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DARBOUX INTEGRABILITY AND ALGEBRAIC LIMIT CYCLES FOR
A CLASS OF POLYNOMIAL DIFFERENTIAL SYSTEMS
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ABSTRACT. This paper deals with the existence of Darboux first integrals for the planar
polynomial differential systems @ = Az — y + Pot1(z,y) + Fon(z,9), ¥ = 2 + Ay +
Qn+1(z,y)+yFon(z,y), where P;(z,y), Q:(x,y) and F;(z,y) are homogeneous polynomials
of degree i. Inside this class we identify some new Darboux integrable systems having
either a focus or a center at the origin. For such Darboux integrable systems having
degrees 5 and 9 we give the explicit expressions of their algebraic limit cycles. For the
systems having degrees 3, 5, 7 and 9 we present necessary and sufficient conditions for

being Darboux integrable.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

There exist three main open problems in the qualitative theory of real planar differential
systems, the distinction between a center and a focus, the determination of the number of
limit cycles and their distribution, and the determination of its integrability. The impor-
tance for searching first integrals of a given system was already noted by Poincaré [24] in his
discussion on a method to obtain polynomial or rational first integrals. One of the classical
tools in the classification of all trajectories of a dynamical system is to find first integrals.
In [13, 14] the authors characterized a large classes of polynomial differential systems in
terms of the existence of Darboux first integrals. In this paper we will extend the results

of [13, 14] to a new class of polynomial differential systems.

We study the following systems

dx .
— =i =Mr —y+ Poy1(z,y) + xFon(x,y) := P(z,y),
(1) fft
y .
oY=zt XY + Qnti1(z,y) + yFon(z,y) == Q(z,y),

where P;(x,y), Qi(z,y) and F;(x,y) are homogeneous polynomials of degree i in the vari-
ables x and y. These systems have a focus at the origin if A # 0, and have either a center
or a focus if A = 0. Recall that a center is a singular point having a neighborhood filled of
periodic orbits, and that a focus is a singular point having a neighborhood where all the
orbits spiral either in forward or in backward time to it. This work will characterize some

new class of Darboux integrable systems.
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Taking polar coordinates (r,6) via x = rcosf and y = rsin 6, system (1) becomes

(2) = Ar+ f(O)r" T+ A0, 0 =1+ g(0)r,
where
f(@) = cosOP, 1(cosf,sinf) + sin0Q,+1(cosb,sinb),
g(0) = cosOQn+1(cosh,sinf) —sinOP,,11(cosb,sinb),
h(0) = Fy,(cosf,sinb).

We remark that f(6), g(f) and h(f) are homogeneous trigonometric polynomials of degree
n+ 2, n+ 2 and 2n, respectively. In the region W = {(r,0) : 1 + ¢g(0)r™ > 0}, system (2)
can be written as the differential equation
(3) dr _ Ar+ F(@)r™tt 4+ h(f)r2ntl
g 1+ g(0)rm
It can be transformed to the Abel differential equation
d
” =5 =n (h(0) = £(©)g(6) + Ag*(8)) p* + (nf(6) — g'(6) — 2nAg(0)) p + nAp
= A(0)p® + B(0)p* + Cp,

via the diffeomorphism

(5) p=r"/(L+gO)"), (r,0)cW

As far as we know Cherkas [3] is the first one to use this transformation. The differential
equation (4) appeared in the Abel’s studies on the theory of elliptic functions (for more
details on Abel differential equations, see for instance [2, 8, 15, 10]).

In system (1), if we take P,y1(x,y) = xFy(z,y) and Qny1(x,y) = yFo(z,y), system
(2) has g(€) = 0. These planar systems whose angular speed is constant are usually called
rigid or uniformly isochronous (see e.g. [11]). Of course, for these differential systems all
their centers are isochronous, see e.g. [7, 26]. Giné and Llibre [14] have studied the system
with ¢g(#) = 0 and characterized its Darboux integrability. If we take Fy,(x,y) = 0 in
system (1), the system has homogeneous nonlinearities. The Darboux integrability of these
systems was studied in [13], and in [17, 18] the existence of limit cycles was analyzed.

Our system can have g(f) and h(f) both non—vanishing. Also as those in [13, 14] our
system (1) can have Darboux first integrals and algebraic limit cycles.

We shall consider the Abel differential equation (4) defined on the cylinder (p,6) €
R x S', where R is the field of real numbers, and S* is the unit circle. Of course only the
orbits of the half-cylinder p > 0 can come from the ones of system (1). Note that the origin
of system (1) plays the role of the periodic orbit p = 0 for the Abel differential equation

(4).

We say that all polynomial differential systems of form (1) define a subclass J if and
only if A(f) and B(0) satisfy

(6) A'(0)B(0) — A0)B'(0) = aB3(0) — A()B(6)C
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for some a € R and C' = nA. In this paper we shall prove that each polynomial differential
system (1) in the subclass J has a Darboux first integral, and show by examples that some
of them can have one or two algebraic limit cycles.

Denote by
0 0

the vector field associated to system (1). Let ¥ be the set of some special orbits of system
(1) such that U C R?\Y is open. System (1) is smooth (or analytic) integrable on U if there
exists a nonconstant smooth (or analytic) function H : U — R, called a first integral of the
system on U, which is constant on all solution curves (z(t),y(t)) of system (1) on U; i.e.
H(z(t),y(t)) = constant for all values of ¢ for which the solution is defined on U. Clearly
H is a smooth first integral of system (1) on U if and only if YH =0 on U.

We say that a C* function R : U — R with & > 1, not identically null in U, is an
integrating factor of system (1) in U if O(RP)/0x = —0(RQ)/dy. In this case the first
integral H associated to this integrating factor R is given by

Hw,y) = = [ Rl p)P(e,y) dy+ £(o),
satisfying 0H/0x = RQ. Then & = RP = —0H /0y and y = RQ = 0H /0.

The following result, due to Giacomini et al [12], is very useful in studying the existence

or nonexistence of limit cycles.

Theorem 1. Let (P, Q) be a C' vector field defined in the open subset U of R?. Let V (x,y)
be a solution of the linear partial differential equation

ov ov oP 0Q
Pel 4l = (24 %%

@ 89:+Q8y <8x+8y>v’

defined in U. If v is a limit cycle of (P, Q) contained in U, then 7 is contained in {(x,y) €

U:V(z,y) =0}.

A nonconstant C* function V : U — R with k > 1 satisfying (7) is called an inverse
integrating factor of the vector field X in U. The expression div(X) = div(P, Q) = OP/Jz+
0Q /0y is called divergence of system (1). The function R = 1/V defines in U \{V = 0} an
integrating factor of system (1) which allows to determine a first integral for system (1) in

U\{V =0} (see e.g. [5, 1]).

A function of the form f ... f;‘p(exp(hl/gl))“l ... (exp(hm/gm) )P, where the poly-
nomials f; are irreducible in C[z,y] for i = 1,...,p, and the polynomials g; and h; are
coprime in Clz,y| for j = 1,...,m, and the \; and p; are complex numbers, is called a
Darboux function. System (1) is called Darboux integrable if the system has a first integral
or an integrating factor which is a Darboux function (see e.g. [20, 29]).

Our main results are the following

Theorem 2. For system (1) belonging to J the following statements hold.
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(a) If X # 0, a # 0 and A(0)B(0) # 0, then the origin is a focus and the system has
the Darbouz first integral H(z,y) given by

pexp(—nAb) exp <_ \/17_1 arctan %ﬁ(g)) if a> !

JPED)B50) 1 pAW0)[B0) T a :

pB(6) exp(—nA6) exp 520y ifa=1

H(p,0) = B(9) +2pA(0) :
—1+1/v/1—4a)/2

pexp(—nAd) ‘mjL 1+ 2PA(9)/B(9)‘( / ' fa< :

if a< -

14+1/+/1—4a)/2 ’

‘m_l—QpA(Q)/B(Q)‘(—'_/\/i)/ 1

through the changes of variables x = rcos8, y = rsin@ and the transformation (5).

(b) If X # 0 and A(0) = 0 or B(8) = 0, but A(0) and B(0) do not vanish simultaneously,
then the origin is a focus and the system has the Darboux first integral H(z,y)
obtained from

exp(nA0)p~! + / exp(nA)B(6)d8  if A(6) —
H(p,0) =
exp(2nA0)p~2 + 2 / exp(2nA)A(A)dd if B(6) =0,

through the changes of variables x = rcos@, y = rsinf and the transformation (5).

(¢) If X # 0 and A(0) = B(0) = 0, then the origin is a focus and the system has the
Darbouz first integral H(x,y) obtained from H(p,0) = pexp(—nAf).

(d) If A =0, then the origin is a center. Moreover the system has an explicit rational
first integral if one of the following conditions holds.
(d1) A(0) =0 and B(f) =0;

(da) A(8) =0, B(0) # 0 and [;™ B(8)d0 = 0;

(d3) B(0) =0, A(0) # 0 and [ A(0)d0 = 0;

(dg) A(0)B(0) # 0, and the parameter a given in (6) satisfies a < 1/4, a # 0, and
V1 —4a rational.

We remark that the case A # 0, a # 0 and A(#)B(#) = 0 is contained in statement (b),

which can be seen from equation (6). Also if A # 0 and a = 0, we can prove that system
(2) belongs to the subclass J if and only if A(f) = 0 or B(#) = 0. This case belongs to

statement (b), too. Theorem 2 will be proved in Section 2.

A limit cycle of system (1) is a periodic orbit isolated in the set of all periodic orbits

of system (1). We say that a limit cycle is algebraic if it is contained in an algebraic curve
(see for instance, [27, 13]).

Using Theorems 1 and 2, the following corollary follows easily from the fact that

V(p,0) = p(p®A*(9)/B*(6) + pA(6)/B(6) + a)
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is an inverse integrating factor of the Abel differential equation (4) in the subclass J with
A # 0 and A(6)B(6) # 0.

Corollary 3. If n is even and a < 1/4 system (1) in the subclass J with A # 0 and
A(0)B(0) # 0 can have at most two limit cycles in the region 6 > 0, which are algebraic (if
exist). Moreover there exist examples showing that some of these systems can have 1 or 2

limit cycles.

We now apply our theory to characterize Darboux integrable systems of form (1) with
n=1234.

System (1) with n =1 is of the form

i = —y+ Mz + Mz + Aozy + A3y? + 2(A\rz? + Aszy + Aoy?),

(8)
U =2+ Xy + Mx? + Aszy + Aey? + y(Arz? + Aszy + Agy?),

which is a projective quadratic system (see e.g. [19, 22, 28]) because extended to the
real projective plane RP? continues being quadratic, where \;, i = 0,--- ,9, are arbitrary
constants. System (8) for A3 = Ay = 0, A1 = A5 and Ay = A\¢ was studied by Collins
in [6]. The Darboux integrability of system (8) was studied in [14] under the condition
A3 = A =0, Ay = A5 and A2 = Xg, and in [13] under the condition \; = Ag = A\g = 0. In
Corollary 4 of Section 3 we provide new classes of Darboux integrable systems of form (8).
In Corollary 9 of Appendix A we provide the necessary and sufficient conditions in order
that system (8) with A3 = Ay = 0 be in the subclass J.

System (1) with n = 2 is of the form

&= —y+ oz + Mz + Aox?y + Agzy? + Mgy

+x(Xozt + Moz3y + A1122y? + A2y + Aizy?),
§ =+ Aoy + As® + Aoy + Adray® + Asy®

+y(Aoz? + Moy + Ana?y? + Aoxy® + Misy?),

where A;, i = 0,---,13, are arbitrary constants. For Ay = A5 = 0, \1 = Ag, A2 = A7 and
A3 = Ag, the system has a Darboux first integral [14], and its origin is a center [26]. Systems
(9) with Ag = - -+ = A;3 = 0 have also Darboux first integrals [13]. In Corollary 5 of Section
3 we provide new subclasses of Darboux integrable systems of form (9). In Proposition 6 of
Section 4 we present the explicit expressions of the algebraic limit cycles contained in the
region 6 > 0 of these systems with Ay = A5 = 0. In Corollary 10 of Appendix A we provide
the necessary and sufficient conditions in order that system (9) with Ay = A5 = 0 be in the
subclass J.
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System (1) with n = 3 can be written in
T = —y+ Xox + Azt + >\2:1C3y + A3x2y2 + )\4a:y3 + /\5y4
+2(A112° + 22y + Aiszty? + Ay + Aisz?yt + Asry® + Ai7y®),
y =+ )\(]y + )\6174 + )\7:1:3y + )\8£L‘2y2 + )\9$y3 + A10y4
+y(A1z® + M2’y + Misaty? + Aua®y® + syt + Aszy® + Airy®),

(10)

where A\;, i =0,---, 17, are arbitrary constants. In Corollary 11 of Appendix A we provide
the necessary and sufficient conditions in order that system (10) with A5 = A¢ = 0 be in
the subclass J.

System (1) with n = 4 can be written as
(11)
= —y+ Aoz + M2’ + Aoxty + A3x3y? + M2y + Asay? + A6y + 2(A328
FA14z7y + A152%9% + AgzPyd + Aratyt + A2y + Aoa?y® + Aoozy” + Aa13®),
U=+ Aoy + Ma® + Aszty + Aoz3y? + Aio2?y® + Aizy? + Aay® + y(Aiza®
+ 1427y + A520y% 4+ Mez®y? + Araty? + Aisz®y® + Moz + Aaozy” + Aa1y®),
where \;, ¢ = 0,---,21, are arbitrary constants. In Proposition 8 of Section 4 we present
the explicit expressions of the algebraic limit cycles contained in the region 6 > 0 of system

(11) with A\¢ = A7 = 0. In Corollary 12 of Appendix A we obtain the necessary and sufficient
conditions in order that system (11) with A¢ = A7 = 0 be in the subclass J.

The rest of this paper is organized as follows. Section 2 is dedicated to prove Theorem
2. In Section 3 we present some new classes of Darboux integrable systems of form (8)
and (9) belonging to the subclass [J. We give the explicit expressions of the algebraic limit
cycles contained in the region 6 > 0 for quintic and nine degree systems having a Darboux
first integral in Section 4. Finally, in Appendix A we present the necessary and sufficient
conditions for systems (8), (9), (10) and (11) having ¢g(#) = 0 to be in the subclass 7.

2. PROOF OF THEOREM 2

In this section we prove Theorem 2. The main idea follows from [13, 14].

(a) Following the case (d) of Abel differential equation studied in [15], we take the change
of variables (p,0) — (n,&) defined by p = u(0)n(§), where u(f) = exp(f nAdf) and & =
Ju(0)B(6)d. By this transformation the Abel differential equation (4) can be written as

(12) (&) = 9O + (),
where ¢g(§) = u(0)A(0)/B(0) and ' = d/d§.

Taking the change & — ¢ as a new independent variable via & = —1/(tn(&)), where
"= d/dt is the derivative with respect to t, equation (12) becomes

(13) 126" (t) + g(£(1)) = 0.
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This nonlinear ordinary differential equation is a celebrated Euler differential equation if we
take the particular case that g(§) = a&, where a is an arbitrary constant. Then, equation
(13) has the characteristic equation k? — k 4+ a = 0. Therefore its general solution is

£(t) =

CivVi+Cyvilnt if a=1/4,
Cythr + Cyth? if a+#1/4,

where k1 and ko are the roots of the characteristic equation.

We note that g(§) = a& with a # 0 means

(14) exp(nA0)A(0)/B(0) = a/exp(n/\G)B(Q) dé,
or equivalently derivating (14) with respect to 6 we get
d A0) nAA(0)

which is equivalent to condition (6). Finally returning to the variables (p,f) and taking
into account that the roots k; and ks can be real or complex, we obtain the first integrals

of statement (a) according to the values of a.

Now we shall prove that the systems of statement (a) are Darboux integrable. For
doing that it is sufficient to show that all the terms that appear in the first integral of those
systems are of the form fl’\1 e f,§\ ? where the f;’s are polynomials in C[z,y| and the \;’s

are complex numbers. First we have that
exp(—nAf) = (exp(2iarctan(sin 0/ cos 9)))”’\1/2 = (cosf +isin 0)”’\1/2(005«9 —isin 0)_")‘1/2,

where we have used the fact (cos §+isin 6)(cos —isin#)~! = (cos #+isin #)2. If among the
exponential factors of systems (2) a complex conjugate pair exp(h/g) and exp(h/g) occurs,
the first integral has a real factor of the form

(exp(h/9))" (exp(i/3))" = exp (2Re(uh/g))

We recall that for f € C[x,y], if f = 0 is an invariant algebraic curve of a real polynomial
differential system, then its complex conjugate f = 0 is also an invariant algebraic curve
(see e.g. [5, 21]). Therefore if among the invariant algebraic curves of systems (1) a complex
conjugate pair f = 0 and f = 0 occurs, then the first integral has a factor of the form f “?ﬁ,

which is the (multi-valued) real function

f"fﬁ = [(Ref)2 + (Imf)Q]Re“ exp (—QImu arctan (EE;)) )

On the other hand using p = 7" /[1 + g(0)r"] it follows that

P 20A(0) r" 4 (B(0) + B(0)g(0)r™ + 2r" A(0))
= T By ~ P B(0) (1 + g(0)r)

is a rational function in cartesian coordinates because A(6) consists of the homogeneous
trigonometric polynomials of degree 2n and 2n+4 in cosf and sin 0, and B(#) and g(6) are
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homogeneous of degree n + 2 in cosf# and sin . Hence, taking into account these relations
the first integral for a > 1/4 is given by the Darboux function

H(p,0) = pexp(—n)0) fUf",

where Ref = F, Imf = v/4a — 1, Repy = —1/2 and Imp = 1/(2v/4a — 1). The first integral
for a = 1/4 is the Darboux function

H(p,0) = pexp(—nAf)exp(1/F)/F.
The first integral for a < 1/4 and a # 0 is the Darboux function
H(p,0) = pexp(—nA)|V1 —4da + F|F*|v/1 — 4a — F|#2.

where p; = (-1 +1/y/1—4a)/2 and pz = —(1 4 1/v/1 — 4a)/2. This completes the proof
of statement (a).

(b) If A(f) = 0 and B(#) # 0, or A(f) # 0 and B(#) = 0, the Abel differential equation
(4) is the Bernoulli one dp/df = B(0)p* + nAp, or dp/df = A(0)p> + nAp. Solving these
Bernoulli equations we get the first integrals of statement (b). Systems (1) of statement (b)
are Darboux integrable because their first integrals are obtained by integrating elementary
functions (for more details see [25]). Consequently these systems have a Darboux first inte-
gral taking into account that the integrals which appear in statement (b) can be computed
using recurrent formulas (see for instance [23]).

(c) If A # 0 and A(0) = B(#) = 0, the Abel differential equation (4) is the linear differential
equation dp/df = nAp. Solving this linear equation we get the first integrals of statement
(c). Systems (1) of statement (c) are also Darboux integrable because their first integrals
are obtained by integrating elementary functions.

(d) If X = 0 systems (1) belonging to the subclass J have the first integrals H(x,y) obtained
from the expressions of H(p,#) in statements (a) and (b) with A = 0. The first integrals
H(p,0) with A = 0 of (a) and (b) are all periodic of period 27. So the origin is a center.
Moreover from the Poincaré theorem [24] and the fact that the origin is a linear center,
the system has a local analytic first integrals in a neighborhood of the origin. Usually we
cannot compute this local analytic first integral.

If B(#) = A(8) = 0, then system (4) has the first integral p. Consequently system
(2) with A = 0 has the first integral Hy = 72" /(1 + g(0)r™)%. Going back to the cartesian
coordinates, it is a rational first integral of (1) because g(6) is a homogeneous trigonometric
polynomial of degree n + 2 in cos@ and sin§. Statement (d;) follows.

If A(f) = 0 and B(#) # 0, then system (4) has the first integral Ha(p,0) = 1/p +
J B(6)df. The assumption f027r B(0)d# = 0 implies that (Hz(p,))? is a rational function
in cartesian coordinates. We note that if n is even, so is Ha(p,6). Hence system (1) has a
rational first integral and consequently statement (dz) follows if A(f) = 0 and B(6) # 0.

If B(A) = 0 and A(f) # 0, then system (4) has the first integral Hz(p,0) = 1/p* +
2 [ A()df. The assumption [7™ A(#)d# = 0 implies that Hz(p,#) is a rational function
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in cartesian coordinates because p? is rational in the cartesian coordinates and A(#) is a
trigonometric polynomial of even degree in cos# and sin §. Hence system (1) has a rational
first integral and consequently statement (ds3) follows if B(#) = 0 and A(6) # 0.

Finally from the expression of the first integral H(p, ) of statement (a) for a < 1/4,
a # 0 and /1 — 4a rational, we have H?(p,0) = p*|v/1 — 4a+ F|**1|\/T — 4a— F|?*2, where
p1, o and F are defined at the end of the proof of statement (a). Then statement (d4)
follows from the fact that F' is rational in the cartesian coordinates. This completes the

proof of statement (d).

3. DARBOUX INTEGRABILITY OF SYSTEMS (8) AND (9)

The following corollary characterizes partially the Darboux integrability of system (8)
belonging to the subclass J.

Corollary 4. System (8) with Ao # 0 belongs to the subclass J if one of the following
statements holds (we note that A7, Ag and \g can be obtained from condition (6).

(a) If \a =X =0, A3 = =1, A = A1, As = 21, a = (1 + A3)/(4A3), then system (8)
has the Darboux first integral

p(x,y) exp (=g arctan(y/z) — Ag arctan A\o(1 + 2I'(z, y)))

H(z,y) =
VI2(@,y) + Tz, y) + (1+23)/(433)
with
W
T(z,y) = Moo (v8x® 4+ y2ady + v§aty? + 1§23y + 42ty + Afay® +5y°) |
0

p(z,y) = —(@® + %32 /(@ + y*) (1 + Ay) + May?),
where the coefficients v, for i = 0,1,...,6, depend only on vy, and are given in
Appendiz B1.1, and go = 8(92 — 160X + 169A3 — 63 + NG + 26A3)y(x? + Noz? +
Aoy? + dozy — y2) (2% + y? + Mzdy + Mxy? + Ay?).
(b) If Aa = Ay =0, A3 = —A1, g = A1, A5 = 21 and a = 3/16, then system (8) has
the Darbouzx first integral
H(z,y) = p(x,y) exp(—Xo arctan(y/x))|3/2 + 2T (x, y)|"/*[1/2 + 2T (w, y)| %/
with
A
D(z,y) = T;O (9820 + 2%y + Ahaty? + A4y + eyt + by +44y°)
p(z,y) = —(@® + )32/ (@® + y* + hzy® + My + y?),

where 77, fori=0,1,...,6, are given in Appendiz B1.2.
(c1) If M1 =Xd3 =X =X =0, \a = —)\5 and a = 1/4, then system (8) has the Darbouz
first integral

H(z,y) = p(x,y) exp (~Ao arctan(y/x) + 1/(1 + 20(z,y))) (1 + 20 (2, y)) ",
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with
cl,.4,2 1 cl,..2, 4 cl 6)
)

As
I(z,y) = = (v§'a® + vgt ety + it aty? + A5 Py + A5 ety + eyt + A
C

p(z,y) = —(2% + y?) D /(22 + y? + Aszy® + Asz?y),

where ¢, for i = 0,1,...,6, are given in Appendiz B1.3, and go = 16(—300 +
500 — 115X0% 42300 — 3o 4+ M) (22 + y2 + A5y 4+ As22y) (2% + 2 Noa?y — 3 ay? +
2 Xozy? + 3yz? —13).

(c2) If A2 = 3A1, A3 = =A1/4, Ay = —2X1, A5 = \1/4, X6 = \1/2, a = 1/4, then system
(8) has the Darbouz first integral given by H(x,y) of (c1) with

)\
[(z,y) = . (76225 + 2225y + vP2aty? + 1523y3 4+ 15222yt + ey + 45%y5)

c2

plx,y) = 4(x? +y?)3/2) (4(z% + y?) — 10\ zy? — 3%y — 8\z® + My?)

where 7§, for i = 0,1,...,6, are given in Appendiz B1.4, and geo = 8(—1149 +
14183Xg + 21744A3 + 476103 + 109992 — 9702A3 + 114678) (—42? — 4y? + 8 \12° +
10X 2y? + 3Aya? — M\y?) (722 + 602y — 92y? + 160022 + 20\ zy? — 2X00y° — 8y3).

(d) If a =2 =0, A3 = =\, A¢ = A1, A5 = 2A\1 and a = 0, then system (8) has the
Darboux first integral

2 2 A 2 A 3 A 2
H(z,y) = exp ()xo arctan <y)> Ay Ty 313 + Ty +D(z,y) |,
x (22 + y2)¥/

with
22
[(z,y) = ’n : ((—3 + 900 — Ao% + Ao®)x? 4 (30 — 9N? + Ao® — Aot)z?y
d

—(9 = 9o+ 8X0% = Ao + Ao)zy? + (220 — 90® — Ao")y?) |
where gq = ()\04 + 1002 + 9) (932 + y2)3/2.
(e) If Aa =3A1, A3 = —A1, Ay = —2XA1, A5 =0, \¢ = A1 and a = 2/9, then system (8)
has the Darboux first integral
H(z,y) = p(x,y) exp(—Xo arctan(y/x))(4/3 + 2L (z, y))(2/3 + 20(x,y))

with
[(z,y) =

plz,y) = (22 +y2)%%/ (2% + y*) (1 — 2\12) — Aiy(a? — ?))

where ¢, fori = 0,1,...,6, are given in Appendiz B1.5, and g. = 144(—556 +
123X + 573002 — 16X0% + 593X — 107X0° + 80X0%) (=22 — 9% + Mzy — My® +
20123 4 201292) (223 + 2022y + 4Xox3 + doxy? — 2XNoy° — 62y? — ya? — 3).

W

(v62° +152%y + 2§ty + 525y + 952yt +fay’ +96y°)

The following corollary characterizes Darboux first integrals of system (9) belonging to
the subclass J.

Corollary 5. System (9) with Ay # 0 belongs to the subclass J if one of the following
statements holds (we note that Ag, - -+, \13 can be obtained from (6)).
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(a) If>\2 = )\3 = )\6 = )\7 = 0, )\4 = )\1, )\5 = —)\1, )\8 = /\1 and a = (1 +)\(2))/(4)\(2)),
then system (9) has the Darboux first integral
p(x,y) exp (—2\g arctan(y/x) — arctan (1 + 2T'(x, y)))

VI2(@,y) + Tz, y) + (1+23)/(433)

H(xay) =

A1
(n§2® +naTy + nga®y® + ngxy’ + nfatyt +ngaty®

a

+n3a?y® +nfwy” + niy®)
p(z,y) = — (22 + 127 /(=22 — v + Azt + Ayt + Ayad — \yda),
where n, for i = 0,1,...,8, are given in Appendiz B2.1, and h, = 64>\03(36 +
72X\ + 23002 + 460> 44X + 8X0°) (3x? — 622y + 3y? — 623y + 62> + 4hgpa +
4oyt + Aox3y — Aozy®) (—2? — % + M2t + Myt + My — Ayda).
() If a=XA3 =X =A7 =0, Ay = —A1, A\s = A1, A\s = A\ and a = 1/3, then system
(9) has the Darbouz first integral
p(x,y) exp (—2\g arctan(y/z) — arctan (1 + 2I'(x, y)))

H(x,y) = )
o) V%) + T y) + 173
with
W
Tay) =~ (b + nbaTy + nbaSy? + nady® + mhaty? + nha®yd
2%y’ + abey” + byt

p(z,y) = (2® + y2)2 J(@ + y? + Mt + yt — M2ty + May?),

where né’, fori =0,1,...,8, are given in Appendix B2.2, and h, = 48\y(—36 +
7200 — 23002 +46X0° — 4Xo? + 8XD) (22 + 92 + Mzt 4+ Myt — Mya® + A\ylx) (=32t +
62%y% — 3y* — 6yx® + 63z + 4hoxt + Aoyt — 4oy + ANozy?).
() If a =X =Xy =X =0, A3 = =\, \s = =1, A5 = A1 and a = 1/4, then system

(9) has the Darbouz first integral
H(z,y) = p(x,y) exp (—2Xo arctan(y/x) + 1/(1 + 2T(x,y))) (1 + 2T (z,y)) ",

with

C 3,0

)\
P(wy) = = (n§a® + néa Ty + ngaly? 4+ ntady® + naty? + ngady

(&
5y’ + nfry” + ngy®)
p(z,y) = (@2 + %)%/ (22 + 12 + ot + Myt — My + AigP)
where 1§, fori = 0,1,...,8, are given in Appendiz B2.3, and h. = 16\o(—648 —
531\ — 122102 — 111900 — 6100 — 684N0° +42400% — 160707 + 112X0%) (22 + 42 +
Mt + Ayt — Mady + Aay?) (=324 + 822y? — y* — 6ya + 63z + 4hoxt + Aoyt —
4INgz3y + dNozy?).
(d) [f)\g == )\7 == 0, )\3 - )\1, )\4 == —)\1, )\5 == )\1, )\6 - )\1, )\8 == —)\1 and a = 2/9, then
system (9) has the Darboux first integral

H(z,y) = p(x,y) exp(—2Ao arctan(y/x))(4/3 + 20 (z,y))(2/3 + 2L (z,y)) >,
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with

)\
P(a,y) = 7~ (nda® + ndaTy + nda®y? + ndady? + nfaty! + nadyd

+ 12%y° + nilay” + )
pla,y) = (22 + 37" /(22 + 12 — 202® + it + Myh),

where 77?7 fori =0,1,...,8, are given in Appendiz B2.4, and hgq = 288X\y(135 —
10350 + 192002 — 44300 — 131 00* +578X0° — 152005 +392 \o” — 3200% +6410?) (22 +
22 2+ izt Ayt (—2t =52y +- 2yt -3y 4+ 3ydr — 4y e g+ 2t N+ 200y ?).

(e) If a=XA3=X=A7 =0, \y = =\, A5 = A\, A\g = =\ and a = 0, then system
(9) has the Darbouz first integral

2 2 4 3 3 4
2+ y° + M(x* — 2%y — 2y’ +
H(z,y) = exp (2)\g arctan (y/z)) y 1 y2 v +y) + D (z,y) |,
(z2 +y?)
with
T _ —A1 e 4 e..3 e 2. 2 e .3 e 4
(z,y) = nix” +n3r’y + +n5rty” + njzy” +n5y° )

2 (4 + 5X0% + )\04) (2 + y2)2

where 1§ = 15—4Xg+19X0% — Ao +4X0?, 0§ = —244+200— 22007 +2X00> —4\o?, 15 =
646X0%, 7 = —24— 200 — 22002 — 270> — 4" and n§ = 15+400+1900% + N0 +4M3.

The proofs of Corollaries 4 and 5 follow doing tedious computations using statements
(a) and (b) of Theorem 2 and computer algebra.

4. ALGEBRAIC LIMIT CYCLES OF DARBOUX INTEGRABLE SYSTEMS

The existence and determination of limit cycles constitutes a difficult problem in the
qualitative theory of ordinary differential equations. The following proposition characterizes
a class of polynomial systems having Darboux first integrals and algebraic limit cycles.

Proposition 6. System (1) withn = 2, g(8) = 0 and being in the subclass J can be written
in
(16)

&= —y+ z(Xo + Mz? + Aoy + Agy? + Mzt + Ay + Aex?y? + Arzy® + Asy?),

U =2+ y(Ao + Ax? + Xazy + A3y + Mzt + X523y + Aez?y? + Mrzy® + Asy?t),
where the coefficients \;’s satisfy one of the conditions given in Corollary 10. Then the
following statements hold.

(a) System (16) for a < 1/4 and a # 0 has the algebraic solutions

o) = MM+ 1) (=1 ++/1—4a)/a,
’ Ao(A2 +1))(=1 — T —4a)/a,
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denoted by Ty and Ty respectively, with f(z,y) = (A1 + A3 — Aod2 + 2A3\1)2? +
200(A1 — A3 + AoA2)zy + (A1 + A3 + XoA2 + 203A3)y?, and the Darbouz first integral

—141/+/1—4a)/2
) r2 exp(—2X00) (VI —4a + 1 + 2al'(r, e))( AR
H(r,0) = (1+1/v1-1a)/2 ’
(VI—4a—1-2aI(r,0))

defined on R*\Y, where X = {(0,0)} U {(r,0) : 2al'(r,0) + (1 & /1 — 4a) = 0},

and T'(r,0) = r2((AN3A1 — A3A3 — XoAz2) cos(20) + (M1 Ao — AoAs + A3X2)sin(20) +

ML+ A1+ A3+ A3)/(200 + 2A3). Denote A == (A1 + A3)2 + A3 (4\1 A3 — A\3) and

A= Xo(A1 + A3).

(a1) Ifa=1/4, A >0 and A <0, then system (16) has the limit cycle I'y =T's.

(a2) Ifa <0, A >0 and A < 0 (respectively, A > 0), then system (16) has the limit
cycle T'y (respectively, T'9).

(a3) If0 <a<1/4, A >0 and A <0, then system (16) has the two limit cycles T'y
and I'sy.

(b) Ifa=0, A >0 and A <0, then system (16) has one limit cycle given by f(z,y)+
2(Xo + A3) = 0, and the Darboux first integral H(r,0) = exp(2Xo0) (1 + ['(r,0)) /r?
defined on R2\Y, where ¥ = {(0,0)} U {(r,0) : T(r,0) + 1 = 0}.

(¢) In the other cases system (16) has no limit cycles.

From Theorems 1 and 2 we can obtain the proof of Proposition 6.

The following result due to Chavarriga et al [1] shows the coexistence of limit cycles
and Darboux first integrals of a given system.
Proposition 7. The differential system
(17) t=x—y—ax@®+y?), g=z+y—y@®+y?),

has the algebraic solution x> + y> = 1 as a limit cycle. In polar coordinates the function
H(r,0) = (r? — 1)exp(20)/r?> = C is a Darbouz first integral defined on R®\YX, where
2 ={(0,0)} U{(z,y) : 2* +y* = 1}.

We note that this last result can be got from Proposition 6 by taking a = 0, Ag = 1,
A1 = A3 = —1 and A9 = 0. Some other different examples of this kind can be found in
Christopher [4], Dolov [9], and Kooij and Christopher [16]. In what follows we provide some
new examples having algebraic limit cycles.

Ezample 1 System (16) with a =1/4, \g =2, Ay = =2, Ao = —1/2 and A3 = -3 is

i =2z — y + x(222 + 3y2 — 8) (422 + zy + 6y2)/16,
v =z + 2y + y(222 + 3y? — 8)(4x? + zy + 6y2)/16.

It has exactly one limit cycle given by 222 4 3y? — 4 = 0.
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Ezample 2 System (16) with a =2/9, \g =2, A1 = =2, A2 = —1/2 and A3 = —3 is
i =2z —y+ x(42? + 2y + 6y?) (222 + 3y% — 9)/18,
v =z + 2y + y(4x? + zy + 6y?)(22% + 3y% — 9)/18.

It has exactly two limit cycles given by 222 + 3y? — 3 = 0 and 222 + 3y® — 6 = 0.

Ezample 3 System (16) with a =0, A\g =2, Ay = =2, Ao = —1/2 and A3 = —3 is
a’c:2x—y—m<2x2+;1‘y+3y2>, y:x+2y—y(2x2+;xy+3y2>.

It has exactly one limit cycle given by 222 4+ 3y? — 2 = 0.

Proposition 8. System (1) withn =4, g(6) = 0 and being in the subclass J can be written

as

i = —y+z(Xo + Azt + 23y + A32?y? + Maxy® + Asyt + Aez® + A2y
FAsz0y? + Moy + Aozty? + A1y’ + Aaz?yS 4+ Aisay” + Aay®),

=2z +yNo + Az? + Aaxdy + A322y? + Mwy® + Asy + Ae2® + M2y
+As20y? + Az + Aozty? + A1a®y® + A2a?y® 4+ Aiszy” + Ay,

(18)

where the coefficients \;’s satisfy one of the conditions given in Corollary 12. Then the
following statements hold.

(a) System (18) for a < 1/4 and a # 0 has the algebraic solutions

4(—=1++V1—4a) (423 +1) (A3 + Xo) /a,
Al { A(—1 — T=da) (AN + 1) (A3 + \o) /a,
denoted by I'y and T'y respectively, where f(x,y) = yax* +y323y + y222y? +y1oy> +
yoyt with the coefficients given by
74 = A3 4 3A1 + 35 — BAoA2 — 3AoAs + 3200201 + 32004\ + 40023 — 80 g,
73 = 4(5A1 — A3 — 3X5 + BAoA2 + 3o + 8AoZA — 42 A3 + 83 Na),
Yo = 2(3A1 + A3 + 3A5 + 302 — 3oy + 4002 N3),
71 = 4(3A1 4+ A3 — BA5 + 3X0A2 + 5o + 4M02 A3 — 8X02 5 + 8Xo3\4),
70 = 3A1 4 A3 + 3X5 + 3X0A2 + Ao + 402 A3 + 3200705 + 8Xo3 M4 + 32001 s,
Moreover for suitable choice of the \;’s, I'1 and I's contain ellipses, and consequently

the system can have two algebraic limit cycles.
(b) For a <1/4 and a # 0 the function in polar coordinates

—141/v/1—4a)/2
14 exp(—4Xo0) (m+ 1+ 2a7(r, 9))< +1/yI=1a)/

<\/1 —4a —1 - 2a~(r, 0))(1+1/ iz

is a Darbouz first integral defined on R*\X, where ¥ = {(0,0)}U {(r,0) : 2a~(r,0)+
(141 —4a) = 0} and v(r,0) = r*[cs cos(40) + s4 sin(40) + co cos(20) + sq sin(26) +

H(r,0)=
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co]/ (8N + 40A3 + 32)3) with

ca = —XoAz + Aods + A2 — Ao As3 4+ Ao As — 40P A + 4P Ay — 4ot A
+4AXIs + 4Nt g,
54 = AoAL — A3 + Aods 4+ AoZha — Ao? A + 403 A1 — 4003 A3 + 4003 N5
—4Xo* A + Aot s,
ca = —4XoAa — AXoAs + 16202 A1 — 1600205 — 4003 Xa — 4X03 s + 1600 N1 — 16X0* X5,
59 = 8XoA1 — 8AoAs 4+ 8X02 Ao + 8X0Z A4 + 8Xo3 A1 — 803 A5 4+ 88Xt Ao + 8Xot s,
co = 3\ + A3+ 3X5 + 15002 A1 + 502 A3 + 152002 A5 4+ 1200% A1 4+ 400t A3 + 1200 \s.

(¢) If a =0, system (18) has the algebraic solution f(z,y) +8 (1 +4M3) (Ao +A3) =0
with f(x,y) given in (a). Furthermore for suitable choice of the \;’s, the algebraic
curve can contain an ellipse and consequently the system can have an algebraic limit
cycle.

(d) For a =0, H(r,0) = exp(4Xo0) (1 +~(r,0)) /r* is a Darbouz first integral defined
on RA\Y, where ¥ = {(0,0)} U {(r,0) : v(r,0) + 1 = 0} and ~(r,0) is given in (b).

The proof of Proposition 8 follows from Theorems 1 and 2.

We note from this last proposition that if a =1/4 or a = 0 there exist systems of form
(18) belonging to the subclass J which have one limit cycle; if a < 1/4 and a # 0 there
exist systems of form (18) belonging to the subclass J which have 1 or 2 limit cycles.

The following examples provide systems (18) having algebraic limit cycles.

Ezample 4 System (18) with a = 1/4, Ao =1, A1 = Ao = Ay = —1, A3 = —4 and \5 = —3,
is

1
i=z—y+—z(@®+y?) (2% + 2y +3y?) (a2 + 42%y? + 3y — 1),

y:w—i—y—i—zy(xz—i—gﬁ) (2% 4+ 2y + 3y?) (2* + 422y? + 3y* — 4).

It has exactly one limit cycle given by (x2 + y2) (w2 + 3y2) =2.
Ezample 5 System (18) with a = 3/16, \o =1, A1 = Ao = Ay = —1, \3 = =4 and A5 = —3
is
1
T=x—y+ Ex(azg—i—yQ) (2% + zy + 3y?) (B2t + 12222 + 9y* — 16),
1
y=x+y+ Ey(azQ +92) (22 + 2y + 3y?) (32t + 122%y% + 9y* — 16) .
It has exactly two limit cycles given by 3(z2 +52)(22 +3y?) = 4 and (22 +y?)(2?+3y?) = 4.
Ezample 6 System (18) witha =0, \o=1, A1 = X=X =—-1, A3 =—4 and \5 = -3 is
:t:x—y—x($2+y2) (:1:2+$y—|—3y2>, y:x+y—y($2+y2) (:1:2+$y—|—3y2>.

It has exactly one limit cycle given by (22 + y?) (z? + 3y?) = 1.
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5. CONCLUSIONS

We have attempted to study the integrability of a class of planar polynomial differential
systems through the Darboux theory of integrability via the Abel differential equations. By
using these Abel differential equations we have obtained a large class of Darboux integrable
planar polynomial differential systems and we provided the explicit expressions of their
first integrals. This shows that the study of the integrability through the Abel differential
equations is very useful.

As we know, it is very difficult to detect the existence of first integrals for a given
polynomial differential system, and is also difficult to obtain the explicit expression of
such a first integral. Applying our general theory to some concrete classes of polynomial
differential systems we have covered some known results, and found some new integrable
systems. Moreover we provided the concrete expressions of their first integrals.

Another main contents of this paper is on the existence of algebraic limit cycles for the
integrable systems. For two classes of integrable polynomial differential systems of degree
5 and 9, using the inverse integrating factors we have obtained the existence and concrete
expressions of their algebraic limit cycles. Such systems having a Darboux first integral
and algebraic limit cycles, some are known, but most are new. The known ones were got
by several authors using different methods as we mentioned in the context.

In short our methods can be used to obtain rich integrable planar polynomial differential
systems, and to get the algebraic limit cycles of these systems.

6. APPENDIX A

System (8) with g(f) = 0 can be written in

= —y+ Az + Mz + Ay + A32% + Mzy + A592),

(19)
=2+ Xy +y(Az + Xy + A3z + Agzy + As92).

The following result provides the necessary and sufficient conditions for system (19) to be
in the subclass J. It was obtained in Corollary 5 of [14] except the case a = 0.

Corollary 9. System (19) belongs to the subclass J if and only if one of the following
statements holds.

(a) If \1 = Ao =0, then a Darboux first integral is given in Theorem 2 (b).

(b) If A3 = Ay = X5 = 0, then a Darboux first integral is given in Theorem 2 (b).

(€) If A3 = adi(Mo—A2)/(1+A3), Ads = a(=A3+ A3 +2 X1 00)a) /(1 +A3), A5 = ada( A1 +
M) /(1 + A2), then a Darboux first integral is given in Theorem 2 (a).

Consequently this cubic system has a focus at the origin and a Darbouz first integral for
Ao # 0; or has a center at the origin and a Darbouz first integral for Ao = 0.
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The following result presents the necessary and sufficient conditions for system (16) to
be in the subclass J.

Corollary 10. System (16) belongs to the subclass J if and only if one of the following
statements holds.

(a) If \1 = Ao = A3 =0, then a Darbouz first integral is given in Theorem 2 (b).
() If \s = X5 = A6 = A7 = A\ = 0, then a Darbouz first integral is given in Theorem
2(b).
(0) If A = adiKr (A1 + A5 = doda + 201 h?),
A5 = aky ()\1)\2 T oAz 4 220002 — 20001 A3 — Aohe? + 4)\02)\1)\2),
X6 = ak; (A12 20105 + A3Z 4 3A0 M A2 — 3AodaAs + A2 A\ + 2)\02)\22),
A7 = akq ()\1)\2 4+ XoA3 + 2X0A1 A3 + )\0)\22 -2 )\0)\32 + 4)\02)\3>\2>,
Ag = al3Ky ()\1 + A3+ Moo + 2)\02)\3> , Ki= 1/(2)\0 + 2)\8),

then a Darbouz first integral is given in Theorem 2 (a).

Consequently this quintic system has a focus at the origin and a Darboux first integral for

Ao # 0; or has a center at the origin and a Darbouz first integral for Ag = 0.

Systems (10) with g(f) = 0 can be written in

&= —y+ (Ao + A2® + Xy + A3xy? + My + A5
+ 62y + Arxty? 4+ As23y® + Nox?yt 4+ Aoxy® + A1y9),

(20)
v =z 4+ yAo+ Mz® + Noz?y + Aszy? + Aay® + Asa® + A2y
+X62%y + Arzty? + As@3y? + Aoz?y* 4+ Aozy® + A1yP),
where \;, for ¢ = 0,---,11 are arbitrary constants. Then we have

Corollary 11. System (20) belongs to the subclass J if and only if one of the following
statements holds.

(a) If \1 = Ay = A3 = Ay = 0, then system (20) has the Darbouz first integral given in
Theorem 2 (b).

(b) If \s = Xg = A7 = Ag = Ag = A9 = A11 = 0, then system (20) has the Darbouz first
integral given in Theorem 2 (b).

(c) If

A5 = MKa(=A2 — 224 + TAoA1 + 22023 — 3X02 A2 + 99N> \1),

A6 = KCa(3A1% — Ao — 22904 + 10X A1 A2 + 60 A1 Mg + 200 X2 A3 + 9 Xg2 A2
—6X0%A A3 — 3202 X% 4+ 183 A1 \a),

A7 = K231 A2 — 3A1 04 — Aads — 2 A304 + 6 A1 % + 10A0 A1 A3 + 3AoA2? 4+ 60 A2\
+15 202 A1 A2 — 9 X2 A1 + 220232 — 9 XoZXad3 + 18 Ao A3 + 9 N3 A2),
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Mg = 22 (A2 + 20103 — 2X0ds — Aa? 4 4Ao A1 Ao + TAoA A + 3X0dads + 4Ag A3y
F6X02 A1 A3 — 6 X0% A2 s — 3202 A32 + 3007 X2% + 9INE A A + I3 A2 N3),

Ao = Ka(2X1 A2 4+ 3A1 A4 + XAz — 3A3hs + 620 A1 A3 + 200022 + 3A0A32 + 10Xg Aoy
F6X00% + 9 X2 A1 A 4+ INoZ Ao Az — 15002 A3 0y + 18 A3 Aoy + 9 N3 A32),

Ao = Ka(2A1A3 + A3% — 3042 + 600 A1 0 + 2002223 + 10X A3A4 + 3A02\32
—9N02A4? + 6002 Xady + 1803 A3)4),

A1 = A2 (903 A + 3 X023 + T Aado + 2 ado + 201 + A3),

with Ko = a/(1+ 1072 +9)}), then system (20) has the Darboux first integral given
in Theorem 2 (a).

Consequently these systems have a focus at the origin and a Darbouz first integral for Ao # 0;

or have a center at the origin and a Darboux first integral for A\g = 0.

The following corollary characterizes the Darboux first integrals of polynomial systems

(18) of degree 9 belonging to the subclass J.

Corollary 12. System (18) belongs to the subclass J if and only if one of the following

statements holds.

(@) If A1 = Xa = A3 = Ay = A5 = 0, then (18) has the Darboux first integral given in
Theorem 2 (b).

(0) If A¢ = A7 = Ag = Xg = A1p = A1 = A2 = A3 = Ay = 0, then (18) has the
Darboux first integral given in Theorem 2 (b).

() If

A6 = MN (3A1 4 A3 4+ 3X5 — BAoAz — 3AoAs + 3200%A1 4+ 4002 A3 — 8X03 A2 + 32004 N1),
A7 = N (3A1 A2 + Aoz + 3XaXs + 2000 A12 — 4 A1 A3 — 120001 A5 — BAgA2?

—3X0A2 A 4 5200Z A1 Aa + 12002 A1\ + 4Xg% Ao A3 + 32 Xp3 N2

—16X03 A1 A3 — 803 A2 + 64X0% A \o),

As = N (6A12 + 55X A3 + 6A1 05 + A32 + 3A3A5 + 2600 A1 A2 — 6A0 A1 A — 9NoAads
—12X0A25 — 3XoA3 A 4 24002 N2 + 48007 A1 A3 + 24007 A1 N5
+2000%X2% + 12002 Ao h g + 400232 4 56003 A1 Ao — 240053 A My
+64001 A1 A3 + 3200% N0 — 24203 Ao )3),

Ao = N(6A1 02 43X Mg 4 2003 4+ 6 Aads + Azhg + 3 A5 + 1200012 + 240001 N3
—20A0A1 A5 + 620 A2% — 11AgAods — 4X0A32 — 12X0A3A5 — 3XoA42 + 36002 A1 )Xo
+52002 A1 A1 + 36002 X2z + 24007 Ao s + 16007 A3 0 + 48003 A1 A3 — 32005 A1 A5
+24003 002 — 32003 A2 Ag — 16003 X324+ 6400 A1 Ay + 64001 N0 03),
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Mo = N(BAZ 4+ TA A3 + 615 + 2032 + TA3A5 + 3A52 + 1500 M1 M2 + 2500 M1 Mg
+10X0A23 — 25X0 X225 — 10AgA3 s — 15X 45 + 28002 A1 A3 4 64002 A1 A5
+1200% 022 + 40002 Ao As + 16202 N32 + 28002 A3 A5 + 12002042 + 40003 A1 \y
+40003 XaX3 — 40003 Ao ds — 403 A3y + 6400 A1 A5 + 64 Mgt Aoy + 32 At A32),

A1 = N(3A1 A2 + 610 + Aadg + 3Xads + 2234 + 645 + 2000 A1 A5 + 1200 A1 A3
+3X0A22 + 110 gAody + 4XoA32 — 2400 X305 — 6 X0 A42 — 1200052 + 24002\ My
+16X02 X3 4 52002 X2 A5 + 36002 A3y + 36 X024 \5 + 16003 A3% + 32005 A1 N5
+32X003 A2 g — 48003 A3 A5 — 24003 M2 + 6400 Ao s + 64001 A3 )4),

A2 = N(3A1A3 + 6X1 05 + A3% 4 5A3\5 + 6257 + 1220 A1 M4 + 3X0 A2 )3 + 60 )5
+9N0A3 s — 26X M5 4 24002 A1 A5 + 12002 Ao g + 4X02A32 + 48002 A3 )5
+2000% A2 + 24002 X524 24003 Xa s + 24003 A3 Ay — 56 X3 Ag )5
+6400% A3 A5 + 32001 \42),

A3 = N (B + Ashg 4 3Xuh5 + 12000105 + 3Xo A2 A + 4Ag A3 s 4+ SAgAs>
—20X0A52 + 12002 X5 + 4% A3 g + 8X03Aa? + 52002 Au s — 320052
+16X03A3)5 + 644 A500%),

Mg = NAs(3A1 + A3 + 35 + 3hoda + 5o + 4002 A3 4+ 8X0> As + 320025 + 3200%\5),

where N' = a/(8\o(1+ 53 +4A3)), then system (18) has the Darbous first integrals

given in Theorem 2 (a).

Consequently this system has a focus at the origin and a Darboux first integral for A\g # 0;

or has a center at the origin and a Darbouz first integral for Ao = 0.

The proof of Corollaries 9, 10, 11 and 12 follows doing tedious computations and using

the condition (6), Theorem 2 and computer algebra.

7. APPENDIX B

B1.1
Y8 = —272 + 800X\ — 1113\% + 462A3 — 206§ — 15675 + 272A8,
78 = —240\g + 996002 — 125503 4 108" + 958)X0° + 1007® — 36007 — 10410%,
v§ = —544 + 9207 + 19102 — 2986X0% + 2203\ — 1448)¢° + 1080X°
—60X07 — 68X% + 104)?,
7§ = —480Ag + 1992007 — 251000> + 952X0% + 6360° + 155270°
—120X0" — 13602 + 208)?,
NS = —272 — 560\g + 37210¢% — 7358)0> + 539200 — 3068X0° + 2020°
—144X7 — 10073 + 312)],
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= —240)\g + 996A3 — 16233 + 148423 — 998A3 + 147675 — 120]
—136)§ + 2083,

= —680Ag + 241722 — 3910A\3 + 261573 — 113673 + 53675
—60A] — 68A5 + 10473.

B1.2

Y8 = —424)0 + 864707 — 829X — 5660% + 852X0° + 267,

b= 1472 4 5504\ — 3544002 — 2204003 + 6473 )% + 131070 + 416°,

vh = 664X + 2648007 — 442100° + 112600 + 222300 — 1144,

78 = —2944 — 768X + 13392002 — 26040)0> + 13714)0% + 1468)0° — 2496,
75 = —5944Ng + 1294470% — 1717100> + 4334X0* + 131400° — 4030,

7} = 4416 — 16512\ + 27752002 — 2422070 + 7817 A% + 1822X0° — 2912)0°,

78 = 184X + 92000% — 2763A3 + 225804 + 51905 — 1196A8.

y

B1.3

7§+ = —150 — 555X 4 140002 — 35X0% 4 8Xo%,

AEL = 2040\ + 244002 — 620 + 18)¢%,

7§ = 4950 4 2295X0 + 1460002 + 1377X0% — 302X0% + 32X00° — 16A°,
A5t = 55207\ — 111270% 4 366810 — 7T00Ao* 4 9670° — 32)¢°,

5T = —4050 4 3855X0 — 2220702 + 21233 — 40410 + 6400 — 16X05,
A = —2040Mg + 244002 — 610 + 18X,

Y5 = 450 — 59500 + 140002 — 25X0% + 2X0™.

Bl.4

762 = 60240 + 1445271\ + 5256826702 + 8199055)0°
+8523988\0* + 3010256\° — 4674048)% + 5867527,

7E2 = —157140 4 2289960 + 6175852102 + 11842296)0> + 9985168 \¢?
+483048)\° — 33221760° + 4400647,

752 = 107136 + 980181\ 4 10252950102 + 18676157 \> + 18868064\0*
+974362400° — 1264036810° + 1549392\,

€2 = 16632 — 3148728\ + 189304102 + 13267920\° + 14822048 )\¢*

—815312X° — 2938368)0° + 403392),7,

752 = 88704 — 2578251\ — 22084182 + 3481117)¢® + 96556360
+634659200° — T277568)0° + 861792)”,
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752 = 63468 — 1869084\ ¢ — 57145482 — 90055210 + 5283376 \o*
—3637624° + 1735680\0°% — 1833607,

752 = —105264 — 408041)\¢ — 3059742)0% — 4299153)\> + 1176488)¢"
—572728\0° — 95952)\% + 9168)¢".

B1.5

v§ = —26324 — 66459\ — 3583602 + 17234)0% + 23650070* + 241277 \¢°
—30308)\0° + 41488)\7,
NE = —45616 — 256148\ — 802842 + 258176X0% + 338332X0% 4 247844)°
—21528X\% + 444967,
7§ = 93492 — 141885) — 157892102 — 62670\0> + 196340X0* + 561919X°
—112884X5 + 91952)¢7,
& = 229024 4 57368\ — 632312702 — 134528)0° + 3535280 — 125816)°
+34128)10% — 3168)¢”,
75 = 105828 + 2712879 — 114100002 — 511698X0> — 136820\¢* 4 27623 )¢°
—50172X0°% + 13360707,
—45616 + 384364\ — 221980192 — 401920 Ao + 356764N* — 435292),°
+101736X0% — 47664),”,
N6 = —13988 + 26457\ + 78804\ — 10174670 — 1058760 + 48549)°
—29228)0% 4 8976

i

B2.1

ng = (3888 + 202500 + 35739N0% + 32424703 + 2671500" + 19834)¢°
+9764X0% + 7096007 + 15360° + 1024),°,

ng = (7776 + 27864\ + 32760702 4 10632X0% + 2325600 + 16992)°
+582400% 4 10816X0" + 102410% + 2048X?,

né = (12312Xg + 56700102 + 5304070> 4 3516X0* 4 21800°
—4464005 4+ 470407 — 512X° 4 1024)°,

ng = (7776 + 27864\ + 32760702 4 10632X00> + 4824)¢* — 19872),°
—5952X05 — 1273607 — 102410% — 2048X¢?,

ng = —T776 — 15876 + 41922192 + 7809610 + 2733010 4 27484)°
+18648)° — 688)\" + 4096\0°,

ng = —T776 — 27864\ — 3276002 — 1063210 — 4824\0" + 19872)¢°
+5952X0% + 12736007 4+ 1024105 + 20487,
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ng = 12312\ + 56700702 + 53040\0> + 3516X0% + 21800\¢°
—4464X00% 4 4704007 — 512X0% + 1024)¢°,

ni = —T776 — 27864\ — 3276010% — 1063219 — 2325610 — 16992)¢°
—5824)0% — 108167 — 10240 — 2048)¢°,

né = 3888 + 20250\ + 3573902 + 32424)0% 4 2671500 + 19834)¢°
976400 + 7096007 + 153600% + 1024 \o°.

B2.2
n8 = —2160 + 11790\ — 21339\¢% + 1656310° — 9435)0"
+621070° — 1252X00° + 936X 7,
n% = 4320 — 14184\ + 21816)0% — 19332X0° + T776\0* — 7T728)\¢°
—32X0% — 9607,
nk = —504)g — 12924102 + 23316X0% 4+ 11400* + 74640° + 688X0% + 2887,
nd = 4320 — 14184Xg + 799270? + 8316X0® — 1056 A\o* + 9936)¢°
—1568X0°% +2112)”,
n% = 4320 4+ 30609 — 38466702 + 31170\ — 14178)0* + 55807¢°
—226400% — 12967,
n8 = +14184\¢ — 7992X0% — 4320 — 8316X0> + 105610 — 9936\°
+156800°% — 21127,
nh = =504\ — 1292402 4 23316X0% + 1140\0* + 74640 + 688X00° + 288)¢7,
7% = 141849 — 21816X\% — 4320 + 19332)0% — 7776\ 4 7728)¢°
+32X0° + 9600,
nb = —2160 + 11790\¢ — 21339702 + 16563X0° — 9435X0% + 6210)0°
—1252X005 + 936"
B2.3

n§ = —864 + 29541\ — 1831)¢% 4 32230)0% + 11103\9" — 40839)¢°
+2779300% — 36652007 + 1823670 — 8704)0” + 3584707,

ng = 5184 — 990X + 54465002 + 28110)0> + 74592)0* + 86883\°
—15230X00% + 55764007 — 3220000% + 10240)° — 716810,

né = 5184 — 40086\ — 61263)9% — 92125 \o® — 123932)¢% — 50616),°
—3760070% + 681607 + 662410% + 2048)° + 35841017,

ng = 5184 + 256050 + 3330002 + 15437 X% — 2298500 — 44499)\¢°
—17700% — 43524007 + 254000° — 13824X0” + 716810,
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n§ = 10368 4 37089\ + 2113802 + 8444670 + 389990 + 10A¢°
+66162X005 — 33864107 + 2375270% — 10752107,
ns = 12708\g + 58113\0? + 72304\0> + 127502)\0* + 76145)\°
+217980\0% + 35452007 — 2565600° — 5184 + 10240)° — 7168017,
ns = —60648)\9 — 87115102 — 129109\> — 150338\¢% — 46624\¢°
—37688\0% 4 944007 + 1728 + 8416X0% + 204810 4 3584117,
n$ = —13887X\g — 56640192 — 50959\0> — 87497 A% — 78937 )"
—T7278X0% — 40364007 + 25288)\% — 5184 — 6656)10° + 716810,
n§ = —2592 — 1476\ — 317492 — 2533419 — 37908\o* — 40795)¢°
+58610% — 2177200" + 14012008 — 5120107 + 3584X,'°.

nd = 2160 — 403200 + 2152080 — 309507 X\o® + 187491 \* — 158277 \¢°
—160464X00° + 144658107 — 139988\® + 107216X0° — 2622400 + 1728001,

nd = —4320 — 10080\ + 342405702 — 799800> 4 127596 \0* 4 85401)°
—188460X0% + 43302)" — 1065720 — 6688”7 — 1732800 — 3008,

ng = —2160 — 2880 + 1166132 + 20787\ + 170757 \o"* — 98394)°
—167312X0% + 29792)7 — 14530410% + 4155200 — 27008100 + 377611,

ng = 2160 + 59040\¢ — 712305707 + 1135929X0® — 585723 )\0* + 629508\¢°
+442974005 — 713132007 + 52812000% — 5030240” + 1108801010 — 77504011,

n% = —4320 + 175680\¢ — 1081809X0% — 26808\o> — 43846210% — 371787 \¢°
+461862X00° + 206398)107280380\° + 258592107 + 356647010 + 48064111,

nd = —84960\ — 352305\0% — 204618)\¢> + 17280 — 34636210 + 208509),°
+15072000°% + 38198)\" + 348372002 — 275200° + 89424100 + 1472) ",

nd = 6480 — 190080\ 4 1172655102 — 714645X00° + 415425)00" — 193884),°
—729924)0% + 673956107 — 517136 A\o® 4+ 46196810 — 10000070 + 80192X01*,

n = 10800 — 154080\ + 391365X0% + 9641130 — 7541100 + 685074)0°
—1788900°% — 537080\¢" + 63888)0% — 434352007 + 349440 — 71488,

nd = 6480 — 17280\ — 2287712 + 84825)0% — 183519\0% — 64038)\°
+133078X0% + 2484X" + 1003360% 4 639847 + 11008100 4 1862401,
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