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BIFURCATION DIAGRAM AND STABILITY FOR

A ONE-PARAMETER FAMILY OF PLANAR VECTOR FIELDS

J. D. GARCÍA-SALDAÑA, A. GASULL, AND H. GIACOMINI

Abstract. We consider the 1-parameter family of planar quintic systems, ẋ = y3−x3,
ẏ = −x + my5, introduced by A. Bacciotti in 1985. It is known that it has at most
one limit cycle and that it can exist only when the parameter m is in (0.36, 0.6).
In this paper, using the Bendixon-Dulac theorem, we give a new unified proof of all
the previous results, we shrink this to (0.547, 0.6), and we prove the hyperbolicity of
the limit cycle. We also consider the question of the existence of polycycles. The
main interest and difficulty for studying this family is that it is not a semi-complete
family of rotated vector fields. When the system has a limit cycle, we also determine
explicit lower bounds of the basin of attraction of the origin. Finally we answer an
open question about the change of stability of the origin for an extension of the above
systems.

1. Introduction and main results

A. Bacciotti, during a conference about the stability of analytic dynamical systems,
held in Florence in 1985, proposed to study the stability of the origin of the following
quintic system {

ẋ = y3 − x3,
ẏ = −x+my5, m ∈ R. (1)

Two years later, a quite complete study of (1) was done by Galeotti and Gori in [10].
They prove that, when m ∈ (−∞, 0.36] ∪ [0.6,∞), system (1) has no limit cycles and,
otherwise, it has at most one. Their proofs are mainly based on the study of the stability
of the limit cycles, controlled by the sign of its characteristic exponent, together with a
transformation of the system using a special type of adapted polar coordinates. Their
proof of the uniqueness of the limit cycle does not provide its hyperbolicity.

In this paper we refine the above results. To guess which is the actual bifurcation
diagram we did first a numerical study, obtaining the following: it seems that there
exists a value m∗ > 0, such that:

(i) System (1) has no limit cycles if m ∈ (−∞,m∗]∪ [0.6,+∞). Moreover, for m = m∗

it has a heteroclinic polycycle formed by the separatrices of the two saddle points
located at (±m−1/4,±m−1/4).

(ii) For m ∈ (m∗, 0.6) the system has exactly one unstable limit cycle.
(iii) The value m∗ is approximately 0.560115.

Recall that a polycycle is a simple closed curve formed by several solutions of the system
and admitting a Poincaré return map. The first two items coincide with the ones
described in [10]. In that paper it is claimed that m∗ is between 0.58 and 0.59, but
our computations give a different result, which we believe that is the right one.
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basin of attraction.

1

This is a preprint of: “Bifurcation diagram and stability for a one-parameter family of planar
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The first aim of this work is to obtain analytic results that confirm, as much as
possible, the above description. To clarify the phase portraits of the system, we will
draw them on the Poincaré disc, see [3, 24].

For m ≤ 0, system (1) has no periodic orbits because x2/2+y4/4 is a global Lyapunov
function. Therefore, the origin is a global attractor. In particular, its phase portrait is
trivial. Therefore, we will concentrate on the case m > 0. In this case, the system has
three critical points, (±m−1/4,±m−1/4) and (0, 0). The first couple of points are saddles
and the third one is a monodromic nilpotent singularity. Its stability can be determined
using the tools introduced in [2, 19], see Subsection 2 and next Theorem 1.3. We prove:

Theorem 1.1. Consider system (1).

(i) It has neither periodic orbits, nor polycycles, when m ∈ (−∞, 0.547] ∪ [0.6,∞).
Otherwise, it has at most one periodic orbit or one polycycle and both can not
coexist. Moreover, when the limit cycle exists, it is hyperbolic and unstable.

(ii) For m > 0, their phase portraits on the Poincaré disc, are given in Figure 1.
(iii) Let M be the set of values of m for which it has a heteroclinic polycycle. Then M

is finite, non-empty and it is contained in (0.547, 0.6). Moreover, when m ∈ M,
the corresponding system has no limit cycles and its phase portrait is given by
Figure 1 (b).

(a) When m ∈ (0, 0.547], or when (b) When m ∈ (0.547, 0.6) and
m ∈ (0.547, 0.6) and neither the the polycycle exists.

polycycle nor the limit cycle exist.

(c) When m ∈ (0.547, 0.6) and (d) For m ∈ [0.6,∞)
the limit cycle exists.

Figure 1. Phase portraits of system (1).

Our simulations show that (a), (b) and (c) of Figure 1 occur when m ∈ (0,m∗),
m = m∗ and m > m∗, respectively, for some m∗ ∈ (0.547, 0.6), that numerically we
have found to be m∗ ≈ 0.560115. We have not been able to prove the existence of this
special value m∗, because our system is not a semi-complete family of rotated vector
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fields (SCFRVF) and this fact hinders the obtention of the full bifurcation diagram; see
the discussion in Subsection 3.1 and Example 7.1. This is precisely the reason for which
we have decided to push forward in the study of system (1). Our approach can be useful
to understand other interesting polynomial systems of differential equations that have
been considered previously; see for instance [4, 8].

In any case, from our result, we know the existence of finitely many values m∗
j ,

j = 1, . . . , k, where k ≥ 1, satisfying 0.547 < m∗
1 < m∗

2 < · · ·m∗
k < 0.6, such that

phase portrait (b) only happens for these values. Moreover, for m ∈ (0.547,m∗
1), phase

portrait (a) holds, for m ∈ (m∗
k, 0.6) phase portrait (c) holds, and for each one of the

remainder k − 1 intervals, the phase portrait does not vary on each interval and is
either (a) or (c).

As a byproduct of our approach we can also give explicit algebraic restrictions on the
initial conditions to ensure that the solutions starting at them tend to the origin.

Recall that when a critical point, p ∈ Rn, of a differential system is an attractor we
can define its basin of attraction as

Ws
p = {x ∈ Rn : lim

t→+∞
φ(t,x) = p},

where φ denotes the solution of the differential system such that φ(0,x) = x. A very
interesting question, mainly motivated by Control Theory problems, consists in obtain-
ing testable conditions for ensuring that some initial condition is in Ws

p. Usually these
conditions are obtained using suitable Lyapunov functions. We prove next result using
a different approach based on the construction of Dulac functions.

Proposition 1.2. Let Ws
0 be the basin of attraction of the origin of system (1). Consider

Vm(x, y) = g0,m(y) + g1,m(y)x+ g2,m(y)x2, with

g2,m(y) =
1

89100
(3 − 10m)(3 + 35m)y12 − 1

6300
(75 − 125m)2/3(3 − 13m)y8

+
1

90
(3 − 10m)y6 − 1

25
(75 − 125m)2/3y2 + 1,

g1,m(y) = g′
2,m(y) and g0,m(y) = g′′

2,m(y)/2 −my5g′
2,m(y)/2 + 5my4g2,m(y)/3. Then, for

m ∈ (0.5, 0.6), Um ⊂ Ws
0, where Um is the bounded connected component of {(x, y) ∈ R2 :

Vm(x, y) ≤ 0}, that contains the origin and whose boundary is the oval of Vm(x, y) = 0,
see Figure 2.

Figure 2. The limit cycle of system (1) and the set Um, introduced in
Proposition 1.2, when m = 0.57.

As we will see, the proof of the above proposition is an straightforward consequence
of Proposition 5.2. Using the same tools, it can be shown that the same result also holds
for smaller values of m. In any case, notice that this proposition covers all the values of
m for which the system has limit cycles.
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Studying the stability of the origin of system (1) we realized that, using the same
tools, we could solve an open question left in [10]. Our third result studies the stability
of the origin of the following generalization of system (1):

{
ẋ = y3 − x2k+1,
ẏ = −x+my2s+1, m ∈ R and k, s ∈ N+.

(2)

In [10], the authors gave the stability of the origin when s ̸= 2k and ask whether it
is true or not that the change of stability of the origin when s = 2k is at the value
m = (2k + 1)/(4k + 1). We will prove that their guess was not correct for k > 1. Next
result shows that when s = 2k, the stability changes at

m =
(2k + 1)!!

(4k + 1)!!!!
, (3)

where, given n ∈ N+, n!! and n!!!! are defined recurrently, as follows,

n!! = n× (n− 2)!!, n!!!! = n× (n− 4)!!!!,

with 1!! = 1, 2!! = 2 and j!!!! = j for 1 ≤ j ≤ 4. Notice that when k = 1, the right
hand-side of (3) and (2k + 1)/(4k + 1) coincide and give m = 3/5, which is one of the
values appearing in Theorem 1.1.

Theorem 1.3. Consider system (2). Then:

(i) When s < 2k, the origin is an attractor when m < 0 and a repeller when m > 0.
(ii) When s > 2k, the origin is always an attractor.
(iii) When s = 2k, the origin is an attractor when m < (2k + 1)!!/(4k + 1)!!!! and a

repeller when the reverse inequality holds. Moreover, when k = 1 and m = 3/5
the origin is a repeller and for m . 3/5 system (1) has at least one limit cycle
near the origin.

The method used to study the stability of the origin of (2), when s = 2k and k = 1,
also works for deciding its stability for the cases not covered by the above theorem:
s < 2k and m = 0; and s = 2k, k > 1 and m as in (3). Nevertheless, the computations
are tedious and we have decided do not perform them.

The paper is structured as follows. In Section 2 we prove Theorem 1.3. Section 3
collects some preliminary results. It starts with a discussion on the differences between
being or not, a SCFRVF. Then, subsection 3.2 is devoted to study the singularities at
infinite of system (1) and their phase portraits on the Poincaré disc. Afterwards, we
present some Bendixson-Dulac type results that we will use to prove non-existence or
uniqueness of periodic orbits or polycycles. Finally, we introduce a result for controlling
the number of roots of 1-parameter families of polynomials and we show that our system
can be reduced to an Abel differential equation.

In Section 4 we prove the non-existence results for m ∈ (−∞, 0.36] ∪ [0.6,∞). Our
proof is different of that of [10] and it is mainly based on the use of Dulac functions.

In Section 5 we prove the existence of at most one periodic orbit when m ∈ (1/2, 0.6).
Our approach also gives the hyperbolicity of the orbit and again uses a Bendixson-Dulac
type result. This section also includes the proof of Proposition 1.2.

Section 6 is devoted to enlarge the region where we can assure the non existence of
periodic orbits and polycycles, proving this for m ∈ (9/25, 0.547]. The proof uses once
more a suitable Dulac function in a part of the interval and the Poincaré-Bendixon
theorem, together with the hyperbolicity of the limit cycle, whenever it exists, for the
remaining values of m.

Section 7 deals with the existence of polycycles for the system. Finally in Section 8
we glue all the above results to prove Theorem 1.1.
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2. Stability of the origin and proof of Theorem 1.3

Notice that the origin of (1) and (2) are nilpotent critical points and there are several
tools for studying its local stability, see for instance [2, 15, 19]. We will follow the
approach of [2, 15], based on the polar coordinates introduced by Lyapunov in [17], to
study of the stability of degenerate critical points.

Let u(φ) = Cs(φ) and v(φ) = Sn(φ) be the solutions of the Cauchy problem:

u̇ = −v2p−1, v̇ = u2q−1, u(0) = 2q
√

1/p and v(0) = 0,

where the prime denotes the derivative with respect to φ.
The Lyapunov generalized polar coordinates are x = rp Cs(φ) and y = rq Sn(φ).

They parameterize the algebraic curves px2q + qy2p = r2pq, that correspond to the level
sets of above (p, q)−quasi-homogeneous Hamiltonian system. In particular, pCs2q(φ) +
q Sn2p(φ) = 1, and both functions are smooth Tp,q-periodic functions, where

T = Tp,q = 2p−1/2qq−1/2p
Γ
(

1
2p

)
Γ
(

1
2q

)

Γ
(

1
2p + 1

2q

) ,

and Γ denotes the Gamma function. The general expression of a differential system in
these coordinates is:

ṙ =
x2q−1ẋ+ y2p−1ẏ

r2pq−1
, θ̇ =

pxẏ − qyẋ

rp+q
. (4)

In the nilpotent monodromic case, the component θ̇ does not vanish in a punctured
neighborhood of the critical point. Hence, system (4) can be written in a neighborhood
of r = 0 as

dr

dθ
=

∞∑

i=1

Ri(θ)r
i, (5)

where Ri(θ), i ≥ 1 are T -periodic functions. The solution of (5) that for θ = 0 passes
for r = ρ can be written as the power series

r(θ, ρ) = ρ+

∞∑

i=2

ui(θ)ρ
i, with ui(0) = 0, (6)

and the functions ui can be computed solving recursive linear differential equations
obtained plugging (6) in (5). It is well-known that the stability of the origin is given by
the first non-vanishing generalized Lyapunov constant Vk := uk(T ).

To effectively compute some integrals of the above generalized trigonometric functions
we will use the following result, see [15].

Lemma 2.1. Let Sn and Cs be the (1,q)-trigonometrical functions and let T be their
period. Then, for i, j ∈ N,

(i)
∫ T
0 Sni(θ)Csj(θ) dθ = 0 when either i or j are odd.

(ii)
∫ T
0 Sni(θ)Csj(θ) dθ =

2Γ
(
i+1
2

)
Γ
(
j+1
2q

)

q
i+1
2 Γ

(
i+1
2 + j+1

2q

) when i and j are both even.

(iii) For q = 2,
∫ θ
0 Cs8(ψ) dψ =

6Sn(θ)Cs5(θ) + 10 Sn(θ)Cs(θ) + 5θ

21
.

(iv) For q = 2,
∫ θ
0 Sn4(ψ) dψ =

− Sn3(θ)Cs(θ) − Sn(θ)Cs(θ) + θ

7
.
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Proof of Theorem 1.3. By using the transformation (x, y) → (y, x), system (2) becomes
{
ẋ = −y +mx2s+1,
ẏ = x3 − y2k+1.

(7)

We use (4), with p = 1 and q = 2, to transform it into
{
ṙ = mCs2s+4(θ)r2s+1 − Sn2k+2(θ)r4k+1,

θ̇ = r − Cs(θ) Sn2k+1(θ)r4k − 2mCs2s+1(θ) Sn(θ)r2s,

or equivalently,

dr

dθ
=

mCs2s+4(θ)r2s − Sn2k+2(θ)r4k

1 − Cs(θ) Sn2k+1(θ)r4k−1 − 2mCs2s+1(θ) Sn(θ)r2s−1
. (8)

The Taylor series of the right hand-side of (8) at the origin has three possibilities:
(i) When s < 2k, then (8) becomes

dr

dθ
= mCs2s+4(θ)r2s +O(r4k).

Therefore, using the method explained above and Lemma 2.1, we get that its first
Lyapunov constant is

V2s = m

∫ T

0
Cs2s+4(θ) dθ =

m
√

2π Γ
(

2s+5
4

)

Γ
(

2s+7
4

) . (9)

Then m = 0 is the bifurcation value, and the origin of (2) changes its stability from
attractor to repeller as m goes from negative values to positive values.

(ii) Suppose s > 2k, then the Taylor expansion of (8) at r = 0 is

dr

dθ
= −Sn2k+2(θ)r4k +O(r2s).

By using the same method, we obtain that the first Lyapunov constant is

V4k =

∫ T

0
− Sn2k+2(θ) dθ = −Γ

(
1
4

)
Γ
(

2k+3
2

)

2
2k+1

2 Γ
(

4k+7
4

) < 0, (10)

and the stability of the origin of (2) is independent of m and it is an attractor for all m.
(iii) Finally, when s = 2k we have

dr

dθ
=
(
mCs4k+4(θ) − Sn2k+2(θ)

)
r4k +O(r8k−1). (11)

Hence the first non-vanishing generalized Lyapunov constant is given by

V4k =

∫ T

0

(
mCs4k+4(θ) − Sn2k+2(θ)

)
dθ.

By using (9) with s = 2k and (10), after some simplifications, we obtain that

V4k =
2π3/2

(
m(4k + 1)!!!! − (2k + 1)!!

)
(
Γ
(

3
4

))2
(4k + 3)!!!!

.

Therefore the origin of (2) is attractor for m < (2k + 1)!!/(4k + 1)!!!! and repeller for
m > (2k + 1)!!/(4k + 1)!!!!, as we wanted to prove.

In the particular case s = 2k and k = 1, that corresponds to system (1), and when
m = 3/5 we have that V4 = 0. To proof the theorem we continue computing the next
non-zero Lyapunov constant. For s = 2 and k = 1, equation (8) writes as

dr

dθ
= R4(θ)r

4 +R7(θ)r
7 +R10(θ)r

10 +O(r13),
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with R4(θ) = mCs8(θ) − Sn4(θ),

R7(θ) = 2m2 Cs13(θ) Sn(θ) +mCs9(θ) Sn3(θ) − 2mCs5(θ) Sn5(θ) − Cs(θ) Sn7(θ)

and

R10(θ) =4m3 Cs18(θ) Sn2(θ) + 4m2 Cs14(θ) Sn4(θ) +m(1 − 4m)Cs10(θ) Sn6(θ)

− 4mCs6(θ) Sn8(θ) − Cs2(θ) Sn10(θ),

with m = 3/5. Following the procedure explained in this section we obtain that u2 =
u3 = 0,

u4(θ) =

∫ θ

0
R4(ψ) dψ, u5 = u6 = 0,

u7(θ) =

∫ θ

0

(
R7(ψ) + 4R4(ψ)u4(ψ)

)
dψ, u8 = u9 = 0,

u10(θ) =

∫ θ

0

(
R10(ψ) + 7R7(ψ)u4(ψ) + 4R4(ψ)u7(ψ) + 6R4(ψ)u2

4(ψ)
)
dψ.

Using Lemma 2.1 and some easy computations we get that V1 = · · · = V9 = 0. Finally,
it suffices to compute

V10 =

∫ T

0

(
R10(θ) + 7R7(θ)u4(θ) + 4R4(θ)u7(θ)

)
dθ,

because
du3

4(θ)

dθ
= 3R4(θ)u

2
4(θ). Using integration by parts and the expression of u′

7 we

arrive to

V10 =

∫ T

0

(
R10(θ) + 3u4(θ)u

′
7(θ)

)
dθ =

∫ T

0

(
R10(θ) + 3u4(θ)R7(θ)

)
dθ. (12)

Notice that applying (iii) and (iv) of Lemma 2.1 we know that

u4(θ) =

∫ θ

0

(3

5
Cs8(ψ)−Sn4(ψ)

)
dψ =

6 Sn(θ) Cs5(θ) + 15 Sn(θ)Cs(θ) + 5 Sn3(θ) Cs(θ)

35
.

Plugging this expression in (12), using several times (i) and (ii) of Lemma 2.1 and the
properties of the Γ function we arrive to

V10 =
128

1625

(
Γ
(

3
4

))2
√
π

> 0.

Hence the origin is unstable for m = 3/5. As a consequence, we know that at m = 3/5
the system has a Hopf-like bifurcation. Therefore the system has at least one limit cycle
near the origin for m . 3/5. �

3. More preliminary results

This section is a miscellaneous one and it is divided into several short subsections
containing either some tools that we will use to prove Theorems 1.1 and 1.2 or some
preliminary results.
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3.1. Differences between families that are SCFRVF and families that are not.
On the one hand, if a one-parameter family of differential systems is a SCFRVF, then
there are many results that allow to control the possible bifurcations; see [9, 22, 23]. One
of the most useful ones is the so called non-intersection property. It asserts that if γ1 and
γ2 are limit cycles corresponding to systems with different values of m, then γ1 ∩γ2 = ∅.
Informally, we like to call this property Atila’s property1 because it implies that, if for
some value of m a limit cycle passes trough a region of the phase plane, this region
turns out to be forbidden for the periodic orbits that the system could have for any
other value of the parameter. As a consequence, in this case, the study of 1-parameter
bifurcation diagrams is much simpler.

For instance, consider a 1-parameter SCFRVF satisfying the following property:
(P) For each m ∈ (m0,m1), it has at most one limit cycle, that we denote by γm. Here,
if for some m the corresponding system has no limit cycles then γm = ∅. Moreover,
assume that ∪m∈(m0,m1)γm covers a region of the plane where all the periodic orbits of
the system have to cut.

Therefore, it holds that: for m ∈ R \ (m0,m1) the system has no periodic orbits.
The above property has very important practical consequences if we want to deter-

mine the values m0 and m1, that constitute, in many cases, the most difficult ones to
be obtained to complete the bifurcation diagram. Usually, one of the values, say m0

corresponds to a Hopf-like bifurcation, and some local analysis allows to obtain it. Then,
for instance, if for some value of m, say m̃ > m0, the system has no limit cycles then
m1 < m̃. The same idea can also be applied to obtain lower bounds of m1. These facts
simplify a lot the obtention of analytic bounds for the value m1 because it suffices to
deal with concrete systems, with fixed values of m. This approach has been applied
with success in many works; see for instance [11, 14, 21, 23, 25].

On the other hand, if for a general family of vector fields, we have that the same
property (P) given above holds, we can say nothing of what happens for m ∈ R \
(m0,m1). For this reason, when we study system (1), we can not ensure the existence of a
unique value of m for which phase portrait (b) of Figure 1 appears; see also Example 7.1.
We remark that system (1) is not a SCFRVF with respect to m, and moreover we have
not been able to transform it into an equivalent one that were a SCFRVF.

From our point of view, to introduce tools for studying 1-parameter families that are
not SCFRVF is a challenge for the differential equations community.

3.2. Global phase portrait. We will draw the phase portraits of system (1) on the
Poincaré disc, [3, 24]. Recall that, from the works of Markus [18] and Newmann [20],
for knowing a phase portrait it suffices to determine the type of critical points (finite
and at infinity), the configuration of their separatrices, and the number and character
of their periodic orbits.

We start making a study of the critical points at infinity of the Poincaré compactifi-
cation of the system. That is, we will use the transformations (x, y) = (1/z, u/z) and
(x, y) = (v/z, 1/z), with a suitable change of time to transform system (1) into two new
polynomial systems, one in the (u, z)-plane and another one in the (v, z)-plane respec-
tively; see [3] for the details. Then, for understanding the behavior of the solutions of (1)
near infinity it suffices to study the type of critical points of the transformed systems
which are localized on the line z = 0. These points are precisely the so called critical
points at infinity of system (1).

1Recall that about Atila, King of the Huns, it was said that “the grass never grew on the spot where
his horse had trod”.
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Lemma 3.1. By using the transformation (x, y) = (v/z, 1/z) and the change of time
dt/dτ = 1/z4 system (1) is transformed into the system

{
v′ = −mv + (1 − v3)z2 + v2z4,
z′ = −mz + vz5,

(13)

where the prime denotes the derivative with respect to τ . The origin is the unique critical
point of (13) on z = 0 and it is an attracting node.

The proof of the above result is straightforward.

Lemma 3.2. By using the transformation (x, y) = (1/z, u/z) and the change of time
dt/dτ = 1/z4 system (1) is transformed into the system

{
u′ = (u− z2)z2 + u4(mu− z2),
z′ = (1 − u3)z3,

(14)

where the prime denotes the derivative with respect to τ . The origin is the unique critical
point of (14) on z = 0 and it is a repeller.

Proof. From the expression of (14) it is clear that the origin is its unique critical point
on z = 0. For determining its nature we will use the directional blow-up since the linear
part of the system at this point vanishes identically; see again [3].

We apply the z-directional blow-up given by the transformation r = u/z, z = z.
Performing it, together with the change of time dt/dτ = z3, system (14) is transformed
into {

ṙ = −1 +mzr5,
ż = 1 − z3r3.

(15)

System (15) has no critical points on z = 0. Then by using the transformation (u, z) =
(rz, z) we can obtain the phase portrait of system (15). Recall that the mapping swaps
the third and fourth quadrants in the z-directional blow-up. In addition, taking into
account the change of time dt/dτ = z3, it follows that the vector field in the third and
fourth quadrant of the plane (u, z) has the opposite direction to the one obtained in the
(r, z)-plane.

Next, we need to perform the u-directional blow-up for knowing the phase portrait
in such direction. After that, by joining the information about the blow-ups in both
directions, we will have the phase portrait of system (14).

The u-directional blow-up is given by the transformation u = u, q = z/u, and with
the change of time dt/dτ = u3, system (14) is transformed into

{
u̇ = −q2(uq2 − 1) − u2(uq2 −m),
q̇ = q5 −muq.

(16)

On q = 0, the origin is the unique critical point of the system, and since the linear part
of the system at this point vanishes identically we have to use again some directional
blow-ups.

Since the lower degree term of q̇u− u̇q is −q(2mu2 + q2), and it only vanishes on the
direction q = 0, to study the origin of system (16) it suffices to consider the u-directional
blow-up. It is given by the transformation u = u, s = q/u. Doing the change of time
dt/dτ = u, system (16) becomes

{
u̇ = −us2(u3s2 − 1) − u(u3s2 −m),
ṡ = s3(u3 − 1) + 2s(u3s4 −m).

(17)

For s = 0, system (17) has a unique critical point at the origin. The linearization matrix
at the origin has eigenvalues m and −2m. Thus the origin of system (17) is a saddle.

Then by using the transformation (u, q) = (u, su) we can obtain the phase portrait of
system (16). Recall that the mapping swaps the second and the third quadrants in the
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u-directional blow-up. In addition, taking into account the change of time dt/dτ = u
it follows that the vector field in the second and third quadrants of the plane (u, q) has
the opposite direction to the one in the (u, s)-plane. Once we have the phase portrait
in the (u, q)-plane, we apply the transformation (u, z) = (u, qu).

By considering the properties of the blow-up technic and from the analysis of all the
intermediate phase portraits we obtain that the origin of system (14) is a repeller. �

Recall that the finite critical points are two hyperbolic saddles at (±m−1/4,±m−1/4)
and a monodromic nilpotent singularity (0, 0), whose stability is given in Theorem 1.3.
Finally notice that the vector field is symmetric with respect to the origin. By joining
to these properties all the information concerning the infinite critical points and using
the existence and uniqueness results on the number of limit cycles and polycycles given
in Theorem 1.1, we obtain the global phase portraits of system (1) given in Figure 1.

3.3. Some Bendixson-Dulac type criteria. Next statement is a Bendixson-Dulac
type result, that mixes the Bendixson-Dulac Test given in the classical book [3, Thm.
31] and the one given in [12, Prop. 2.2]. It is adapted to our interests. Similar results
appear in [5, 13, 16, 26].

Proposition 3.3 (Bendixson-Dulac Criterion). Let X = (P,Q) be the vector field as-
sociated to the C1-differential system

{
ẋ = P (x, y),
ẏ = Q(x, y),

(18)

and let U ⊂ R2 be an open region with boundary formed by finitely many algebraic curves.
Assume that there exists a rational function V (x, y) and k ∈ R+ such that

M = M{V,k}(x, y) = ⟨∇V,X⟩ − kV div(X) (19)

does not change sign in U and M only vanishes on points, or curves that are not invariant
by the flow of X. Then,

(I) If all the connected components of U \ {V = 0} are simple connected then the
system has neither periodic orbits nor polycycles.

(II) If all the connected components of U \{V = 0} are simple connected, except one,

say Ũ , that is 1-connected, then, either the system has neither periodic orbits
nor polycycles or it has at most one of them in U . Moreover, when it has a limit

cycle, it is hyperbolic, is contained in Ũ , and its stability is given by the sign of

−VM on Ũ .

Proof. Consider the Dulac function g(x, y) = |V (x, y)|−1/k. Then

div(gX) =
∂g

∂x
P +

∂g

∂y
Q+ g(

∂P

∂x
+
∂Q

∂y
) = ⟨∇g,X⟩ + g div(X)

= −1

k
sign(V )|V |− k+1

k (⟨∇V,X⟩ − kV div(X))

= −1

k
sign(V )|V |− k+1

k M{V,k} = −1

k
sign(V )|V |− k+1

k M.

By the hypotheses, M |{V=0} = ⟨∇V,X⟩|{V=0} does not change sign in U and there is no
solution contained in {M = 0}. Therefore, neither the periodic orbits nor the polycycles
of the vector field in U can intersect {V = 0}.

For proving (I) we follow the proof of the Bendixson-Dulac Criterion given in [3,
Thm. 31]. Assume, to arrive a contradiction, that the system has a simple closed curve
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Γ which is union of trajectories of the vector field. Let C ⊂ U the bounded region with
boundary Γ. Then, by Stokes Theorem, we have that

∫∫

C
div(gX) =

∫

Γ
⟨gX,n⟩,

where Γ is oriented in the suitable way. Note that the right hand-side term in this
equality is zero because gX is tangent to the curve Γ and the left one is non-zero by our
hypothesis. This fact leads to the desired contradiction.

In case (II), applying a similar argument to the region bounded by two possible simple
closed curves formed by trajectories of the vector field, we arrive again to a contradiction.

To end the proof, let us show the hyperbolicity of the possible limit cycle Γ. Write

Γ = {γ(t) := (x(t), y(t)), t ∈ [0, T ]} ⊂ Ũ , where T is its period, and its characteristic

exponent as h(Γ) =
∫ T
0 div (X(γ(t))) dt. We need to prove that h(Γ) ̸= 0 and that its

sign coincides with the sign of −VM on Ũ . We know that

M

V
=

⟨∇V,X⟩
V

− k div(X).

Remember that Γ ∩ {V = 0} = ∅. Evaluating this last equality on γ and integrating
between 0 and T we obtain that

∫ T

0

M

V
(γ(t)) dt =

∫ T

0

⟨∇V,X⟩
V

(γ(t)) dt− k

∫ T

0
div(X)(γ(t)) dt

= ln |V (γ(t))|
∣∣∣
t=T

t=0
− k h(Γ) = −k h(Γ). (20)

Therefore, the result follows. �

Next result is an straightforward consequence of the above proposition. It notices
that when we construct a suitable Dulac function, the same method provides an effective
estimation of the basin of attraction of the attracting critical points.

Corollary 3.4. Assume that we are under the hypotheses of the above theorem and
moreover that {V (x, y) = 0} has an oval such that it and the bounded region surrounded
by it, say W, are contained in U . Then, if the differential system has only a critical
point p in W, and it is an attractor, then W is contained in the basin of attraction of p.

Observe that when we are under the hypotheses of the above corollary, but we already
know that the system has a limit cycle in U , and U is simply connected, then, unless the
set {V (x, y) = 0} reduces to a single point, there is no need to assume that {V (x, y) = 0}
has an oval. The existence of the oval is already guaranteed by the method itself.

Sometimes the hypothesis that M does not change sign can be replaced for another
one, following next remark.

Remark 3.5. Assume that in Proposition 3.3 we can not ensure that the function M ,
given in (19), keeps sign on the whole domain U . Then, this hypothesis can be changed
by another one. Define {M = 0}∗ to be the subset of {M = 0} formed by curves that
separate the regions {M > 0} and {M < 0}. Then, the new hypothesis is that the
set {M = 0}∗ is without contact by the flow of X. Then, in the conclusions of the
proposition, the connected components of U \ {V = 0} must be replaced by the connected
components of U \

(
{V = 0} ∪ {M = 0}∗) and the same type of conclusions hold. We

will use this idea in the proof of Proposition 6.1.
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3.4. Zeros of 1-parameter families of polynomials. As usual, for a polynomial
P (x) = anx

n + · · · + a1x+ a0, we write △x(P ) to denote its discriminant, that is,

△x(P ) = (−1)
n(n−1)

2
1

an
Res(P (x), P ′(x)),

where Res(P, P ′, x) is the resultant of P and P ′ with respect to x; see [7].
By using the same techniques that in [11, Lem. 8.1], it is not difficult to prove the

following result that will be used in several parts of the paper.

Lemma 3.6. Let Gm(x) = gn(m)xn + gn−1(m)xn−1 + · · · + g1(m)x+ g0(m) be a fam-
ily of real polynomials depending continuously on a real parameter m and set Λm =
(c(m), d(m)) for some continuous functions c(m) and d(m). Suppose that there exists
an interval I ⊂ R such that:

(i) For some m0 ∈ I, Gm0 has exactly r zeros in Λm0 and all them are simple.
(ii) For all m ∈ I, Gm(c(m)) ·Gm(d(m)) ̸= 0.
(iii) For all m ∈ I, △x(Gm) ̸= 0.

Then for all m ∈ I, Gm(x) has also exactly r zeros in Λm and all them are simple.

The idea of the proof consists in looking at the roots of G as continuous functions of
m. The hypothesis (ii) prevents that some real roots of Gm passes, varying m, trough
the boundary of Λm. The hypothesis (iii) forbids, that varying m, appears some multiple
root of Gm.

Notice that the above result transforms the control of the zeros of a function depending
on two variables, x and m, into three problems of only one variable, the one of item (i)
with the variable x and the two remainder ones with the variable m. If the dependence
on m is also polynomial, and the polynomial has rational coefficients, then these three
simpler questions can be solved by applying the well-known Sturm method. As we
will see in the proof of Proposition 5.2, this approach can also extended when the one
variable polynomial has some irrational coefficients.

3.5. Transformation into an Abel equation. System (1) can be seen as the sum
of two quasi-homogeneous vector fields, see [6]. It is known that in many cases these
systems can be transformed into Abel equations. We get:

Proposition 3.7. The periodic orbits of system (1) correspond to positive T -periodic
solutions of the Abel equation

dρ

dθ
= α(θ)ρ3 + β(θ)ρ2, (21)

where

α(θ) = 3 Cs(θ) Sn(θ)
(
2mCs4(θ) + Sn2(θ)

) (
mCs8(θ) − Sn4(θ)

)

and

β(θ) = 5mCs8(θ) − 4 Sn4(θ) + (3 − 10m)Cs4(θ) Sn2(θ),

being Sn and Cs the functions introduced in Subsection 2 and T their period.

Proof. The result follows by applying the Cherkas transformation

ρ =
r3

1 − r3 Sn(θ)Cs(θ)
(
Sn2(θ) + 2mCs4(θ)

) ,

to the expression of system (1) in the quasi-homogeneous polar coordinates introduced
in Section 2. It is used that the periodic orbits of the system do not intersect the curve
θ̇ = 0, and therefore the above transformation is well-defined over them, see [6]. �
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Using the above expression it is not difficult to reproduce the proof of the existence of
the Hopf-like bifurcation given in Subsection 2. Unfortunately, although expression (21)
looks quite simple, the results about the number of limit cycles of Abel equations that
we know are not applicable to (21).

4. Non-existence of limit cycles for m ∈ (0, 9/25) ∪ (3/5,∞)

In this section we prove the non-existence results of periodic orbits already given in
[10] and extend them to the non-existence of polycycles. Our proof is different and based
on the Bendixson-Dulac theorem and other classical tools. We study separately each
interval.

Proposition 4.1. For m ∈ (0, 9/25], system (1) has neither periodic orbits nor polycy-
cles.

Proof. Recall that for m ∈ (0, 9/25] the origin is attractor. Therefore if we prove that
any periodic orbit Γ of the system is also attractor we will have proved that the system
has not periodic orbits. In order to prove the stability of the limit cycle we need to

compute
∫ T
0 div (X(γ(t))) dt, where γ(t) := (x(t), y(t)) is the time parametrization of

Γ, and T = T (Γ) its period.
From equation (19), for any function V such that {V (x, y) = 0} ∩ Γ = ∅, we have

div(X) =
M{V,k} − ⟨∇V,X⟩

−kV .

Hence, ∫ T

0
div (X(γ(t))) dt = −

∫ T

0

M{V,k}(γ(t))

kV (γ(t))
dt,

where we have followed similar computations that in (20). Then the stability of Γ is
given by the sign of −MV . If we show that for m ∈ (0, 9/25] there exist a non-negative
V and k ∈ R+, such that its corresponding M is non-negative, then we will have proven
that the limit cycle is hyperbolic and attractor.

By considering V (x, y) = 2x2 + y4 and k = 2/3 equation (19) becomes

M{V, 2
3
} =

2

3

(
(3 − 10m)x2 +my4

)
y4,

which clearly is non-negative on R2 for m ∈ (0, 3/10].
If we use the same V (x, y) that in previous case, but k = K(m) = 8(11m+R)/(10m+

3)2, with R =
√
m(1 − 4m)(25m− 9) then we have

M{V,K(m)} =

(
2

3 + 10m

(
(m+R)(11m+R)

m

)1/2

x2 +
2(3 − 10m)

3 + 10m

(
m(11m+R)

(m+R)

)1/2

y4

)2

,

hence M{V,K(m)} is non-negative on R2 for m ∈ (1/4, 9/25].
Therefore system (1) has no limit cycles for m ∈ (0, 9/25] as we wanted to show.
To prove the non-existence of polycycles for m ∈ (0, 9/25) we use a different approach.

Following [24], we can associate to each polycycle Γ, with k hyperbolic saddles at its

corners, the number ρ(Γ) =
∏k
i=1 bi/ai, where −ai < 0 < bi, i = 1, . . . k, are the eigen-

values at the saddles. Then, Γ is stable (respectively, unstable) if ρ(Γ) < 1 (respectively,
ρ(Γ) > 1). In our case

ρ(Γ) =

(
5
√
m− 3 +

√
25m+ 18

√
m+ 9

)4

482m
.

Then, easy computations show that the polycycle is an attractor if m < 9/25 and
a repeller if m > 9/25. Assume, to arrive to a contradiction, that for m < 9/25 the
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polycycle exists. Then both, the polycycle and the origin, would be attractors. Applying
the Poincaré-Bendixson Theorem we could ensure that the system would have at least
one periodic orbit between them. This result is in contradiction with the first part of
the proof, where the non-existence of periodic orbits is established.

It only remains to show that for m = 9/25 the polycycle neither exists. To prove this
fact we could study the stability of the polycycle showing that if it exists it would be
attractor, arriving again to a contradiction. Nevertheless it is easier to apply Proposi-
tion 3.3 with the V and k = K(9/25) used to prove the non-existence of periodic orbits.
Indeed, this later approach, taking the corresponding V and k, could also be used for
all values of m ∈ (0, 9/25], but we have preferred to include a proof based on the study
of the stability of the limit cycle and the polycycle. �
Lemma 4.2. Let X be the vector field associated to system (1).

(i) If we take k = 1/3 and V1(x, y) = g0(y) + g1(y)x where g0(y) = g′
1(y) and g1(y)

a solution of the second order linear ordinary differential equation

−g′′
1(y) +my5g′

1(y) − 5

3
my4g1(y) = 0, (22)

then (19) reduces to the function

M1 := M{V1,
1
3}(x, y) =

1

3
y3
(
3my2g′′

1(y) − 5myg′
1(y) + 3 g1(y)

)
. (23)

(ii) If we take k = 2/3 and V2(x, y) = g0(y) + g1(y)x+ g2(y)x
2, with

g1(y) = g′
2(y),

g0(y) = (1/2)g′′
2(y) − (1/2)my5g′

2(y) + (5/3)my4g2(y), (24)

then (19) becomes

M2 := M{V2,
2
3}(x, y) =

(
− 1

2
g′′′
2 (y) +

3

2
my5g′′

2(y) − 5

2
my4g′

2(y) +
2

3
(3 − 10m)y3g2(y)

)
x

+
1

18
y3
(
9my2g′′′

2 (y) −m(30 + 9my6)yg′′
2(y) + 3(6 + 5m2y6)g′

2(y) + 20m2y5g2(y)
)
.

(25)

Proof. (i) If V1(x, y) = g0(y) + g1(y)x and k = 1/3, then

M1 =⟨∇V1, X⟩ − 1

3
div(X)V1

=
(
g0(y) − g′

1(y)
)
x2 +

(
− g′

0(y) +my5g′
1(y) − 5

3
my4g1(y)

)
x

+
1

3
y3
(
3mg′

0(y)y
2 − 5mg0(y)y + 3g1(y)

)
.

By choosing g0(y) = g′
1(y) the coefficient of x2 in M1 vanishes, and we obtain

M1 =

(
−g′′

1 (y) +my5g′
1(y) − 5

3
my4g1(y)

)
x+

1

3
y3
(
3mg′′

1 (y)y2 − 5myg′
1(y) + 3g1(y)

)
.

Finally, if g1(y) is a solution of (22) we get (23).

(ii) If k = 2/3 and V2(x, y) = g0(y) + g1(y)x+ g2(y)x
2, then

M2 =⟨∇V2, X⟩ − 2

3
div(X)V2

=(g1(y) − g′
2(y))x

3 +
(
my5g′

2(y) − 10

3
my4g2(y) − g′

1(y) + 2g0(y)
)
x2 +

(
2y3g2(y)

+my5g′
1(y) − 10

3
my4g1(y) − g′

0(y)
)
x+

1

3
y3
(
3g1(y) + 3my2g′

0(y) − 10myg0(y)
)
.
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By choosing g1(y) = g′
2(y) and g0(y) = (1/2)g′′

2(y)− (1/2)my5g′
2(y)+(5/3)my4g2(y) the

coefficients of x2 and x3 in M2 vanish. Then we have (25). �

Remark 4.3. Notice that if g2(y) is a solution of the linear ordinary differential equation

−1

2
g′′′
2 (y) +

3

2
my5g′′

2(y) − 5

2
my4g′

2(y) +
2

3
(3 − 10m)y3g2(y) = 0, (26)

then (19) reduces to a function depending only of the variable y.

Proposition 4.4. For m ∈ [3/5,∞), system (1) has neither periodic orbits nor polycy-
cles.

Proof. We want to apply Proposition 3.3, taking k = 1/3 and V1(x, y) = g0(y) + g1(y)x,
with g0 and g1 as in (i) of Lemma 4.2. Applying the transformation z = my6/6,
equation (22) becomes

zg′′
1(z) +

(
5

6
− z

)
g′
1(z) +

5

18
g1(z) = 0,

which is a Kummer equation, see [1, pp. 504]. A particular solution of this equation is

g1(z) = z1/6
∞∑

j=0

(−1
9)j

(7
6)j

zj

j!
,

where (a)j := a(a+ 1)(a+ 2) · · · (a+ j − 1) and (a)0 = 1. Therefore we consider

g1(y) =
(m

6

)1/6
y

∞∑

j=0

(−1
9)j

(7
6)j

(m
6

)j y6j

j!
,

which is convergent on the whole R and satisfies (22). Its derivatives are

g′
1(y) =

(m
6

)1/6
∞∑

j=0

(−1
9)j

(7
6)j

(m
6

)j
(6j + 1)

y6j

j!
,

g′′
1(y) =

(m
6

)1/6
∞∑

j=0

(−1
9)j

(7
6)j

(m
6

)j
6j(6j + 1)

y6j−1

j!
.

Replacing the above functions in (23) we obtain

M1 =

(
3 − 5m

3

)(m
6

)1/6
y4

+

(
1

3

)(m
6

)1/6
∞∑

j=1

(−1
9)j

(7
6)j

(m
6

)j ( 1

j!

)(
m(6j + 1)(18j − 5) + 3

)
y6j+4.

Since (−1
9)j is negative for all j, it follows that M1 ≤ 0 for m ≥ 3/5, and vanishes only

on y = 0. Therefore the result follows by applying Proposition 3.3. �

5. Uniqueness and hyperbolicity of the limit cycle for m ∈ (1/2, 3/5)

In this section we prove that for m ∈ (1/2, 3/5), system (1) has at most one limit cycle
or one polycycle and both never coexist. Moreover, we show that when the limit cycle
exists, it is hyperbolic. The uniqueness of the limit cycle was already proved in [10]. Our
approach is different and, like in the previous section, it is based on the construction of
a suitable Dulac function. This section ends with the proof of Proposition 1.2.
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Lemma 5.1. Let S be the open set bounded by the lines x = ±m−1/4 and y = ±m−1/4

and let Ω be the connected component containing the origin and bounded by the above
four straight lines and the hyperbola xy + 1 = 0, see Figure 3. The following holds:

(i) The vector field X associated to system (1) is transversal to the boundary ∂S of
the square S except at the two saddle critical points of system (1).

(ii) If system (1) has a periodic orbit or a polycycle, it must be contained in Ω ⊂ S.

(a) (b)

Figure 3. Regions Ω and S.

Proof. (i). Consider the function f(x, y) = x − m−1/4. It is not difficult to see that

⟨∇f,X⟩ restricted to x − m−1/4 = 0 has the expression y3 − m−1/4 which is negative

for y ∈ (−m−1/4,m−1/4). Analogously, we can see that the direction of X along ∂S is
as showed in Figure 3 (a).

(ii). It is well-known that the sum of the indices of all the singularities surrounded by
a periodic orbit, or a polycycle is one. Recall that the indices of the saddle points are −1
and the index of a monodromic point is +1. Hence, if a periodic orbit or a polycycle Γ
exist they must surround only the origin. Moreover, by statement (i), Γ cannot intersect
∂S. Finally, a simple computation shows that ⟨∇(xy+1), X⟩ restricted to xy+1 = 0 is
(1 −m)/x4, which implies that X is transversal to xy + 1 = 0. Hence X is transversal
to ∂Ω and the lemma follows. �
Proposition 5.2. For m ∈ [1/2, 3/5), system (1) has at most one limit cycle and one
polycycle and both never coexist. Moreover, when the limit cycle exists it is hyperbolic
and repeller.

Proof. Following statement (ii) of Lemma 4.2 we take k = 2/3 and a function V2(x, y) =
g0(y) + g1(y)x + g2(y)x

2 adequate to apply Proposition 3.3 for proving the uniqueness
of the limit cycles or polycycles for system (1).

We will take g2(y) as a truncated Taylor series at the origin of a suitable solution of
(26) such that the curve {V2 = 0} has an oval surrounding the origin, and that M2 does
not change sign in Ω. These two properties will imply the result.

The general solution of (26) is the linear combination of generalized hypergeometric
functions

g2(y) =C0

∞∑

j=0

(ϕ+(m))j (ϕ−(m))j(
2
3

)
j

(
5
6

)
j

(m
2

)j y6j

j!
+ C1y

∞∑

j=0

(φ+(m))j (φ−(m))j(
5
6

)
j

(
7
6

)
j

(m
2

)j y6j

j!

+ C2y
2

∞∑

j=0

(ψ+(m))j (ψ−(m))j(
7
6

)
j

(
4
3

)
j

(m
2

)j y6j

j!
, (27)



BIFURCATION DIAGRAM AND STABILITY FOR A ONE-PARAMETER FAMILY 17

where ϕ±(m) = ±A(m) − 2/9, φ±(m) = ±A(m) − 1/18, ψ±(m) = ±A(m) + 1/9, with

A(m) =
√

(14m− 3)/m/9.
We look for an even solution, so we take C1 = 0. As we will consider C0 ̸= 0, it is

not restrictive to choose C0 = 1. Finally, the constant C2 = −(3/5 − m)2/3 is fixed
after some previous simulations and taking into account that we already know that at
m = 3/5 there is a Hopf-like bifurcation.

Once we have fixed the above constants, we calculate the Taylor polynomial of de-
gree 12 of g2 at y = 0, T12(g2), obtaining

T12(g2(y)) =
1

89100
(3 − 10m)(3 + 35m)y12 − 1

6300
(75 − 125m)2/3(3 − 13m)y8

+
1

90
(3 − 10m)y6 − 1

25
(75 − 125m)2/3y2 + 1. (28)

So, in (ii) Lemma 4.2, we fix g2 as T12(g2(y)). Then the corresponding g0 and g1 are
given by (24). Thus, M2 is of the form M2 = (ϕ(y)x+ ψ(y))y4 where

ϕ(y) =
1

9450

( 7

99
(3 − 10m) (242m+ 3) (35m+ 3) y11

+ (75 − 125m)2/3 (86m+ 3) (13m− 3) y7
)
,

ψ(y) = − 247

400950
m2 (3 − 10m) (35m+ 3) y16 − 13

4050
m2 (75 − 125m)2/3 (13m− 3) y12

+
1

7425
(3 − 10m)

(
550m2 + 145m+ 3

)
y10

+
2

4725
(75 − 125m)2/3

(
196m2 − 45m− 9

)
y6

+
1

15
(3 − 5m) y4 − 2

75
(75 − 125m)2/3 (3 − 5m) .

The proposition follows if we prove that M2 does not change sign on the region Ω. In
fact, it is sufficient to prove that M := M2/y

4 does not change sign on Ω.
The idea is to show that {M = 0} does not intersect Ω. Since M is linear in the

variable x, {M = 0} cannot have ovals inside Ω. If {M = 0} has a component in Ω, this
component would have to cross ∂Ω by continuity of the function. Then, it suffices to see
that {M = 0} does not intersect ∂Ω. Moreover, as M satisfies M(x, y) = M(−x,−y),
it is sufficient to study M on half of ∂Ω. To deal only with polynomials we introduce
the new variables n = 4

√
m and s = (75 − 125m)2/3. Notice that s3 = (75 − 125n4)2.

We split the half of the boundary of Ω in four pieces:

• The segment γ1 = {(x, 1/n) : −n < x < 1/n},
• The segment γ2 = {(1/n, y) : −n < y < 1/n},
• The piece of hyperbola γ3 = {(x,−1/x) : n < x < 1/n},
• The corners γ4 = {(1/n, 1/n), (1/n,−n), (n,−1/n)}

and we have to prove that {M = 0} ∩ γi = ∅ for each i = 1, 2, 3, 4.

These facts can be seen proving that for n ∈ I := [ 4
√

1/2, 4
√

3/5 ),

• Q1(x, n, s) := M(x, 1/n) ̸= 0, for x ∈ (−n, 1/n).
• Q2(y, n, s) := M(1/n, y) ̸= 0, for y ∈ (−n, 1/n).
• Q3(x, n, s) := M(x,−1/x) ̸= 0, for x ∈ (n, 1/n).
• M(1/n, 1/n) ·M(1/n,−n) ·M(n,−1/n) ̸= 0.

Lemma 3.6, with r = 0, is a convenient tool to prove the first three items. The proof
of the last item is an straightforward consequence of Sturm method.
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We will give the details of the proof that Q2(y, n, s) ̸= 0, which is the most elaborate
case. The remainder two cases follow similarly.

Writing Q(y, n, s) := 2806650nQ2(y, n, s) we get that

Q(y, n, s) =1729n9(35n4 + 3)(10n4 − 3)y16 − 9009n9s(13n4 − 3)y12

− 21(10n4 − 3)(242n4 + 3)(35n4 + 3)y11

− 378n(10n4 − 3)(550n8 + 145n4 + 3)y10 + 297s(13n4 − 3)(86n4 + 3)y7

+ 1188ns(196n8 − 45n4 − 9)y6 − 187110n(5n4 − 3)y4 + 74844ns(5n4 − 3).

Looking at Lemma 3.6 with r = 0, it suffices to prove the following three facts:

(i) When n = 4
√

1/2 ∈ I, Q(y, n, s) ̸= 0 for y ∈ (−n, 1/n).
(ii) For n ∈ I, △yQ(y, n, s) ̸= 0.
(iii) For n ∈ I, Q(−n, n, s) ·Q(1/n, n, s) ̸= 0.

Since the polynomial has no rational coefficients the proof of item (i) requires some

special tricks. Notice that when n = 4
√

1/2 then s = 5 3
√

10/2. Hence,

R(y) := Q
(
y,

1
4
√

2
,
5

2
3
√

10
)

=
70889

8
4
√

8 y16 − 315315

32
4
√

8
3
√

10 y12 − 106764y11

− 80514
4
√

8 y10 +
239085

2
3
√

10 y7 +
51975

2
4
√

8
3
√

10 y6

+
93555

2
4
√

8 y4 − 93555

2
4
√

8
3
√

10.

We will prove that the above polynomial has no real roots in [−1, 12/10] ⊃ (−n, 1/n).
The Sturm method gives polynomials with huge coefficients and our computers have
problems to deal with them. We use a different approach. We know, that

n :=
3002

1785
<

4
√

8 <
37

22
=: n, s :=

28

13
<

3
√

10 <
265

123
=: s,

where these four rational approximations are obtained computing the continuous fraction
expansion of both irrational numbers. If we construct the polynomial, with rational
coefficients,

R+(y) =
70889

8
n y16 − 315315

32
n s y12 − 106764y11 − 80514n y10

+
239085

2
s y7 +

51975

2
n s y6 +

93555

2
n y4 − 93555

2
n s,

it is clear that for y ≥ 0, R(y) < R+(y). In fact,

R+(y) =
2622893

176
y16 − 2427117

68
y12 − 106764y11 − 11509668

85
y10

+
21119175

82
y7 +

15442875

164
y6 +

314685

4
y4 − 37446948

221

and, now, using the Sturm method it is quite easy to prove that R+(y) < 0 for y ∈
[0, 12/10]. Hence, in this interval, R(y) < R+(y) < 0, as we wanted to prove.

To study the values of y < 0 we construct a similar upper bound,

R−(y) =
70889

8
n y16 − 315315

32
n s y12 − 106764y11 − 80514n y10

+
239085

2
s y7 +

51975

2
n s y6 +

93555

2
n y4 − 93555

2
n s,

and applying the same method the result follows.
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To prove (ii) we compute

△yQ(y, n, s) = n42s3(5n4 − 3)5(35n4 + 3)3(10n4 − 3)3P258(n, s),

where P258(n, s) is a polynomial in n and s of degree 258. Clearly, the roots of the
first five factors of the above discriminant are no relevant for our problem because the
corresponding n is not in I. To study whether P258(n, s) vanishes or not we compute

Res(P258(n, s), (75 − 125n4)2 − s3, s) = (5n4 − 3)24P390(n
2),

where P390(n
2) is a polynomial of degree 390 in n2. Applying again the Sturm method

we get that P390(n
2) has no significant roots for our study. Finally, the numerator of

Q(−n, n, s) ·Q(1/n, n, s) is a polynomial in n and s of degree 49. Using the same trick
as above we prove item (iii). In this case the polynomial we have to deal with has degree
152 in n.

Therefore {M = 0} ∩ ∂Ω = ∅ and as a consequence {M = 0} ∩ Ω = ∅.
Finally, it is not difficult to see, because V is quadratic in x, that the set {V (x, y) = 0}

has exactly one oval surrounding the origin. Hence, the proposition follows. �
Proof of Proposition 1.2. Notice that the function V used in the proof of Proposition 5.2
coincides with the function V (x, y,m) of the statement of the proposition. Taking
k = 2/3 we are also under the hypotheses of Corollary 3.4. Therefore the set Um is
contained in Ws

0, as we wanted to prove. �
We remak that following similar ideas that in the above proof we can construct bigger

sets contained in Ws
0. For a givenm, let us denote by Tℓ(g2(x;C2)) the Taylor polynomial

of degree ℓ at x = 0, of the function (27) with C0 = 1, C1 = 0. Then for each ℓ ∈ N and
C2 ∈ R we can take this function as a new seed g2 for constructing the corresponding
V as in (ii) of Lemma 4.2. Then checking that the oval contained in {V = 0} is crossed
inwards by the flow of the system, the result follows for the function V constructed with
these ℓ and C2.

6. Non-existence of limit cycles and polycycles for m ∈ (9/25, 0.547]

This section contains new non-existence results for system (1). We split the interval
into the subintervals (9/25, 1/2) and [1/2, 0.547]. Recall that our numerical study shows
that the system has no limit cycles for m < 0.56011 . . . As m becomes closer to this
bifurcation value the proof of non-existence of periodic orbits and polycycles becomes
harder.

Proposition 6.1. For m ∈ (9/25, 1/2), system (1) has neither limit cycles nor polycy-
cles.

Proof. We would like to apply Proposition 3.3. To this end we will follow similar steps
that in the proof of Proposition 5.2, but with a function V such that the set {V = 0}
has no oval in Ω. Recall that Ω is the domain introduced in Lemma 5.1, where the limit
cycles and the polycycles must lay. We take V = V2(x, y) = g0(y) + g1(y)x + g2(y)x

2

with g1(y) = g′
2(y), g0 = (1/2)g′′

2(y)− (1/2)my5g′
2(y)+(5/3)my4g2(y). Now we consider

g2(y) = a0 + a2y
2 + a4y

4 + a6y
6 + a8y

8, with coefficients to be determined. From
statement (ii) of Lemma 4.2 it follows that the correspondingM2 is a polynomial function
in x of the formM2 = ϕ(y)x+ψ(y) where ϕ(y) and ψ(y) are polynomials in the variable y
whose coefficients depend on a2j , j = 0, 1, . . . , 4. In order to simplify the computations,
we change the parameter m by n4 to transform V into a polynomial in the variables x,
y, and n. Since m ∈ (9/25, 1/2) we can restrict our study to n ∈ (0.77, 0.844).

We consider the values of a4, a6 and a8 such that ϕ(y) has a zero at y = 0 of multi-
plicity nine, we choose the value of a2 by imposing that M2 vanishes at the two saddle
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points of the system and, finally, we use the freedom of changing g2(y) by λg2(y), for
any 0 ̸= λ ∈ R, to remove all the denominators. We obtain that

g2(y) =270(9 + 51n2 + 213n4 + 535n6 + 924n8 + 756n10)

− 756n2(9 + 42n2 + 105n4 + 130n6)y2

+ 3(3 − 10n4)(9 + 51n2 + 213n4 + 535n6 + 924n8 + 756n10)y6

− 3n2(3 − 13n4)(9 + 42n2 + 105n4 + 130n6)y8.

The corresponding M2 is of the form

M2(x, y) =
2

3
y4 (ϕ(y)x+ ψ(y)) =:

2

3
y4M(x, y), (29)

where

ϕ(y) =3(3 − 10n4)(3 + 35n4)(9 + 51n2 + 213n4 + 535n6 + 924n8 + 756n10)y5

− 3n2(3 − 13n4)(3 + 86n4)(9 + 42n2 + 105n4 + 130n6)y7,

ψ(y) = − 756n2(3 − 5n4)(9 + 42n2 + 105n4 + 130n6)

+ 27(3 − 5n4)(9 + 51n2 + 213n4 + 535n6 + 924n8 + 756n10)y4

− 12n2(9 + 42n2 + 105n4 + 130n6)(9 + 45n4 − 196n8)y6

− 40n8(3 − 10n4)(9 + 51n2 + 213n4 + 535n6 + 924n8 + 756n10)y10

+ 91n10(3 − 13n4)(9 + 42n2 + 105n4 + 130n6)y12.

Recall that the main hypothesis in Proposition 3.3 is that M does not change on Ω.
As we will see, this happens only for n ∈ J := (0.77, ñ] where ñ ≈ 0.8045592 will be
precisely defined afterwards. When n ∈ K := (ñ, 0.844) the result will be a consequence
of the variation of Proposition 3.3 described in Remark 3.5.

For n ∈ J , following similar steps that in the proof of Proposition 5.2, we divide half
of the boundary of Ω in five pieces:

• The segment γ1 = {(x, 1/n) : −n < x < 1/n},
• The segment γ2 = {(1/n, y) : −n < y < 1/n},
• The piece of hyperbola γ3 = {(x,−1/x) : n < x < 1/n},
• The corners γ4 = {(1/n,−n), (n,−1/n)},
• The corner γ5 = {(1/n, 1/n)}

and we will prove that {M = 0} ∩ γi = ∅ for each i = 1, 2, 3, 4 and that although
(1/n, 1/n) ∈ ∂Ω, the set {M = 0} does not enter in Ω. From these results we will have
proved that M does not change sign on Ω and, as a consequence, the proposition will
follow for n ∈ J.

To prove the fifth assertion it suffices to study the function M in a neighborhood of
the point (1/n, 1/n) ∈ ∂Ω. By the construction of M , it holds that M(1/n, 1/n) = 0.
By computing the partial derivatives of M at this point we obtain which is the tangent
vector of the curve at (1/n, 1/n). Then, it is easy to see that when n ∈ J , in a punctured
neighborhood W of (1/n, 1/n), it holds that W ∩ {M = 0} ∩ Ω = ∅. In fact, ñ ∈ ∂J is
a solution of the equation

num
(∂M(x, y)

∂x

∣∣∣
(x,y)=(1/n,1/n)

)
= 0,
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where num(·) denotes the numerator of the rational function. Moreover,

M
(
x,

1

n

)
= −9(nx− 1)

n4

(
88200n16 + 107800n14 − 4930n12

− 37380n10 − 15855n8 − 2736n6 + 576n4 + 108n2 − 27
)

(30)

and ñ is also the positive root of the polynomial in n appearing in the right-hand side
of the above formula. Notice that when n = ñ, the straight line {y = 1/ñ} is a subset of
{M = 0}. This fact is the reason for which this approach only works for n ∈ J = (0.77, ñ].

Let us prove the remainder four assertions. As in the proof of Proposition 5.2, they
follow by showing that when n ∈ J ,

• R1(x, n) := num(M(x, 1/n)) ̸= 0, for x ∈ (−n, 1/n).
• R2(y, n) := num(M(1/n, y)) ̸= 0, for y ∈ (−n, 1/n),
• R3(x, n) := num(M(x,−1/x)) ̸= 0, for x ∈ (n, 1/n).
• M(1/n,−n) ·M(n,−1/n) ̸= 0.

That R1 has no zeros in J , is an straightforward consequence of (30).
To study R2 and R3 we will use Lemma 5.1. We start computing the discriminants,

S2(n) = △y(R2(y, n)), S3(n) = △x(R3(x, n)),

and analyze whether they vanish or not on J. Using the Sturm method we get that
on J , S2 vanishes only at one value n2 ≈ 0.8040188 and S3 also vanishes only at one
value n3 ≈ 0.8045576. The root n2 of S2 forces to split the study of R2(y, n) in the three
subcases: n ∈ (0.77, n2), n = n2 and n ∈ (n2, ñ]. Doing the same type of computations
and reasoning as in the previous section we can prove all the above assertion when
n ̸= n2. The case n = n2 follows by continuity arguments, because it can be seen that
in this situation R2 has a real multiple root but it is not in (−n2, 1/n2). The study of
R3 is similar to the one of R2 and we omit it. We also get that R3 neither vanishes on
(n, 1/n).

That for n ̸= ñ, M(1/n,−n) · M(n,−1/n) ̸= 0 is once more a consequence of the
Sturm method.

Therefore, when n ∈ J, we are under the hypotheses of Proposition 3.3, and we will
know that the system has no limit cycles once we have proved that the set {V = 0} has
no ovals. We defer the proof of this fact until we have considered the case n ∈ K =
(ñ, 0.844).

When n ∈ K, we know that {M = 0} ∩ Ω ̸= ∅ and we are no more under the
hypotheses of Proposition 3.3. Let us see that we can apply the ideas of Remark 3.5.
To this end we have to prove that {M2 = 0}∗ ∩ Ω is without contact for the flow of X.
Note that {M2 = 0}∗ = {M = 0}∗.

We need to show that Ṁ = ⟨∇M,X⟩ does not vanish on {M = 0}∗ ∩ Ω. We study

the common points of {M = 0} and {Ṁ = 0} and prove that they are not in Ω. First,
we compute

Ṁ(x, y) = ⟨∇M(x, y), X(x, y)⟩ =: y3N(x, y),

and we remove the factor y3. We do not care about the points on {y = 0} because

M(x, 0) = 756n2
(
5n4 − 3

) (
9 + 42n2 + 105n4 + 130n6

)
̸= 0,

for n ∈ (0, 0.88].
The resultant Res(M,N, x) factorizes as

Res(M,N, x) = y2(n2y2 − 1)(Pn,2(y))(Pn,34(y)),
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where Pn,2(y) and Pn,34(y) are polynomials in the variable y with respective degrees 2
and 34 and whose coefficients are polynomial functions with rational coefficients in the
variable n.

Clearly, (n2y2 − 1) does not vanish on −1/n < y < 1/n. By using once more
Lemma 3.6 it is not difficult to prove that Pn,2(y) does not vanish either on −1/n < y <
1/n, for n ∈ (ñ, 0.844). Hence we will focus on the factor Pn,34(y).

We will use again Lemma 3.6. By using the Sturm method we get that △y(Pn,34(y))
has no zeros in the interval K. In fact one zero is ñ ∈ ∂K and another one is n∗ ≈
0.8445 ̸∈ J and this is the reason for which we can only prove the result until n =
0.844 < n∗. By using Sturm method, it can be shown that Pn,34(−1/n) · Pn,34(1/n) ̸= 0
for all n ∈ K and, for instance, for n = n0 = 83/100 ∈ K, the polynomial Pn0,34(y) has
exactly two (simple) zeros in −1/n0 < y < 1/n0. Then, Lemma 3.6 with r = 2, implies
that Pn,34(y) has exactly two (simple) zeros in −1/n < y < 1/n, for all n ∈ K. We call
them y = yi(n), i = 1, 2 and they are continuous function of n. Therefore, we need to
prove that the corresponding points in {M = 0} ∩ {N = 0} are outside of Ω.

Notice that because of the expression of M , given in (29), the points in {M = 0} are

on the curve Γ = {
(
−ψ(y)
ϕ(y) , y

)
: y ∈ R\{0}}. Moreover it can be easily seen that ϕ(y) ̸= 0

on the region that we are considering. Therefore the points in {M = 0} ∩ {N = 0} are
given by the two continuous curves

γi :=
{(

− ψ(yi(n))

ϕ(yi(n))
, yi(n)

)
: n ∈ K

}
, i = 1, 2.

For a fixed n ∈ K it is not difficult to prove that the points in γi, i = 1, 2 are outside of
Ω. If for some n ∈ K there was a point inside Ω, by continuity it would be at least one
point in one of the pieces of boundary of Ω formed by the straight line {x − 1/n = 0}
and the hyperbola {xy+ 1 = 0}. To prove that such a point does not exist we compute
the following two resultants

Res
(

num
(

− ψ(y)

ϕ(y)
− 1

n

)
, Pn,34(y), y

)
= P1250(n),

Res
(

num
(

− y
ψ(y)

ϕ(y)
+ 1
)
, Pn,34(y), y

)
= P1260(n),

where Pℓ(n) are given polynomials with rational coefficients and degree ℓ. Both polyno-
mials factorize in several factors and, using once more the Sturm method, we can easily
prove that do not vanish on K. Hence, {M = 0} ∩ {N = 0} ∩ Ω = ∅ which implies that
{M = 0} ∩ Ω is without contact by the flow of X, as we wanted to prove.

Since M is linear in the variable x, {M = 0} cannot have ovals. Therefore, by
Remark 3.5, to end the proof we need to show that the set {V = 0} has no ovals
either in Ω. We claim that the set {V = 0} ∩ Ω is without contact by the flow of the
system. If this happens and {V = 0} had an oval then it would be without contact.
Then by the Poincaré-Bendixson Theorem it should surround the origin. However, by
considering the straight line passing through the origin y = 9x/10 it is easy to prove, by
using again Lemma 3.6, that the function V (x, 9x/10) does not vanish on the interval
−1/n < x < 1/n for all n ∈ (0.77, 0.844). Thus, {V = 0}∩{y− 9x/10 = 0} = ∅. Hence,
V has no ovals inside Ω as we wanted to see and the proposition follows by using all the
above results and the reasoning explained in Remark 3.5.

To prove the above claim, it suffices to see that {M = 0} ∩ {V = 0} ∩ Ω = ∅. This is

because precisely, M
∣∣
{V=0} = V̇ .

Recall that when n ∈ J = (0.77, ñ] then {M = 0} ∩ Ω = ∅ and so the result follows.
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Let us consider the case n ∈ K = (ñ, 0.844). To study if {V = 0} and {M = 0}
intersect, we compute the resultant of M and V with respect to x. We have

Res(V,M, x) = (n2y2 − 1)Pn,30(y),

where Pn,30(y) is a polynomial of degree 30 and whose coefficients are polynomial func-
tions in the variable n with rational coefficients. We want to prove that Res(V,M, x)
does not vanish on the interval −1/n < y < 1/n for n ∈ K. It suffices to study Pn,30(y).
We will use once more Lemma 3.6.

The polynomial Pn,30(−1/n) · Pn,30(1/n) has no real roots when n ∈ K. Moreover
hypothesis (i) of Lemma 3.6 holds with r = 0 (no real roots) by considering for instance
n0 = 82/100. To see that condition (iii) of the lemma holds, we compute △y(Pn,30(y)). It
is a polynomial of degree 2728 in the variable n which factorizes in several factors, being
the largest one of degree 594. From this decomposition we can prove that △y(Pn,30(y))
has no zeros for n ∈ K. Therefore, by Lemma 3.6 we conclude that Pn,30(y) does not
vanish on the whole interval −1/n < y < 1/n for n ∈ K, and the claim follows. �

Proposition 6.2. For m ∈ [0.5, 0.547], system (1) has neither limit cycles nor polycy-
cles.

Proof. We will construct a positive invariant region R having the two saddle points in its
boundary. As we will see, the proposition follows once we have constructed this region,
simply by using the uniqueness and hyperbolicity of the limit cycle, whenever it exits.
We remark that in this proof we will not use the Bendixson-Dulac theorem.

Assume that such a positive invariant region R exits. By the Index theory, if the
system had a limit cycle, it should surround only the origin. By Proposition 5.2 we
already know that for n ∈ [0.5, 0.6) ⊃ L := [0.5, 0.547], the limit cycle would be unique,
hyperbolic and repeller. By the Bendixson-Poincaré Theorem the above facts force
the existence of another limit cycle and so a contradiction. It is straightforward that
the existence of this positive invariant region is not compatible with the existence of a
polycycle connecting both saddle points.

To construct R we consider a function V2(x, y) = g0(y) + g1(y)x + g2(y)x
2, with g0

and g1 as in (24) and g2 an even polynomial function of degree 12 of the form

g2(y) = 1 +
6∑

k=1

a2ky
2k,

to be determined. By statement (ii) of Lemma 4.2, the function M2, given in (25),
associated to this V2 and k = 2/3 is of the form M2 = ϕ(y)x + ψ(y), where ϕ(y) and
ψ(y) are polynomials in the variable y whose coefficients depend on the unknowns a2k

with k = 1 . . . 6.
We fix a4 and a6 in such a way that ϕ(y) has a zero at y = 0 of multiplicity nine; we

get the value of a8 by imposing that V2 vanishes at the two saddle points; the values
of a2 and a10 are chosen so that the curve V2 = 0 is tangent to both separatrices at
the saddle points of the system. Finally, after experimenting with several values for
a12 and m, so that the region with boundary {V2 = 0} is positively invariant, we fix
a12 = −157(10m− 3)(35m+ 3)/44550000.

The region R will be the bounded connected component of R2 \ {V2 = 0} containing
the origin, see Figure 4 (a).

We need to prove that the curve {V2 = 0} ∩ S (see Figure 4 (b)) is such that the
vector field X points in on all its points. We introduce the new parameter m = n2 and
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(a) (b)

Figure 4. Positively invariant region R with boundary {V2 = 0}.

we compute V̇2 = ⟨∇V2, X⟩ and

Res(V2, V̇2, x) =
y8(ny2 − 1)4(Pn,12(y))

3Pn,36(y)

n28(120n3 + 113n2 − 3)6
, (31)

where Pn,12(y) and Pn,36(y) are polynomials of degree 12 and 36, respectively, and whose
coefficients are polynomial functions in the variable n.

Notice that since m ∈ [0.5, 0.547] then n ∈ T := [0.707, 0.7396]. Since the denomina-
tor of (31) is positive, we only need to study its numerator.

Using once more Lemma 3.6 and the same tools that in the previous sections we prove
that Pn,12(y) ·Pn,36(y) is positive for all y ∈ (−1/n, 1/n) and n ∈ T. We omit the details.

Hence, we have proved that the numerator of Res(V2, V̇2, x) is non-negative and it only

vanishes on y = 0 and y = ±n−1/2. Therefore the sets {V2 = 0} and {V̇2 = 0} only can

intersect on {y = 0}. Indeed, the sets {V2 = 0}∩S ∩{y = 0} and {V̇2 = 0}∩S ∩{y = 0}
coincide and have two points (±x̂(n), 0) for each n ∈ T. Studying the local Taylor

expansions of V2(x, y) and V̇2(x, y) at these points we get that the respective curves

V2(x, y) = 0 and V̇2(x, y) = 0 have at them a fourth order contact point and, as a

consequence, V̇2 does not change sign on {V2 = 0} ∩ S, as we wanted to prove. That,
on {V2 = 0}, the vector field X points in, is a simple verification. Hence the proof
follows. �

7. Existence of polycyles

This section is devoted to prove that the phase portrait (b) in Figure 1 can only
appear for finitely many values of m. Notice that this phase portrait is precisely the
only one presenting a polycycle. As we have already explained, the main difficulty is
that we are dealing with a family that is not a SCFRVF. To see that the control of the
existence of polycycles for general polynomial 1-parameter families can be a non easy
task, we present a simple family for which a polycycle appears at least for two values of
the parameter.

Example 7.1. For m = 0 and m = 1, the planar systems
{
ẋ = −2y + (3m− 4)x+ (4 − 2m)x3 + xy2 − x5 = Pm(x, y),
ẏ = (4 −m)x+ xy2 − 2mx3 − x5 = Qm(x, y), m ∈ R. (32)

have a heteroclinic polycycle connecting the saddle points located at (±
√

2 −m, 0).

Proof. The above family has been cooked to have explicit algebraic polycycles. Consider
the family of algebraic curves Hm(x, y) = y2 − (x2 +m− 2)2 = 0 and compute

Wm(x, y) = ⟨∇Hm(x, y), (Pm(x, y), Qm(x, y))⟩.
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Doing the resultant with respect to x of Wm and Hm we obtain

Res(Wm(x, y),Hm(x, y), x) = m4(1 −m)4y4R(y,m),

where R is a polynomial of degree 4 in both variables, m and y. This implies that for
m = 0 and m = 1 the algebraic curve Hm(x, y) = 0 is invariant by the flow of (32).
These sets coincide with the invariant manifolds of the saddle points (±

√
2 −m, 0) and

contain the corresponding heteroclinic polycycles. �
We have simulated the phase portraits of (32) for several values of m and it seems

that no polycycles appear for other values of m. In any case, the example shows the
differences between SCFRVF, for which as we have discussed in Subsection 3.1, the
polycycle usually appears for a single value of the parameter, and families that are not
SCFRVF.

Let us continue our study of system (1). We denote by p±
m = (±m−1/4,±m−1/4) the

two saddle points of the system.

Proposition 7.2. Let (0, ys(m)) be the first cut of the stable manifold of p+
m with the

Oy+-axis. Similarly, let (0, yu(m)) be the first cut of the unstable manifold of p−
m with

the same axis, see Figure 5 (a). Then the function δ(m) := ys(m)−yu(m) is an analytic
function.

(a) (b)

Figure 5. Definition of the maps δ(m) and ys(m) in Proposition 7.2.

Proof. This result is a consequence of the tools introduced in [21]. We only give the key
points of that proof.

Fix a value m̂ for which δ(m) is defined. Simply because the Oy+ is transversal for
the flow, the function δ is well defined in a neighborhood of m̂. It is clear that it suffices
to prove that ys(m) is analytic at m = m̂, because the yu(m) can be studied similarly.
To prove this fact we will write the map ys(m) as the composition of two analytic maps.

Consider a vertical straight line L := {(x, y) : x = m̂−1/4 − ε}, for ε > 0 small

enough. Denote by (m̂−1/4 − ε, y1(m)) the first cutting point of the stable manifold of
p+
m with this line. Because L is close enough to the saddle point it can be seen that the

local stable manifold cuts this line transversally. Moreover, the tools given in [21] prove
that y1(m) is analytic at m = m̂, because of the hyperbolicity of the saddle point. Next,
consider the orbit starting on L with y-coordinate y1(m̂). In backward time, this orbit
cuts also transversally the Oy+-axis at the point with y-coordinate ys(m̂) and needs a
finite time to arrive to this point see Figure 5 (b). Because of the transversality to both
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lines, and the finiteness of the needed time for going from one to the other, it is clear
that the map y2(z) induced by the flow of the system between L and the Oy+-axis is
analytic at z = y1(m̂). Since ys(m) = y2(y1(m)), the result follows. �
Proof of (iii) of Theorem 1.1. Notice that each value of m that is a zero of the map
δ(m), introduced in Proposition 7.2, corresponds to a system (1) with a polycycle, i.e.
M = {m ∈ (0.547, 0.6) : δ(m) = 0}. From Proposition 6.2 we know that δ(0.547) > 0
and from Proposition 4.4 that δ(0.6) < 0. Hence the set M is non-empty. Finally,
because of the non-accumulation property of the zeros of analytic functions, the finiteness
of M follows. �

8. Proof of Theorem 1.1

The proof of Theorem 1.1 simply consists in gluing the corresponding results proved
along the paper. More concretely:

• The non existence of limit cycles and polycycles whenm ∈ (−∞, 0.547]∪[3/5,∞)
is given in the following results:

– For m ∈ (−∞, 0], trivially in the introduction.
– For m ∈ (0, 9/25] in Proposition 4.1,
– For m ∈ (9/25, 1/2) in Proposition 6.1,
– For m ∈ [1/2, 0.547] in Proposition 6.2,
– For m ∈ [3/5,∞) in Proposition 4.4.

• The existence of at most one limit cycle and one polycycle when m ∈ [1/2, 3/5),
the fact that they never coexist, and the hyperbolicity and instability of the limit
cycle, in Proposition 5.2.

• The phase portraits of the system in the Poincaré disc and the study of the
origin, in Subsection 3.2 and Section 2, respectively.

• The proof of the existence of the phase portrait (b) in Figure 1, only for finitely
many values of m, in Section 7.
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