
THE 3–DIMENSIONAL CORED AND LOGARITHM

POTENTIALS: PERIODIC ORBITS
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Abstract. We study analytically families of periodic orbits for the cored and
logarithmic Hamiltonians H(x, y, z, px, py, pz) = (p2

x +p2
y +p2

z/q)/2+(1+x2 +

(y2 +z2)/q2)1/2, and H(x, y, z, px, py, pz) = (p2
x +p2

y +p2
z/q)/2+(log(1+x2 +

(y2 + z2)/q2))/2, with 3 degrees of freedom, which are relevant in the analysis
of the galactic dynamics. First, after introducing a scale transformation in
the coordinates and momenta with a parameter ε, we show that both systems
give essentially the same set of equations of motion up to first order in ε.

Then the conditions for finding families of periodic orbits, using the averaging
theory up to first order in ε, apply equally to both systems in every energy
level H = h > 0. The averaging method used proves the existence of at most
three periodic orbits, for ε small enough, and gives an analytic approximation

for the initial conditions of these periodic orbits.

1. Introduction

In this paper we are interested in 3 degrees Hamiltonian systems of the form

H(x, y, z, px, py, pz) =
1

2

(
p2

x + p2
y +

p2
z

q

)
+ V (x2, y2, z2),

where V a smooth potential with an absolute minimum and a reflection symmetry
with respect the three axes. The motivation for the choice of these symmetries
becomes from the interest of these potentials in galactic dynamics. In particular,
we considered the cored potential

(1) VC =

√
1 + x2 +

y2 + z2

q2
,

and the logarithm potential

(2) VL =
1

2
log

(
1 + x2 +

y2 + z2

q2

)
.

such potentials in 2 degrees of freedom have been studied by several authors, see
for instance, [1, 3, 4, 6, 7, 8].

Our goal is to study the periodic orbits of the corresponding Hamiltonian differ-
ential system using the averaging theory.

Belmont et al. [8] applied the method of resonant detuned normal forms to in-
vestigate properties of the logarithmic galactic potential. These forms are obtained
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with a method based on the Lie transformation which is analogous to the Pren-
dergast method applied by Contopoulos and Seimenis. In Pucacco et al. [7], they
showed that it is possible to find periodic orbits with this method.

The averaging method has already been applied to others particular galactic
potentials. Jiménez–Lara and Llibre [3] obtained two families of periodic orbits in
the plane, when the parameter q is irrational. Lacomba and Llibre [4] studied the
potential with a general perturbation of fourth order and obtained four families of
periodic orbits in the plane, when the parameter q is equal a 1. The parameter q
gives the ellipticity of the potential, which ranges in the interval [0.6, 1].

In this paper, we find new families of periodic orbits parameterized by the energy
and depending on the parameter q.

2. Statement of the problem

We shall study the periodic orbits of the Hamiltonians systems associated to the

(3) HC =
1

2

(
p2

x + p2
y +

p2
z

q

)
+

√
1 + x2 +

y2 + z2

q2
,

(4) HL =
1

2

(
p2

x + p2
y +

p2
z

q

)
+

1

2
log

(
1 + x2 +

y2 + z2

q2

)
,

called the cored and logarithm Hamiltnonians, respectively.

The cored Hamiltonian system is

(5)

ẋ =
∂HC

∂px
= px,

ẏ =
∂HC

∂py
= py,

ż =
∂HC

∂pz
=

pz

q
,

ṗx = −∂HC

∂x
= − x√

1 + x2 +
y2 + z2

q2

,

ṗy = −∂HC

∂y
= − y

q2

√
1 + x2 +

y2 + z2

q2

,

ṗz = −∂HC

∂z
= − z

q2

√
1 + x2 +

y2 + z2

q2

,
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and the logarithmic Hamiltonian system is

(6)

ẋ =
∂HC

∂px
= px,

ẏ =
∂HC

∂py
= py,

ż =
∂HC

∂pz
=

pz

q
,

ṗx = −∂HC

∂x
= − x

1 + x2 +
y2 + z2

q2

,

ṗy = −∂HC

∂y
= − y

q2

(
1 + x2 +

y2 + z2

q2

) ,

ṗz = −∂HC

∂z
= − z

q2

(
1 + x2 +

y2 + z2

q2

) .

After introducing a non-canonical scale transformation with a small parameter
ε > 0,

{x, y, z, px, py, pz} → {√
εx1,

√
εy1,

√
εz1,

√
εpx1 ,

√
εpy1 ,

√
εpz1}.

Note that in what follows the six variables (x1, y1, z1, px1 , py1 , pz1) are denoted
again by (x, y, z, px, py, pz) respectively. Thus both Hamiltonian systems (5) and
(6) can be reduced to study the same differential system

(7)

ẋ = px,

ẏ = py,

ż =
pz

q
,

ṗx = −x + ε
x(q2x2 + y2 + z2)

2q2
+ O(ε2),

ṗy = − y

q2
+ ε

x(q2x2 + y2 + z2)

2q4
+ O(ε2),

ṗz = − z

q2
+ ε

z(q2x2 + y2 + z2)

2q4
+ O(ε2).

This is the cored Hamiltonian system. The logarithm Hamiltonian system has
the small modification that, instead of ε, it has 2ε. Then we proceed the study of
the system (7) which includes both Hamiltonian systems.

We summarize our main results as follows.

Theorem 1. If q, q1/2 and q3/2 are irrational, then for ε > 0 sufficiently small,
at every energy level H = h > 0 the perturbed differential system (7) has at least
three periodic solution γk(t, ε) = (xk(t, ε), yk(t, ε), zk(t, ε), pk

x(t, ε), pk
y(t, ε), pk

z(t, ε)),
for k = 1, 2, 3 such that

(i) γ1(0, ε) −→ (
√

2h, 0, 0, 0, 0, 0) when ε → 0;
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(ii) γ2(0, ε) −→ (0, 2
√

hq, 0, 0, 0, 0) when ε → 0;

(iii) γ3(0, ε) −→ (0, 0,
√

2hq, 0, 0, 0) when ε → 0.

Moreover, the families of periodic solutions γ1(t, ε), γ2(t, ε) and γ3(t, ε) bifur-
cate from planar periodic solutions of system (7) with ε = 0 living in the planes
(x, 0, 0, px, 0, 0), (0, y, 0, 0, py, 0) and (0, 0, z, 0, 0, pz), respectively.

Theorem 2. If q is rational and q3/2 is irrational, then for ε > 0 sufficiently small,
at every energy level H = h > 0 the perturbed differential system (7) has at least
two periodic solution γk(t, ε) = (xk(t, ε), yk(t, ε), zk(t, ε), pk

x(t, ε), pk
y(t, ε), pk

z(t, ε)),
for k = 1, 2 such that

(i) γ1(0, ε) −→ (
√

2h, 0, 0, 0, 0, 0) when ε → 0;

(ii) γ2(0, ε) −→ (0, 0,
√

2hq, 0, 0, 0) when ε → 0.

Moreover, the families of periodic solutions γ1(t, ε) and γ2(t, ε) bifurcate from pe-
riodic solutions of system (7) with ε = 0 living in the planes (x, 0, 0, px, 0, 0) and
(0, 0, z, 0, 0, pz), respectively.

We remark that the periodic solutions γ1(t, ε) of Theorems 1 and 2 bifurcate
from the same unperturbed periodic solution in each energy level h, but the results
are different because in Theorem 1, q is irrational and in Theorem 2, q is rational.

Theorem 3. If q is irrational and q3/2 is rational, then for ε > 0 sufficiently
small, at every energy level H = h > 0 the perturbed differential system (7) has at
least one periodic solution γ(t, ε) = (x(t, ε), y(t, ε), z(t, ε), px(t, ε), py(t, ε), pz(t, ε))

such that γ(0, ε) −→ (0,
√

2hq, 0, 0, 0, 0) when ε → 0. Moreover, the families of
periodic solutions γ(t, ε) bifurcates from periodic solutions of system (7) with ε = 0
living in the plane (0, y, 0, 0, py, 0).

We cannot study using the averaging theory if from the families of periodic
solutions living in the space (x, 0, z, px, 0, pz) of system (7) with ε = 0 under the
assumptions of Theorem 3 bifurcate to ε > 0 same families of periodic solutions.
The problem is that we cannot compute some integrals which appear when applying
the averaging method.

On the other hand, the case that remains also not covered by Theorems 1, 2 and
3 is the case q and q3/2 rationals. In this case, system (7) with ε = 0 has a family
of periodic solutions which fills the space (x, y, z, px, py, pz). But again in this case
when we apply the averaging method appear integrals that we cannot compute.

We observe that the families of periodic solutions γ1 and γ2 of Theorem 1, and
the one of Theorem 3 have already appeared in the work [3] where this problem
was studied with only 2 degrees of freedom.

3. The rescaled differential system

The differential system (7) has the first integral

(8) H =
1

2

(
p2

x + p2
y +

p2
z

q2
+ x2 +

y2 + z2

q2

)
− ε

(q2x2 + y2 + z2)2

8q4
+ O(ε2).
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The solutions of the unperturbed equations (7) with ε = 0 and arbitrary initial
conditions x(0) = x0, y(0) = y0, z(0) = z0, px(0) = px0 , py(0) = py0 , pz(0) = pz0 are

x(t) = x0 cos t + px0 sin t,

px(t) = px0 cos t − x0 sin t,

y(t) = y0 cos

(
t

q

)
+ py0q sin

(
t

q

)
,

py(t) = py0
cos

(
t

q

)
− y0

q
sin

(
t

q

)
,

z(t) = z0 cos

(
t

q3/2

)
+ pz0

q1/2 sin

(
t

q3/2

)
,

pz(t) = pz0
cos

(
t

q3/2

)
− z0

q1/2
sin

(
t

q3/2

)
.

Then for the unperturbed system the follows statements hold:

(a) If q, q1/2 and q3/2 are irrational, we have:
• one 2-parametric family of periodic orbits with period 2π in the sub-

space (x, 0, 0, px, 0, 0),
• one 2-parametric family of periodic orbits with period 2πq in the sub-

space (0, y, 0, 0, py, 0), and

• one 2-parametric family of periodic orbits with period 2πq3/2 in the
subspace (0, 0, z, 0, 0, pz).

(b) If q is rational and q3/2 is irrational, we have:
• one 4-parametric family of periodic orbits with period 2πq in the sub-

space (x, y, 0, px, py, 0) and

• one 2-parametric family of periodic orbits with period 2πq3/2 in the
subspace (0, 0, z, 0, 0, pz).

(c) If q is irrational and q3/2 is rational, we have only one 2-parametric family
of periodic orbits with period 2πq in the subspace (0, y, 0, 0, py, 0).

4. Proof of Theorem 1

We consider the case q, q1/2 and q3/2 are irrational and we obtain three family
of periodic orbits.

Proof of Theorem 1 for case k = 1. We consider the unperturbed periodic solutions

x(t) = x0 cos t + px0
sin t,

px(t) = px0 cos t − x0 sin t,

y(t) = 0,

py(t) = 0,

z(t) = 0,

pz(t) = 0.

in the plane (x, 0, 0, px, 0, 0). Note that these periodic solutions living in the plane
(x, 0, 0, px, 0, 0) are not in resonance with the other periodic solutions of system (7)
for ε = 0 living in the planes (0, y, 0, 0, py, 0, 0) and (0, 0, z, 0, 0, pz) due to the fact
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that q and q3/2 are irrational. The first integral (8) when ϵ = 0 takes on these
periodic solutions the value

(9) h =
1

2
(p2

x0
+ x2

0).

We apply the First Order Averaging Theorem, see Theorem 4 of the appendix, to
every fixed energy level, H = h > 0. This allows to eliminate one of the coordinates,
in this case px, and to reduce the study to dimension 5. Then px at the energy
level H = h with h given by (9) is

px =

√
p2

x0
− p2

y − p2
z

q
+ x2

0 − x2 − y2 + z2

q2

+ε
(q2x2 + y2 + z2)2

8q4

√
p2

x0
− p2

y − p2
z

q
+ x2

0 − x2 − y2 + z2

q2

+ O(ε2),

where we choose the plus sign for the determination of the square root, but the
results that we shall obtain will be the same choosing the minus sign. This will
be the case in all the proofs of this paper and we do not mention this in the next
proofs.

The equations of motion (7) on the energy level H = h > 0 are given by

ẋ =

√
p2

x0
− p2

y − p2
z

q
+ x2

0 − x2 − y2 + z2

q2

+ε
(q2x2 + y2 + z2)2

8q4

√
p2

x0
− p2

y − p2
z

q
+ x2

0 − x2 − y2 + z2

q2

+ O(ε2),

ẏ = py,

ṗy = − y

q2
+ ε

y(q2x2 + y2 + z2)

2q4
+ O(ε2),

ż =
pz

q
,

ṗz = − z

q2
+ ε

z(q2x2 + y2 + z2)

2q4
+ O(ε2).

Now this differential system has the form ẋ = F0(t,x)+ εF1(t,x)+ ε2F2(t,x, ε),
where x = (x, y, py, z, pz),

F0(x, y, py, z, pz) =



√

p2
x0

− p2
y − p2

z

q
+ x2

0 − x2 − y2 + z2

q2
, py,−y,

pz

q
,− z

q2


 ,

and F1(x, y, py, z, pz) is

 (q2x2 + y2 + z2)2

8q4

√
p2

x0
− p2

y − p2
z

q + x2
0 − x2 − y2+z2

q2

, 0,
y(q2x2 + y2 + z2)

2q4
, 0,

z(q2x2 + y2 + z2)

2q4


 .
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Observe that the order of the variables is very important in the application of the
Averaging Theorem (see Theorem 4 in the appendix). In what follows we use the no-
tation introduced in the appendix. In this case we take the order {x, y, py, z, pz} and
have k = 1, n = 5, α = x0, β0 : R −→ R4 is β0(α) = (0, 0, 0, 0), zα = (x0, 0, 0, 0, 0)
is the initial condition of the unperturbed periodic orbits, for each zx0 the solution
x(t, zx0) = (x0 cos t + px0 sin t, 0, 0, 0, 0) is 2π–periodic, and ξ(x, y, py, z, pz) = x.

Let Mzx0
(t) be the fundamental matrix satisfying Mzx0

(0) = I solution of the
variational equation (22) along the periodic solutions x(t, zx0). Then Mzx0

(t) is
given by



cos t − x0 sin t

px0

0 0 0 0

0 cos

(
t

q

)
q sin

(
t

q

)
0 0

0 −1

q
sin

(
t

q

)
cos

(
t

q

)
0 0

0 0 0 cos

(
t

q3/2

)
q1/2 sin

(
t

q3/2

)

0 0 0 − 1

q1/2
sin

(
t

q3/2

)
cos

(
t

q3/2

)




.

Now we verify the condition det∆x0 ̸= 0, then we compute M−1
zx0

(0) −M−1
zx0

(2π)

and we obtain



0 0 0 0 0

0 2 sin2

(
π

q

)
q sin

(
2π

q

)
0 0

0 −1

q
sin

(
2π

q

)
2 sin2

(
π

q

)
0 0

0 0 0 2 sin2

(
t

q3/2

)
q1/2 sin

(
t

q3/2

)

0 0 0 − 1

q1/2
sin

(
t

q3/2

)
2 sin2

(
t

q3/2

)




.

So

det∆x0 = 16 sin2

(
π

q3/2

)
sin2

(
π

q

)
̸= 0.

The function F1 along the periodic orbit is given by

F1(t,x(t, zx0)) =

(
(x0 cos t + px0 sin t)4

8(px0 cos t − x0 sin t)
, 0, 0, 0, 0

)
,

then

M−1
zx0

(t)F1(t,x(t, zx0)) =

(
px0

(x0 cos t + px0
sin t)4

8(px0 cos t − x0 sin t)2
, 0, 0, 0, 0

)
.

Thus, from (23) we have

(10) F(x0) =

∫ 2π

0

px0(x0 cos t + px0 sin t)4

8(px0 cos t − x0 sin t)2
dt = −3

8
πpx0(x

2
0 + p2

x0
),
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where px0 =
√

2h − x2
0 at the energy level H = h > 0. Thus

F(x0) = −3

4
πh
√

2h − x2
0.

The zeros of F(x0) = 0 are x0 = ±
√

2h, which implies px0 = 0. Since F ′(±
√

2h) ̸=
0, both zeros of F(x0) provide two initial conditions of the same periodic orbit for
the perturbed differential system in the energy level H = h > 0. Hence the proof
of Theorem 1 for case k = 1 follows. �

Proof of Theorem 1 for k = 2. We have the unperturbed periodic solution

x(t) = 0,

px(t) = 0,

y(t) = y0 cos

(
t

q

)
+ py0q sin

(
t

q

)
,

py(t) = py0 cos

(
t

q

)
− y0

q
sin

(
t

q

)
,

z(t) = 0,

pz(t) = 0.

in the plane (0, y, 0, 0, py, 0). Note that these periodic solutions living in the plane
(0, y, 0, 0, py, 0, 0) are not in resonance with the other periodic solutions of system
(7) for ε = 0 living in the planes (x, 0, 0, px, 0, 0) and (0, 0, z, 0, 0, pz) due to the
fact that q and q1/2 are irrational. The first integral (8) when ε = 0 takes on these
periodic solutions the value

(11) h =
1

2

(
p2

y0
+

y2
0

q2

)
.

We apply the Averaging Theorem to every fixed energy level H = h > 0. This
allows to eliminate one of the coordinates, in this case py and to reduce the study
to dimension 5. Then py at the energy level H = h with h given by (11)

py =

√
p2

y0
− p2

x − p2
z

q
+

y2
0

q2
− x2 − y2 + z2

q2

+ε
(q2x2 + y2 + z2)2

8q4

√
p2

y0
− p2

x − p2
z

q
+

y2
0

q2
− x2 − y2 + z2

q2

+ O(ε2).
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The equations of motion (7) on the energy level H = h > 0 are given by

ẏ =

√
p2

y0
− p2

x − p2
z

q
+

y2
0

q2
− x2 − y2 + z2

q2

ε
(q2x2 + y2 + z2)2

8q4

√
p2

y0
− p2

x − p2
z

q
+

y2
0

q2
− x2 − dy2+z2

q2

+ O(ε2),

ẋ = px,

ṗx = −x + ε
x(q2x2 + y2 + z2)

2q2
+ O(ε2),

ż =
pz

q
,

ṗz = − z

q2
+ ε

z(q2x2 + y2 + z2)

2q4
+ O(ε2).

Now this differential system has the form ẋ = F0(t,x)+ εF1(t,x)+ ε2F2(t,x, ε),
where x = (y, x, px, z, pz),

F0(y, x, px, z, pz) =



√

p2
y0

− p2
x − p2

z

q
+

y2
0

q2
− x2 − y2 + z2

q2
, px, −x,

pz

q
, − z

q2


 ,

and F1(y, x, px, z, pz) is


 (q2x2 + y2 + z2)2

8q4

√
p2

y0
− p2

x − p2
z

q +
y2
0

q2 − x2 − y2+z2

q2

, 0,
x(q2x2 + y2 + z2)

2q2
, 0,

z(q2x2 + y2 + z2)

2q4


 .

We have k = 1, n = 5, α = y0, zα = (y0, 0, 0, 0, 0), β0 : R −→ R4 is β0(α) =
(0, 0, 0, 0), is the initial condition of the unperturbed periodic orbits, for each zy0

the solution x(t, zy0) = (y0 cos(t/q) + py0q sin(t/q), 0, 0, 0, 0) is 2πq–periodic, and
ξ(y, x, px, z, pz) = y.

Let Mzy0
(t) be the fundamental matrix satisfying Mzy0

(0) = I solution of the

variational equation (22) along the periodic solutions x(t, zy0). Then Mzy0
(t) is

given by




cos

(
t

q

)
− y0

py0
q

sin

(
t

q

)
0 0 0 0

0 cos t sin t 0 0

0 − sin t cos t 0 0

0 0 0 cos

(
t

q3/2

)
q1/2 sin

(
t

q3/2

)

0 0 0 − 1

q1/2
sin

(
t

q3/2

)
cos

(
t

q3/2

)




.
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Now we verify the condition det∆y0 ̸= 0, then we compute M−1
zy0

(0)−M−1
zy0

(2πq)

and we get




0 0 0 0 0

0 2 sin2(πq) sin(2πq) 0 0

0 − sin(2πq) 2 sin2(πq) 0 0

0 0 0 2 sin2

(
π

q1/2

)
q1/2 sin

(
2π

q1/2

)

0 0 0 − 1

q1/2
sin

(
2π

q1/2

)
2 sin2

(
π

q1/2

)




.

Therefore

det∆y0 = 16 sin2

(
π

q1/2

)
sin2(πq) ̸= 0.

The function F1 along the periodic orbit is given by

(12) F1(t,x(t, zy0)) =




py0

(
y0 cos( t

q ) + py0
q sin( t

q )
)4

8q3
(
py0q cos( t

q ) − y0 sin( t
q )
) , 0, 0, 0, 0


 ,

then

(13) M−1
zy0

(t)F1(t,x(t, zy0)) =




py0

(
y0 cos( t

q ) + py0q sin( t
q )
)4

8q2
(
py0q cos( t

q ) − y0 sin( t
q )
)2 , 0, 0, 0, 0


 .

From (23) we have

(14) F(y0) =

∫ 2πq

0

py0

(
y0 cos( t

q ) + py0
q sin( t

q )
)4

8q2
(
py0q cos( t

q ) − y0 sin( t
q )
)2 dt = − 3

8q
πpy0(y

2
0 + p2

y0
q2),

where py0 =
√

2h − y2
0/q2 at the energy level. Thus

(15) F(y0) = −3

4
πh
√

2hq2 − y2
0 .

The zeros of F(y0) = 0 are y0 = ±2
√

hq, which implies py0 = 0. Since

F ′(±2
√

hq) ̸= 0, both zeros provide two initial conditions of the same periodic
orbit for the perturbed differential system in the energy level H = h > 0. So the
proof of Theorem 1 for case k = 2 is done. �
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Proof of Theorem 1 for k = 3. Now we consider, the unperturbed periodic solu-
tions

x(t) = 0,

px(t) = 0,

y(t) = 0,

py(t) = 0,

z(t) = z0 cos

(
t

q3/2

)
+ pz0q

1/2 sin

(
t

q3/2

)
,

pz(t) = pz0 cos

(
t

q3/2

)
− z0

q1/2
sin

(
t

q3/2

)
.

in the plane (0, 0, z, 0, 0, pz). Note that these periodic solutions living in the plane
(0, 0, z, 0, 0, pz) are not in resonance with the other periodic solutions of system (7)
for ε = 0 living in the planes (x, 0, 0, px, 0, 0) and (0, y, 0, 0, py, 0, 0) due to the fact

that q1/2 and q3/2 are irrational. The first integral (8) when ε = 0 takes on these
periodic solutions the value h = (p2

z0
q + z2

0)/(2q2).

We apply the Averaging Theorem, to every fixed energy level, H = h > 0. This
allows to eliminate one of the coordinates, in this case pz. Then pz at the energy
level H = h is

pz =

√
p2

z0
− q(p2

x + p2
y) +

z2
0

q
− qx2 − y2 + z2

q

+ε
(q2x2 + y2 + z2)2

8q3

√
p2

z0
− q(p2

x + p2
y) +

z2
0

q
− qx2 − y2 + z2

q

+ O(ε2).

The equations of motion (7) on the energy level H = h > 0 are given by

ż =

√
p2

z0
− q(p2

x + p2
y) +

z2
0

q
− qx2 − y2 + z2

q

+ε
(q2x2 + y2 + z2)2

8q3

√
p2

z0
− q(p2

x + p2
y) +

z2
0

q
− qx2 − y2 + z2

q

+ O(ε2),

ẋ = px,

ṗx = −x + ε
x(q2x2 + y2 + z2)

2q2
+ O(ε2),

ẏ = py,

ṗy = − y

q2
+ ε

y(q2x2 + y2 + z2)

2q4
+ O(ε2).
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Now this differential system has the form ẋ = F0(t,x)+ εF1(t,x)+ ε2F2(t,x, ε),
where x = (z, x, px, y, py),

F0(z, x, px, y, py =



√

p2
z0

− q(p2
x + p2

y) +
z2
0

q
− qx2 − y2 + z2

q
, px, −x, py, − y

q2


 ,

and F1(z, x, px, y, py) is

 (q2x2 + y2 + z2)2

8q4

√
p2

x0
− p2

y
p2

z

q + x2
0 − x2 − y2+z2

q2

, 0,
y(q2x2 + y2 + z2)

2q4
, 0,

z(q2x2 + y2 + z2)

2q4


 .

We have k = 1, n = 5, α = z0, β0 : R −→ R4 is β0(α) = (0, 0, 0, 0), zα =
(z0, 0, 0, 0, 0) is the initial condition of the unperturbed periodic orbits, and for
each zz0 , the solution x(t, zz0) =

(
z0 cos(t/q3/2) + pz0q

1/2 sin(t/q3/2), 0, 0, 0, 0
)

is

2πq3/2–periodic, and ξ(z, x, px, y, py) = z.

Let Mzz0
(t) be the fundamental matrix satisfying Mzz0

(0) = I solution of the
variational equation (22) along the periodic solutions x(t, zz0). Then Mzz0

(t) is
given by




cos

(
t

q3/2

)
− z0

pz0q
1/2

sin

(
t

q3/2

)
0 0 0 0

0 cos t sin t 0 0

0 − sin t cos t 0 0

0 0 0 cos

(
t

q

)
q sin

(
t

q

)

0 0 0 −1

q
sin

(
t

q

)
cos

(
t

q

)




.

We have M−1
zz0

(0) − M−1
zz0

(2πq3/2) equal to




0 0 0 0 0

0 2 sin2(πq3/2) q sin(2πq3/2) 0 0

0 − sin(2πq3/2) 2 sin2(πq3/2) 0 0

0 0 0 2 sin2(πq1/2) q sin(2πq1/2)

0 0 0 − sin(2πq1/2)

q
2 sin2(πq1/2)




.

Then

det∆z0 = 16 sin2(πq1/2) sin2(πq3/2) ̸= 0.

The function F1 along the periodic orbit is given by

F1(t,x(t, zz0)) =




(
z0 cos( t

q3/2 ) + pz0q
1/2 sin( t

q3/2 )
)4

8q7/2
(
pz0q

1/2 cos( t
q3/2 ) − z0 sin( t

q3/2 )
) , 0, 0, 0, 0


 ,
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then M−1
zz0

(t)F1(t,x(t, zz0)) is given by




(
z0 cos( t

q3/2 ) + pz0q
1/2 sin( t

q3/2 )
)4

8q7/2
(
pz0q

1/2 cos( t
q3/2 ) − z0 sin( t

q3/2 )
)(

cos( t
q3/2 ) − z0

pz0q1/2 sin( t
q3/2 )

) , 0, 0, 0, 0


 .

Therefore, from (23), the function F(z0) is

∫ 2πq3/2

0

(
z0 cos( t

q3/2 ) + pz0q
1/2 sin( t

q3/2 )
)4

8q7/2
(
pz0q

1/2 cos( t
q3/2 ) − z0 sin( t

q3/2 )
)(

cos( t
q3/2 ) − 1

q1/2
z0

pz0
sin( t

q3/2 )
)dt

= − 3π

8q3/2
pz0(z0

2 + p2
z0

q),

where pz0
=
√

(2hq2 − z2
0)/q at the energy level. Thus

F(z0) = −3π

4
h
√

2hq2 − z2
0 .

The zeros of F(z0) = 0 are z0 = ±
√

2hq, which implies pz0 = 0. Since

F ′(±
√

2hq) ̸= 0, both zeros of F(z0) provide initial conditions of the same pe-
riodic orbit for the perturbed differential system in the energy level H = h > 0.
This completes the proof of Theorem 1 for case k = 3. �

5. Proof of Theorem 2

We consider the case q is rational and q3/2 is irrational and we shall obtain two
families of periodic orbits.

Proof of Theorem 2 for k = 1. We consider the unperturbed periodic solutions

x(t) = x0 cos t + px0 sin t,

px(t) = px0 cos t − x0 sin t,

y(t) = y0 cos

(
t

q

)
+ py0q sin

(
t

q

)
,

py(t) = py0 cos

(
t

q

)
− y0

q
sin

(
t

q

)
,

z(t) = 0,

pz(t) = 0.

in the subspace (x, y, 0, px, py, 0). Note that these periodic solutions living in the
space (x, y, 0, px, py, 0) are not in resonance with the periodic solutions of system

(7) for ε = 0 living in the plane (0, 0, z, 0, 0, pz) because q is rational and q3/2 are
irrational. The first integral (8) when ε = 0 takes on these periodic solutions the
value

(16) h =
1

2

(
p2

x0
+ p2

y0
+ x2

0 +
y2
0

q2

)
.

We apply the Averaging Theorem to every fixed energy level H = h > 0. This
allows to eliminate one of the coordinates, in this case px and to reduce the study
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to dimension 5. At the energy level H = h with h given by (16) we have that

px =

√
p2

x0
+ p2

y0
− p2

y − p2
z

q
+ x2

0 +
y2
0

q2
− x2 − y2 + z2

q2

+ε
(q2x2 + y2 + z2)2

8q4

√
p2

x0
+ p2

y0
− p2

y − p2
z

q
+ x2

0 +
y2
0

q2
− x2 − y2 + z2

q2

+ O(ε2).

The equations of motion (7) on the energy level H = h are given by

(17)

ẋ =

√
p2

x0
+ p2

y0
− p2

y − p2
z

q
+ x2

0 +
y2
0

q2
− x2 − y2 + z2

q2

+ε
(q2x2 + y2 + z2)2

8q4

√
p2

x0
+ p2

y0
− p2

y − p2
z

q
+ x2

0 +
y2
0

q2
− x2 − y2 + z2

q2

+ O(ε2).

ẏ = py

ṗy = − y

q2
+ ε

y(q2x2 + y2 + z2)

2q4
+ O(ε2),

ż =
pz

q
,

ṗz = − z

q2
+ ε

z(q2x2 + y2 + z2)

2q4
+ O(ε2).

Now this differential system has the form ẋ = F0(t,x)+ εF1(t,x)+ ε2F2(t,x, ε),
where x = (x, y, py, z, pz) and F0(x, y, py, z, pz) is



√

p2
x0

+ p2
y0

− p2
y − p2

z

q
+ x2

0 +
y2
0

q2
− x2 − y2 + z2

q2
, py,− y

q2
,
pz

q
, − z

q2


 .

The function

F1(x, y, py, z, pz) =

(
A, 0,

y(q2x2 + y2 + z2)

2q4
, 0,

z(q2x2 + y2 + z2)

2q4

)
,

with

A =
(q2x2 + y2 + z2)2

8q4

√
p2

x0
+ p2

y0
− p2

y − p2
z

q
+ x2

0 +
y2
0

q2
− x2 − y2 + z2

q2

.

We have k = 3, n = 5, α = (x0, y0, py0), β0 : R3 −→ R2 is β0(α) = (0, 0), zα =
(x0, y0, py0

, 0, 0) is the initial condition of the unperturbed periodic orbits, and for
each zα, the solution x(t, zα) = (x0 cos t+px0 sin t, y0 cos(t/q)+py0q sin(t/q), py0 cos(t/q)−
y0/q sin(t/q), 0, 0)) is 2πm-periodic, where q = m/n with (m,n) = 1 and ξ(x, y, py, z, pz) =
(x, y, py).

The fundamental matrix Mzα(t) satisfying Mzα(0) = I is the solution of the
variational equation (22) along the periodic solutions x(t, zα). Then Mzα(t) is given



THE 3–DIMENSIONAL CORED AND LOGARITHM POTENTIALS 15

by




cos t − x0 sin t

px0

−y0 sin t

px0q
2

−py0 sin t

px0

0 0

0 cos

(
t

q

)
q sin

(
t

q

)
0 0

0 −1

q
sin

(
t

q

)
cos

(
t

q

)
0 0

0 0 0 cos

(
t

q3/2

)
q1/2 sin

(
t

q3/2

)

0 0 0 − 1

q1/2
sin

(
t

q3/2

)
cos

(
t

q3/2

)




.

With the calculus of M−1
zα

(0) − M−1
zα

(2πm), we verify that

det∆zα = 4 sin2

(
πn3/2

n1/2

)
̸= 0.

The function F1 along the periodic orbit is given by F1(t,x(t, zα)) = (B, 0, C, 0, 0) ,
where

B =
1

8m4(px0 cos t − x0 sin t)

[
n2y2

0 cos2
(

nt

m

)

+m

(
m

(
(x0 cos t + px0 sin t)2 + p2

y0
sin

(
nt

m

)2
)

+ npy0y0 sin

(
2nt

m

))]2

,

C =
n4

2m4

(
y0 cos

(
nt

m

)
+

m

n
py0 sin

(
nt

m

))

(
m2

n2
(x0 cos t + px0 sin t)2 +

(
y0 cos

(
nt

m

)
+

m

n
py0 sin

(
nt

m

))2
)

.

Then M−1
zα

(t)F1(t,x(t, zα)) = (D,E, F, 0, 0), where

D =
n5

2m5(px0 cos t − x0 sin t)

(
y0 cos

(
nt

m

)
+

m

n
py0 sin

(
nt

m

))

(
m

n
py0 cos

(
nt

m

)
sin t − y0 sin t sin

(
nt

m

))

(
m2

n2
(x0 cos t + px0 sin t)2 +

(
y0 cos

(
nt

m

)
+

m

n
py0 sin

(
nt

m

))2
)

+
1

8m4(px0
cos t − x0 sin t)2

{
px0

[
n2y2

0 cos2
(

nt

m

)

+m

(
m

(
(x0 cos t + px0 sin t)2 + p2

y0
sin2

(
nt

m

))
+ npy0y0 sin

(
2nt

m

))]2}
,
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E = − n3

2m3
sin

(
nt

m

)(
y0 cos

(
nt

m

)
+

m

n
py0 sin

(
nt

m

))

(
m2

n2
(x0 cos t + px0 sin t)2 +

(
y0 cos

(
nt

m

)
+

m

n
py0 sin

(
nt

m

))2
)

,

F =
n4

2m4
cos

(
nt

m

)(
y0 cos

(
nt

m

)
+

m

n
py0 sin

(
nt

m

))

(
m2

n2
(x0 cos t + px0 sin t)2 +

(
y0 cos

(
nt

m

)
+

m

n
py0 sin

(
nt

m

))2
)

.

The function F(α) = (FD, FE , FF ) where FD, FE , FF are the projections in the
first, second and third component, respectively, of the integral of M−1

zα
(t)F1(t,x(t, zα))

in one period, i. e.,

(18)

FD(α) =

∫ 2πm

0

Ddt = − π

8m
px0(m

2(3p2
x0

+ 2p2
y0

+ 3x2
0) + 2n2y2

0),

FE(α) =

∫ 2πm

0

Edt = − π

8m
py0(m

2(2p2
x0

+ 3p2
y0

+ 2x2
0) + 3n2y2

0),

FF (α) =

∫ 2πm

0

Fdt =
n2π

8m3
y0(m

2(2p2
x0

+ 3p2
y0

+ 2x2
0) + 3n2y2

0),

where px0 =
√

2h − x2
0 − p2

y0
− (n2/m2)y2

0 at the energy level H = h > 0. Thus

(19)

FD(α) =
π

8m
(m2(−6h + p2

y0
) + n2y2

0)

√
2h − p2

y0
− x2

0 − n2

m2
y2
0 ,

FE(α) = − π

8m
py0(m

2(4h + p2
y0

) + n2y2
0),

FF (α) =
πn2

8m3
y0(m

2(4h + p2
y0

) + n2y2
0).

The zeros of F(α) = 0 are (x0, y0, py0) = (±
√

2h, 0, 0), which implies px0 = 0.
Since

det

(
∂(FD, FE , FF )

∂(x0, y0, py0)

∣∣∣∣
(x0,y0,py0 )=(±

√
2h,0,0)

)
̸= 0,

both zeros provide initial conditions of the same periodic orbit for the perturbed
differential system in the energy level H = h > 0. This completes the proof of
Theorem 2 for k = 1. �
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Proof of Theorem 2 for k = 2. We consider the unperturbed periodic solution

x(t) = 0,

px(t) = 0,

y(t) = 0,

py(t) = 0,

z(t) = z0 cos

(
t

q3/2

)
+ pz0q

1/2 sin

(
t

q3/2

)
,

pz(t) = pz0 cos

(
t

q3/2

)
− z0

q1/2
sin

(
t

q3/2

)
.

in the plane (0, 0, z, 0, 0, pz). Note that these periodic solutions living in the plane
(0, 0, z, 0, 0, pz) are not in resonance with the periodic solutions of the system (7)
living in the space (x, y, 0, px, py, 0) because q is rational and q3/2 is irrational.

The rest of the proof is analogous to the proof of case k = 3 of Theorem 1. �

6. Proof of Theorem 3

We consider the case q is irrational and q3/2 is rational and we obtain only one
family of periodic orbits.

Proof of Theorem 3. In this case, the unperturbed periodic solutions

x(t) = 0,

px(t) = 0,

y(t) = y0 cos

(
t

q

)
+ py0q sin

(
t

q

)
,

py(t) = py0 cos

(
t

q

)
− y0

q
sin

(
t

q

)
,

z(t) = 0,

pz(t) = 0.

in the plane (0, y, 0, 0, py, 0). Note that these periodic solutions living in the plane
(0, y, 0, 0, py, 0) are not in resonance with the periodic solutions of system (7) living

in the space (x, 0, z, px, 0, pz) because q is irrational and q3/2 is rational.
From now the proof is analogous to the proof of case k = 2 of Theorem 1. �

7. Appendix: Averaging Theory

Consider the differential equation

(20) ẋ = F0(t,x) + εF1(t,x) + εF2(t,x, ε),

with ε > 0 sufficiently small, x ∈ Ω, where Ω is an open subset of Rn, and t ≥ 0.
Moreover, we assume that both F0, F1 and F2 are C2 functions and T -periodic in
the first variable.

Let x(t, z) be the solution of the unperturbed system

(21) ẋ = F0(t,x),

such that x(0, z) = z.
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We write the linearization of the unperturbed system along the periodic solution
x(t, z) as

(22) ẏ(t) = DxF0(t,x(t, z))y.

Now we denote by Mz(t) some fundamental matrix of the linear differential
system (22), and by ξ : Rk × Rn−k −→ Rk, the projection of Rn onto its first k
coordinates; i.e., ξ(x1, . . . , xn) = (x1, . . . , xk).

Theorem 4 (First Order Averaging Theorem). Let V ⊂ Rk be open and bounded,
and let β0 : CL(V ) −→ Rn−k be a C2 function. We assume that

(i) Z = {zα = (α, β0(α)), α ∈ Cl(V )} ⊂ Ω and that for each zα ∈ Z the
solution x(t, zα) of (21) is T - periodic;

(ii) for each zα ∈ Z there is a fundamental matrix Mzα(t) of (22) such that
the matrix M−1

zα
(0) − M−1

zα
(T ) has in the upper right corner the k × (n − k)

zero matrix, and in the lower right corner a (n − k) × (n − k) matrix ∆α

with det ∆α ̸= 0.

We consider the function F(α) : Cl(V ) → Rk

(23) F(α) = ξ

(∫ T

0

M−1
zα

(t)F1(t,x(t, zα))dt

)
.

If there exists a ∈ V with F(a) = 0 and

det((dF/dα(a)) ̸= 0,

then there is a T - periodic solution ϕ(t, ϵ) of system 20 such that ϕ(0, ϵ) → zα as
ϵ → 0.

For an easy proof of Theorem 4 see Corollary 1 of [2]. In fact the result of
Theorem 4 is a classical result due to Malkin [5] and Roseau [9]
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