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Universitat Rovira i Virgili
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Abstract

We investigate under which dynamical conditions the Julia set of a quadratic rational
map is a Sierpiński curve.

1 Introduction

The Sierpiński carpet fractal shown in Figure 1 is one of the best known planar, compact,
connected sets. On the one hand, it is a universal plane continuum in the sense that it
contains a homeomorphic copy of any planar, one-dimensional, compact and connected
set. On the other hand, there is a topological characterization of this set: It was shown
by G. Whyburn ([13]), that any planar set that is compact, connected, locally connected,
nowhere dense, and has the property that any two complementary domains are bounded
by disjoint simple closes curves is homeomorphic to the Sierpiński carpet. Sets with this
property are known as Sierpiński curves.

In recent years, several authors have shown that Sierpiński curves can arise as the
Julia sets of certain holomorphic funcions in a variety of ways. The first example of a
map whose Julia set is a Sierpiński curve was found in 1992 by J. Milnor and T. Lei ([3])
in the family of quadratic rational maps given by z 7→ a(z + 1/z) + b. More recently,
other authors have shown that the Julia sets of a rational map of arbitrary degree can be
a Sierpiński curve ([1, 12]). For example, in [1], Sierpiński curve Julia sets were shown to
occur in the family z 7→ zn +λ/zd for some values of λ, and, in [12], for the rational map
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Figure 1: The Sierpiński carpet fractal. The black region correspond the the limit set
by taking out the corresponding central white squares.

z 7→ t(1+(4/27)z3/(1−z)) also for some values of t. However, it is not just rational maps
that can have Sierpiński curve Julia sets, as it was proven by S. Morosawa in [6] that
entire transcendental maps in the family z 7→ aea(z − (1 − a))ez, a > 1 have Sierpiński
curve Julia sets. In Figure 2 we show four examples of Sierpiński curve Julia sets, one in
each of the families above.

In this paper we present a more systematic approach to the problem of existence of
Sierpiński curves as Julia sets of rational maps. In most of the cases mentioned above,
the functions at hand have a superattracting basin of attraction, which captures all of
the existing critical points. Our goal is to find dynamical conditions under which we can
assure that the Julia set of a certain rational map is a Sierpiński curve.

To find completely general conditions for all rational maps is a long term program.
In this paper we restrict to rational maps of degree two which have a (super)attracting
periodic orbit, i.e., those which belong to Pern(λ) for some |λ| < 1, the multiplier of the
(super)attracting periodic orbit. We cannot even characterize all of those, but we cover
mainly all the hyperbolic cases and most of the critically finite ones. The best results we
obtain are for period n ≤ 3 but we also give some topological conditions which are valid
for higher periods.

Quadratic rational maps has been studied extensively by M.Rees [8, 9, 10] and J.Milnor
[3], among others. The space of all quadratic rational maps from the Riemann sphere to
itself can be parametrized using 5 complex parameters. However, the space consisting of
all conformal conjugacy classes is biholomorphic to the space C2 [3] and will be denoted
by M2.

Following [8], hyperbolic maps in M2 can be classified into four types A, B, C and
D, according to the behaviour of their two critical points: Adjacent (type A), Bitransitive
(type B), Capture (type C) and Disjoint (type D). In the Adjacent type, both critical
points belong to the same Fatou component; in the Bitransitive case each critical point
belongs to a different Fatou component, however these two Fatou components are part of
the same immediate basin of an attracting cycle; in the Capture type each critical point
belongs to a different Fatou component, however only one critical point belongs to the
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(a) Milnor and Tan Lei’s example

−0.138115091(z + 1/z)− 0.303108805.

(b) Devaney’s example z2 − 1
16z2

.

(c) Steinmetz’s example 1 + (4/27)z3/(1− z). (d) Morosawa’s example 1.1(ez(z − 1) + 1).

Figure 2: Four examples of Sierpiński curve Julia sets.

immediate basin of a periodic point and the orbit of the other critical point eventually
falls into this immediate basin; and finally, in the Disjoint type, the two critical points
belong to the attracting basin of two disjoint attracting cycles.

In many of our statements we restrict to one-dimensional complex slices ofM2 and in
particular to Pern(0), for n ≥ 1. These slices contain all the conformal conjugacy classes
of maps with a periodic critical orbit of period n. The first slice, Per1(0), consists of all
quadratic rational maps having a fixed critical point, which must be superattracting. By
sending this point to infinity and the other critical point to 0, we see that all rational
maps in this slice are conformally conjugate to a quadratic polynomial of the form Qc(z) =
z2 +c. Consequently, there are no Sierpiński curve Julia sets in this slice, since any Fatou
component must share boundary points with the basin of infinity.

There are several reasons for which restricting in some cases to Pern(0) is not too
much of a loss of generality. Indeed, if f is a hyperbolic rational map of degree two not of
type A (we will see later that this is not a relevant restriction), it follows from a Theorem
of M. Rees (see Theorem 2.3) that the hyperbolic component H which contains f has a
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(a) Parameter plane of z2 + c (b) Parameter plane of
az−a2/2

z2

(c) Parameter plane of
(z−1)(z−a/(2−a))

z2
(d) Parameter plane of

(z−a)(z−(2a−1)/(a−1))

z2

Figure 3: The slices Per1(0),Per2(0),Per3(0) and Per4(0)

unique center f0, i.e., a map for which all attracting cycles are actually superattracting.
In other words, H must intersect Pern(0) for some n ≥ 1, and this intersection is actually
a disc. Moreover, by [2], all maps in H are conjugate to f0 in a neighborhood of their
Julia set. Hence the Julia set of f0 ∈ Pern(0) is a Sierpiński curve if and only if the Julia
set of all maps f ∈ H are Sierpiński curves.

Something similar occurs for maps in Pern(λ) with |λ| < 1. Such maps can be contin-
uosly deformed to a map f0 ∈ Pern(0), by changing the multiplier of the periodic orbit
to tλ with t ∈ [0, 1]. In this path, all maps are quasiconformally conjugate to each other
in a neighborhood of their Julia sets, so the same considerations as above apply in this
case.

We now introduce some terminology, in order to state the main results in this paper.
Suppose f ∈ Pern(λ) for |λ| < 1 and n ≥ 1. We denote by U0, U1, · · ·Un−1 the Fatou
components which form the immediate basin of the attracting cycle. We shall see that
many of the topological properties which characterize Sierpiński curves are easy to obtain
when the objects are Julia sets of rational maps. The remaining important object to
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study is the intersection between boundaries of Fatou components, and in particular,
between those in the immediate basin. We denote by

Kd = {z ∈ C | z ∈ ∂Ui0 ∩ ∂Ui1 ∩ · · · ∩ ∂Uid−1
, ij ∈ {0, 1, · · · , n− 1}, 0 ≤ j ≤ d− 1}.

The following theorem discards some classes of rational maps as candidates for having
Sierpiński curves Julia sets. In other cases, it reduces the number of boundary intersec-
tions to check. Some of the items are straightforward while others are not.

Theorem A. Let f ∈M2.

(a) If f is hyperbolic of type A then both critical orbits converge to an attracting fixed
point and J(f) is totally disconnected. Therefore J(f) is not a Sierpiński curve.

(b) If f ∈ Per1(λ) with |λ| < 1 then J(f) is not a Sierpiński curve.

(c) If f ∈ Per2(λ) with |λ| < 1 and f is hyperbolic or critically finite, then J(f) is not
a Sierpiński curve.

(d) If f ∈ Pern(λ) with |λ| < 1, for n = 3, 4 and f is of type B (Bitransitive) then J(f)
is not a Sierpiński curve.

(e) If f ∈ Pern(λ) with |λ| < 1, n ≥ 3, and f is of type C then, J(f) is a Siperpinski
curve if and only if K` = ∅ for ` the smallest divisor of n greater than 1.

As an application of Theorem A we can make a fairly complete study of Per3(0) (with
its extensions mentioned above). According to Rees [11] it is possible to partition the
one-dimensional slice into five pieces, each with different dynamics. In Figure 4 we display
this partition, which we shall explain in detail in Section 4. Two and only two of the
pieces, B1 and B∞, are hyperbolic components of type B. The regions Ω1, Ω2 and Ω3

contain all hyperbolic components of type C (capture) and, of course, all non–hyperbolic
parameters. We can prove the following.

Theorem B. Let f ∈ Per3(0). Then,

(a) If a ∈ (B1 ∪B∞) then J (fa) is not a Sierpiński curve.

(b) If a ∈ Ω2 ∪ Ω3 then J (fa) is not a Sierpiński curve.

(c) If a ∈ Ω1 and it is a capture parameter, then J (fa) is a Sierpiński curve.

As mentioned above, if f is hyperbolic, these properties extend to all maps in its
hyperbolic component.

The outline of the paper is as follows: in Section 2 we give previous results concerning
to the topology of the Julia set of quadratic hyperbolic rational maps. As a corollary of
this we get Theorem A statements (a), (b) and (c). In Section 3 we prove the rest of
Theorem A. In Section 4 we study the slice Per3(0) and prove Theorem B.

Acknowledgments. The second, third and fourth author are partially supported by the
Catalan grant 2009SGR-792, by the Spanish grant MTM-2008-01486 Consolider (includ-
ing a FEDER contribution) and by the European Community through the project 035651–
1–2-CODY. The second and fourth authors are also partially supported by Spanish grant
MTM-2006-05849 Consolider (including a FEDER contribution). The first author was
partially supported by grant #208780 from the Simons Foundation.

2 Preliminary results and partial proof of Theorem A

In this section we collect some results related to the topology of Julia sets of rational
maps, which we will use repeatedly. Afterwards, we prove statements (a), (b) and (c) of
Theorem A, since they follow from these results in a pretty straightforward way.
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B1

B∞

Ω2

Ω3

Ω1

Figure 4: The slice Per3(0) and its pieces.

The first theorem states a dichotomy between the connectivity of the Julia set of a
quadratic rational map and the dynamical behaviour of its critical points.

Theorem 2.1 (Milnor, [3]). The Julia set J(f) of a quadratic rational map f is either
connected or totally disconnected (in which case the map is conjugate on the Julia set to
the one-sided shift on two symbols). It is totally disconnected if and only if either:

(a) both critical orbits converge to a common attracting fixed point, or

(b) both critical orbits converge to a common parabolic fixed point of multiplicity two
but neither critical orbit actually lands on this point.

Theorem 2.2 ([5], Thm. 19.2). If the Julia set of a hyperbolic rational map is con-
nected, then it is locally connected.

The next theorem states that any hyperbolic component of type B, C and D contains
a critically finite rational map as its unique center.

Theorem 2.3 (Rees, [8]). Let H be a hyperbolic component of type B,C or D of M2.
Then, H contains a unique center f0, i.e., f0 is the unique critically finite map inside the
hyperbolic component H.

Another important results gives conditions under which we can assure that all Fa-
tou components are Jordan domains. Recall this was one of the conditions for having
Sierpiński curve Julia sets.

Theorem 2.4 (Pilgrim, [7]). Let f be a critically finite rational map with exactly two
critical points, not counting multiplicity. Then exactly one of the following possibilities
holds:

(a) f is conjugate to zd and the Julia set of f is a Jordan curve, or

(b) f is conjugate to a polynomial of the form zd + c, c 6= 0, and the Fatou compo-
nent corresponding to the basin of infinity under a conjugacy is the unique Fatou
component which is not a Jordan domain, or
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(c) f is not conjugate to a polynomial, and every Fatou component is a Jordan domain.

We shall combine the two results above to get the following corollary.

Corollary 2.5. Let f ∈M2 be a hyperbolic or critically finite map without (super)attracting
fixed points. Then every Fatou component is a Jordan domain.

Proof. Since, by hypothesis, f has no (super)attracting fixed points then f cannot be
conjugate to a polynomial.

First assume that f is critically finite, not necessarily hyperbolic. Then, using Pil-
grim’s Theorem 2.4 the corollary follows. If f is hyperbolic, it belongs to a hyperbolic
component H. Let f0 be its center, which exists and is unique by Rees’s Theorem 2.3.
Clearly, f0 is critically finite and has no superattracting fixed points. Hence by Pilgrims’s
result all Fatou components of f0 are Jordan domains. Since f and f0 belong to the
same hyperbolic component, they are conjugate on a neighborhood of the Julia set and
therefore f has the same property.

We are now ready to prove the first three statements in Theorem A.

Proof of Theorem A, statements (a), (b) and (c).

(a) Since f is of type A, both critical points belong to the same Fatou component U ,
which is of (super)attracting type. If the period of the cycle is 1, Milnor’s Theorem
2.1 implies that J(f) is totally disconnected. If the period is greater than one, the
same theorem says that J(f) is connected and therefore U is simply connected. In
this case, f : U → f(U) is of degree three which is a contradiction since f has global
degree 2.

(b) If f ∈ Per1(λ), with |λ| < 1, there exists a Fatou component U containing an
attracting fixed point and therefore a critical point. The degree of f |U is 2, hence
U is completely invariant. It follows that the boundary of U is the whole Julia set,
hence it must intersect the boundary of any other Fatou component.

(c) It is easy to check that any rational map of degree two has exactly three fixed points
and a unique 2-cycle. If f ∈ Per2(λ), this cycle is (super)attracting. Without loss
of generality the cycle is {0,∞}. We also denote the Fatou components containing
0 and ∞ by U0 and U∞, respectively. If f has an additional attracting fixed point,
then f ∈ Per1(µ) for some |µ| < 1, and hence J(f) is not a Sierpiński curve by
(b). Otherwise, by Corollary 2.5 all Fatou components are Jordan domains. It
follows that the map f2 : U0 7→ U0 is conjugate to either z → z4 or z → z2 on
∂U0 depending on whether the free critical point lies in U∞ or not. In particular,
the map f2 | ∂U0 must have at least one fixed point, and this fixed point under f2

is also a fixed point under f , since f has no other 2-cycle besides {0,∞}. Hence
∂U0 ∩ ∂U∞ 6= ∅, proving that J(f) is not a Sierpiński curve.

3 Sufficient conditions for Sierpiński curve Julia sets.
Proof of Theorem A

As we mentioned in the introduction a Sierpiński curve is any subset of the Riemann
sphere that is homeomorphic to the Sierpiński carpet. Consequently, from [13] a Sierpiński
curve Julia set is a Julia set with the following five properties: compact, connected, locally
connected, nowhere dense, and any two complementary Fatou domains are bounded by
disjoint simple closed curves. In what follows we shall see that most of these properties
are satisfied simply because our sets are Julia sets of hyperbolic rational maps.
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Proposition 3.1. Let f ∈ Pern(λ), with n ≥ 3, be hyperbolic. Then, the Julia set
J(f) is compact, connected, locally connected and nowhere dense. Moreover, if f has
no attracting fixed point (which is always the case for types B and C), then each Fatou
component is a Jordan domain.

Proof. The Julia set of a rational map is always compact and assuming hyperbolicity it
is also nowhere dense. Using Theorem 2.1 we conclude that J(f) is connected since we
always have a (super)attracting periodic orbit of period n > 1. Because it is connected,
it is also locally connected (Theorem 2.2).

Observe that f cannot be hyperbolic of type A because it has a cycle of period larger
than 1 (Theorem A (a)). Hence f ∈ H, a hyperbolic component of type B, C or D,
without (super)attracting fixed points. We then know that all the Fatou components of
f are Jordan domains (Corollary 2.5).

In view of this Proposition, for those maps in the hypothesis above, the Julia set is a
Sierpiński curve if and only their Fatou components have disjoint closure.

In this section we assume that f is a quadratic rational map having a (super)attracting
period n cycle with n ≥ 3, or equivalently, f ∈ Pern(λ).

We denote by Ui the Fatou components which form the immediate basin of attraction
of the cycle w0, . . . , wn−1. Fixing one of the two critical points at 0 and conjugating
f with a Möbius transformation we may assume that 0 ∈ U0, and ∞ ∈ U1. So U1 is
the unique unbounded Fatou component of f . In the case where Ui is a Jordan domain
(see Corollary 3.1) we denote by γi : S1 7→ ∂Ui a homeomorphism that parametrizes the
Jordan curve ∂Ui, with i = 0, . . . n− 1.

We denote by

Kd = {z ∈ C | z ∈ ∂Ui0 ∩ ∂Ui1 ∩ · · · ∩ ∂Uid−1
, ij ∈ {0, 1, · · · , n− 1}, 0 ≤ j ≤ d− 1}.

To simplify notation we write K := Kn, i.e., the common intersection of Ui, i = 0, 1, . . . n−
1.

We start by proving some properties for f ∈ Pern(0), to be used later in the more
general proof.

Proposition 3.2. Let f ∈ Pern(0) with n ≥ 3. Assume f is critically finite. Then

(a) If f has no superattracting fixed points, then # K ≤ 2.

(b) If n = 3 or n = 4, and f is of type B then J(f) is not a Sierpiński curve.

(c) If f is of type C then either K = ∅ or K = {p} with f(p) = p.

Proof.

(a) By assumption we know from Theorem 2.4 that all Fatou domains are Jordan do-
mains, hence every point on the boundary is accessible from the interior by a unique
internal ray. We prove statement (a) by contradiction. Suppose that K contains at
least three points, denoted by p, q and r. Let w0 = 0, w1 = ∞ and w2 be three
points of the superattracting cycle. We start by building the quadrilateral formed
by the internal rays joining w0 with p and q and w1 with p and q. This divides the
Riemann sphere into two connected components, U and V only one of which, say
U , contains w2. Let us now add to this graph the two internal rays in U connecting
w2 to p and q. This addition has further subdivided U into two subsets U1 and
U2. Notice that each of the three sets U1, U2 and V contains only two points of the
cycle in its boundary.

Now the third intersection point r must belong to one of the sets in the partition.
Therefore it cannot be accessed through internal rays by the three chosen points in
the cycle w0, w1 and w2.
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(b) Since f ∈ Pern(0) is of type B the free critical point must belong to Ui for some
i 6= 0. Since f is of type B and n ≥ 3, f has no superattracting fixed points
and therefore Ui is a Jordan domain for all i (see Corollary 2.5). Observe that
fn : Ui → Ui, i = 0, . . . , n−1 is a degree 4 map conjugate to z 7→ z4. Consequently
fn | ∂Ui is conjugate to θ 7→ 4θ on the unit circle S1 = R/Z. Since the map
is critically finite, every internal ray in Ui lands at a well–defined point on ∂Ui,
i = 0, . . . n − 1. It follows that there are three fixed points of fn on ∂Ui, namely
γi(0), γi(1/3) and γi(2/3), i = 0, . . . , n− 1. By construction each of these points is
fixed under fn, and so they are periodic points of period d for f with d|n. If one
of them is periodic of period d < n then such a point must belong to ∂Ui ∩ ∂Uj for
some i 6= j and so J(f) cannot be a Sierpiński curve. So, let us assume d = n and
show that this is not possible. The 3n points involved in the construction form 3
different cycles of period n. Globally f has 4 period n cycles since each f ∈ Pern(0)
has one superattracting n cycle. This is a contradiction when n = 3 and n = 4
since any quadratic rational map has only 2 period 3 cycles, and 3 period 4 cycles
respectively.

(c) We assume that f is of type C, i.e., the free critical point lands on the superat-
tracting cycle (remember that f is critically finite) but it does not belong to the
inmediate basin. By the same considerations as in part (b), all Fatou components
are Jordan domains. In this case fn : Ui → Ui, i = 0, . . . n − 1 is a map of degree
two that is conformally conjugate to z 7→ z2 on the closed unit disk. Hence fn | ∂Ui
is conjugated to θ 7→ 2θ on the unit circle S1 = R/Z. Thus, there is only one fixed
point and two 2-cycles in each boundary of the Ui under fn, namely γi(0), γi(1/3)
and γi(2/3), i = 0, . . . , n − 1. These are the landing points of the internal rays of
angles θ = 0 (fixed), θ = 1/3 and θ = 2/3 (period 2), for the map θ → 2θ.

From statement (a), in order to prove statement (c) we only need to show that
# K 6= 2 when f is of type C. Assume the converse, and denote by p and q the two
points on the common boundary of all the Ui’s. There are three possible dynamics
for such points: either f(p) = p and f(q) = q, or f(p) = q and f(q) = q, or f(p) = q
and f(q) = p.

The first case (two fixed points for f on the common boundary) is not possible since
there is a unique fixed point for fn on the boundary of the Ui’s, and, of course, fixed
points of f are also fixed points of fn.

The second case (one prefixed point and one fixed point on the common boundary)
is not possible since f : Ui → Ui+1 is a one–to–one map except when i = 0, while q
as a point in ∂Ui+1 would have two preimages (p and q) on ∂Ui.

The third case (two period 2 points) is also not possible. If n is even the argument
follows as above since fn(p) = p and fn(q) = q and so we would have two fixed
points for fn on the common boundary of the Ui’s, a contradiction. We now deal
with the case of n odd.

On the one hand it is clear that p = γi(1/3) and q = γi(2/3), for i = 0, 1, . . . , n− 1.

On the other hand, by the chain rule we have that µ :=
(
f2
)′

(p) =
(
f2
)′

(q) satisfies
|µ| > 1, and so in a sufficiently small neighborhood of the points p and q the map
f2 is conformally conjugate to z → µz in a neighborhood of 0. Let α ∈ (−π, π]
denote the argument of µ. Now we build a graph similar to the one in part (a),
with vertices p and q and edges the internal rays from the points of the cycle to
the points p and q. The topological picture in the Riemann sphere is homotopic to
the one shown in Figure 3. It is then clear that the rotation induced by f2 on a
small neighborhood of p and q has opposite sign, hence, the multiplier cannot be
the equal for both points.
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Figure 5: The topological graph given by the internal rays landing at the period
two cycle {p, q} in K. The points p and q are plotted with small black circles,
while the points wj are plotted with small grey circles.

In the three pictures in Figure 6 we show three dynamical planes corresponding to
the three possible behaviours stated in the previous lemma depending on the number of
points in K. Figure 6(a) corresponds to the dynamical plane of a Bitransitive parameter
with two fixed points in K, and Figures 6(b) and (c) correspond to Capture parameters
with one fixed point in K and K = ∅, respectively. It is immediate that, in the first
two cases, the Julia set is not a Sierpiński curve, while, as we prove in the following
proposition, it is in the third case.

Proposition 3.3. Let f ∈ Pern(0), n ≥ 3. Assume f to be a critically finite, hyperbolic
rational map of type C. Then, J(f) is a Sierpiński curve if and only if Kd = ∅ where d
is the smallest divisor of n greater than 1.

Most of the remainder of this section will be dedicated to the proof of this proposition.
We will use several lemmas.

Since f is of type C the Fatou set is the union of the superattracting basin formed by
{U0, U1, U2, . . . Un−1} and all its preimages. Suppose we have named the components so
that f(Ui) = Ui+1 mod (n). We also denote by ωi, i = {0, . . . n − 1} the superattracting
cycle, so f(ωi) = ωi+1 mod (n). One of the implications of the proposition is trivial: If J(f)
is a Sierpiński curve, then Kd = ∅ (in fact K` = ∅ for all 1 ≤ ` ≤ n). Hence, assuming
J(f) is not a Sierpiński curve, we must prove that Kd 6= ∅ (where d is the smallest divisor
of n greater than 1). It will suffice to show that Km 6= ∅, for some divisor m of n.

Lemma 3.4. Let f be as in Proposition 3.3. Suppose there exists a point s ∈ ∂U0 of
period m > 0, where m is not a multiple of n. Let m′ := m mod (n). Then,

1. if m′ | n then K n
m′
6= ∅;

2. if m′ - n then K 6= ∅.

Proof. First assume m < n. Given that fm(Uj) = Uj+m and fm(s) = s it follows that

s ∈ ∂U0 ∩ ∂Um ∩ ∂U2m mod (n) ∩ · · · ∩ · · ·

If m | n then n = m · nm where n
m ∈ N, and s ∈ ∂U0 ∩ ∂Um ∩ ∂U2m ∩ · · · ∩Um(̇ n

m−1)
which

implies that K n
m′
6= ∅ (notice that if m < n we have m = m′).
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(a) Dynamical plane of f0.75 of type Bitransitive.

t

t

(b) Dynamical plane of f0.6+1.45i of type Cap-

ture.

t

(c) Dynamical plane of f3.2 of type Capture .

Figure 6: Three examples in Per3(0). Points in K are plotted with a small black circle.

If m - n then the set {0,m, 2m mod (n), . . . , (n− 1)m mod (n)} is exactly a permutation
of {0, 1, . . . , n− 1}. Hence K := Kn 6= ∅.

Now observe that the case m > n, with m not being a multiple of n, can be argued
exactly in the same way, just considering all indices modulo n.

From Corollary 3.1, in the hypothesis of Proposition 3.3, if J(f) is not a Sierpiński
curve, necessarily we must have at least two different Fatou components whose closures
intersect. Since all Fatou components are preperiodic to the immediate basin of the
superattracting cycle, and there are no critical points in the Julia set, it follows that if
J(f) is not a Sierpiński curve then two components of the immediate basin must have
non disjoint closures. Hence let us assume without loss of generality that there exists a
point p such that

p ∈ ∂U0 ∩ ∂Ui for some 0 < i < n.

Let g := fn. For any j = 0, 1, · · · , n − 1, g|Uj maps Uj onto itself and since the
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free critical point does not belong to any of the Uj ’s we conclude that it is conformally
conjugate to the map z 7→ z2 defined on the closed unit disk D. It follows that g | ∂Uj is
conjugate to θ 7→ 2θ on the unit circle.

Let k := n− i < n which means that fk(Ui) = U0. In particular, the point q := fk(p)
must belong to ∂U0, but it also must belong to the image under fk of all components
meeting at p, that is

q ∈ ∂U0 ∩ ∂Uk.
It might happen that Uk = Ui. In that case we have n = 2k is even and hence d = 2 and
we are done. Therefore we may assume from now on that k 6= i, i.e., that U0, Uk and Ui
are pairwise distinct.

We shall now see that we may reduce to the case when the orbits of p and q are totally
disjoint from each other (in other words, if J(f) is not a Sierpiński curve and the orbits
of p and q are not totally disjoint from each other, it will follow from Lemma 3.4 that
Kd 6= ∅).
Lemma 3.5. If there exist Np, Nq ∈ N ∪ {0} such that gNp(p) = gNq (q) then there is a
periodic point s ∈ ∂U0 of period m, where

m =

{
(Nq −Np)n+ k if Nq ≥ Np, and

(Np −Nq)n− k if Np > Nq.

Proof. Since q = fk(p) and g = fn, we have that fNpn(p) = fNqn+k(p).

1. If Nq ≥ Np, define s := fNpn(p). Then

fm(s) = f (Nq−Np)n+k(s) = f (Nq−Np)n+k+Npn(p) = fNqn+k(p) = fNpn(p) = s.

2. If Np ≥ Nq, define s := fNqn+k(p). Then,

fm(s) = f (Np−Nq)n−k(s) = f (Np−Nq)n−k+Nqn+k(p) = fNpn(p) = fNqn+k(p) = s.

Indeed, if the orbits of p and q under g eventually join to form one single orbit tail,
the claim implies the existence of a periodic point of period m not multiple of n, since
0 < k < n. Observe that m′ = m mod (n) equals either k or n− k, depending on which
case we are in. We may then apply Lemma 3.4 to conclude that, either K n

m′
6= ∅ if m′

divides n or Kn 6= ∅ if m′ does not divide n. In any case, Kd 6= ∅ as we wanted to show.
Hence we may assume from now on that q and p have distinct orbits under g.

Lemma 3.6. If there exists N ≥ 0 such that gN (p) is periodic of period m, then gN (q)
is also periodic of period m. Conversely, if there exists N ≥ 0 such that gN (q) is periodic
of period m, then gN+1(p) is also periodic of period m.

Proof. In the first case, we assume gm+N (p) = gN (p). If we apply fk to both sides of the
equality and permute the order of the iterates we get gm+N (fk(p)) = gN (fk(p)). Since
q := fk(p) we have gm+N (q) = gN (q), i.e., gN (q) is also periodic of period m.

The second case is analogous. We assume gm+N (q) = gN (q). If we apply fn−k to
both sides of the equality and permute the order of the iterates (and substitute q = fk(p))
we get gm(gN+1(p)) = gN+1(p), as claimed.

Observe that the orbits of p or q cannot be eventually fixed or 2-periodic. Indeed, by
the claim we just proved, this would imply the existence of two fixed points or two 2-cycles
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under g on the boundary of U0. But g is the doubling map on the boundary of U0, and
such map has exactly one fixed point and one 2-cycle, which leads to a contradiction.

Hence, by redefining p and q if necessary we have only two cases remaining. Either
the orbits of p and q are periodic of period m ≥ 3, or both orbits are infinite.

Let L1 and L2 denote the two disjoint arcs in ∂U0 joining p and g(p), whose union
together with the endpoints form the whole Jordan curve ∂U0.

We may then draw a graph with the following elements: the boundary of U0 (which
we may think as the unit circle), the two (different) points p and g(p) and the internal
rays joining the periodic point ωi to p and g(p), which live in the complement of U0 and
cannot intersect each other. Such a graph divides the complement of U0 into two disjoint
pieces P1 and P2, which contain L1 and L2 respectively in their boundary. See Figure 7.

ωi ωi

U0 U0

P1 P1

P2 P2

L1

L1

L2 L2

g(p) g(p)

p p

ωk

q

Figure 7: In the left we illustrate the graph formed by ωi, the two internal rays joining
p and g(p) with ωi and the boundary of U0. This graph divides the complement of U0

(in the Riemann sphere) in two pieces, namely, P1 and P2. Each piece contains the
two disjoint arcs in ∂U0 joining p and g(p) which we denote, respectively, L1 and L2.
The right picture illustrates the relative position of q in the graph. By construction q
must be either in P1 or in P2 (P1 in the figure). Consequently the whole orbit of q by
g has to be contained in L1.

We now place the point q in this picture. It clearly lies either in L1 or in L2. W.l.o.g. we
assume it lies in L1. It follows that wk must belong to P1, since q needs to be accessible
from the interior of Uk, and the ray joining wk to q cannot cross any other ray in the
graph. But Uk is invariant under g, hence the whole orbit of q under g, namely Og(q),
must also be accessible from Uk. This forces the entire orbit of q to lie in L1 and never
enter L2. An analogous argument forces the entire orbit of p to lie in one and only one of
the analogous arcs, say L′1 and L′2, defined by the graph associated to q, g(q), ∂U0 and
the internal arcs joining the periodic point ωk with q and g(q).

In summary, the orbits of p and q do not mix. This is an immediate contradiction if
we assume the orbits to be periodic of the same period. Indeed, such orbits correspond,
under angle doubling, to rational numbers of the form 2kπ

2m−1 , where m is the period, and
k ∈ Z. It is well known and easy to check that two such orbits cannot belong to disjoint
connected arcs of S1. The same argument can be applied to the preperiodic scenario.

It remains to consider the case when both orbits are infinite. When transported to the
unit circle, we can think of having two irrational angles ϕ1 and ϕ2 whose orbits under the
doubling map are contained in disjoint arcs of S1. Let s(ϕj) = sj0s

j
1 . . . , s

j
i · · · ∈ {0, 1}N

be their associated binary sequences and let consider the four sectors of S1 given by the
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intervals (0, 1/4), (1/4, 1/2), (1/2, 3/4) and (3/4, 1). Points in these quadrants are exactly
those with orbits starting by (respectively) 00 . . . , 01 . . . , 10 . . . and 11 . . . .

Now observe that any orbit with a nonperiodic sequence, must have infinitely many
changes from 0 to 1 and infintiely many from 1 to 0. This means that any such orbit must
have infinitely many points in the second and third quadrant. If we assume that one orbit
lies entirely in (θ1, θ2) and the other one in (θ2, θ1), understood as two complementary
connected arcs of the circle, the observation above implies that the divisory angles θ1 and
θ2 must belong to the second and third quadrant. But this implies that one of the orbits
has all its points in the second and third quadrants, which only happens for the orbits 10
or 01, the 2-cycle.

This concludes the proof of Proposition 3.3 and we are now ready to prove the last
two statements in Theorem A.

Proof of Theorem A, statements (d) and (e).

(d) The result follows from Proposition 3.2 and the fact that every hyperbolic compo-
nent has a unique center, i.e., a unique critically finite map inside this hyperbolic
component (Theorem 2.3).

(e) As before the result follows from Proposition 3.3 applied to the center of the hyper-
bolic component containing f .

4 The period three slice. Proof of Theorem B

In this section we restrict attention to rational maps in Per3(0). This slice contains all
the conformal conjugacy classes of maps with a periodic critical orbit of period three.
Using a suitable Möbius transformation we can assume that one critical point is located
at the origin, and the critical cycle is 0 7→ ∞ 7→ 1 7→ 0. Such maps can be written as
(z − 1)(z − a)/z2, and using this expression the other critical point is now located at
2a/(a+ 1). However, we change this parametrization of Per3(0) so that the critical point
is now located at a, obtaining the following expression

fa(z) =
(z − 1)

(
z − a

2−a

)

z2
where a ∈ C \ {0, 2}. (1)

We exclude the values a = 0 and a = 2. In the first case the map f0 has degree
1 and in the second case the map is not well defined. As we mentioned before, fa, for
a ∈ C \ {0, 2}, has a superattracting cycle 0 7→ ∞ 7→ 1 7→ 0 and we denote by U0 =
U0(a), U∞ = U∞(a), U1 = U1(a) the Fatou components containing the corresponding
points of this superattracting cycle. This map has two critical points, located at c1 = 0

and c2(a) = a, and the corresponding critical values are v1 = ∞ and v2(a) = − (1−a)2

a(2−a) .

Thus, the dynamical behaviour of the map fa is determined by the orbit of the free
critical point c2(a) = a. The parameter a−plane has been thoroughly studied by M. Rees
([11]) and we recall briefly some of its main properties. We parametrize the hyperbolic
components of Per3(0) by the unit disc in the natural way. For the Bitransitive and
Capture components we use the well defined Böttcher map in a small neighbourhood
of each point of the critical cycle {0,∞, 1} and for the Disjoint type components the
multiplier of the attracting cycle different from {0,∞, 1}.

The first known result is the existence of only two Bitranstitve components ([11])
denoted by B1 and B∞ and defined by

B1 = {a ∈ C | a ∈ U1(a)} and B∞ = {a ∈ C | a ∈ U∞(a)}.
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B1 is open, bounded, connected and simply connected and B∞ is open, unbounded,
connected and simply connected in Ĉ. In the next result we collect these and other main
properties of the parameter plane ([11]) (see Figure 8 and 9).

Proposition 4.1 (Rees, [11]). For fa(z) with a ∈ C \ {0, 2}, the following conditions
hold:

(a) The boundaries of B1 and B∞ meet at three parameters 0, x and x̄ and the set
C \ (B1 ∪B∞ ∪ {0, x, x̄}) has exactly three connected components: Ω1,Ω2 and Ω3.

(b) Each connected component Ωi, for i = 1, 2, 3, contains a unique value ai such that
fai is conformally conjugate to a polynomial map of degree 2. Moreover, each one
of the three parameters ai is the center of a hyperbolic component of period one.

(c) Each parameter value, 0, x and x̄, is the landing point of two fixed parameter rays,
one in B1 and one in B∞.

(d) The parameter values x and x̄ correspond to parabolic maps having a fixed point
with multiplier e2πi/3 and e−2πi/3, respectively.

In Figure 10 we plot the a−parameter plane. In this picture we label the two hy-
perbolic components B1 and B∞ of Bitransitive type and the cutting points 0, x and
x̄ that separate this parameter plane into three different zones: Ω1,Ω2 and Ω3. Each
zone contains a unique parameter a such that fa is conformally conjugate to a quadratic
polynomial. We will show that these three parameter values are a1, a2 and a2 (plotted
with a small black circle), which correspond to the airplane, the rabbit and the co-rabbit,
respectively. For this reason we call the different pieces the airplane, the rabbit and the
co-rabbit piece, respectively.

v
v

vB1

B∞

Ω2

Ω3

Ω1-0

�
��

x

@
@R x̄

Ωi = C \ (B1 ∪B∞ ∪ {0, x, x̄})

Figure 8: The slice Per3(0).

We can find explicitly the values of x and x̄ and the quadratic polynomial fai , for i =
1, 2, 3. First, we calculate the three parameters a1, a2 and a3 such that the corresponding
quadratic rational map fai is conformally conjugate to a quadratic polynomial. This can
happen if and only if the free critical point c2(a) = a is a superattracting fixed point.
This superattracting fixed point plays the role of ∞ for the quadratic polynomial. This

15



(a) The Douady rabbit. The Julia set

of z2 − 0.122561 + 0.744861i.

(b) The Douady co–rabbit. The Julia

set of z2 − 0.122561− 0.744861i.

(c) The airplane. The Julia set of z2 −
1.75488.

(d) Julia set of f0.33764+0.56228i, in

Per3(0), conjugate to the Douady rab-

bit.

(e) Julia set of f0.33764−0.56228i, in

Per3(0), conjugate to the Douady co-

rabbit.

(f) Julia set of f2.32472, in Per3(0),

conjugate to the airplane.

Figure 9: We plot the three unique monic, quadratic, centered polynomial having a superattracting
3-cycle: the rabbit, the co-rabbit and the airplane, and the three corresponding rational maps fa that
are conformally conjugate to a quadratic polynomial.

condition says that the corresponding critical value v2(a) coincides with the critical point
c2(a), or equivalently

v2(a) = − (1− a)2

a(2− a)
= a

which yields
a3 − 3a2 + 2a− 1 = 0.

The above equation has one real solution a1 ≈ 2.32472 and two complex conjugate so-
lutions a2 ≈ 0.33764 + 0.56228i and a3 ≈ 0.33764 − 0.56228i. We notice that there
are only three monic and centered quadratic polynomials of the form z2 + c that ex-
hibit a 3-critical cycle. These three polynomials are the airplane z2 − 1.7588, the rabbit
z2 − 0.122561 + 0.744861i and the co-rabbit z2 − 0.122561 − 0.744861i. We claim that
fa1 is conformally conjugate to the airplane, fa2 to the rabbit and fa2 to the co-rabbit.
To see this we define the map

τ(z) =
1

z − ai
+

1

ai

and then Pi := τ ◦fai ◦τ−1 is a centered quadratic polynomial, since∞ is a superattracing
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fixed point and z = 0 is the unique finite critical point. Easy computations show that

Pi(z) =
1

ai
− a3

i (ai − 2)z2.

Finally, after conjugation with the affine map σ(z) = −a3
i (ai − 2)z, the corresponding

quadratic polynomial Qi := σ ◦ Pi ◦ σ−1 is given by

Qi(z) = z2 − a2
i (ai − 2),

which coincides with the airplane for i = 1, the rabbit for i = 2 and the co-rabbit for
i = 3. We call a1 the airplane parameter, a2 the rabbit parameter and a2 the co-rabbit
parameter. Likewise, we call Ω1 the airplane piece since it contains the airplane parameter
a1, Ω2 the rabbit piece since it contains the rabbit parameter and Ω3 the co-rabbit piece
since it contains the co-rabbit parameter.

In the next lemma we show another property of the cutting parameter values x and
x̄, that will be important in order to determine their values.

Proposition 4.2. Let ∆i be the hyperbolic component containing ai (so that ∆i ⊂ Ωi),
i = 1, 2, 3. Then, the cutting parameter values x and x̄ in Proposition 4.1 belong to the
boundary of ∆1, and not the boundary of ∆2 and ∆3.

Proof. When a parameter a belongs to any of the ∆i, i = 1, 2, 3, the corresponding
dynamical plane exhibits an attracting fixed basin associated to an attracting fixed point
denoted, in what follows, by p(a). From Proposition 4.1 we know that fx (respectively fx̄)
has a parabolic fixed point, p(x) (respectively p(x̄)), with multiplier e2πi/3 (respectively
e−2πi/3). Thus x and x̄ must belong to ∂∆1, ∂∆2, or ∂∆3. Moreover since x and x̄ also
belong to ∂B1 (and ∂B∞), the dynamical plane for fx and fx̄ are such that p(x) and p(x̄)
must belong to ∂U0 ∩ ∂U1 ∩ ∂U∞. These are the two conditions defining the parameters
x and x̄ (see Figure 10).

When the parameter a, belonging to any of the ∆i, i = 1, 2, 3, crosses the boundary
of its hyperbolic component through its 1/3–bifurcation point, the attracting fixed point
p(a) becomes a parabolic fixed point of multiplier either e2πi/3 or e−2πi/3 since, at this
precise parameter value, the attracting fixed point coalesces with a repelling periodic
orbit of period three.

Since fa, a ∈ C, is a quadratic rational map, it has only two 3-cycles and, because we
are in Per3(0), one of them is the critical cycle {0,∞, 1}. So, the repelling periodic orbit
which coalesces with p(a) at the 1/3–bifurcation parameter must be the unique repelling
3-cycle existing for this parameter.

We investigate the location of this repelling 3-cycle for parameters in each of the
hyperbolic components ∆1,∆2 and ∆3. To do so, we note that if a is any parameter in
∆i, we have that f3

a : U0 7→ U0 is conjugate to the map z 7→ z2 in the closed unit disc.
Thus, there exists a unique point z0(a) ∈ ∂U0 such that f3

a (z0(a)) = z0(a). This fixed
point could be either a (repelling) fixed point for fa or a (repelling) 3-cycle of fa.

It is clear that for a = a1 the point z0 (a1) is a repelling 3-cycle, since, for the airplane,
∂U0 ∩ ∂U∞ ∩ ∂U1 is empty. So, this configuration remains for all parameters in ∆1 (the
hyperbolic component containing the airplane parameter). At the 1/3–bifurcation points
of ∆1, the repelling periodic orbit {z0(a), f (z0(a)) , f2 (z0(a))}) coalesces with p(a) (the
attracting fixed point), and this collision must happen in ∂U0 ∩ ∂U∞ ∩ ∂U1. So the 1/3–
bifurcation parameters of ∆1 are precisely the parameter values a = x and a = x̄, and
so, p(a) becomes either p(x) or p(x̄), respectively.

On the other hand for a = ai, i = 2, 3 the point z0 (ai) is a fixed point (since for the
rabbit and co-rabbit ∂U0 ∩ ∂U∞ ∩ ∂U1 is precisely z0 (ai)). As before this configuration
remains for all parameters in ∆i, i = 2, 3 (the hyperbolic components containing the
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Figure 10: The slice Per3(0).

rabbit and co-rabbit, respectively). Therefore, at the 1/3–bifurcation point of ∆i, i = 2, 3,
the fixed point p(a) coalesces with the repelling periodic orbit but this collision does
not happen in ∂U0 ∪ ∂U∞ ∪ ∂U1 since the repelling periodic orbit of period three does
not belong to ∂U0 ∪ ∂U∞ ∪ ∂U1. Consequently the resulting parabolic point is not in
∂U0 ∩ ∂U∞ ∩ ∂U1 and the 1/3–bifurcation parameter can neither be x nor x̄.

Doing easy numerical computations we get that there are five parameter values having
a parabolic fixed point with multiplier e2πi/3 or e−2πi/3. These are

0, ≈ 1.84445± 0.893455i, ≈ 0.441264± 0.59116i.

It is easy to show that x ≈ 1.84445 + 0.893455i (and so, x̄ ≈ 1.84445− 0.893455i). Thus
the parameters 0.441264 ± 0.59116i corresponds to the 1/3–bifurcations of ∆2 and ∆3,
respectively.

Now we are ready to state and prove Theorem B.

Proof of Theorem B.

(a) Assume a ∈ (B1 ∪B∞). From Theorem 2.3 we know that B1 has a unique center at
a = 1. Likewise, a =∞ is the unique center of B∞. In either case the corresponding
map fa0 is a critically finite hyperbolic map in Per3(0) of type B. Thus, from
Theorem A (d) J (fa0) is not a Sierpiński curve. We conclude that J (fa) is not a
Sierpiński curve either, since all Julia sets in the same hyperbolic component are
homeomorphic.

(b) Assume a ∈ Ω2 (here we do not restrict to a hyperbolic parameter). From the
previous proposition we know that there exists a fixed point z0(a) ∈ ∂U0∩∂U∞∩∂U1

and this fixed point is the natural continuation of z0 (a2) which cannot bifurcate
until a = x ∈ ∆1. The case a ∈ Ω3 is similar.

(c) Finally we assume a ∈ H where H is a hyperbolic component of type C in Ω1. We
know that Ω1 contains the airplane polynomial for which ∂U0 ∩ ∂U∞ ∩ ∂U1 = ∅.
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This configuration cannot change unless the period 3 repelling cycle coalesces with a
fixed point, which only happens at a = x or a = x̄. Hence the intersection is empty
for all parameters in Ω1. It follows from Theorem A (e) that this is the precise
condition for J(fa) to be a Sierpiński curve.
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