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LIMIT CYCLES FOR DISCONTINUOUS QUADRATIC

DIFFERENTIAL SYSTEMS WITH TWO ZONES

JAUME LLIBRE AND ANA C. MEREU

Abstract. In this paper we study the maximum number of limit cycles
given by the averaging theory of first order for discontinuous differential
systems, which can bifurcate from the periodic orbits of the quadratic
isochronous centers ẋ = −y + x2, ẏ = x + xy and ẋ = −y + x2 − y2,
ẏ = x + 2xy when they are perturbed inside the class of all discontin-
uous quadratic polynomial differential systems with the straight line of
discontinuity y = 0.

Comparing the obtained results for the discontinuous with the results
for the continuous quadratic polynomial differential systems, this work
shows that the discontinuous systems have at least 3 more limit cycles
surrounding the origin than the continuous ones.

1. Introduction

One of the main problems in the qualitative theory of continuous planar
polynomial differential systems is the study of their limit cycles, see for
instance [11]. The limit cycles of continuous planar quadratic polynomial
differential systems has been studied intensively, see for instance the books
[7, 17] and the hundreds of references quoted therein.

The classification of the quadratic polynomial differential systems having
an isochronous center is due to Loud [15]. He proved that after an affine
change of variables and a rescaling of the independent variable any quadratic
isochronous center can be written as one of the four systems of Table 1.

Chicone and Jacobs proved in [6] that at most 2 limit cycles bifurcate
from the periodic orbits of the isochronous center

(1) ẋ = −y + x2, ẏ = x + xy,

and that at most 1 limit cycle bifurcate from the isochronous center

(2) ẋ = −y + x2 − y2, ẏ = x + 2xy,

when these quadratic centers are perturbed inside the class of all quadratic
polynomial differential systems. Their study is based in the displacement
function using some results of Bautin [1]. In [4] the authors reproved in an
easier way, using the averaging theory, the existence of at least 2 limit cycles
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bifurcating from the periodic orbits of the center (1) when this is perturbed
inside the class of all quadratic polynomial differential systems.

Stimulated by discontinuous phenomena in the real world (see for instance
the book [2] and the references quoted therein), a big interest has appeared
for studying the limit cycles of discontinuous differential systems, mainly
for discontinuous piecewise linear differential systems, see also the paper
[13] and the references quoted there.

Our objective is to study the number of limit cycles of the discontinuous
quadratic differential systems with two zones separated by a straight line.
As far as we know for discontinuous quadratic differential systems only the
center problem and the Hopf bifurcation has been studied partially, see
[8, 9, 10].

Using the averaging theory of first order we study the maximum number of
limit cycles which can bifurcate from the periodic orbits of the isochronous
centers (1) and (2) perturbed inside the following class of discontinuous
quadratic polynomial differential systems

(3) Ẋi = Zi(x, y) =

{
Y i

1 (x, y) if y > 0,
Y i

2 (x, y) if y < 0,

i = 1, 2, where

Y 1
1 (x, y) =

(
−y + x2 + εp1(x, y)
x + xy + εq1(x, y)

)
,

Y 1
2 (x, y) =

(
−y + x2 + εp2(x, y)
x + xy + εq2(x, y)

)
,

Y 2
1 (x, y) =

(
−y + x2 − y2 + εp1(x, y)

x + 2xy + εq1(x, y)

)
,

Y 2
2 (x, y) =

(
−y + x2 − y2 + εp2(x, y)

x + 2xy + εq2(x, y)

)
,

ε is a small parameter, and

(4)

p1(x, y) = a1x + a2y + a3xy + a4x
2 + a5y

2,

q1(x, y) = b1x + b2y + b3xy + b4x
2 + b5y

2,

p2(x, y) = c1x + c2y + c3xy + c4x
2 + c5y

2,

q2(x, y) = d1x + d2y + d3xy + d4x
2 + d5y

2.

In other words, in some sense we extend the work done by Chicone and
Jacobs [6] for the continuous quadratic polynomial differential systems to
the discontinuous ones with the straight line of discontinuity y = 0.

System (3) can be written using the sign function in the form

(5) Ẋi = Zi(x, y) = Gi
1(x, y) + sign(y)Gi

2(x, y),
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where Gi
1(x, y) =

1

2
(Y i

1 (x, y)+Y i
2 (x, y)) and Gi

2(x, y) =
1

2
(Y i

1 (x, y)−Y i
2 (x, y)),

for i = 1, 2.

Our main results are the following ones.

Theorem 1. For |ε| ̸= 0 sufficiently small there are discontinuous quadratic
polynomial differential systems (3) with i = 1 having at least 5 limit cycles
bifurcating from the periodic orbits of the isochronous center (1).

Theorem 2. For |ε| ̸= 0 sufficiently small there are discontinuous quadratic
polynomial differential systems (3) with i = 2 having at least 4 limit cycles
bifurcating from the periodic orbits of the isochronous center (2).

We recall that the perturbation of the periodic orbits of the isochronous
centers (1) and (2) inside the class of continuous quadratic polynomial dif-
ferential systems produce at most 2 and 1 limit cycles, respectively (see [6]).
So comparing the obtained results for the discontinuous with the results for
the continuous quadratic polynomial differential systems, this work shows
that the discontinuous systems have at least 3 more limit cycles surrounding
the origin than the continuous systems when we perturbed the centers (1)
and (2), respectively.

In short, the results on the number of limit cycles which can bifurcate
from the periodic orbits of the quadratic isochronous centers when they are
perturbed inside the class of all continuous or discontinuous quadratic poly-
nomial differential systems (QPDS) of the form (3) are summarized in Table
1. We note that the maximum number of limit cycles that can bifurcate from
the periodic orbits of the last two quadratic isochronous centers of Table 1,
using averaging theory of first order, is for the moment an open question.
Unfortunately we cannot compute the integrals which appear when we per-
turb these two quadratic isochronous centers.

Table 1. The maximum number of limit cycles for the QPDS.

The maximum number of limit cycles for the
Quadratic isochronous continuous QPDS discontinuous QPDS

centers
ẋ = −y + x2

ẏ = x + xy
2 5

ẋ = −y + x2 − y2

ẏ = x + 2xy
1 4

ẋ = −y − 4
3x2

ẏ = x − 16
3 xy

2 ?

ẋ = −y + 16
3 x2 − 4

3y2

ẏ = x + 8
3xy

2 ?
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2. Preliminary Results

In this section we summarize the main results that we will use to study the
discontinuous quadratic differential systems (3). The next theorem is the
first-order averaging theory developed for discontinuous differential systems
in [12].

Theorem 3 ([12]). We consider the following discontinuous differential sys-
tem

(6) x′(t) = εF (t, x) + ε2R(t, x, ε),

with
F (t, x) = F1(t, x) + sign(h(t, x))F2(t, x),

R(t, x, ε) = R1(t, x, ε) + sign(h(t, x))R2(t, x, ε),

where F1, F2 : R × D → Rn, R1, R2 : R × D × (−ε0, ε0) → Rn and h :
R × D → R are continuous functions, T–periodic in the variable t and D
is an open subset of Rn. We also suppose that h is a C1 function having
0 as a regular value. Denote by M = h−1(0), by Σ = {0} × D * M, by
Σ0 = Σ\M ̸= ∅, and its elements by z ≡ (0, z) /∈ M.

Define the averaged function f : D → Rn as

(7) f(x) =

∫ T

0
F (t, x)dt.

We assume the following three conditions.

(i) F1, F2, R1, R2 and h are locally L–Lipschitz with respect to x;
(ii) for a ∈ Σ0 with f(a) = 0, there exist a neighborhood V of a such that

f(z) ̸= 0 for all z ∈ V \{a} and dB(f, V, a) ̸= 0, (i.e. the Brouwer
degree of f at a is not zero).

(iii) If ∂h/∂t(t0, z0) = 0 for some (t0, z0) ∈ M, then(
⟨∇xh, F1⟩2 −⟨∇xh, F2⟩2

)
(t0, z0) > 0.

Then, for |ε| > 0 sufficiently small, there exists a T–periodic solution
x(·, ε) of system (6) such that x(t, ε) → a as ε → 0.

Remark 1. We note that if the function f(z) is C1 and the Jacobian of
f at a is not zero, then dB(f, V, a) ̸= 0. For more details on the Brouwer
degree see [3] and [16].

We consider a planar system

(8) ẋ = P (x, y) ẏ = Q(x, y),

where P , Q : R2 → R are continuous functions. Assume that (8) has a
continuous family of oval

{Γh} ⊂ {(x, y) : H(x, y) = h, h1 < h < h2}
where H is a first integral of (8).
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We perturbed systems (8) as follows

(9)
ẋ = P (x, y) + ε p(x, y),
ẏ = Q(x, y) + ε q(x, y),

where p, q : R2 → R are continuous functions.

In order to apply the averaging method for studying limit cycles of (9)
for ε sufficiently small, we need write system (9) in the standard form (6)
for applying the averaging theory. The following result of [4] provides a way
for transforming (9) in this standard form.

Theorem 4 ([4]). Consider system (8) and its first integral H. Assume that
xQ(x, y) − yP (x, y) ̸= 0 for all (x, y) in the period annulus formed by the
ovals {Γh}. Let ρ : (

√
h1,

√
h2) × [0, 2π) → [0, ∞) be a continuous function

such that

(10) H(ρ(R, φ) cos φ, ρ(R,φ) sin φ) = R2,

for all R ∈ (
√

h1,
√

h2) and all φ ∈ [0, 2π). Then the differential equation

which describes the dependence between the square root of the energy R =
√

h
and the angle φ for system (9) is

(11)
dR

dφ
= ε

µ(x2 + y2)(Qp − Pq)

2R(Qx − Py)
+ O(ε2),

where µ = µ(x, y) is the integrating factor of system (8) corresponding to
the first integral H, and x = ρ(R, φ) cos φ and y = ρ(R, φ) sin φ.

In order to study the number of zeros of the averaged function (7) we will
use the following result proved in [14].

Let A be a set and let f1, f2, ..., fn : A → R. We say that f1, ..., fn are
linearly independent functions if and only if we have that

n∑

i=1

αifi(a) = 0 for all a ∈ A ⇒ α1 = α2 = ... = αn = 0.

Proposition 5 ([14]). If f1, f2, ..., fn : A → R are linearly independent
then there exist a1,..., an−1 ∈ A and α1, ..., αn ∈ R such that for every
i ∈ {1, ..., n − 1}

n∑

k=1

αkfk(ai) = 0.

3. Proof of Theorem 1

We recall that the period annulus of a center is the topological annu-
lus formed by all the periodic orbits surrounding the center, and no other
singular points.

A first integral H and an integrating factor µ in the period annulus of the
center of the quadratic differential system (1) have the expressions H(x, y) =
(x2 +y2)/(1+y)2 and µ(x, y) = 2/(1+y)3, respectively; for more details see
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[5]. For this system we note that h1 = 0, h2 = 1, and that the function ρ that
satisfies the hypotheses of Theorem 4 is given by ρ(R, φ) = R/(1 − R sinφ)
for all 0 < R < 1 and φ ∈ [0, 2π).

Then using Theorem 4 we transform system (3) into the form
(12)

dR

dφ
=





ε
A(φ; a, b)R + B(φ; a, b)R2 + C(φ; a, b)R3

2(1 − R sinφ)
+ O(ε2) if y > 0,

ε
A(φ; c, d)R + B(φ; c, d)R2 + C(φ; c, d)R3

2(1 − R sin φ)
+ O(ε2) if y < 0,

where

A(φ; a, b) = a1 cos2 φ + (a2 + b1) cos φ sinφ + b2 sin2 φ,

B(φ; a, b) = (a4 − b1) cos3 φ + (−a1 + a3 − b2 + b4) cos2 φ sin φ+
(−a2 + a5 − b1 + b3) cos φ sin2 φ + (−b2 + b5) sin3 φ,

C(φ; a, b) = −b4 cos4 φ + b1 cos3 φ sinφ + (b2 − b4 − b5) cos2 φ sin2 φ+
(b1 − b3) cos φ sin3 φ + (b2 − b5) sin4 φ,

and a = (a1, ..., a5), b = (b1, ..., b5), c = (c1, ..., c5) and d = (d1, ..., d5).

Note that system (1) has the invariant straight line y = −1. So the
minimal distance of the external boundary of the period annulus of the
center to the origin is 1.

The discontinuous differential system (14) is under the assumptions of
Theorem 3. So we must study the zeros of the averaged function f : (0, 1) →
R,

f(R) =

∫ π

0

A(φ; a, b)R + B(φ; a, b)R2 + C(φ; a, b)R3

2(1 − R sinφ)
dφ+

∫ 2π

π

A(φ, c, d)R + B(φ, c, d)R2 + C(φ, c, d)R3

2(1 − R sinφ)
dφ.

We compute these integrals and we obtain

f(R) = (a1 + c1)g1 + a3g2 + b2g3 + b4g4 + b5g5 + c3g6 + d2g7 + d4g8 + d5g9,

where

g1 =
πR

4
,

g2 =1 +
π

2R
− πR

4
+

1

4R
√

1 − R2

(
− 2π + 2πR2−

(4 + 4R2) arcsin R
)
,

g3 =
πR

4
− R2 +

1

4R
√

1 − R2

(
2π + 4 arccoshR−

4 arctan
R√

1 − R2

)
,
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g4 =1 +
π

2R
− 3πR

4
− R2 +

1

4R
√

1 − R2

(
− 2π + 4πR2−

2πR4 + (−4 + 8R2 − 4R4) arcsin R
)
,(13)

g5 = − 1 − π

2R
+

πR

4
+ R2 +

1

4R
√

1 − R2

(
2π − 2πR2+

(4 − 4R2) arcsin R
)
,

g6 = − 1 +
π

2R
− πR

4
−

√
1 − R2 arccos R

R
,

g7 =
πR

4
+ R2,

g8 = − 1 +
π

2R
− 3πR

4
+ R2 +

(
R − 1

R

) √
1 − R2 arccos R,

g9 =1 − π

2R
+

πR

4
− R2 +

√
1 − R2 arccos R

R
.

We have checked the results of these integrals with algebraic manipulators
as Mathematica and Mapple.

We note the equalities

g5 = g1 − g2 − g3,

g7 = 2g1 − g3,

g9 = −g1 + g3 − g6.

Thus the function f can be written as

f(R) = (a1 + b5 + c1 + 2d2 − d5)g1 + (a3 − b5)g2+
(b2 − b5 − d2 + d5)g3 + b4g4 + (c3 − d5)g6 + d4g8.

The six functions gi : (0, 1) → R, i ∈ {1, 2, 3, 4, 6, 8} given in (13) are
linearly independent. Indeed, we obtain the following Taylor expansions in
the variable R around R = 0 for the functions g1, g2, g3, g4, g6 and g8:

g1(R) =
π

4
R + O(R7),

g2(R) =
1

3
R2 +

π

16
R3 +

2

15
R4 +

π

32
R5 +

8

105
R6 + O(R7),

g3(R) =
π

4
R − R2 + O(R7),

g4(R) =
1

3
R2 − 3π

16
R3 − 1

5
R4 − π

32
R5 − 2

35
R6 + O(R7),

g6(R) = − 1

3
R2 +

π

16
R3 − 2

15
R4 +

π

32
R5 − 8

105
R6 + O(R7),

g8(R) = − 1

3
R2 − 3π

16
R3 +

1

5
R4 − π

32
R5 +

2

35
R6 + O(R7).
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The determinant of the coefficient matrix of the variables R, R2, R3, R4,
R5, R6 is −π3/33600.

By Proposition 5 since the six functions g1, g2, g3, g4, g6 and g8 are linearly
independent, then there exists a linear combination of their with at least 5
zeros. Moreover the coefficients of the functions gi, for i = 1, 2, 3, 4, 6, 8 in
the expression of f are linear functions of the variables a1, a3, b2, b4, b5, c1,
c3, d2, d4, d5. The rank of the Jacobian matrix of the coefficients of g1, g2,
g3, g4, g6 and g8 in f(R) in the variables a1, a3, b2, b4, b5, c1, c3, d2, d4, d5

is 6. Thus there exist R1, R2, R3, R4, R5 ∈ (0, 1) and coefficients aj , bj cj ,
dj ∈ R, j = 1, ..., 5 such that f(Ri) = 0 for i = 1, ..., 5.

In summary, there are discontinuous quadratic polynomial differential
systems (3) having at least 5 limit cycles bifurcating from the periodic orbits
of the isochronous center ẋ = −y+x2, ẏ = x+xy, using the averaging theory
of first order for discontinuous differential systems. This completes the proof
of Theorem 1.

4. Example

In this section we illustrate Theorem 1 by studying a particular discontin-
uous quadratic polynomial differential systems (3) which has the maximum
number of limit cycles under the assumptions of Theorem 1, i.e. 5 limit
cycles.

We consider system (3) with

a1 = 16.0642220739, a3 = −0.1985389328,

b2 = −15, 9170992052, b4 = −0, 6584831027,

c3 = 39, 2749291386, d4 = 10,

a2 = a4 = a5 = b1 = b3 = b5 = c1 = c2 = c4 = c5 = d1 = d2 = d3 = d5 = 0.

Thus we have

Y1(x, y) =

(
−y + x2 + ε(16.0642220739x − 0.1985389328xy)
x + xy + ε(−15, 9170992052y − 0, 6584831027x2)

)
,

Y2(x, y) =

(
−y + x2 + ε(39, 2749291386xy)

x + xy + ε(10x2)

)
.

Computing the averaged function f for this system we obtain

f(R) =
1

4R
√

1 − R2

(
− 63.6683968209 arccosh R − 195.5597397036+

91.4122844881R2 + 4.1373713562R4+
√

1 − R2
(
304.2186825148 − 200.5278046967R−

210.3416228492R2 + 106.30232923194566R3
)

arccos R
(
−132.8428282587 + 172.8428282587R2 − 40R4

)
+
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arcsinR
(
67.6849764380 − 70.3189088490R2+

2.6339324110R4
)

+ 63.6683968209 arctan
R√

1 − R2

)

The zeros of f(R) = 0 are

R1 =
9

10
, R2 =

8

10
, R3 =

7

10
, R4 =

6

10
and R5 =

5

10
,

and

f ′
(

9

10

)
= −0.0149101309, f ′

(
8

10

)
= 0.0017276939,

f ′
(

7

10

)
= −0.000665467, f ′

(
6

10

)
= 0.0006333899,

f ′
(

5

10

)
= −0.0016764687,

i.e., f ′(Ri) ̸= 0 for i = 1, ..., 5. Hence, by Theorem 3 it follows that for
ε ̸= 0 sufficiently small this discontinuous differential system has 5 periodic
solutions.

5. Proof of Theorem 2

A first integral H and an integrating factor µ in the period annulus of the
center at the origin of the quadratic differential system (2) have the expres-
sions H(x, y) = (x2 + y2)/(1 + 2y) and µ(x, y) = 2/(1 + 2y)2, respectively;
for more details see [5]. For this system we note that h1 = 0, h2 = 1, and
that the function ρ that satisfies the hypotheses of Theorem 4 is given by

ρ(R,φ) = R2 sin φ + R
√

R2 sin2 φ + 1 for all R > 0 and φ ∈ [0, 2π).

Then using Theorem 4 we transform system (3) into the form

(14)
dR

dφ
=





ε

K(φ)

(
D(φ, a, b)R + E(φ, a, b)R2+

F (φ, a, b)R3 + G(φ, a, b)R4 + H(φ, a, b)R5+

I(φ, a, b)R6 + J(φ, a, b)R7
)

+ O(ε2) if y > 0,

ε

K(φ)

(
D(φ, c, d)R + E(φ, c, d)R2+

F (φ, c, d)R3 + G(φ, c, d)R4 + H(φ, c, d)R5+

I(φ, c, d)R6 + J(φ, c, d)R7
)

+ O(ε2) if y < 0,

where

D(φ, a, b) =a1 cos2 φ + (a2 + b1) cos φ sinφ + b2 sin2 φ,

E(φ, a, b) =

√
1 + R2 sin2 φ

(
(a4 − b1) cos3 φ + (4a1 + a3 − b2 + b4) cos2 φ sinφ+

(4a2 + a5 + 3b1 + b3) cos φ sin2 φ + (3b2 + b5) sin3 φ
)
,

F (φ, a, b) =b4 cos4 φ + (5a4 − 3b1 − b3) cos3 φ sin φ+
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(8a1 + 5a3 − 3b2 + 4b4 − b5) cos2 φ sin2 φ+

(8a2 + 5a5 + 5b1 + 4b3) cos φ sin3 φ + (5b2 + 4b5) sin4 φ,

G(φ, a, b) =

√
1 + R2 sin2 φ

(
4b4 cos4 φ sinφ+

4(3a4 − b1 − b3) cos3 φ sin2 φ + 4(2a1 + 3a3 − b2 + 2b4 − b5)

cos2 φ sin3 φ + 4(2a2 + 3a5 + b1 + 2b3) cos φ sin4 φ+

4(b2 + 2b5) sin5 φ
)
,

H(φ, a, b) =8b4 cos4 φ sin2 φ + 4(5a4 − b1 − 2b3) cos3 φ sin3 φ+

4(2a1 + 5a3 − b2 + 3b4 − 2b5) cos2 φ sin4 φ+

4(2a2 + 5a5 + b1 + 3b3) cos φ sin5 φ + 4(b2 + 3b5) sin6 φ,

I(φ, a, b) =

√
1 + R2 sin2 φ

(
8b4 cos4 φ sin3 φ + 8(2a4 − b3) cos3 φ sin4 φ+

8(2a3 + b4 − b5) cos2 φ sin5 φ + 8(2a5 + b3) cos φ sin6 φ + 8b5 sin7 φ
)
,

J(φ, a, b) =8b4 cos4 φ sin4 φ + 8(2a4 − b3) cos3 φ sin5 φ+

8(2a3 + b4 − b5) cos2 φ sin6 φ+

8(2a5 + b3) cos φ sin7 φ + 8b5 sin8 φ,

K(φ) =(1 + R2 sin2 φ + R sinφ

√
1 + R2 sin2 φ)

(1 + 2R2 sin2 φ + 2R sinφ

√
1 + R2 sin2 φ)2,

and a = (a1, ..., a5), b = (b1, ..., b5), c = (c1, ..., c5) and d = (d1, ..., d5).

Note that system (2) has the invariant straight line y = −1/2. So the
minimal distance of the external boundary of the period annulus of the
center to the origin is 1/2.

The discontinuous differential system (14) is under the assumptions of
Theorem 3. So we must study the zeros of the averaged function f : (0, 1

2) →
R,

f(R) =

∫ π

0

1

K(φ)

(
D(φ, a, b)R + E(φ, a, b)R2 + F (φ, a, b)R3+

G(φ, a, b)R4 + H(φ, a, b)R5 + I(φ, a, b)R6 + J( a, b)R7
)
dφ+

∫ 2π

π

1

K(φ)

(
D(φ, c, d)R + E(φ, c, d)R2 + F (φ, c, d)R3+

G(φ, c, d)R4 + H(φ, c, d)R5 + I(φ, c, d)R6 + J(φ, c, d)R7
)
dφ.

We compute these integrals and we obtain

f(R) = a1g1 + a3g2 + b2g3 + b4g4 + b5g5 + c1g6 + c3g7 + d2g8 + d4g9 + d5g10,
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where

g1 =1 +
π

2
R − 1

R
arctan R − R arctan R,

g2 = − 1 +
1

R
arctan R + R arctan R,

g3 = − 1 +
π

2
R − 2R2 + πR3 + arctan R

(
1

R
− R − 2R3

)
,

g4 = − 1 − R2 − π

2
R3 + arctan R

(
1

R
+ 2R + R3

)
,

g5 =1 + R2 − π

2
R3 + arctan R

(
− 1

R
+ R3

)
,(15)

g6 = − 1 +
π

2
R + arctan R

(
1

R
+ R

)
,

g7 =1 + arctan R

(
− 1

R
− R

)
,

g8 =1 +
π

2
R + 2R2 + πR3 + arctan R

(
− 1

R
+ R + 2R3

)
,

g9 =1 + R2 − π

2
R3 + arctan R

(
− 1

R
− 2R − R3

)
,

g10 = − 1 − R2 − π

2
R3 + arctan R

(
1

R
− R3

)
.

We have the equalities

g5 = 1
2(g1 − g3),

g6 = g1 + 2g2,

g7 = −g2,

g9 = 1
4(4g1 + 4g2 − 2g3 − 4g4 − 2g8),

g10 = g2 +
1

2
(g1 − g8),

so we can rewrite the function f as

f(R) = (a1 + c1 + d4 + 1
2(b5 + d5))g1 + (a3 + 2c1 − c3 + d4 + d5)g2+

(b2 − 1
2(b5 + d4))g3 + (b4 − d4)g4 + (d2 − 1

2(d4 + d5))g8.

We have the following Taylor expansions in the variable R around R = 0 of
the functions g1, g2, g3, g4 and g8:

g1(R) =
π

2
R − 2

3
R2 +

2

15
R4 − 2

35
R6 + O(R7),

g2(R) =
2

3
R2 − 2

15
R3 +

2

35
R6 + O(R7),

g3(R) =
π

2
R − 10

3
R2 + πR3 − 22

15
R4 +

34

105
R6 + O(R7),
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g4(R) =
2

3
R2 − π

2
R3 +

8

15
R4 − 8

105
R6 + O(R7),

g8(R) =
π

2
R +

10

3
R2 + πR3 +

22

15
R4 − 34

105
R6 + O(R7),

respectively. The determinant of the coefficient matrix of the variables R,
R2, R3, R4, R6 is −128π2/1575. So we have that the set of five functions
gi :

(
0, 1

2

)
→ R, given by {g1, g2, g3, g4, g8} is linearly independent.

By Proposition 5 since the five functions g1, g2, g3, g4, g8 are linearly
independent, then there exists a linear combination of their with at least
4 zeros. Moreover the coefficients of the functions gi, i = 1, 2, 3, 4, 8 in the
expression of f are linear functions of the variables a1, a3, b2, b4, b5, c1, c3,
d2, d4, d5. The rank of the Jacobian matrix of the coefficient of g1, g2, g3,
g4 and g8 in f(R) in the variables a1, a3, b2, b4, b5, c1, c3, d2, d4, d5 is 5.
Thus there exist R1, R2, R3, R4 ∈ (0, 1

2) and coefficients aj , bj cj , dj ∈ R,
j = 1, ..., 5 such that f(Ri) = 0 for i = 1, ..., 4.

In short, there are discontinuous quadratic polynomial differential systems
(3) having at least 4 limit cycles bifurcating from the periodic orbits of the
isochronous center ẋ = −y + x2 − y2, ẏ = x + 2xy, using the averaging
theory of first order for discontinuous differential systems. This completes
the proof of Theorem 2.

6. Example

In this section we illustrate Theorem 2 by studying a particular discontin-
uous quadratic polynomial differential systems (3) which has the maximum
number of limit cycles under the assumptions of Theorem 2, i.e., 4 limit
cycles.

We consider system (3) with

a1 = −6.7745224606, a3 = −0.3706207036,
b2 = 4.7754759853, b4 = 11.4284792711,

a5 = b3 = c1 = d2 = 1,

a2 = a4 = b1 = b5 = c2 = c3 = c4 = c5 = d1 = d3 = d4 = d5 = 0.

Thus we have

Y1(x, y) =

(
−y + x2 − y2 + ε(−6.7745224606x − 0.370620703xy + y2)

x + 2xy + ε(4.7754759853y + 11.4284792711x2 + xy)

)
,

Y2(x, y) =

(
−y + x2 − y2 + εx

x + 2xy + εy

)
.

Computing the averaged function f for this system we obtain

f(R) = − 22.6078570134 + 0.0014977931R − 18.9794312418R2+

0.1923796666R3 +
1.3125

R
arcsinh R − 0.65625

R
arctanh

2R
√

1 + R2

1 + 2R2
+
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arctan R

(
22.6078570134

R
+ 26.4853843138R + 3.8775273004R3

)

The zeros of f(R) = 0 are

R1 =
1

10
, R2 =

2

10
, R3 =

3

10
and R4 =

4

10
,

and

f ′
(

1

10

)
= −0.000402022, f ′

(
2

10

)
= 0.000282645,

f ′
(

3

10

)
= −0.000439832, f ′

(
4

10

)
= 0.00179854,

i.e., f ′(Ri) ̸= 0 for i = 1, ..., 4. Hence, by Theorem 3 it follows that for
ε ̸= 0 sufficiently small this discontinuous differential system has 4 periodic
solutions.
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