algebra, M be a B-structure and v be an M-evaluation, we define

the values of the terms and truth values of the formulas as follows:

‖c‖BM,v = cM, ‖x‖BM,v = v(x)

‖F (t1, . . . , tn)‖BM,v = FM(‖t1‖BM,v, . . . , ‖tn‖
B
M,v)

for each variable x, each object constant c ∈ Γ , each n-ary function symbol F ∈ Γ for

n > 0 and Γ -terms t1, . . . , tn, respectively.

‖P (t1, . . . , tn)‖BM,v = PM(‖t1‖BM,v, . . . , ‖tn‖
B
M,v)

for each n-ary predicate P ∈ Γ ,
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‖δ(φ1, . . . , φn)‖BM,v = δB(‖φ1‖BM,v, . . . , ‖φn‖
B
M,v)

for each n-ary connective δ ∈L and Γ -formulas φ1, . . . , φn. Finally, for the quantifiers,

‖∀xφ‖BM,v = inf{‖φ‖BM,v[x→d] : d ∈M}

‖∃xφ‖BM,v = sup{‖φ‖BM,v[x→d] : d ∈M}

provided the infimum/supremum exists; otherwise the truth value of the formula in

question is undefined. Remark that, since the L-algebras we work with are not nec-

essarily complete, the above suprema and infima could be not defined in some cases.

It is said that a B-structure is safe if such suprema and infima are defined for all the

formulas. From now on we assume that all our structures are safe. Safe models were in-

troduced in [Ra74] under the name of interpretations and in [DiNoGe86] as completely

valued models.

B-structures were introduced in [RaSi63] under the name of realizations and in

[DiNoGe86] under the name of fuzzy models. The formalization of this concept that we

use at present is due to [Ha98]. If v is an evaluation such that for each 0 < i ≤ n, v(xi) =

di, and λ is either a Γ -term or a Γ -formula, we abbreviate by ‖λ(d1, . . . , dn)‖(B,M)

the expression ‖λ(x1, . . . , xn)‖BM,v.

Definition 4 Let φ be a Γ -sentence, given an L-algebra B and a B-structure M, it

is said that M is a model of φ iff ‖φ‖(B,M) = 1. And it is said that M is a model of

a set of Γ -sentences Σ iff for all φ ∈ Σ, M is a model of φ.

Definition 5 Let T ∪ {φ} be a set of Γ -sentences. We say that φ is a semantical

consequence of T (denoted by T |= φ) iff for every L-algebra B and every B-structure

M, if M is a model of T , then M is also a model of φ.

From now on, given an L-algebra B, we say that (B,M) is a Γ -structure instead

of saying that M is a B-structure for a predicate language Γ .

Definition 6 Let (B,M) be a Γ -structure, by Alg(B,M) we denote the subalgebra of

B whose domain is the set

{‖φ(d1, . . . , dn)‖(B,M) : d1, . . . , dn ∈M and φ(x1, . . . , xn) is a Γ -formula}

Then, it is said that (B,M) is exhaustive iff Alg(B,M) = B.

Given two Γ -structures (B1,M1) and (B2,M2), we denote by (B1,M1) ≡ (B2,M2)

the fact that (B1,M1) and (B2,M2) are elementarily equivalent, that is, that they are

models of exactly the same Γ -sentences. The definition of elementarily equivalent clas-

sical structures is due to A. Tarski (see [Ta35]). In the fuzzy setting was introduced in

[HaCi06] (Definition 10).

From now on and throughout the article, we will assume that B is always an L-

chain. In this section we have presented only a few definitions and notation, a detailed

introduction to the syntax and semantics of fuzzy predicate logics can be found in

[Ha98] and [CiHa10].
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2.1 Weak Homomorphisms, σ-Mappings and Homomorphisms

There are several ways to extend classical model theory to fuzzy logic. The concepts of

embedding and elementary embedding can be extended in several ways to fuzzy logic.

Our choice for the counterparts of these notions in fuzzy logic (weak homomorphisms

and elementary mappings) has been motivated, not only for the desire to find extensions

of the corresponding notions of classical predicate logics but also to try to encompass

the most commonly used definitions in the literature of predicate fuzzy logic. Different

definitions have been used so far for basic model-theoretic operations on structures.

For instance, the notion of elementary submodel, morphism (see [DiNoGe86]), elemen-

tary embeddings and submodels(see [HaCi06]), fuzzy submodel, elementary fuzzy sub-

model and isomorphism of structures of first-order fuzzy logic with graded syntax (see

[NoPerMo99]), complete morphism in languages with a similarity predicate (see [Be02])

and the notion of σ-embedding (see [CiEsGiGoMoNo09]). Taking as our starting point

all these works, we have defined these model-theoretic notions as general as possible.

We want to contemplate the possibility that our languages contain function symbols

and also the equality symbol but not as a logical symbol (for instance, interpreted

as a similarity). For some mathematical purposes, such as algebraic applications, this

could seem to be useless. But in other scientific disciplines, such as computer science

or artificial intelligence, it is important to have fuzzy predicate logics able to deal with

similarities, and at the same time with functions. In this section we recall the notions

of weak homomorphism and of homomorphism as introduced in [De11].

In fuzzy predicate languages, since we often do not work with crisp equalities, we

can find mappings that preserve all quantifier-free formulas but are not homomorphisms

(in the classical sense) between the algebraic reducts of the models (that is, between the

interpretations of the function symbols). Since these two notions do not coincide, unlike

in classical first-order logic, we define both notions, recall their differential properties

and their relationship to basic constructions on model theory.

Definition 7 Let (B1,M1) be a Γ1-structure and (B2,M2) be a Γ2-structure, with

Γ1 ⊆ Γ2. We say that the pair (g, f) is a weak homomorphism iff

1. g : B1 → B2 is an L-algebra homomorphism of B1 into B2.

2. f : M1 →M2 is a mapping of M1 into M2.

3. For each quantifier-free Γ1-formula φ(x1, . . . , xn) and elements d1, . . . , dn ∈M1,

g(‖φ(d1, . . . , dn)‖(B1,M1)) = ‖φ(f(d1), . . . , f(dn))‖(B2,M2)

Moreover, if in addition:

– Condition 3 above holds for every Γ1-formula, (g, f) is said to be an elementary

mapping.

– g preserves the existing infima and suprema, (g, f) is said to be a σ-mapping.

– For each n-ary function symbol F ∈ Γ1 and elements d1, . . . , dn ∈M1,

f(FM1(d1, . . . , dn)) = FM2(f(d1), . . . , f(dn))

. (g, f) is said to be a homomorphism.

If (g, f) is both a σ-mapping and a homomorphism we would say that (g, f) is a

σ-homomorphism. Moreover, we would say that (g, f) is an embedding when (g, f)

is a homomorphism and both g and f are one-to-one, and we denote by (B,M) ∼=
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(A,N) when these two structures are isomorphic (that is, there is an embedding (g, f)

from (B,M) into (A,N) with g and f onto). Homomorphisms that in addition are

elementary mappings will be called elementary homomorphisms. Remark that, unlike

[Be02], homomorphisms are crisp when restricted to the algebraic reducts of the models.

Observe also that, working with predicate languages without function symbols, the

notions of weak homomorphism and homomorphism coincide, but it is not the case for

arbitrary structures.

In the recent development of model theory for fuzzy predicate languages (see for

instance [HaCi06] and [CiHa10]), elementary mappings have been used to study funda-

mental notions such as elementary equivalence or the notion of conservative extension

of a theory. However, it is customary in classical model theory to use the notion of

isomorphism instead. The main interest for using a weaker notion comes from the fact

that, working in equality-free languages, it is possible to find mappings that preserve

all the formulas of the language, yet not capturing the structural properties of the

models (and this suffices for some of our purposes). Remark that this does not happen

in classical predicate logic, being the isomorphisms the only mappings satisfying both

conditions (preserving all the formulas and, at the same time, preserving the structure

of the models).

Note that, by definition, weak homomorphisms are not always σ-mappings and

homomorphisms are not always σ-homomorphisms (as are in [DiNoGe86] or [Be02]).

We will see now that σ-mappings enjoy some good properties. The following proposition

is a reformulation of Propositions 6.1 and 6.2 in [DiNoGe86]:

Proposition 8 Let (g, f) be a weak homomorphism of the Γ -structure (B1,M1) into

the Γ -structure (B2,M2). If (g, f) is a σ-mapping with f onto, then (g, f) is an ele-

mentary mapping and (B1,M1) ≡ (B2,M2).

The previous statement shows us that there is a close relationship between el-

ementary mappings and σ-mappings (σ-homomorphisms in particular) with f onto.

However, as shown in [De11], these two notions do not coincide.

3 Elementary Extensions

In this section we introduce the notion of elementary substructure and we present an

analog to the Tarski-Vaught Test for fuzzy predicate logics. Later on in this section we

provide new proofs for the Löwenheim-Skolem Theorems.

Definition 9 Let (A,N) be a Γ -structure, we say that a Γ -structure (B,M) is a

substructure of (A,N) iff

1. For every object constant c ∈ Γ , cM = cN .

2. For each n-ary function symbol F ∈ Γ , and elements d1, . . . , dn ∈M , FM (d1, . . . , dn) =

FN (d1, . . . , dn).

3. B is an L-subalgebra of A.

4. For each n-ary predicate P ∈ Γ , PM is the restriction of PN to M .

Moreover, it is said that (B,M) is an elementary substructure iff it is a substructure

such that, for every Γ -formula φ(x1, . . . , xn) and elements d1, . . . , dn ∈M ,

‖φ(d1, . . . , dn)‖(B,M) = ‖φ(d1, . . . , dn)‖(A,N) (�)
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When (B,M) is an elementary substructure of (A,N) we say also that (A,N) is

an elementary extension of (B,M). Remember that we have assumed that all our

structures are safe. It is easy to check, by induction on the complexity of the formulas,

that, for every substructure, condition (�) holds restricted to quantifier-free formulas.

The transitivity of the notion of elementary mapping was stated in [HaCi06]. Now we

introduce the notion of definable set of elements of an L-algebra.

Definition 10 Let (A,N) be a Γ -structure, K ⊆ N , e1, . . . , en ∈ K and φ(x, y1, . . . , yn)

be a Γ -formula. We denote by X
(A,N)
φ,e1,...,en,K

the following subset of A:

{‖φ(d, e1, . . . , en)‖(A,N) : d ∈ K}

It is said that a subset Y of A is definable with parameters in (A,N) if there are

K ⊆ N , e1, . . . , en ∈ N and a Γ -formula φ(x, y1, . . . , yn) such that Y = X
(A,N)
φ,e1,...,en,K

The following result is a fuzzy version of the Tarski-Vaught Test for elementary

extensions. The Tarski-Vaught criterion is a necessary and sufficient condition for a

substructure to be an elementary substructure. It can be useful for constructing an

elementary substructure of a large structure. The proof of this result follows easily by

induction on the complexity of the formulas by using the definition introduced above.

Proposition 11 [Tarski-Vaught Test] Let (A,N) and (B,M) be two Γ -structures.

Then the following are equivalent:

1. (B,M) is an elementary substructure of (A,N).

2. (B,M) is a substructure of (A,N) and for every Γ -formula φ(x, y1, . . . , yn) and

e1, . . . , en ∈M , X
(A,N)
φ,e1,...,en,M

and X
(A,N)
φ,e1,...,en,N

have the same infimum and supre-

mum in A.

4 Löwenheim-Skolem Theorems

Löwenheim-Skolem Theorems are one of the pillars of classical model theory. A great

deal of the work done in the third quarter of the twentieth century was devoted to

working out the consequences of these theorems. In 1915, L. Löwenheim proved that if

a first-order sentence has a model, then it has a model whose domain is countable. In

1922, T. Skolem generalized this result to whole sets of sentences. He proved that if a

countable collection of first-order sentences has an infinite model, then it has a model

whose domain is only countable. Now we show that similar theorems hold for fuzzy

predicate languages.

Di Nola and G. Gerla introduced in [DiNoGe86] the notions of valuation struc-

ture and fuzzy model of a given first-order language in a categorial setting. G. Gerla

introduced in [Ge86] the notions of d-filter, of reduced product and of ultraproduct

of a family of fuzzy models with definable quantifiers. That is, models such that for

each quantifier there is a formula of the classical first-order language with equality

with a unique monadic predicate P that defines it (for a reference see Definition 8.1 of

[Ge86]). By using these constructions he showed analogues to the Löwenheim-Skolem-

Tarski Theorems for fuzzy models. Here we present new proofs for these theorems

without making use of the ultraproduct construction and, in the case of the Upward

Löwenheim-Skolem Theorem, we improve the theorem obtaining a model over the same
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L-algebra. Our proofs use, on the one hand, the Tarski-Vaught Test introduced before

(downward), and on the other hand, a terms construction (upwards).

Some notation is required before we proceed with the statement of the theorems.

We denote by |Γ | the cardinality of the predicate language Γ . Given a model (B,M),

we say that its cardinality is the cardinality of the domain M , denoted by |M |. In the

fuzzy case, it is interesting also to consider another cardinality related to the algebra

of truth values B. Assume that every subset of B definable with parameters in (B,M)

has infimum and supremum. We denote by p(B) the minimum cardinal γ such that for

every X ⊆ B, definable with parameters in (B,M), there is Y ⊆ X of cardinality ≤ γ
and such that inf X = inf Y and supX = supY . A similar notion was introduced in

[Ge86] under the name quantifier cardinal. For instance, p([0, 1] L) = ω.

Theorem 12 [Downward Löwenheim-Skolem Theorem] Let (B,M) be an infi-

nite Γ -structure. Assume that every subset of B definable with parameters in (B,M)

has infimum and supremum. For every cardinal κ with max(p(B), |Γ | , ω) ≤ κ ≤ |M |
and every Z ⊆ M with |Z| ≤ κ, there is a model (B,O) which is an elementary

substructure of (B,M) of cardinality ≤ κ and Z ⊆ O.

Proof We define inductively a chain (Zn : n ∈ ω) of subsets of M with Z ⊆ Z0 and for

each n ∈ ω, |Zn| ≤ κ. We start by choosing Z0 to be any subset of M containing Z and

of cardinality ≤ κ. Now given Zn, Zn+1 is obtained in the following form: for every

Γ -formula φ(x, y1, . . . , yn) and e1, . . . , en ∈ Zn, we take a subset of X
(B,M)
φ,e1,...,en,Zn

, say

Yφ,e1,...,en,Zn
(see Definition 10) such that p(B) ≥

˛̨
Yφ,e1,...,en,Zn

˛̨
, with

supYφ,e1,...,en,Zn
= supX

(B,M)
φ,e1,...,en,Zn

and

inf Yφ,e1,...,en,Zn
= inf X

(B,M)
φ,e1,...,en,Zn

Now, for every b ∈ Yφ,e1,...,en,Zn
choose an arbitrary db ∈M such that

‖φ(db, e1, . . . , en)‖(B,M) = b

and then take Zn+1 to be the domain of the substructure of (B,M) generated by

the set Zn ∪ {db : b ∈ Yφ,e1,...,en,Zn
}. Since max(p(B), |Γ | , ω) ≤ κ, Zn+1 has also

cardinality ≤ κ. Finally let (B,O) be the substructure of (B,M) that has as domain

the union
S
n∈ω Zn. Clearly |O| ≤ κ. Using the Tarski-Vaught Test stated before it is

easy to check that (B,O) is the desired elementary substructure of (B,M).

Theorem 13 [Upward Löwenheim-Skolem Theorem] For every Γ -structure (B,M)

and every cardinal κ with max(|M | , |Γ |) ≤ κ, there is a Γ -structure (B,O) of cardi-

nality κ such that (B,M) is elementarily mapped in (B,O).

Proof First we define a Γ -structure (B,O) and a σ-homomorphism (IdB, f) from

(B,O) onto (B,M). Later on we will show that (B,M) is elementarily mapped in

(B,O).

We fix an enumeration (possibly with repetitions) (dj : j ∈ κ) of M . The first-

order part, the algebraic reduct of (B,O) (that is the interpretation of the function

symbols in Γ ) will be the algebra Terκ of Γ -terms generated by a set of new variables

Vκ = {vj : j ∈ κ}. We define the function f0 : Vκ →M by: for every j ∈ κ, f0(vj) = dj .

Then we extend f0 in the usual way to a homomorphism f from Terκ onto M . Finally,
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we define the interpretation of the predicate symbols in (B,O): for each n-ary predicate

P ∈ Γ and elements t1, . . . , tn ∈ O, PO(t1, . . . , tn) = PM (f(t1), . . . , f(tn)). So defined,

(IdB, f) is clearly a σ-homomorphism onto (B,M), because the identity mapping

preserves existing infima and suprema. Remark that, by Proposition 8, since f is onto

and (IdB, f) is a σ-homomorphism, (IdB, f) is also an elementary mapping.

Now we define another mapping (IdB, h) in the other direction, that is, from (B,M)

into (B,O) as follows: for every d ∈ M we choose an arbitrary variable vd ∈ Vκ such

that f(vd) = d and then we take h(d) = vd. Since (IdB, f) is an elementary mapping,

it is easy to check that (IdB, h) is also an elementary mapping. Moreover, by definition,

h is clearly one-to-one. Without loss of generality we can identify each vd with d, being

then (B,O) our desired model.

Notice that the mapping (IdB, h) of the previous theorem it is not necessarily an

embedding. In the case where Γ is a predicate language without function symbols, by

the construction of the terms structure, (B,O) is an elementary extension of (B,M).

5 Diagrams and Canonical Models

The method of diagrams, due to L. A. Henkin and A. Robinson, has proved to be a

useful tool for model theory. During the 1950’s the maps between structures came to

play a deeper role in model theory, not just as possible research fields but as essential

tools of the subject. For a general reference on the method of diagrams in classical

predicate logic see [ChKe90].

For the special case of structures of first-order fuzzy logic with graded syntax and

languages with the equality symbol, diagrams are presented in [NoPerMo99]. For fuzzy

predicate logics in general, diagrams are used in the proofs of Lemma 4 in [HaCi06],

and full diagrams can be found in the proof of Theorem 5.9 in

[CiEsGiGoMoNo09]. Finally, the diagram technique was developed for arbitrary pred-

icate core fuzzy logics in [De11].

5.1 The Method of Diagrams in Fuzzy Predicate Logics

Certain classes of mappings preserve all formulas with certain syntactic forms. Con-

versely, we can classify mappings by means of the formulas they preserve. In this

subsection we recall some definitions and characterizations of mappings in fuzzy pred-

icate logics developed in [De11]. Later on we prove some new propositions related to

canonical models and diagrams.

Definition 14 Let Γ be a predicate language and (B,M) be a Γ -structure, we define:

1. ΓM is the expansion of Γ by adding a constant symbol cd, for each d ∈M .

2. (B,M′) is the expansion of (B,M) to the language ΓM, by interpreting for each

d ∈M , the constant cd by d.

3. The Basic Elementary Diagram of (B,M), denoted by EDIAG0(B,M), is the set

of all sentences of ΓM true in (B,M′).

Definition 15 Let (B,M) be a Γ -structure, we expand the language further adding

new symbols to ΓM and we define:



11

1. Γ(B,M) is the expansion of ΓM by adding a truth constant Pb, for each b ∈ B.

2. (B,M]) is the expansion of (B,M
′
) to the language Γ(B,M), by interpreting for

each b ∈ B, the truth constant symbol Pb by b.

3. The Full Diagram of (B,M), denoted by FDIAG(B,M), is the set of all Γ(B,M)-

sentences true in (B,M]).

4. EQ(B) is the set of Γ(B,M)-sentences of the form δ(Pb1 , . . . , Pbn
)↔ ε(Pa1 , . . . , Pak )

such that B |= δ(b1, . . . , bn) = ε(a1, . . . , ak), where δ, ε are L-terms and a1, . . . , ak,

b1, . . . , bn ∈ B
5. NEQ(B) is the set of Γ(B,M)-sentences of the form δ(Pb1 , . . . , Pbn

)↔ ε(Pa1 , . . . , Pak )

such that B |= δ(b1, . . . , bn) 6= ε(a1, . . . , ak), where δ, ε are L-terms and a1, . . . , ak,

b1, . . . , bn ∈ B
6. The Elementary Diagram of (B,M), denoted by EDIAG(B,M), is the set

EQ(B) ∪ {φ↔ Pb : φ is a ΓM-sentence and ‖φ‖(B,M
′) = b}

Proposition 16 [Proposition 31 of [De11]] Let (B,M) and (A,N) be two Γ -structures.

The following are equivalent:

1. There is an expansion of (A,N) that is a model of EDIAG(B,M).

2. There is an elementary mapping (g, f) from (B,M) into (A,N).

Moreover, g is one-to-one iff for every sentence ψ ∈ NEQ(B), the expansion of (A,N)

in condition 1. is not a model of ψ.

Corollary 17 [Remark after Proposition 31 of [De11]] Let (B,M) and (A,N) be two

Γ -structures such that (B,M) is exhaustive. The following are equivalent:

1. There is an expansion of (A,N) that is a model of EDIAG0(B,M).

2. There is an elementary mapping (g, f) from (B,M) into (A,N).

Moreover, g is one-to-one iff for every sentence of ΓM, ψ /∈ EDIAG0(B,M), the

expansion of (A,N) in condition 1. is not a model of ψ.

Remark that, as pointed out in [De11], the mapping f of Proposition 16 and of

Corollary 17 is not necessarily one-to-one, because we do not work with a crisp equality.

5.2 Canonical Models

Now we recall some definitions and basic facts on canonical models of fuzzy predicate

logics (cf. section 4 and 5 of [HaCi06]).

Definition 18 A Γ -theory T is linear iff for each pair of Γ -sentences φ, ψ ∈ Γ , T `
φ→ ψ or T ` ψ → φ.

Definition 19 A Γ -theory Ψ is directed iff for each pair of Γ -sentences φ, ψ ∈ Ψ ,

there is a Γ -sentence χ ∈ Ψ such that both φ→ χ and ψ → χ are probable.

Definition 20 Let Γ and Γ ′ be predicate languages such that Γ ⊆ Γ ′ and let T be a

Γ ′-theory. We say that T is Γ -Henkin if for each formula ψ(x) ∈ Γ such that T 6` ∀xψ,

there is a constant c ∈ Γ ′ such that T 6` ψ(c). And we say that T is ∃-Γ–Henkin if

for each formula ψ(x) ∈ Γ such that T ` ∃xψ, there is a constant c ∈ Γ ′ such that

T ` ψ(c). Finally, a Γ -theory is called doubly-Γ -Henkin if it is both Γ -Henkin and

∃-Γ -Henkin. In case that Γ = Γ ′, we say that T is Henkin (∃-Henkin, doubly Henkin,

respectively).
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Theorem 21 [Theorem 2.20 of [CiHa10]] Let T0 be a Γ -theory and Ψ a directed set

of Γ -sentences such that T0 6` Ψ . Then, there is a linear doubly Henkin theory T ⊇ T0

in a predicate language Γ ′ ⊇ Γ such that T 6` Ψ .

Definition 22 Let T be a Γ -theory. The canonical model of T, denoted by

(LindT ,CM(T )), where LindT is the Lindenbaum algebra of T (that is, the L-algebra

of classes of T-equivalent Γ–sentences) is defined as follows: the domain of CM(T ) is

the set of closed Γ -terms, for every n-ary function symbol F ∈ Γ ,

F(LindT ,CM(T ))(t1 . . . tn) = F (t1 . . . tn)

and for each n-ary predicate symbol P ∈ Γ , P(LindT ,CM(T ))(t1 . . . tn) = [P (t1 . . . tn)]T .

For now on we will use a shorter notation and write CM(T ) instead of (LindT ,CM(T )).

Lemma 23 [Lemma 2.24 of [CiHa10]] Let T be a Henkin Γ -theory. Then,

– LindT is an L-chain iff T is linear

– For every sentence φ ∈ Γ , ‖φ‖(LindT ,CM(T )) = [φ]T
– For every sentence φ ∈ Γ , T ` φ iff CM(T ) |= φ

– CM(T ) is exhaustive

5.3 Refinements of the Method of Diagrams

Now we prove some new facts on diagrams and elementary extensions, using canonical

models. The following proposition can be regarded as an improvement of Proposition

32 of [De11] in two main aspects. On the one hand, the technique obtains now an

elementary extension (a canonical model) which is well-known for us and has some good

model-theoretic properties. On the other hand, we have an elementary mapping (g, f)

with g and f one-to-one, fact that does not hold in general for arbitrary structures.

Proposition 24 Let (B,M) be a Σ-structure and T0 ⊇ EDIAG(B,M) a consistent

theory in a predicate language Γ ⊇ Σ. If Ψ ⊇ NEQ(B) is a directed set of Γ -sentences

such that T0 6` Ψ , then there is a linear doubly Henkin theory T ⊇ T0 in a predicate

language Γ ′ ⊇ Γ such that T 6` Ψ and an elementary mapping (g, f) from (B,M) into

CM(T ), with g and f one-to-one.

Proof By Theorem 21, there is a linear doubly Henkin theory T ⊇ T0 in a predicate

language Γ ′ ⊇ Γ such that T 6` Ψ . By Lemma 23, CM(T ) is a model of EDIAG(B,M).

Then, by Proposition 16 (Proposition 32 of [De11]), there is an elementary mapping

(g, f) from (B,M) into CM(T ), defined as follows: for each d ∈ M , f(d) = cd and

for each b ∈ B, g(b) = [Pb]T . Moreover, since T 6` NEQ(B), for every sentence ψ ∈
NEQ(B), CM(T ) is not a model of ψ and thus, g is one-to-one: indeed, if b 6= b′, then

Pb ↔ Pb′ ∈ NEQ(B) and, by assumption, it is not true in CM(T ) and consequently,

[Pb]T 6= [Pb′ ]T and thus g(b) 6= g(b′). Finally, by definition of CM(T ), f is also one-

to-one.

Observe that the elementary mapping defined in Proposition 24 is not necessarily a

homomorphism: in general we have for every closed term t, f(tM ) = ctM and ctM 6= t.

Observe that Theorem 21 does not hold for ∆-core fuzzy logics (for an explanation

see [HaCi06]).
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Theorem 25 [Theorem 2.21 of [CiHa10]] Let L be a ∆-core fuzzy logic, T0 a Γ -theory

and Ψ a directed set of Γ -sentences such that T0 6` Ψ . Then, there is a linear Henkin

theory T ⊇ T0 in a predicate language Γ ′ ⊇ Γ such that T 6` Ψ .

Nevertheless, imitating the proof of Proposition 24 and using Theorem 25, it is

possible to obtain a version of the previous result for ∆-core fuzzy logics:

Proposition 26 Let L be a ∆-core fuzzy logic, (B,M) be a Σ-structure and T0 ⊇
EDIAG(B,M) a consistent theory in a predicate language Γ ⊇ Σ. If Ψ ⊇ NEQ(B) is

a directed set of Γ -sentences such that T0 6` Ψ , then there is a linear Henkin theory

T ⊇ T0 in a predicate language Γ ′ ⊇ Γ such that T 6` Ψ and an elementary mapping

(g, f) from (B,M) into CM(T ), with f and g one-to-one.

Now as a Corollary of Propositions 17 and 24 we obtain the following result for

exhaustive structures (an analogous result could be obtained for ∆-core fuzzy logics us-

ing Propositions 17 and 26). We denote by EDIAG0(B,M) the set of all ΓM-sentences

that do not belong to EDIAG0(B,M).

Corollary 27 Let (B,M) be an exhaustive Σ-structure and T0 ⊇ EDIAG0(B,M) a

consistent theory in a predicate language Γ ⊇ Σ. If Ψ ⊇ EDIAG0(B,M) is a directed

set of formulas of Γ such that T0 6` Ψ , then there is a linear doubly Henkin theory

T ⊇ T0 in a predicate language Γ ′ ⊇ Γ such that T 6` Ψ and an elementary mapping

(g, f) from (B,M) into CM(T ), with g and f one-to-one.

6 Witnessed and Quasi-witnessed Models

In this section we focus on extensions of witnessed and quasi-witnessed models. We

will show a direct application of Proposition 24, giving a generalization of Lemmas 3.3

of [CeEs09] and 5 of [HaCi06] for non-exhaustive models.

Intuitively speaking, a witnessed model is one in which every quantified formula

has an element of the model which witnesses it. More precisely:

Definition 28 Let (B,M) be a Γ -structure. A Γ -formula φ(y, x1, . . . , xn) is witnessed

in (B,M) iff for every d1, . . . , dn ∈M the following two conditions hold:

1. there is d ∈M such that ‖∃yφ(d1, . . . , dn)‖(B,M) = ‖φ(d, d1, . . . , dn)‖(B,M)

2. there is e ∈M such that ‖∀yφ(d1, . . . , dn)‖(B,M) = ‖φ(e, d1, . . . , dn)‖(B,M)

Moreover, it is said that (B,M) is a witnessed model iff every Γ -formula φ(y, x1, . . . , xn)

is witnessed in (B,M).

Notice that every model of classical predicate logic is witnessed, as well as all the

models of finitely-valued logics. However, when we move to infinitely valued logics,

this is not always the case. The infimum or supremum of a set of truth values might

not be included in this set, and thus we can find models in which some quantified

formula has no witness. Following these ideas, Hájek introduced in [Ha07a], [Ha07b]

the aforementioned notion of witnessed model and proved that this is an important

property because it implies a limited form of finite model property for certain fragments

of predicate fuzzy logic (see [Ha05]). In [HaCi06] the following axiom schemes, originally

introduced by Baaz, are discussed: (C∀) ∃x(φ(x) → ∀yφ(y)) and (C∃) ∃x(∃yφ(y) →
φ(x)). Cintula and Hájek showed in [HaCi06] that adding the witnessed axioms (C∀)
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and (C∃) to any first order core fuzzy logic, we obtain a logic complete with respect

this kind of models. Subsequently, they proved that these axioms are derivable in

 Lukasiewicz First Order Logic, showing that  L∀ is complete with respect to witnessed

models (we will say that  L∀ has the witnessed model property). Nevertheless, they

proved that neither G∀ nor Π∀ share this property (the witnessed axioms are not

theorems of these logics). In fact, no other first order logic of a continuous t-norm

enjoys this property. This characteristic is strongly related to the continuity of the

truth functions, a property that only  Lukasiewicz logic has.

Now we show a direct application of Proposition 24 to obtain witnessed models,

giving a generalization of Lemma 5 of [HaCi06] to non-exhaustive structures.

Proposition 29 Let T be a Γ -theory and T ′ its extension with axioms C∀ and C∃.
Then every Γ -structure model of T ′ is elementarily one-to one mapped into a witnessed

model of T .

Proof Let (B,M) be a Γ -structure model of T ′. We consider the theory

T0 = FDIAG(M,B). Now let Ψ be the closure of NEQ(B) under disjunctions. Clearly

Ψ is a directed set. We show that T0 6` Ψ : it is enough to prove that for every

α, β ∈NEQ(B), α ∨ β /∈ T0. Assume the contrary, since B is an L-chain, we have

that either α→ β ∈ T0 or β → α ∈ T0. Then, since L is a core fuzzy logic, by Theorem

2, we will have either that α ∈ T0 or β ∈ T0, which is absurd, by definition of NEQ(B).

Then, by Proposition 24, since T0 ⊇ EDIAG(B,M) and Ψ ⊇ NEQ(B), there is

a linear doubly Henkin theory T ∗ ⊇ T0 such that T ∗ 6` Ψ and (B,M) elementarily

one-to one mapped into CM(T ∗).
Now we see that CM(T ) is witnessed: let φ(y, x1, . . . , xn) be a formula and t1, . . . , tn

closed terms elements of CM(T ), assume that the constants that occur in these terms

are c1, . . . , ck. Consider now the formula φ′(y, c1, . . . , ck) obtained from φ(y, x1, . . . , xn)

by substituting the variables x1, . . . , xn for the terms t1, . . . , tn. By assumption, T `
(C∃), we have then that T ` ∃z(∃yφ′(y, c1, . . . , ck)→ φ′(z, c1, . . . , ck)) and thus, since

T is ∃-Henkin, there is a constant d such that T ` ∃yφ′(y, c1, . . . , ck)→ φ′(d, c1, . . . , ck).

Then, by definition of CM(T ), we have that

‖∃yφ(y, t1, . . . , tn)‖(LindT ,CM(T )) = ‖∃yφ′(y, c1, . . . , ck)‖(LindT ,CM(T )) =

= ‖φ′(d, c1, . . . , ck)‖(LindT ,CM(T )) = ‖φ(d, t1, . . . , tn)‖(LindT ,CM(T ))

The proof for the universal step is analogous by using axiom (C∀).

In [LaMa07] it is proved that Product Predicate Logic Π∀ enjoys a property weaker

than the witnessed model property, the so-called quasi-witnessed model property. Quasi-

witnessed models are models in which universally quantified formulas taking truth-

values greater than 0 have witnesses, while existentially quantified formulas are always

witnessed. In [CeEs09] the authors introduced the so-called quasi-witnessed axioms:

(ΠC∀) ¬¬∀xφ(x)→ (∃x(φ(x)→ ∀yφ(y))

(C∃) ∃x(∃yφ(y)→ φ(x))

and they proved that the axiomatic extension of any strict core fuzzy logic1 with

the quasi-witnessed axioms is complete w.r.t. quasi-witnessed models. In particular

they proved that in Π∀ these axioms are deducible, and thus Π∀ is complete w.r.t.

1 A core fuzzy logic is strict iff it expands SMTL (for the details see Definition 3 of [CeEs09]).
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quasi-witnessed models (result already proved directly in [LaMa07]). Finally it is also

proved that no other logic of a continuous t-norm except  L∀ and Π∀ satisfy the quasi-

witnessed axioms. Notice that we have taken the name coined in [CeEs09] for this kind

of models instead of the original one of [LaMa07], which was strictly closed models. The

main reason is that the new name seems more informative about the properties of the

described model. Moreover, with this notation we avoid possible confusions with other

usages of the name closed in mathematics and logic. Imitating the proof of Proposition

29 and using the method of diagrams we can generalize Lemma 19 of [CeEs09] to

non-exhaustive models.

Proposition 30 Let T be a Γ -theory and T ′ its extension with axioms ΠC∀ and C∃.
Then every Γ -structure model of T ′ is elementary one-to one mapped into a quasi-

witnessed model of T .

7 Counterexample to Conjectures 1 and 2 of [HaCi06]

Given two theories T1 ⊆ T2 in the respective predicate languages Γ1 ⊆ Γ2, it is said

that T2 is a conservative extension of T1 if and only if each Γ1-formula provable in T2

is also provable in T1. P. Hájek and P. Cintula proved in Theorem 6 of [HaCi06] that,

in core fuzzy logics, a theory T2 is a conservative extension of another theory T1 if and

only if each exhaustive model of T1 can be elementarily one-to one mapped into some

model of T2. In Theorem 7 of [HaCi06], they conjectured the same result to be true

for arbitrary structures, showing that the following two conjectures were equivalent:

Conjecture 1 of [HaCi06]: Let P be a truth constant symbol and for i ∈ {1, 2},
Ti be a Γi-theory, and T+

i be a Γi ∪ {P}-theory such that T+
i = Ti (i.e. P is added

to the language but no new axioms are added). If T2 is a conservative extension of T1,

then T+
2 is a conservative extension of T+

1 .

Conjecture 2 of [HaCi06]: A theory T2 is a conservative extension of another

theory T1 if and only if each model of T1 can be elementarily one-to one mapped into

some model of T2.

We present here a counterexample to Conjecture 2 (and thus to Conjecture 1). Let

L be the logic that has as equivalent algebraic semantics the variety generated by the

union of the classes of  Lukasiewicz and Product chains. L is an axiomatic extension of

BL, to find an axiomatization we refer to [CigEsGoTo00] where it is proved also that

the set of chains of the variety coincide with the union of the sets of  Lukasiewicz and

Product chains). Let now ({0, 1},M) be a classical first-order structure in a predicate

language Γ , and let B1 = [0, 1]Π and B2 = [0, 1] L be the canonical Product and

 Lukasiewicz chains, respectively.

Remark that the structure ({0, 1},M) can also be regarded as a Γ -structure over

both B1 and B2 chains, since for every two-valued n-ary predicate PM : Mn → {0, 1},
PM is also a fuzzy relation PM : Mn → [0, 1]Π and PM : Mn → [0, 1] L. Thus, we

have (B1,M) ≡ (B2,M) (in fact we have that (B1,M
′) ≡ (B2,M

′), where M′ is as

in Definition 14).

Let T1=EDIAG0(B1,M) and T2=FDIAG(B2,M). We have that T2 is a conser-

vative extension of T1: for every ΓM-formula φ, if T2 ` φ, then since ‖φ‖(B2,M
′)=1

and (B1,M
′) ≡ (B2,M

′) and then φ ∈ T1. Now we show that there is a model of T1

that can not be elementarily one-to one mapped into some model of T2, this model is

([0, 1]Π,M). Suppose, contrary to our claim, that there is a model of T2, say (A,N), in
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which ([0, 1]Π,M) is elementarily one-to one mapped. By Proposition 16, since (A,N)

is a model of T2, there is an elementary mapping from ([0, 1] L,M) into (A,N). Con-

sequently, there is an L-embedding k from [0, 1]Π into A and at the same time there

is an L-homomorphism h from [0, 1] L into A (not necessarily one-to-one). If A is an

L-chain, it is clear that this is not possible. We show now that, for any arbitrary L-

algebra A, this fact leads to a contradiction2. If such embeddings k and h exist, and c

and b are the images of 1/2 under h and k respectively, we have b = ¬b (because h is an

L-homomorphism), c < 1 and ¬c = 0 (because k is an L-embedding and the negation in

[0, 1]Π is the Gödel negation). If we decompose A as a subdirect product of an indexed

family of subdirectly irreducible BL-chains, say (Ai : i ∈ I), every such Ai is either

a  Lukasiewicz, or a Product chain (for a reference see [Ha98] and [CigEsGoTo00]).

Therefore, if we take an index i such that the i-component, ci, satisfies 0 < ci < 1,

we will have at the same time ¬ci = 0 and for the i-component bi, bi = ¬bi, which is

absurd, because Ai can not be, at the same time, a  Lukasiewicz and a Product chain.

8 A Characterization Theorem of Elementary Equivalence

In this section we characterize when two exhaustive structures are elementarily equiv-

alent using elementary mappings. We provide an example showing that the result can

not be extended to arbitrary models.

Theorem 31 Let (B1,M1) and (B2,M2) be two exhaustive Γ -structures. The follow-

ing are equivalent:

1. (B1,M1) ≡ (B2,M2).

2. There is a Γ -structure (A,N), such that (B1,M1) and (B2,M2) are elementarily

mapped into (A,N).

Proof 2.⇒ 1. is clear.

1.⇒ 2. First we expand the language introducing two disjoint sets of new constants,

CM1 and CM2 for the elements of M1 and M2, respectively, that are not interpretations

of the constant symbols in Γ .

Now consider the theory T0 = EDIAG0(B1,M1)∪ EDIAG0(B2,M2) in the lan-

guage expanded with the set of constants CM1 and CM2 respectively. Let us show that

T0 is consistent: If T0 ` ⊥, since EDIAG0(B2,M2) is closed under conjunction and the

proof is finitary, there is ψ ∈ EDIAG0(B2,M2) such that EDIAG0(B1,M1), ψ ` ⊥.

Then, by the Local Deduction Theorem (see Definition 1), there is a natural number

n such that EDIAG0(B1,M1) ` (ψ)n → ⊥. Let bψ be the formula obtained by replac-

ing each constant c ∈ CM2 by a new variable xc. Thus we have EDIAG0(B1,M1) `
( bψ)n → ⊥ and by generalization over the new variables we obtain EDIAG0(B1,M1) `
(∀...)(( bψ)n → ⊥), thus (∀...)(( bψ)n → ⊥) ∈ Th(B1,M1) = Th(B2,M2) (because

(B1,M1) ≡ (B2,M2)) and consequently, ⊥ ∈ Th(B2,M2), which is absurd.

Now let Ψ = EDIAG0(B1,M1). It is easy to check that Ψ is a directed set: given

α, β ∈ Ψ , we show that α ∨ β ∈ Ψ . Assume the contrary, if α ∨ β ∈ EDIAG0(B1,M1),

using the fact that B1 is an L-chain, we have that either α → β ∈ EDIAG0(B1,M1)

or β → α ∈ EDIAG0(B1,M1). Then, since L is a core fuzzy logic, by Theorem 2, we

2 Our example is inspired in one used by F. Montagna in [Mo06].
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will have either that α ∈ EDIAG0(B1,M1) or β ∈ EDIAG0(B1,M1), which is absurd

because α, β ∈ Ψ .

We show now that T0 6` Ψ . Otherwise, if for some α ∈ Ψ , T0 ` α, since the set

EDIAG0(B1,M1) is closed under conjunction and the proof is finitary, there is ψ ∈
EDIAG0(B1,M1) such that EDIAG0(B2,M2), ψ ` α. Then, by the same kind of argu-

ment we used to show that T0 is consistent, we would obtain that α ∈ EDIAG0(B1,M1),

which is absurd.

Then, by Corollary 27, there is a linear doubly Henkin theory T ⊇ T0 in a predicate

language Γ ′ ⊇ Γ such that T 6` Ψ and an elementary mapping (g, f) from (B1,M1)

into CM(T ), with g and f one-to-one. Moreover, since CM(T ) is also a model of

EDIAG0(B2,M2), by Corollary 17, (B2,M2) is elementarily mapped into CM(T ).

Finally, by Lemma 23, LindT is an L-chain.

By the analogue of Corollary 27 for ∆-core fuzzy logics, if we substitute in the first

line of the last paragraph of the previous proof the expression ‘linear doubly Henkin

theory’ by ‘linear Henkin theory’, then Theorem 31 holds also for ∆-core fuzzy logics.

Remark that Theorem 31 can not be generalized to arbitrary structures. If we take

the structures of the counterexample to Conjectures 1 and 2 of Section 7, we have

([0, 1]Π,M) ≡ ([0, 1] L,M), but there is not a Γ -structure (A,N) in which both are

elementary mapped.

9 Future Work

Work in progress is devoted to find characterizations of the notion of elementary equiv-

alence using other model-theoretic constructions such as ultraproducts. In our future

research we plan to analise the relationship of our study with other approaches, for

instance the one presented in [NoPerMo99], where a notion of elementary equivalent

models in a degree d was introduced (cf. Definition 4.33).
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