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Abstract. The aim of this paper is to show that the Lagrange–d’Alembert and its
equivalent the Gauss and Appel principle are not the only way to deduce the equations
of motion of the nonholonomic systems. Instead of them, here we consider the generaliza-
tion of the Hamiltonian principle for nonholonomic systems with nonzero transpositional

relations.
By applying this variational principle which takes into the account transpositional

relations different from the classical ones we deduce the equations of motion for the
nonholonomic systems with constraints that in general are nonlinear in the velocity.

These equations of motion coincide, except perhaps in a zero Lebesgue measure set, with
the classical differential equations deduced with d’Alembert–Lagrange principle.

We provide a new point of view on the transpositional relations for the constrained
mechanical systems: the virtual variations can produce zero or non–zero transpositional
relations. In particular the independent virtual variations can produce non–zero trans-
positional relations. For the unconstrained mechanical systems the virtual variations

always produce zero transpositional relations.

We conjecture that the existence of the nonlinear constraints in the velocity must be
sought outside of the Newtonian model.

All our results are illustrated with precise examples.

1. Introduction

The history of nonholonomic mechanical systems is long and complex and goes back
to the 19 century, with important contribution by Hertz [16] (1894) , Ferrers [10] (1871),
Vierkandt [51] (1892) and Chaplygin [6] (1897).

The nonholonomic mechanic is a remarkable generalization of the classical Lagrangian
and Hamiltonian mechanic. The birth of the theory of dynamics of nonholonomic systems
occurred when Lagrangian-Euler formalism was found to be inapplicable for studying the
simple mechanical problem of a rigid body rolling without slipping on a plane.

A long period of time has been needed for finding the correct equations of motion of the
nonholonomic mechanical systems and the study of the deeper questions associated with
the geometry and the analysis of these equations. In particular the integration theory of
equations of motion for nonholonomic mechanical systems is not so complete as in the case
of holonomic systems. This is due to several reasons. First, the equations of motion of
nonholonomic systems have more complex structure than the Lagrange one, which describes
the behavior of holonomic systems. Indeed, a holonomic systems can be described by a
unique function of its state and time, the Lagrangian function. For the nonholonomic
systems this is not possible. Second, the equations of motion of nonholonomic systems
in general have no invariant measure, as they have the equations of motion of holonomic
systems (see [21, 28, 30, 50]).

One of the most important directions in the development of the nonholonomic mechanics
is the research connected with the general mathematical formalism to describe the behavior
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of such systems which differs from the Lagrangian and Hamiltonian formalism. The main
problem with the equations of motion of the nonholonomic mechanics has been centered on
whether or not these equations can be derived from the Hamiltonian principle in the usual
sense, such as for the holonomic systems (see for instance [33]). But there is not doubt that
the correct equations of motion for nonholonomic systems are given by the d’Alembert–
Lagrange principle.

The general understanding of inapplicability of Lagrange equations and variational Hamil-
tonian principles to the nonholonomic systems is due to Hertz, who expressed it in his fun-
damental work Die Prinzipien der Mechanik in neuem Zusammenhaange dargestellt [16].
Hertz’s ideas were developed by Poincaré in [39]. At the same time various aspects of
nonholonomic systems need to be studied such as

(a) The problem of the realization of nonholonomic constraints (see for instance [22, 23]).

(b) The stability of nonholonomic systems (see for instance [35, 43]).

(c) The role of the so called transpositional relations (see [19, 34, 35, 42])

(1) δ
dx

dt
− d

dt
δx =

(
δ
dx1

dt
− d

dt
δx1, . . . , δ

dxN

dt
− d

dt
δxN

)
,

where
d

dt
denotes the differentiation with respect to the time, δ is the virtual variation, and

x = (x1, . . . , xN ) is the vector of the generalized coordinates.
Indeed the most general formulation of the Hamiltonian principle is the Hamilton–Suslov

principle

(2)

∫ t1

t0


δ L̃ −

N∑

j=1

∂L̃

∂ẋj

(
δ
dxj

dt
− d

dt
δxj

)
 dt = 0,

suitable for constrained and unscontrained Lagrangian systems, where L̃ is the Lagrangian
of the mechanical system.. Clearly the equations of motion obtained from the Hamilton–
Suslov principle depend on the point of view on the transpositional relations. This fact
shows the importance of these relations.

(d) The relation between nonholonomic mechanical systems and vakonomic mechanical
systems.

There was some confusion in the literature between nonholonomic mechanical systems
and variational nonholonomic mechanical systems also called vakonomic mechanical sys-
tems. Both kinds of systems have the same mathematical “ingredients”: a Lagrangian
function and a set of constraints. But the way in which the equations of motion are derived
differs. As we observe the equations of motion in nonholonomic mechanic are deduced using
d’Alembert–Lagrange’s principle. In the case of vakonomic mechanics the equations of mo-
tion are obtained through the application of a constrained variational principle. The term
vakonomic (“variational axiomatic kind”) is due to Kozlov (see [24, 25, 26]), who proposed
this mechanics as an alternative set of equations of motion for a constrained Lagrangian
systems.

The distinction between the classical differential equations of motion and the equations
of motion of variational nonholonomic mechanical systems has a long history going back
to the survey article of Korteweg (1899) [20] and discussed in a more modern context in
[9, 18, 29, 49]. In these papers the authors have discussed the domain of the vakonomic
and nonholonomic mechanics. In the paper Critics of some mathematical model to describe
the behavior of mechanical systems with differential constraints [18], Kharlamov studied the
Kozlov model and in a concrete example showed that the subset of solutions of the studied
nonholonomic systems is not included in the set of vakonomic model and proved that the
principle of determinacy is not valid in the Kozlov model. In [27] the authors put in evidence
the main differences between the d’Alembertian and the vakonomic approaches. From the
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results obtained in several papers it follows that in general the vakonomic model is not
applicable to the nonholonomic constrained Lagrangian systems.

The equations of motion for the constrained mechanical systems deduced by Kozlov (see
for instance [2]) from the Hamiltonian principle with the Lagrangian L : R×TQ×RM −→ R

such that L = L0 −
M∑

j=1

λjLj , where Lj = 0 for j = 1, . . . ,M < N are the given constraints,

and L0 is the classical Lagrangian. These equations are

(3) EkL =
d

dt

∂L

∂ẋk
− ∂L

∂xk
= 0 ⇐⇒ EkL0 =

M∑

j=1

(
λjEk Lj +

dλj

dt

∂Lj

∂ẋk

)
,

for k = 1, . . . , N, see for more details [2]. Clearly, equations (3) differ from the classical
equations by the presence of the terms λjEk Lj . If the constraints are integrable, i.e. Lj =
d

dt
gj(t,x), then the vakonomic mechanics reduces to the holonomic one.

In this paper we give a modification of the vakonomic mechanics. This modification
is valid for the holonomic and nonholonomic constrained Lagrangian systems. We apply
the generalized constrained Hamiltonian principle with non–zero transpositional relations.
By applying this constrained variational principle we deduce the equations of motion for
the nonholonomic systems with constraints which in general are nonlinear in the velocity.
These equations coincide, except perhaps in a zero Lebesgue measure set, with the classical
differential equations deduced from d’Alembert–Lagrange principle.

2. Statement of the main results

In this paper we solve the following inverse problem of the constrained Lagrangian systems
(see [31])

We consider the constrained Lagrangian systems with configuration space Q and phase
space TQ.

Let L : R × TQ × RM −→ R be a smooth function such that

(4) L (t,x, ẋ, Λ) = L0 (t,x, ẋ) −
M∑

j=1

λj Lj (t,x, ẋ) −
N∑

j=M+1

λ0
jLj (t,x, ẋ) ,

where Λ = (λ1, . . . , λM ) are the additional coordinates (Lagrange multipliers), Lj : R ×
TQ −→ R, (t,x, ẋ) 7−→ Lj (t,x, ẋ) , be smooth functions for j = 0, . . . , N, where L0 is

the nonsingular function i.e. det

(
∂2L0

∂ẋk∂ẋj

)
̸= 0, and Lj = 0, for j = 1, . . . , M, are the

constraints satisfying

(5) rank

(
∂(L1, . . . , LM )

∂(ẋ1, . . . , ẋN )

)
= M

in all the points of R × TQ, except perhaps in a zero Lebesgue measure set, Lj and λ0
j are

arbitrary functions and constants respectively, for j = M + 1, . . . , N .

We must determine the smooth functions Lj , constants λ0
j for j = M + 1, . . . , N and

the matrix A in such a way that the differential equations describing the behavior of the
constrained Lagrangian systems and obtained from the the Hamiltonian principle

(6)

∫ t1

t0

δ L =

∫ t1

t0


 ∂L

∂xj
δxj +

∂L

∂ẋj

d

dt
δxj +

N∑

j=1

∂L

∂ẋj

(
δ
dxj

dt
− d

dt
δxj

)
 dt = 0,

with transpositional relation given by

(7) δ
dx

dt
− d

dt
δx = A (t,x, ẋ, ẍ) δx,
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where A = A (t,x, ẋ, ẍ) = (Aν j (t,x, ẋ, ẍ)) is a N × N matrix,

We give the solutions of this problem in two steps. First we obtain the differential equa-
tions along the solutions satisfying (6). Second we shall contrast the obtained equations and
classical differential equations which described the behavior of the constrained mechanical
systems. The solution of this inverse problem is presented in section 4.

Note that the function L is singular, due to the absence of λ̇.

We observe that the arbitrariness of the functions Lj , of the constants λ0
j for j =

M + 1, . . . , N, and of the matrix A will play a fundamental role in the construction of
the mathematical model which we propose in this paper.

Our main results are the following

Theorem 1. We assume that δxν(t), ν = 1, . . . , N, are arbitrary functions defined in
the interval [t0, t1], smooth in the interior of [t0, t1] and vanishing at its endpoints, i.e.,
δxν(t0) = δxν(t1) = 0. If (7) holds then the path γ(t) = (x1(t), . . . , xN (t)) compatible with
the constraints Lj (t,x, ẋ) = 0, for j = 1, . . . , M satisfies (6) with L given by the formula
(4) if and only if it is a solution of the differential equations

(8) DνL := Eν L −
N∑

j=1

Aνj
∂L

∂ẋj
= 0,

∂L

∂λk
= −Lk = 0,

for ν = 1, . . . , N, and k = 1, . . . , M, where Eν =
d

dt

∂

∂ẋν
− ∂

∂xν
. System (8) is equivalent to

the following two differential systems

(9)

DνL0 =

M∑

j=1

(
λjDνLj +

dλj

dt

∂Lj

∂ẋν

)
+

N∑

j=M+1

λ0
jDν Lj , Lk = 0 ⇐⇒

EνL0 =
N∑

k=1

Ajk
∂L0

∂ẋk
+

M∑

j=1

(
λjDνLj +

dλj

dt

∂Lj

∂ẋν

)
+

N∑

j=M+1

λ0
jDν Lj , Lk = 0.

for ν = 1, . . . , N and k = 1, . . . , M.

Theorem 2. Using the notation of Theorem 1 let

(10) L = L (t,x, ẋ, Λ) = L0 (t,x, ẋ) −
M∑

j=1

λj Lj (t,x, ẋ) −
N∑

j=M+1

λ0
jLj (t,x, ẋ)

be the Lagrangian and let Lj (t,x, ẋ) = 0 be the independent constraints for j = 1, . . . , M <
N, and let λ0

k be the arbitrary constants for k = M + 1, . . . , N, Lk : R × TQ −→ R for
k = M + 1, . . . , N arbitrary functions such that

|W1| = det W1 = det

(
∂(L1, . . . , LN )

∂(ẋ1, . . . , ẋN )

)
̸= 0,

except perhaps in a zero Lebesgue measure set |W1| = 0. We determine the matrix A
satisfying

(11) W1A = Ω1 :=




E1L1 . . . ENL1

... . . .
...

... . . .
...

E1LN . . . ENLN




.
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Then the differential equations (9) become

(12)

DνL0 =
M∑

α=1

λ̇α
∂Lα

∂ẋν
for ν = 1, . . . , N

⇐⇒ d

dt

∂L0

∂ẋ
− ∂L0

∂x
=
(
W−1

1 Ω1

)T ∂L0

∂ẋ
+ WT

1

dλ

dt
,

where
∂

∂ẋ
=

(
∂

∂ẋ1
, . . . ,

∂

∂ ˙xN

)T

,
∂

∂x
=

(
∂

∂x1
, . . . ,

∂

∂xN

)T

, λ = (λ1, . . . , λM , 0, . . . , 0)
T

,

and the transpositional relation (7) becomes

(13) δ
dx

dt
− d

dt
δx =

(
W−1

1 Ω1

)
δx.

Theorem 3. Using the notation of Theorem 1 let

(14) L (t,x, ẋ, Λ) = L0 (t,x, ẋ) −
M∑

j=1

λj Lj (t,x, ẋ) −
N−1∑

j=M+1

λ0
jLj (t,x, ẋ)

be the Lagrangian and Lj (t,x, ẋ) = 0 be the independent constraints for j = 1, . . . , M < N,
and let λ0

j be arbitrary constants, for j = M +1, . . . , N − 1 and λ0
N = 0, Lj : R× TQ −→ R

for j = M + 1, . . . , N − 1 arbitrary functions, and LN = L0 such that

|W2| = det W2 = det

(
∂(L1, . . . , LN−1, L0)

∂(ẋ1, . . . , ẋN )

)
̸= 0,

except perhaps in a zero Lebesgue measure set |W2| = 0. We determine the matrix A
satisfying

(15) W2A = Ω2 :=




E1L1 . . . ENL1

... . . .
...

E1LN−1 . . . ENLN−1

0 . . . 0


 .

Then the differential equations (9) become

(16)
d

dt

∂L0

∂ẋ
− ∂L0

∂x
= WT

2

d

dt
λ̃,

where λ := λ̃ =
(
λ̃1, . . . , λ̃M , 0, . . . , 0

)T

, and the transpositional relation (7) becomes

(17) δ
dx

dt
− d

dt
δx =

(
W−1

2 Ω2

)
δx,

The proofs of Theorems 1, 2 and 3 are given in section 5.

Theorem 4. Under the assumptions of Theorem 2 and assuming that

xα = xα, xβ = yβ x = (x1, . . . , xs1) y = (y1, . . . , ys2) ,

Lα = ẋα − Φα (x,y, ẋ, ẏ) = 0, Lβ = ẏβ ,

for α = 1, . . . , s1 = M and β = s1 + 1, . . . , s1 + s2 = N.

Then |W1| = 1 and the differential equations (12) take the form

(18)

EjL0 =

s1∑

α=1

(
EjLα

∂L0

∂ẋα

)
+ λ̇j j = 1, . . . , s1,

EkL0 =

s1∑

α=1

(
EkLα

∂L0

∂ẋα
+ λ̇α

∂Lα

∂ẏk

)
k = 1, . . . , s2.
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or, equivalently (excluding the Lagrange multipliers)

(19) EkL0 =

s1∑

α=1


EkLα

∂L0

∂ẋα
+


EαL0 −

s1∑

β=1

(
EαLβ

∂L0

∂ẋβ

)
 ∂ Lα

∂ẏk


 , k = 1, . . . , s2.

In particular if we choose L0 = L̃ (x,y, ẋ, ẏ)−L̃ (x,y, Φ, ẏ) = L̃−L∗, where Φ = (Φ1, . . . , Φs1) ,
then (19) holds if

EkL̃ =

s1∑

α=1

EαL̃
∂ Lα

∂ẏk
, k = 1, . . . , s2,

and

(20) Ek(L∗) =

s1∑

α=1

(
d

dt

(
∂Φα

∂ẏk

)
−
(

∂Φα

∂ yk
+

s1∑

ν=1

∂ Φα

∂ xν

∂ Φν

∂ẏk

))
Ψα +

s1∑

ν=1

∂L∗

∂ xν

∂Φν

∂ẏk
,

where Ψα =
∂ L̃

∂ẋα

∣∣∣∣∣
ẋ1=Φ1,...,ẋs1=Φs1

. The transpositional relations (13) in this case are

(21)

δ
dxα

dt
− d

dt
δ xα =

s2∑

k=1




s1∑

j=1

Ej(Lα)
∂Lj

∂ẏk
+ Ek(Lα)


 δyk, α = 1, . . . , s1,

δ
dym

dt
− d

dt
δ ym = 0, m = 1, . . . , s2.

Proposition 5. Differential equations (20) describe the motion of the nonholonomic systems
with the constraints Lα = ẋα − Φα(x,y, ẏ) = 0 for α = 1, . . . , s1. In particular if the
constraints are given by the formula

(22) ẋj =

s2∑

k=1

ajk(t,x,y)ẏk + aj(t,x), j = 1, . . . , s1,

then systems (20) becomes

Ek(L∗) =

s1∑

α=1

(
daα k

dt
−
(

∂aα m

∂ yk
+

s1∑

ν=1

∂ aα m

∂ xν
aν k

)
ẏm

)
Ψα +

s1∑

ν=1

∂L∗

∂ xν
aν k,

which are the classical Voronets differential equations. Consequently equations (20) are
an extension of the Voronets differential equations for the case when the constraints are
nonlinear in the velocities.

Proposition 6. Differential equations (20) describe the motion of the constrained La-
grangian systems with the constraints Lα = ẋα−Φα(y, ẏ) = 0 and Lagrangian L∗ = L∗(y, ẏ).
Under these assumptions equations (20) take the form

(23) Ek(L∗) =

s1∑

α=1

(
d

dt

(
∂Φα

∂ẏk

)
− ∂Φα

∂ yk

)
Ψα.

In particular if the constraints are given by the formula

(24) ẋα =

s2∑

k=1

aα k(y)ẏk, α = 1, . . . , s1,

then systems (23) becomes

(25) EkL∗ =

s1∑

j=1

s2∑

r=1

(
∂αjk

∂yr
− ∂αjr

∂yk

)
ẏrΨj ,
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for k = 1, . . . , s2, which are the equations which Chaplygin published in the Proceeding of the
Society of the Friends of Natural Science in 1897 .

Consequently equations (23) are an extension of the classical Chaplygin equations for the
case when the constraints are nonlinear.

From (5) and in view of the Implicit Function Theorem, we can locally express the
constraints (reordering coordinates if is necessary) as

(26) ẋα = Φα (x, ẋM+1, . . . , ẋN )

for α = 1, . . . ,M. We note that Propositions 5 and 6 are also valid for every constrained
mechanical systems with constraints locally given by (26), this follows from Theorem 4
changing the notations, see Corollary 22.

The proofs of Theorem 4 and Propositions 5 and 6 is given in section 8.

The next result is the third point of view on the transpositional relations.

Corollary 7. For the constrained mechanical systems the virtual variations can produce
zero or non–zero transpositional relations. For the unconstrained mechanical systems the
virtual variations always produce zero transpositional relations.

The proof of this corollary is given in section 9.

We have the following conjecture.

Conjecture 8. The existence of mechanical systems with nonlinear constraints in the ve-
locity must be sought outside of the Newtonian model.

This conjecture is supported by several facts see section 9.

The results are illustrated with precise examples.

3. Variational Principles. Transpositional relations

3.1. Hamiltonian principle. We introduce the following results, notations and definitions
which we will use later on (see [2]).

A Lagrangian system is a pair (Q, L̃) consisting of a smooth manifold Q, and a smooth

function L̃ : R × TQ −→ R, where TQ is the tangent bundle of Q. The point x =
(x1, . . . , xN ) ∈ Q denotes the position (usually its components are called generalized coordi-
nates) of the system and we call each tangent vector ẋ = (ẋ1, . . . , ẋN ) ∈ TxQ the velocity
(usually called generalized velocity) of the system at the point x. A pair (x, ẋ) is called a
state of the system. In Lagrangian mechanics it is usual to call Q, the configuration space,
the tangent bundle TQ is called the phase space, L̃ is the Lagrange function or Lagrangian
and the dimension N of Q is the number of degrees of freedom.

Let a0 and a1 be two points of Q. The map

γ : [t0, t1] ⊂ R −→ Q,

t 7−→ γ(t) = (x1(t), . . . , xN (t)) ,

such that γ(t0) = a0, γ(t1) = a1 is called a path from a0 to a1. We denote the set of all these
path by Ω(Q, a0, a1, t0, t1) := Ω.

We shall derive one of the most simplest and general variational principles the Hamil-
tonian principle (see [40]).

The functional F : Ω −→ R defined by

F (γ(t)) =

∫

γ(t)

L̃dt =

∫ t1

t0

L̃(t,x(t), ẋ(t))dt

is called the action.
We consider the path γ(t) = x(t) = (x1(t), . . . , xN (t)) ∈ Ω.
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Let the variation of the path γ(t) be defined as a smooth mapping

γ∗ : [t0, t1] × (−τ, τ) −→ Q,

(t, ε) 7−→ γ∗(t, ε) = x∗(t, ε) = (x1(t) + εδx1(t), . . . , xN (t) + εδxN (t)) ,

satisfying

x∗(t0, ε) = a0, x∗(t1, ε) = a1, x∗(t, 0) = x(t).

By definition we have

δx(t) =
∂x∗(t, ε)

∂ε

∣∣∣∣
ε=0

.

This function is called the virtual displacement or virtual variation corresponding to the
variation of γ(t) and it is a function of time, all its components are functions of t of class
C2(t0, t1) and vanish at t0 and t1 i.e. δx(t0) = δx(t1) = 0.

A varied path is a path which can be obtained as a variation path.

The first variation of the functional F at γ(t) is

δF :=
∂F (x∗(t, ε))

∂ε

∣∣∣∣
ε=0

,

and it is called the differential of the functional F (see [2]). The path γ(t) ∈ Ω is called the
critical point of F if δF (γ(t)) = 0.

Let L be the space of all smooth functions g : R × TQ −→ R. The operator

Eν : L −→ R,

g 7−→ Eνg =
d

dt

∂g

∂ẋν
− ∂g

∂xν
, for ν = 1, . . . , N,

is known as the Lagrangian derivative.
It is easy to show the following property of the Lagrangian derivative

(27) Eν
df

dt
= 0,

for arbitrary smooth function f = f(t,x). We observe that in view of (27) we obtain that the

Lagrangian derivative is unchanged if we replace the function g by g +
df

dt
, for any function

f = f(t,x). This reflects the gauge invariance. We shall say that the functions g = g (t,x, ẋ)

and ĝ = ĝ (t,x, ẋ) are equivalently if g − ĝ =
df(t,x)

dt
, and we shall write g ≃ ĝ.

Proposition 9. The differential of the action can be calculated as follows

(28) δF = −
∫ t1

t0

N∑

k=1

(
EkL̃δxk − ∂L̃

∂ẋk

(
δ
dxk

dt
− d

dt
δxk

))
dt,

where x = x(t), ẋ =
dx

dt
, and L̃ = L̃

(
t,x,

dx

dt

)
.
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Proof. We have that

δF =
∂F (x∗(t, ε))

∂ε

∣∣∣∣
ε=0

=

∫ t1

t0

∂

∂ε

∣∣∣∣
ε=0

L

(
t,x∗(t, ε),

d

dt
(x∗(t, ε))

)
dt =

∫ t1

t0

N∑

k=1

(
∂L

∂xk
δxk +

∂L

∂ẋk
δẋk

)
dt

=

∫ t1

t0

N∑

k=1

(
∂L

∂xk
δxk +

∂L

∂ẋk

d

dt
δxk +

∂L

∂ẋk

(
δ
dxk

dt
− d

dt
δxk

))
dt

=
N∑

k=1

∂L

∂ẋk
δxk

∣∣∣∣∣

t=t1

t=t0

+

∫ t1

t0

N∑

k=1

((
∂L

∂xk
− d

dt

∂L

∂ẋk

)
δxk +

∂L

∂ẋk

(
δ
dxk

dt
− d

dt
δxk

))
dt.

Hence, by considering that the virtual variation vanishes at the points t = t0 and t = t1 we
obtain the proof of the proposition. �

Corollary 10. The differential of the action for a Lagrangian system
(
Q, L̃

)
can be cal-

culated as follows

δF = −
∫ t1

t0

N∑

k=1

EkL̃

(
t,x,

dx

dt

)
δxk dt.

Proof. Indeed, for the Lagrangian system the transpositional relation is equal to zero (see
for instance [32] page 29), i.e.

(29) δ
dx

dt
− d

dt
δx = 0.

Thus, from Proposition 9, it follows the proof of the corollary. �

The path γ(t) ∈ Ω is called a motion of the Lagrangian systems
(
Q, L̃

)
if γ(t) is a critical

point of the action F, i.e.

δF (γ(t)) = 0 ⇐⇒
∫ t1

t0

δL̃ dt = 0.

This definition is known as the Hamiltonian variational principle or Hamiltonian varia-
tional principle of least action or simple Hamiltonian principle.

Now we need the Lagrange lemma or fundamental lemma of calculus of variations (see
for instance [1])

Lemma 11. Let f be a continuous function of the interval [t0, t1] satisfying the equation
∫ t1

t0

f(t)ζ(t)dt = 0,

for arbitrary continuous function ζ(t) such that ζ(t0) = ζ(t1) = 0. Then f(t) ≡ 0.

Corollary 12. The Hamiltonian principle for Lagrangian systems is equivalent to the La-
grangian equations

(30) EνL̃ =
d

dt

(
∂L̃

∂ẋν

)
− ∂L̃

∂xν
= 0,

for ν = 1, . . . , N.

Proof. Clearly, if (30) holds, by Corollary 10, δF = 0. The reciprocal result follows from
Lemma 11. �
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From the formal point of view, the Hamiltonian principle in the form (??) is equivalent to
the problem of variational calculus [13, 40]. However, despite the superficial similarity, they
differ essentially. Namely, in mechanics the symbol δ stands for the its virtual variation,
i.e., it is not an arbitrary variation but a displacement compatible with the constraints
imposed on the systems. Thus only in the case of the holonomic systems, for which the
number of degrees of freedom is equal to the number of generalized coordinates, the virtual
variations are arbitrary and the Hamiltonian principle (??) is completely equivalent to the
corresponding problem of the variational calculus. An important difference arises for the
systems with nonholonomic constraints, when the variations of the generalized coordinates
are connected by the additional relations usually called Chetaev conditions which we give
later on.

3.2. D’Alembert–Lagrange principle. Let Lj : R × TQ −→ R be smooth functions for
j = 1, . . . , M. The equations

Lj = Lj (t,x, ẋ) = 0, for j = 1, . . . ,M < N,

with rank

(
∂(L1, . . . , LM )

∂(ẋ1, . . . , ẋN )

)
= M in all the points of R × TQ, except perhaps in a zero

Lebesgue measure set, define M independent constraints for the Lagrangian systems (Q, L̃).

Let M∗ be the submanifold of R × TQ defined by the equations (??), i.e.

M∗ = {(t,x, ẋ) ∈ R × TQ : Lj(t,x, ẋ) = 0, for j = 1, . . . , M}.

A constrained Lagrangian system is a triplet (Q, L̃, M∗). The number of degree of freedom
is κ = dimQ − M = N − M.

The constraint is called integrable if it can be written in the form Lj =
d

dt
(Gj(t,x)) = 0,

for a convenient function Gj . Otherwise the constraint is called nonintegrable. According to
Hertz [16] the nonintegrable constraints are also called nonholonomic.

The Lagrangian systems with nonintegrable constraints are usually called (also following
to Hertz) the nonholonomic mechanical systems, or nonholonomic constrained mechanical
systems, and with integrable constraints are called the holonomic constrained mechanical
systems or holonomic constrained Lagrangian systems. The systems free of constraints are
called Lagrangian systems or holonomic systems.

Sometimes it is also useful to distinguish between constraints that are dependent on or
independent of time. Those that are independent of time are called scleronomic, and those
that depend on time are called rheonomic. This therminology can also be applied to the
mechanical systems themselves. Thus we say that the constrained Lagrangian systems is
scleronomic (reonomic) if the constraints and Lagrangian are time independent (dependent).

The constraints

(31) Lk =
N∑

j=1

akj ẋj + ak = 0, for k = 1, . . . , M,

where akj = akj(t,x), ak = ak(t,x), are called linear constraints with respect to the velocity.
For simplicity we shall call linear constraints.

We observe that (31) admits an equivalent representation as a Pfaffian equations (for
more details see [38])

ωk :=

N∑

j=1

akjdxj + ak dt = 0.

We shall consider only two classes of systems of equations, the equations of constraints
linear with respect to the velocity (ẋ1, . . . , ẋN ), or linear with respect to the differential
(dx1, . . . , dxN , dt). In order to study the integrability or nonintegrability problem of the
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constraints the last representation, a Pfaffian system is the more useful. This is related
with the fact that for the given 1-forms we have the Frobenius theorem which provides the
necessary and sufficient conditions under which the 1-forms are closed and consequently the
given set of constraints is integrable.

The constrains Lj(t,x, ẋ) = 0 are called perfect constraints or ideal if they satisfy the
Chetaev conditions (see [7])

(32)
N∑

k=1

∂Lα

∂ẋk
δxk = 0,

for α = 1, . . . , M.

In what follows, we shall consider only perfect constraints.
If the constraints admit the representation (26) then the Chetaev conditions takes the

form

δxα =
N∑

k=M+1

∂Φα

∂ẋk
δxk.

The virtual variations of the variables xα for α = 1, . . . , M are called dependent variations
and for the variable xβ for β = M + 1, . . . , N are called independent variations.

We say that the path γ(t) = x(t) is admissible with the perfect constraint if Lj(t,x(t), ẋ(t)) =
0.

The admissible path is called the motion of the constrained Lagrangian systems (Q, L̃, M∗)
if for all t ∈ [t0, t1]

N∑

ν=1

EνL̃ (t,x(t), ẋ(t)) δxν(t) = 0,

for all virtual displacement δx(t) of the path γ(t). This definition is known as d’Alembert–
Lagrange principle.

It is well known the following result (see for instance [2, 5, 14, 35]).

Proposition 13. The d’Alembert–Lagrange principle for constrained Lagrangian systems is
equivalent to the Lagrangian differential equations with multipliers

(33)
EjL̃ =

d

dt

∂L̃

∂ẋj
− ∂L̃

∂xj
=

M∑

α=1

µα
∂Lα

∂ẋj
, for j = 1, . . . , N,

Lj(t,x, ẋ) = 0, for j = 1, . . . , M,

where µα for α = 1, . . . ,M are the Lagrangian multipliers.

3.3. The varied path. The varied path produced in Hamiltonian’s principle is not in
general an admissible path if the perfect constraints are nonholonomic, i.e. the mechanical
systems cannot travel along the varied path without violating the constraints. We prove the
following result, which shall play an important role in the all assertions below.

Proposition 14. If the varied path is an admissible path then, the following relations hold

(34)
N∑

k=1

∂Lα

∂ẋk

(
δ
dxk

dt
− d

dt
δxk

)
=

N∑

k=1

EkLα δxk,

for α = 1, . . . , M.

Proof. Indeed, the original path γ(t) = x(t) by definition satisfies the Chetaev conditions,
and constraints, i.e. Lj (t,x(t), ẋ(t)) = 0. If we suppose that the variation path γ∗(t) =
x(t) + εδx(t), also satisfies the constraints i.e.

Lj (t,x + εδx, ẋ + εδẋ) = Lj (t,x(t), ẋ(t)) + εδ Lα (t,x(t), ẋ(t)) + . . . = 0.
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Thus restricting only to the terms of first order with respect to ε and by the Chetaev
conditions we have (for simplicity we omitted the argument)

(35)

0 = δ Lα =
N∑

k=1

(
∂Lα

∂ xk
δxk +

∂Lα

∂ẋk
δẋk

)
,

0 =
N∑

k=1

∂Lα

∂ẋk
δxk,

for α = 1, . . . , M. The Chetaev conditions are satisfied at each instant, so

d

dt

(
N∑

k=1

∂Lα

∂ẋk
δxk

)
=

N∑

k=1

d

dt

(
∂Lα

∂ẋk

)
δxk +

N∑

k=1

∂Lα

∂ẋk

d

dt
δxk = 0.

Subtracting these relations from (35) we obtain (34). Consequently if the varied path is an
admissible path, then relations (34) must hold. �

From (34) and (7) it follows that the elements of the matrix A satisfy

(36)

N∑

m=1

δxm

(
EmLα −

N∑

k=1

Ak m
∂Lα

∂ẋk

)
=

N∑

m=1

δxmDmLα = 0, for α = 1, . . . , M.

This property will be used below.

Corollary 15. For the holonomic constrained Lagrangian systems the relations (34) hold
if and only if

(37)
N∑

k=1

∂Lα

∂ẋk

(
δ
dxk

dt
− d

dt
δxk

)
= 0, for α = 1, . . . ,M.

Proof. Indeed, for holonomic constrained Lagrangian systems the constraints are integrable,
consequently in view of (27) we have EkLα = 0 for k = 1, . . . , N and α = 1, . . . , M. Thus,
from (34), we obtain (37). �

Clearly the equalities (37) are satisfied if (29) holds. We observe that in general for
holonomic constrained Lagrangian systems relation (29) cannot hold (see example 2).

3.4. Transpositional relations. As we observe in the previous subsection for nonholo-
nomic constrained Lagrangian systems the curves, obtained doing a virtual variation in the
motion of the systems, in general are not kinematical possible trajectories when (29) is not
fulfilled. This leads to the conclusion that the Hamiltonian principle cannot be applied to
nonholonomic systems, as it is usually employed for holonomic systems. The essence of the
problem of the applicability of this principle for nonholonomic systems remains unclarified
(see [35]). In order to clarify this situation, it is sufficient to note that the question of
the applicability of the principle of stationary action to nonholonomic systems is intimately
related to the question of transpositional relation.

The key point is that the Hamiltonian principle assumes that the operation of differenti-

ation with respect to the time
d

dt
and the virtual variation δ commute in all the generalized

coordinate systems.
For the holonomic constrained Lagrangian systems relations (29) cannot hold (see Corol-

lary 15). For a nonholonomic systems the form of the Hamiltonian principle will depend on
the point of view adopted with respect to the transpositional relations.

What are then the correct transpositional relations? Until now, does not exist a common
point of view concerning to the commutativity of the operation of differentiation with respect
to the time and the virtual variation when there are nonintegrable constraints. Two points
of view have been maintained. According to one (supported, for example, by Volterra,
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Hamel, Hölder, Lurie, Pars,. . . ), the operations
d

dt
and δ commute for all the generalized

coordinates, independently if the systems are holonomic or nonholonomic, i.e.

δ
dxk

dt
− d

dt
δxk = 0, for k = 1, . . . , N.

According to the other point of view (supported by Suslov, Voronets, Levi-Civita, Amaldi,. . . )

the operations
d

dt
and δ commute always for holonomic systems, and for nonholonomic sys-

tems with the constraints

ẋα =
N∑

j=M+1

aαj(t,x)ẋj + aα(t,x), for α = 1, . . . , M.

the transpositional relations are equal to zero only for the generalized coordinates xM+1, . . . , xN ,
( for which their virtual variations are independent). For the remaining coordinates x1, . . . , xM ,
(for which their virtual variations are dependent), the transpositional relations must be de-
rived on the basis of the equations of the nonholonomic constraints, and cannot be identi-
cally zero, i.e.

δ
dxk

dt
− d

dt
δxk = 0, for k = M + 1, . . . , N

δ
dxk

dt
− d

dt
δxk ̸= 0, for k = 1, . . . ,M.

The second point of view acquired general acceptance and the first point of view was con-
sidered erroneous (for more details see [35]). The meaning of the transpositional relations
(1) can be found in [19, 32, 34, 35].

In the results given in the following section play a key role the equalities (34). From
these equalities and from the examples it will be possible to observe that the second point
of view is correct only for the so called Voronets–Chaplygin systems, and in general for
locally nonholonomic systems. There exist many examples for which the independent virtual
variations generated non–zero transpositional relations. Thus we propose a third point of
view on the transpositional relations: the virtual variations can generate the transpositional
relations given by the formula (7) where the elements of the matrix A satisfies the conditions
(see formula (36))

(38) DνLα = EνLα −
N∑

k=1

Ak ν
∂Lα

∂ẋk
= 0, for ν = 1, . . . , M, α = 1, . . . , M.

we observe that here the Lα = 0 are constraints which in general are nonlinear in the velocity.

3.5. Hamiltonian–Suslov principle. After the introduction of the nonholonomic mechan-
ics by Hertz, it appeared the question of extending to the nonholonomic mechanics the results
of the holonomic mechanics. Hertz [16] was the first in studying the problem of applying
the Hamiltonian principle to systems with nonintegrable constraints. In [16] Hertz wrote:
“Application of Hamilton’s principle to any material systems does not exclude that between
selected coordinates of the systems rigid constraints exist, but it still requires that these
relations could be expressed by integrable constraints. The appearance of nonintegrable
constraints is unacceptable. In this case the Hamilton’s principle is not valid.” Appell [3] in
correspondence with Hertz’s ideas affirmed that it is not possible to apply the Hamiltonian
principle for systems with nonintegrable constraints

Suslov [48] claimed that ”Hamilton’s principle is not applied to systems with nonintegrable
constraints, as derived based on this equation are different from the corresponding equations
of Newtonian mechanics”.

The applications of the most general differential principle, i.e. the d’Alembert–Lagrange
and their equivalent Gauss and Appel principle, is complicated due to the presence of the
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terms containing the second order derivative. On the other hand the most general variational
integral principle of Hamilton is not valid for nonholonomic constrained Lagrangian systems.
The generalization of the Hamiltonian principle for nonholonomic mechanical systems was
deduced by Voronets and Suslov (see for instance [48, 53]). As we can observe later on from
this principle follows the importance of the transpositional relations to determine the correct
equations of motion for nonholonomic constrained Lagrangian systems.

Proposition 16. The d’Alembert–Lagrangian principle for the contrained Lagrangian sys-

tems

N∑

k=1

δxkEkL̃ = 0 is equivalent to the Hamilton–Suslov principle (2) where we assume

that δxν(t), ν = 1, . . . , N, are arbitrary smooth functions defined in the interior of the
interval [t0, t1] and vanishing at its endpoints, i.e., δxν(t0) = δxν(t1) = 0.

Proof. From the d’Alembert–Lagrangian principle we obtain the identity

0 = −
N∑

k=1

δxkEkL̃ =
N∑

k=1

δxk
∂L̃

∂xk
−

N∑

k=1

δxk
d

dt

∂L̃

∂ẋk

=

N∑

k=1

(
δxk

∂L̃

∂xk
+ δẋk

∂L̃

∂ẋk

)
−

N∑

k=1

((
δ
dxk

dt
− d

dt
δxk

)
∂L̃

∂ẋk
− d

dt

(
∂L̃

∂ẋk
δxk

))

= δL̃ −
N∑

k=1

((
δ
dxk

dt
− d

dt
δxk

)
∂L̃

∂ẋk
− d

dt

(
∂L̃

∂ẋk
δxk

))
,

where δL̃ is a variation of the Lagrangian L̃. After the integration and assuming that
δxk(t0) = 0, δxk(t1) = 0 we easily obtain (2), which represent the most general formula-
tion of the Hamiltonian principle (Hamilton–Suslov principle) suitable for constrained and
unconstrained Lagrangian systems. �

Suslov determine the transpositional relations only for the case when the constraints are
of Voronets type, i.e. given by the formula (22). Assume that

δ
dyk

dt
− d

dt
δyk = 0, for k = M + 1, . . . , N,

Voronets and Suslov deduced that

δ
dxk

dt
− d

dt
δxk =

N∑

k=1

Bkrδyr − δak

for convenient functions Bkr = Bkr (t,x,y, ẋ, ẏ) , for r = M + 1, . . . , N and k = 1, . . . , M.
Thus we obtain

∫ t1

t0

(
δ L̃ −

N∑

k=1

∂L̃

∂ẋj

(
N∑

k=1

Bkrδyr − δak

))
dt = 0,

This is the Hamiltonian principle for nonholonomic systems in the Suslov form (see for
instance [48]). We observe that the same result was deduced by Voronets in [53].

It is important to observe that Suslov and Voronets require a priori that the independent
virtual variations produce the zero transpositional relations. At the sometimes these authors
consider only linear constraints with respect to the velocity of the type (22).

3.6. Modification of the vakonomic mechanics (MVM). As we observe in the intro-
duction, the main objective of this paper is to construct the variational equations of motion
describing the behavior of the constrained Lagrangian systems in which the equalities (34)
take place in the most general possible way. We shall show that the d’Alembert–Lagrange
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principle is not the only way to deduce the equations of motion for the constrained La-
grangian systems. Instead of it we can apply the generalization of the Hamiltonian principle,
whereby the motions of such systems are extremals of the variational Lagrange problem (see
for instance [13]), i.e. the problem of determining the critical points of the action in the class
of curves with fixed endpoints and satisfying the constraints. The solution of this problem
as we shall see will give the differential equations of second order which coincide with the
well–known classical equations of the mechanics except perhaps in a zero Lebesgue measure
set.

From the previous section we deduce that in order to generalize the Hamiltonian principle
to nonholonomic systems we must take into account the following relations

(A) δLα =
N∑

j=1

(
∂Lα

∂xj
δxj +

∂Lα

∂ẋj
δẋj

)
= 0 for α = 1, . . . , M,

(B)
N∑

j=1

∂Lα

∂ẋj
δxj = 0 for α = 1, . . . , M,

(C) δ
dxj

dt
− d

dt
δxj = 0 for j = 1, . . . , N,

where Lα = 0 for α = 1, . . . ,M are the constraints.

A lot of authors consider that (C) is always fulfilled (see for instance [32, 38]), together
with the conditions (A) and (B). However these conditions are incompatible in the case of
the nonintegrable constrains. We observe that these authors deduced that the Hamiltonian
principle is not applicable to the nonholonomic systems.

To obtain a generalization of the Hamiltonian principle for the nonholonomic mechanical
systems, some of these three conditions must be excluded.

In particular for the Hölder principle conditions (A) is excluded and keep (B) and (C)
(see [17]). For the Hamiltonian–Suslov principle condition (A) and (B) hold, and (C) only
holds for the independent variations.

In this paper we extend the Hamiltonian principle by supposing that conditions (A) and
(B) hold and (C) does not hold . Instead of (C) we consider that (7) holds where elements
of matrix A satisfy the relations (38).

4. Solution of the inverse problem of the constrained Lagrangian systems

We shall determine the equations of motion of the constrained Lagrangian systems using
the Hamiltonian principle with non zero transpositional relations, whereby the motions of
the systems are extremals of the variational Lagrange’s problem (see for instance [13]), i.e.
are the critical points of the action functional

∫ t1

t0

L0 (t,x, ẋ) dt,

in the class of path with fixed endpoints satisfying the independent constraints

Lj (t,x, ẋ) = 0, for j = 1, . . . , M.

In the classical solution of the Lagrange problem usually we apply the Lagrange multi-
pliers method which consists in the following. We introduce the additional coordinates

Λ = (λ1, . . . , λM ) , and Lagrangian L̂ : R × TQ × RM −→ R given by

L̂ (t,x, ẋ, Λ) = L0 (t,x, ẋ) −
M∑

j=1

λj Lj (t,x, ẋ) ,
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Under this choice we reduce the Lagrange problem to a variational problem without con-

straints, i.e. we must determine the extremal of the action functional

∫ t1

t0

L̂ dt. We shall

study a slight modification of the Lagrangian multipliers method. We introduce the addi-
tional coordinates Λ = (λ1, . . . , λM ) , and the Lagrangian on R × TQ × RM given by the
formula (4), where we assume that λ0

j are arbitrary constants, and Lj are arbitrary functions
for j = M + 1, . . . , N.

Now we determine the critical points of the action functional

∫ t1

t0

L (t,x, ẋ, Λ) dt, i.e. we

determine the path γ(t) such that

∫ t1

t0

δ (L (t,x, ẋ, Λ)) dt = 0 under the additional condition

that the transpositional relations are given by the formula (7).

The solution of the inverse problem stated in section 2 is the following. Differential
equations obtained from (6) are given by the formula (8) (see Theorem 1). We choose the
arbitrary functions Lj in such a away that the matrix W1 and W2 given in Theorems 2 and
3 are nonsingular, except perhaps in a zero Lebesgue measure set. The constants λ0

j for

j = M + 1, . . . , N are arbitrary in Theorem 2, and λ0
j for j = 1, . . . , N − 1 are arbitrary

and λ0
N = 0 in Theorem 3. The matrix A is determined from the equalities (11) and (15) of

Theorems 2 and 3 respectively.

Remark 17. It is interesting to observe that from the solutions of the inverse problem,
the constants λ0

j for j = M + 1, . . . , N are arbitrary except in Theorem 3 in which λ0
N =

0. Clearly, if Lj (t,x, ẋ) =
d

dt
fj(t,x) for j = M + 1, . . . , N, then the L ≃ L̂. Using the

arbitrariness of the constants λ0
j we can always take that λ0

k = 0 if Lk (t,x, ẋ) ̸= d

dt
fk(t,x).

Consequently we can always suppose that L ≃ L̂. Thus the only difference between the
classical and the modified Lagrangian multipliers method consists only on the transpositional
relations: for the classical method the virtual variations produce zero transpositional relations
(i.e. the matrix A is the zero matrix) and for the modified method in general it is determined
by the formulae (7) and (36).

A very important subscase is obtained when the constraints are given in the form (Voronets-
Chapliguin constraints type) ẋα −Φα (t,x, ẋM+1, . . . , ẋN ) = 0, for α = 1, . . . , M. As we shall
show under these assumptions the arbitrary functions are determined as follows: Lj = ẋj

for j = M +1, . . . , N. Consequently the action of the modified Lagrangian multipliers method
and the action of the classical Lagrangian multipliers method are equivalently. In view of
(26) this equivalence always locally holds for any constrained Lagrangian systems.

5. Proof of Theorems 1, 2 and 3

Proof of Theorem 1. In view of the equalities
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∫ t1

t0

δL dt =

∫ t1

t0

M∑

k=1

(
∂L

∂λk
δλk

)
dt +

∫ t1

t0

N∑

j=1

(
∂L

∂xj
δxj +

∂L

∂ẋj
δ
dxj

dt

)
dt

=

∫ t1

t0

M∑

k=1

(−Lkδλk) dt +

∫ t1

t0

N∑

j=1

(
∂L

∂xj
δxj +

∂L

∂ẋj

d

dt
δxj +

∂L

∂ẋj

(
δ
dxj

dt
− d

dt
δxj

))
dt

=

∫ t1

t0

M∑

k=1

(−Lkδλk) dt +

∫ t1

t0

N∑

j=1

d

dt

(
∂T

∂ẋj
δxj

)
dt

−
∫ t1

t0

N∑

j=1

((
− ∂L

∂xj
+

d

dt

(
∂L

∂ẋj

))
δxj +

∂L

∂ẋj

(
δ
dxj

dt
− d

dt
δxj

))
dt.

Consequently

∫ t1

t0

δL dt

∣∣∣∣
Lν=0

=

∫ t1

t0

N∑

j=1

(
d

dt

(
∂T

∂ẋj
δxj

)
−
(

EjL −
N∑

k=1

Ajk
∂L

∂ẋk

)
δxj

)
dt

=
N∑

j=1

∂T

∂ẋj
δxj

∣∣∣∣
t=t1

t=t0

−
∫ t1

t0

N∑

j=1

(
EjL −

N∑

k=1

Ajk
∂L

∂ẋk

)
δxjdt

= −
∫ t1

t0

N∑

j=1

(
EjL −

N∑

k=1

Ajk
∂L

∂ẋk

)
δxjdt = 0,

where ν = 1, . . . , M. Here we use the equalities δx(t0) = δx(t1) = 0. Hence if (8) holds then
(6) is satisfied. The reciprocal result is proved by choosing

δxk(t) =

{
ζ(t) if k = 1,

0 otherwise,

where ζ(t) is a positive function in the interval (t∗0, t
∗
1), and it is equal to zero in the intervals

[t0, t∗0] and [t∗1, t1], and applying Corollary 11.
From the definition (8) we have that

Dν(fg) = Dνf g + f Dν g +
∂f

∂ẋν

dg

dt
+

df

dt

∂g

∂ẋν
, Dνa = 0,

where a is a constant.
Now we shall write (8) in a more convenient way

0 = DνL = Dν


L0 −

M∑

j=1

λjLj −
N∑

j=M+1

λ0
jLj




= Dν L0 −
M∑

j=1

Dν (λjLj) −
N∑

j=M+1

λ0
jDν Lj

= Dν L0 −
N∑

j=M+1

λ0
jDν Lj−

−
M∑

j=1

(
Dν λj Lj + λjDν Lj +

dλj

dt

∂Lj

∂ẋν
+

dLj

dt

∂λj

∂ẋν

)
.
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From these relations and since the constraints Lj = 0 for j = 1, . . . , M, we easily obtain
equations (9) or equivalently

(39) EνL0 =
N∑

k=1

Ajk
∂L0

∂ẋk
+

M∑

j=1

(
λjDνLj +

dλj

dt

∂Lj

∂ẋν

)
+

N∑

j=M+1

λ0
jDν Lj .

Thus the theorem is proved. �

Now we show that the differential equations (39) for convenient functions Lj constants
λ0

j for j = M +1, . . . , N and for convenient matrix A describe the motion of the constrained
Lagrangian systems.

Proof of Theorem 2. The matrix equation (11) can be rewritten in components as follows

(40)

N∑

j=1

Akj
∂Lα

∂ẋj
= EkLα ⇐⇒ DkLα = 0,

for α, k = 1, . . . , N. Consequently the differential equations (39) become

(41) EνL0 =
N∑

k=1

(
Aνk

∂L0

∂ẋk
+

dλk

dt

∂Lk

∂ẋν

)
⇐⇒ DνL0 =

M∑

j=1

dλj

dt

∂Lj

∂ẋν
,

which coincide with the first systems (12).
In view of the condition |W1| ̸= 0 we can solve equation (11) with respect to A and obtain

A = W−1
1 Ω1. Hence, by considering (40) we obtain the second systems from (12) and the

transpositional relation (13). �

Proof of Theorem 3. The matrix equation (15) is equivalent to the systems

N∑

j=1

Akj
∂Lα

∂ẋj
= EkLα ⇐⇒ DkLα = 0,

N∑

j=1

Akj
∂L0

∂ẋj
= 0,

for k = 1, . . . , N, and α = 1, . . . , N − 1. Thus, by considering that λ0
N = 0 we deduce that

systems (39) takes the form

EνL0 =

M∑

j=1

dλ̃j

dt

∂Lj

∂ẋν
.

Hence we obtain systems (16). On the other hand from (15) we have that A = W−1
2 Ω2.

Hence we deduce that the transpositional relation (7) can be rewritten in the form (17). �

The mechanics basic on the Hamiltonian principle with non–zero transpositional rela-
tions given by formula (7), Lagrangian (4) and equations of motion (8) are called here the
modification of the vakonomic mechanics and we shortly write MVM.

From the proofs of Theorems 2 and 3 follows that the relations (36) holds identically in
MVM.

Corollary 18. Differential equations (12) are invariant under the change

L0 −→ L0 −
N∑

j=1

ajLj ,

where the aj’s are constants for j = 1, . . . , N.
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Proof. Indeed, from (41) and (40) it follows that

Dν


L0 −

N∑

j=1

ajLj


 = Dν L0 −

N∑

j=1

ajDν Lj = Dν L0 =
M∑

j=1

dλj

dt

∂Lj

∂ẋν
.

�
Remark 19. The following interesting facts follow from Theorems 2 and 3.

(1) The equations of motion obtained from Theorem 2 are more general than the equa-
tions obtained from Theorem 3. Indeed in (12) there are N − M arbitrary functions
while in (16) are N − M − 1 arbitrary functions.

(2) If the constraints are linear in the velocity then between the Lagrangian multipliers

µ,
dλ

dt
and

dλ̃

dt
there is the following relation

µ =
dλ̃

dt
=
(
W−1

2

)T
(

WT
1

dλ

dt
+ W−1

2 ΩT
1 W−T

1

∂L0

∂ẋ

)
,

where W1 and W2 are the matrixes defined in Theorems 2 and 3.
(3) If the constraints are linear in the velocity then one of the important question which

appear in MVM is related with the arbitrariness functions Lj for j = M + 1, . . . , N.
The following question arise: Is it possible to determine these functions in such a
way that |W1| or |W2| is non–zero everywhere in M∗? If we have a positive answer
to this question, then the equations of motion of the MVM give a global behavior of
the constrained Lagrangian systems, i.e. the obtained motions completely coincide
with the motions obtained from the classical mathematical models. Thus if |W1| ̸= 0
and |W2| ̸= 0 everywhere in M∗ then we have the equivalence

(42) DνL0 =
M∑

j=1

dλj

dt

∂Lj

∂ẋν
⇐⇒ EνL0 =

M∑

j=1

dλ̃j

dt

∂Lj

∂ẋν
⇐⇒ EνL0 =

M∑

j=1

µj
∂Lj

∂ẋν

If the constraints are nonlinear in the velocity and |W2| ̸= 0 everywhere in M∗ then we have
the equivalence

(43) EνL0 =
M∑

j=1

dλ̃j

dt

∂Lj

∂ẋν
⇐⇒ EνL0 =

M∑

j=1

µj
∂Lj

∂ẋν

The equivalence with respect to the equations DνL0 =

M∑

j=1

dλj

dt

∂Lj

∂ẋν
in general is not valid in

this case because the term ΩT
1 W−T

1

∂L0

∂ẋ
depend on ẍ.

5.1. Application of Theorems 2 and 3 to the Appell–Hamel mechanical systems.
As a general rule the constraints studied in classical mechanics are linear with respect to the
velocities, i.e. Lj can be written as (31). However Appell and Hamel (see [3, 15]) in 1911,
considered an artificial example of nonlinear nonholonomic constrains. A big number of
investigations have been devoted to the derivation of the equations of motion of mechanical
systems with nonlinear nonholonomic constraints see for instance [8, 15, 35, 36]. The works
of these authors do not contain examples of systems with nonlinear nonholonomic constraints
differing essentially from the example given by Appell and Hamel.

Corollary 20. The equivalence (42) also holds for the Appell – Hamel system i.e. for the
constrained Lagrangian systems(

R3, L̃ =
1

2
(ẋ2 + ẏ2 + ż2) − gz, {ż − a

√
ẋ2 + ẏ2 = 0}

)
,
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where a and g are positive constants.

Proof. The classical equations (33) for the Appell-Hamel system are

(44) ẍ = − aẋ√
ẋ2 + ẏ2

µ, ÿ = − aẏ√
ẋ2 + ẏ2

µ, z̈ = −g + µ,

where µ is the Lagrangian multiplier.

Now we apply Theorem 3. Hence, in order to obtain that |W2| ̸= 0 everywhere we choose
the functions Lj for j = 1, 2, 3 as follows

L1 = ż − a
√

ẋ2 + ẏ2 = 0, L2 = arctan
ẋ

ẏ
, L3 = L0 = L̃.

In this case the matrices W2, Ω2 and A are

W2 =




− aẋ√
ẋ2 + ẏ2

− aẏ√
ẋ2 + ẏ2

1

ẏ

ẋ2 + ẏ2
− ẋ

ẋ2 + ẏ2
0

ẋ ẏ ż


 , |W2|L1=0 = 1 + a2,

Ω2 =




−ẏq ẋq 0

ÿ
(
ẋ2 − ẏ2

)
− 2ẋẏẍ

(ẋ2 + ẏ2)
2

ẍ
(
ẋ2 − ẏ2

)
+ 2ẋẏÿ

(ẋ2 + ẏ2)
2 0

0 0 0


 ,

and the matrix A|L1=0 is



− ẏ
(
a2ẏẋẍ +

(
(a2 + 1)ẏ2 + ẋ2

)
ÿ
)

(1 + a2) (ẋ2 + ẏ2)

(
a2ẋ2 + (a2 + 1)

(
ẏ2 + ẋ2

)2)
ẏẍ − a2ẋ3ÿ

(1 + a2) (ẋ2 + ẏ2)
2 0

(
a2ẏ2 + (a2 + 1)

(
ẏ2 + ẋ2

))
ẋÿ − a2ẏ3ẍ

(1 + a2) (ẋ2 + ẏ2)
− ẋ

(
a2ẋẏÿ +

(
(a2 + 1)ẋ2 + ẏ2

)
ẍ
)

(1 + a2) (ẋ2 + ẏ2)
2 0

ẏa (ẏẍ − ẋÿ)

(1 + a2) (ẋ2 + ẏ2)
3/2

− ẋa (ẏẍ − ẋÿ)

(1 + a2) (ẋ2 + ẏ2)
3/2

0




.

By considering that |W2|L1=0 = 1+a2, we obtain that the equations (16) in this case describe
the global behavior of the Appell–Hamel systems and take the form

(45) ẍ = − aẋ√
ẋ2 + ẏ2

˙̃
λ, ÿ = − aẏ√

ẋ2 + ẏ2

˙̃
λ, z̈ = −g +

˙̃
λ.

Clearly that this system coincide with classical differential equations (44) with
˙̃
λ = µ.

After the derivation of the constraint ż − a
√

ẋ2 + ẏ2 = 0 along the solutions of (45), we
obtain

0 = z̈ − a
ẍ√

ẋ2 + ẏ2
+ a

ÿ√
ẋ2 + ẏ2

= −g + (1 + a2)
˙̃
λ.

Therefore ˙̃λ =
g

1 + a2
. Hence the equations of motion (45) become

(46) ẍ = − ag

1 + a2

ẋ√
ẋ2 + ẏ2

, ÿ = − ag

1 + a2

ẏ√
ẋ2 + ẏ2

, z̈ = − a2g

1 + a2
.
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In this case the Lagrangian (14) writes

L =
1

2
(ẋ2 + ẏ2 + ż2) − gz − g (t + C)

1 + a2
(ż − a

√
ẋ2 + ẏ2) − λ0

2 arctan
ẋ

ẏ
,

where C and λ0
2 are an arbitrary constants.

Under the condition L1 = 0 we obtain that the transpositional relations are

(47)

δ
dx

dt
− d

dt
δx =

ẏ
(
(1 + a2)

(
ẋ2 + ẏ2

)
(ẍδy − ÿδx) + a2ẋ (ẏẍ − ẋÿ) (ẋδy − ẏδx)

)

(1 + a2) (ẋ2 + ẏ2)
2 ,

δ
dy

dt
− d

dt
δy =

ẋ
(
(1 + a2)

(
ẋ2 + ẏ2

)
(ÿδx − ẍδy) + a2ẏ (ẏẍ − ẋÿ) (ẋδy − ẏδx)

)

(1 + a2) (ẋ2 + ẏ2)
2 ,

δ
dz

dt
− d

dt
δz =

a (ẏẍ − ẋÿ) (ẋδy − ẋδy)

(1 + a2) (ẋ2 + ẏ2)
3/2

.

From this example we obtain that the independent virtual variations δx and δy produce
non–zero transpositional relations. This result is not in accordance with with the Suslov
point on view on the transpositional relations.

Now we apply Theorem 2. The functions L0, L1, L2 and L3 are determined as follows

L0 = L̃, L1 = ż − a
√

ẋ2 + ẏ2, L2 = ẏ, L3 = ẋ.

Thus the matrix W1 and Ω1 are

W1 =




− aẋ√
ẋ2 + ẏ2

− aẏ√
ẋ2 + ẏ2

1

0 1 0
1 0 0


 , Ω1 =




ẏq −ẋq 0
0 0 0
0 0 0


 ,

where q =
a(ẍẏ − ẍẏ)
√

ẋ2 + ẏ2
3 . Therefore |W1| = −1.

Hence, after some computations from (11) we have that

A =




0 0 0
0 0 0
ẏq −ẋq 0


 .

The equations of motion (12) becomes

(48)

ẍ = − a2ẏ

ẋ2 + ẏ2
(ẏẍ − ẋÿ) − aλ̇√

ẋ2 + ẏ2
ẋ,

ÿ = − a2ẋ

ẋ2 + ẏ2
(ẋÿ − ẏẍ) − aλ̇√

ẋ2 + ẏ2
ẏ,

z̈ = −g + λ̇.

By solving these equations with respect to ẍ, ÿ and z̈ we obtain the equations

ẍ = − aẋ√
ẋ2 + ẏ2

λ̇, ÿ = − aẏ√
ẋ2 + ẏ2

λ̇, z̈ = −g + λ̇,

We observe in this case that |W1| = −1, consequently these equations, obtained from The-
orem 2, give a global behavior of the Appell–Hamel systems, i.e. coincide with the classical

equations (44) with λ̇ =
˙̃
λ = µ =

g

1 + a2
.

The transpositional relations (13) can be written as

(49) δ
dx

dt
− d

dt
δ x = 0, δ

dy

dt
− d

dt
δ y = 0, δ

dz

dt
− d

dt
δ z = q (ẏδ x − ẋδ y) .
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�
From this corollary we observe that the independent virtual variations δx and δy produce

non–zero transpositional relations (47) and zero transpositional relations (49).

The Lagrangian (10) in this case takes the form

L =
1

2
(ẋ2 + ẏ2 + ż2) − gz − g (t + C)

1 + a2
(ż − a

√
ẋ2 + ẏ2) − λ0

2ẏ − λ0
3ẋ

≃ 1

2
(ẋ2 + ẏ2 + ż2) − gz − g (t + C)

1 + a2
(ż − a

√
ẋ2 + ẏ2).

From (34) it follows that

δ
dz

dt
− d

dt
δ z = q (ẏδ x − ẋδ y) +

aẋ√
ẋ2 + ẏ2

(
δ
dx

dt
− d

dt
δ x

)
+

aẏ√
ẋ2 + ẏ2

(
δ
dy

dt
− d

dt
δ y

)
.

Therefore this relation holds identically for (47) and (49).

In the next sections we show the importance of the equations of motion (12) and (16)
contrasting them with the classical differential equations of nonholonomic mechanics.

6. Modificated vakonomic mechanics versus vakonomic mechanics

Now we show that the equations of the vakonomic mechanics (3) can be obtained from
equations (9). More precisely, if in (7) we require that all the virtual variations of the
coordinates produce the zero transpositional relations, i.e. the matrix A is the zero matrix
and we require that λ0

j = 0 for j = M + 1, . . . , N , then from (9) by considering that
DkL = EkL, we obtain the vakonomic equations (3), i.e.

DνL0 =
M∑

j=1

(
λjDνLj +

dλj

dt

∂Lj

∂ẋν

)
+

N∑

j=M+1

λ0
jDν Lj=⇒

Eν L0 =
M∑

j=1

(
λjEν Lj +

dλj

dt

∂Lj

∂ẋν

)
, ν = 1, . . . , N

In the following example in order to contrast Theorems 2 with the vakonomic model we
study the skate or knife edge on an inclined plane.

Example 1. To set up the problem, consider a plane Ξ with cartesian coordinates x
and y, slanted at an angle α. We assume that the y–axis is horizontal, while the x–axis
is directed downward from the horizontal and let (x, y) be the coordinates of the point of
contact of the skate with the plane. The angle φ represents the orientation of the skate
measured from the x–axis. The skate is moving under the influence of the gravity. Here the
the acceleration due to gravity is denoted by g. It also has mass m, and the moment inertia
of the skate about a vertical axis through its contact point is denoted by J, (see page 108 of
[35] for a picture). The equation of nonintegrable constraint is

(50) L1 = ẋ sinφ − ẏ cos φ = 0.

With these notations the Lagrangian function of the skate is

L̂ =
m

2

(
ẋ2 + ẏ2

)
+

J

2
φ̇2 + mg x sinα.

Thus we have the constrained mechanical systems(
R2 × S1, L̂ =

m

2

(
ẋ2 + ẏ2

)
+

J

2
φ̇2 + mg x sinα, {ẋ sin φ − ẏ cos φ = 0}

)
.

For appropriate choice of mass, length and time units, we reduces the Lagrangian L̂ to

L0 =
1

2

(
ẋ2 + ẏ2 + φ̇2

)
+ x g sinα,
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here for simplicity we leave the same notations for the all variables. The question is, what
is the motion of the point of contact? To answer this question we shall use the vakonomic
equations (3) and the equations (12) proposed in Theorem 2.

6.1. The study of the skate applying Theorem 2. We determine the motion of the
point of contact of the skate using Theorem 2. We choose the arbitrary functions L2 and
L3 as follows

L2 = ẋ cos φ + ẏ sinφ, L3 = φ̇,

in order that the determinant |W1| ̸= 0 everywhere in the configuration space.

The Lagrangian (10) becomes

L(x, y, φ, ẋ, ẏ, φ̇, Λ) =
1

2

(
ẋ2 + ẏ2 + φ̇2

)
+ g sin αx − λ(ẋ sinφ − ẏ cos φ) − λ0

3φ̇

≃ 1

2

(
ẋ2 + ẏ2 + φ̇2

)
+ g sinαx − λ(ẋ sin φ − ẏ cos φ),

where λ := λ1.

The matrix W1 and Ω1 are

W1 =




sinφ − cos φ 0
cos φ sinφ 0

0 0 1


 , |W1| = 1,

Ω1 =




φ̇ cos φ φ̇ sinφ −L2

−φ̇ sinφ φ̇ cos φ −L1

0 0 0


 .

The matrix A = W−1
1 Ω1 becomes

A =




0 φ̇ − sinφL2 − cos φL1

−φ̇ 0 cos φL2 − sin φL1

0 0 0



∣∣∣∣∣∣
L1=0

=




0 φ̇ −ẏ
−φ̇ 0 ẋ
0 0 0


 .

Hence the equation (12) and transpositional relations (13) take the form

(51) ẍ + φ̇ẏ = g sinα + λ̇ sinφ, ÿ − φ̇ẋ = −λ̇ cos φ, φ̈ = 0,

and

(52)

δ
dx

dt
− dδx

dt
= ẏδφ − φ̇δy,

δ
dy

dt
− dδy

dt
= φ̇δx − ẋδφ,

δ
dφ

dt
− dδφ

dt
= −L2 (δx sinφ − δy cos φ) = 0,

respectively, here we have applied the Lagrange–Chetaev’s condition sinφ δx− cosφ δy = 0.

The initial conditions

x0 = x|t=0 , y0 = y|t=0 , φ0 = φ|t=0 , ẋ0 = ẋ|t=0 , ẏ0 = ẏ|t=0 , φ̇0 = φ̇|t=0 ,

satisfy the constraint, i.e.

(53) sinφ0ẋ0 − cos φ0ẏ0 = 0.

After the derivation of the constraint along the solutions of the equation of motion (51), and
using (50) we obtain

0 = sin φẍ − cos φÿ + φ̇ (cosφẋ + sin φẏ)

= sin φ
(
g sin α + λ̇ sin φ − φ̇ẏ

)
− cos φ

(
−λ̇ cos φ + φ̇ẋ

)
+ φ̇ (cos φẋ + sin φẏ) .
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Hence λ̇ = −g sin α sinφ. Therefore the differential equations (51) can be written as

(54) ẍ + φ̇ẏ = g sinα cos2 φ, ẍ − φ̇ẋ = g sinα sinφ cos φ, φ̈ = 0.

We study the motion of the skate in the following three cases:

(i) φ̇|t=0 = ω = 0.
(ii) φ̇|t=0 = ω ̸= 0.
(iii) α = 0.

For the first case (ω = 0), after the change of variables

X = cos φ0 x − sin φ0 y, Y = cos φ0 x + sin φ0 y,

the differential equations (9) and the constraint become

Ẍ = 0, Ÿ = g sin α cos φ0, φ = φ0, Ẋ = 0,

respectively. Consequently

X = X0, Y = g sin α cosφ0
t2

2
+ Ẏ0t + Y0, φ = φ0,

thus the trajectories are straight lines.

For the second case (ω ̸= 0), we take φ0 = ẏ0 = ẋ0 = x0 = y0 = 0 in order to simplify
the computations. In view of the equality φ̇ = φ̇|t=0 = ω and denoting by ′ the derivation
with respect φ we get that (54) become

(55) x′′ + y′ =
g sinα

ω2
cos2 φ, x′′ − x′ =

g sinα

ω2
sinφ cosφ, φ′ = 1.

Which are easy to integrate and we obtain

x = −g sinα

4ω2
cos (2φ), y = −g sinα

4ω2
sin (2φ) +

g

2ω2
φ, φ = ωt,

which correspond to the equation of the cycloid. Hence the point of contact of the skate
follows a cycloid along the plane, but do not slide down the plane.

For the third case (α = 0), if φ0 = 0, ω ̸= 0 we obtain that the solutions of the given
differential systems (54) are

x = ẏ0 cos φ + ẋ0 sinφ + a, y = ẏ0 sinφ + ẏ0 cos φ + b, φ = φ0 + ωt,

where a = x0 − ẏ0

ω
, b = y0 +

ẋ0

ω
, which correspond to the equation of the circle with center

at (a, b) and radius
ẋ2

0 + ẏ2
0

ω2
.

If α = 0 and φ0 = 0, ω = 0 then we obtain that the solutions are

x = ẋ0t + x0, y = ẏ0t + y0.

All these solutions coincide with the solutions obtained from the Lagrangian equations (33)
with multipliers (see [2])

ẍ = g sinα + µ sinφ, ÿ − φ̇ẋ = −µ cos φ, φ̈ = 0,

with µ = λ̇ = −g sin α sinφ.

6.2. The study of the skate applying vakonomic model. Now we consider instead of
Theorem 2 the vakomic model for studying the motion of the skate.

We consider the Lagrangian

L(x, y, φ, ẋ, ẏ, φ̇, Λ) =
1

2

(
ẋ2 + ẏ2 + φ̇2

)
+ g x sin α − λ(ẋ sin φ − ẏ cos φ).

The equations of motion (3) for the skate are

d

dt
(ẋ − λ sinφ) = 0,

d

dt
(ẏ + λ cos φ) = 0, φ̈ = −λ (ẋ cos φ + ẏ sinφ) .
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We shall study only the case when α = 0. After integration we obtain the differential systems

(56)

ẋ = λ sinφ + a = cos φ (a cos φ + b sin φ) ,
ẏ = −λ cos φ + b = sinφ (a cos φ + b sinφ) ,
φ̈ = (b cos φ − a sinφ) (a cos φ + b sin φ) = (b2

1 + a2
2) sin(φ + α) cos(φ + α),

λ = b cos φ − a sin φ,

where a = ẋ0 −λ0 sin φ0, b = ẏ0 +λ0 cos φ0 and λ0 = λ|t=0 is an arbitrary parameter. After
the integration of the third equation we obtain that

(57)

∫ φ

0

dφ√
1 − κ2 sin2 φ

= t

√
h + a2 + b2

2
,

where h is an arbitrary constant which we choose in such a way that κ2 =
2(a2 + b2)

h + a2 + b2
< 1.

From (57) we get sin φ = sn

(
t

√
h + a2 + b2

2

)
, cos φ = cn

(
t

√
h + a2 + b2

2

)
, where

sn and cn are the Jacobi elliptic functions . Hence, if we take ẋ0 = 1, ẏ0 = φ0 = 0, then
the solutions of the differential equations (56) are
(58)

x = x0 +

∫ t

t0

(
cn

(
t

√
h + 1 + λ2

0

2

)
sn

(
t

√
h + 1 + λ2

0

2

)
+ λ0sn

(
t

√
h + 1 + λ2

0

2

))
dt,

y = y0 +

∫ t

t0

sn

(
t

√
h + 1 + λ2

0

2

)
λ0 sn

(
t

√
h + 1 + λ2

0

2

)
dt,

φ = am

(
t

√
h + 1 + λ2

0

2

)
.

It is interesting to compare this amazing motions with the motions that we obtained above.
For the same initial conditions the skate moves sideways along the circles. By considering
that the solutions (58) depend on the arbitrary parameter λ0 we obtain that for the given
initial conditions do not exist a unique solution of the differential equations in the vakonomic
model. Consequently the principle of determinacy is not valid for vakonomic mechanics with
nonintegrable constraints (see the Corollary of page 36 in [2]).

7. Modificated vakonomic mechanics versus Lagrangian and constrained
Lagrangian mechanics

7.1. MVM versus Lagrangian mechanics. The Lagrangian equations which describe
the motion of the Lagrangian systems can be obtained from Theorem 2 by supposing that
M = 0, i.e. there is no constraints We choose the arbitrary functions Lα for α = 1, . . . , N
as follows

Lα =
dxα

dt
, α = 1, . . . , N.

Hence the Lagrangian (10) takes the form

L = L0 −
N∑

j=1

λ0
j

dxj

dt
≃ L0.

In this case we have that |W1| = 1.
By considering the property of the Lagrangian derivative (see (27)) we obtain that Ω1 is

a zero matrix . Hence the matrices A1 is the zero matrix. As a consequence the equations
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(12) become

DνL = EνL = Eν


L0 −

N∑

j=1

λ0
j ẋj


 = EνL0 = 0

because L ≃ L0. The transpositional relation (13) in this case are δ
dx

dt
− dδx

dt
= 0, which

are the well known relations in the Lagrangian mechanics (see formula (29)).

7.2. MVM versus constrained Lagrangian systems. From the equivalences (42) we
have that in the case when the constraints are linear in the velocity the equations of motions
of the MVM coincide with the Lagrangian equations with multipliers (33) except perhaps
in a zero Lebesgue measure set |W2| = 0 or |W1| = 0. When the constraints are nonlinear
in the velocity, we have the equivalence (43). Consequently equations of motions of the
MVM coincide with the Lagrangian equations with multipliers (33) except perhaps in a zero
Lebesgue measure set |W2| = 0.

We illustrate this result in the following example.
Example 2. Let

(
R2, L0 =

1

2

(
ẋ2 + ẏ2

)
− U(x, y), {2 (xẋ + yẏ) = 0}

)
,

be the constrained Lagrangian systems.
In order to apply Theorem 2 we choose the arbitrary function L1 and L2 as follow

(a)

L1 = 2 (xẋ + yẏ) , L2 = −yẋ + xẏ.

Thus the matrices W1 and Ω1 are

W1 =

(
2x 2y
−y x

)
, |W1| = 2x2 + 2y2 = 2, Ω1 =

(
0 0

−2ẏ 2ẋ

)
.

Consequently equations (12) describe the motion everywhere for the constrained
Lagrangian systems.

Equations (12) become

ẍ = −∂U

∂x
+ 2ẏ (yẋ − xẏ) + 2xλ̇

∣∣∣∣
L1=0

= −∂U

∂x
+ x

(
λ̇ − 2(ẋ2 + ẏ2)

)
,

ÿ = −∂U

∂y
− 2ẋ (yẋ − xẏ) + 2yλ̇

∣∣∣∣
L1=0

= −∂U

∂y
+ y

(
λ̇ − 2(ẋ2 + ẏ2)

)
,

Transpositional relations take the form

(59) δ
dx

dt
− dδx

dt
= 2y (ẏδx − ẋδy) , δ

dy

dt
− dδy

dt
= −2x (ẏδx − ẋδy) .

(b) If we choose L2 =
yẋ

x2 + y2
− xẏ

x2 + y2
=

d

dt
arctan

x

y
, then

W1 =

(
2x 2y
y

x2 + y2
− x

x2 + y2

)
, |W1| = −2, Ω1 =

(
0 0
0 0

)
.

Equations (12) and transpositional relations become

ẍ = −∂U

∂ x
+ 2xλ̇, ÿ = −∂U

∂y
+ 2yλ̇,

(60) δ
dx

dt
− dδx

dt
= 0, δ

dy

dt
− dδy

dt
= 0.

respectively.
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From this example we obtain that for the holonomic constrained Lagrangian systems the
transpositional relations can be non–zero (see (59)), or can be zero (see (60)). We observe
that from condition (34) it follows the relation

x

(
δ
dx

dt
− dδx

dt

)
+ y

(
δ
dy

dt
− dδy

dt

)
= 0.

This equality holds identically if (60) and (59) takes place.
The equations of motions (33) in this case are

ẍ = −∂U

∂ x
+ 2xµ, ÿ = −∂U

∂y
+ 2y µ,

with µ = λ̇ − 2(ẋ2 + ẏ2).

Example 3. To contrast the MVM with the classical model we apply Theorems 2 to the
Gantmacher’s systems (see for more details [11, 45]).

Two material points m1 and m2 with equal masses are linked by a metal rod with fixed
length l and small mass. The systems can move only in the vertical plane and so the speed of
the midpoint of the rod is directed along the rod. It is necessary to determine the trajectories
of the material points m1 and m2.

Let (q1, r1) and (q2, r2) be the coordinates of the points m1 and m2, respectively. Clearly
(q1−q2)

2+(r1−r2)
2 = l2. Thus we have a constrained Lagrangian system in the configuration

space R4 with the Lagrangian function L =
1

2

(
q̇2
1 + q̇2

2 + ṙ2
1 + ṙ2

2

)
− g/2(r1 + r2), and with

the linear constraints

(q2 − q1)(q̇2 − q̇1) + (r2 − r1)(ṙ2 − ṙ1) = 0, (q2 − q1)(ṙ2 + ṙ1) − (r2 − r1)(q̇2 + q̇1) = 0.

Introducing the following change of coordinates:

x1 =
q2 − q1

2
, x2 =

r1 − r2

2
, x3 =

r2 + r1

2
, x4 =

q1 + q2

2
,

we obtain x2
1 + x2

2 =
1

4

(
(q1 − q2)

2 + (r1 − r2)
2
)

=
l2

4
. Hence we have the constrained La-

grangian mechanical systems

R4, L̃ =

1

2

4∑

j=1

ẋ2
j − gx3, {x1ẋ1 + x2ẋ2 = 0, x1ẋ3 − x2ẋ4 = 0}


 .

The equations of motion (33) obtained from the d’Alembert–Lagrange principle are

(61) ẍ1 = µ1x1, ẍ2 = µ1x2, ẍ3 = −g + µ2x1, ẍ4 = −µ2x2,

where µ1, µ2 are the Lagrangian multipliers such that

(62) µ1 = − ẋ2
1 + ẋ2

2

x2
1 + x2

2

, µ2 =
ẋ2ẋ4 − ẋ1ẋ3 + gx1

x2
1 + x2

2

.

For applying Theorem 2 we have the constraints

L1 = x1ẋ1 + x2ẋ2 = 0, L2 = x1ẋ3 − x2ẋ4 = 0,

and we choose the arbitrary functions L3 and L4 as follows

L3 = −x1ẋ2 + x2ẋ1, L4 = x2ẋ3 + x1ẋ4.

For the given functions we obtain that

W1 =




x1 x2 0 0
0 0 x1 −x2

x2 −x1 0 0
0 0 x2 x1


 , Ω1 =




0 0 0 0
−ẋ3 ẋ4 ẋ1 −ẋ2

−2ẋ2 2ẋ1 0 0
−ẋ4 −ẋ3 ẋ2 ẋ1


 .
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Therefore |W1| = (x2
1 + x2

2)
2 =

l2

4
̸= 0. The matrix A in this case is




2x2ẋ2

x2
1 + x2

2

− 2x2ẋ1

x2
1 + x2

2

0 0

− 2x1ẋ2

x2
1 + x2

2

2x1ẋ1

x2
1 + x2

2

0 0

−x1ẋ3 + x2ẋ4

x2
1 + x2

2

x1ẋ4 − x2ẋ3

x2
1 + x2

2

x1ẋ1 + x2ẋ2

x2
1 + x2

2

x2ẋ1 − x1ẋ2

x2
1 + x2

2

x1ẋ4 − x2ẋ3

x2
1 + x2

2

x1ẋ3 − x2ẋ4

x2
1 + x2

2

x2ẋ1 − x1ẋ2

x2
1 + x2

2

x1ẋ1 + x2ẋ2

x2
1 + x2

2




.

Consequently differential equations (12) take the form

(63)

ẍ1 =

(
2x2ẋ1ẋ2 − 2x1ẋ

2
2 − x1ẋ

2
3 − x1ẋ

2
4

x2
1 + x2

2

+ x1λ̇1

)∣∣∣∣
L1=L2=0

= x1

(
λ̇1 − 2ẋ2

1 + 2ẋ2
2 + ẋ2

3 + ẋ2
4

x2
1 + x2

2

)
,

ẍ2 = −
(−2x1ẋ1ẋ2 + 2x2ẋ

2
2 + x2ẋ

2
3 + x2ẋ

2
4

x2
1 + x2

2

+ x2λ̇1

)∣∣∣∣
L1=L2=0

= x2

(
λ̇1 − 2ẋ2

1 + 2ẋ2
2 + ẋ2

3 + ẋ2
4

x2
1 + x2

2

)
,

ẍ3 =

(
ẋ3 (x1ẋ1 + x2ẋ2) − ẋ4 (x2ẋ1 − x1ẋ2)

x2
1 + x2

2

+ x1λ̇2 − g

)∣∣∣∣
L1=L2=0

=
ẋ4 (x2ẋ1 − x1ẋ2)

x2
1 + x2

2

+ x1λ̇2 − g,

ẍ4 =

(
ẋ4 (x1ẋ1 + x2ẋ2) − ẋ3 (x2ẋ1 − x1ẋ2)

x2
1 + x2

2

− x2λ̇2

)∣∣∣∣
L1=L2=0

= − ẋ3 (x2ẋ1 − x1ẋ2)

x2
1 + x2

2

− x2λ̇2.

Derivating the constraints we obtain that the multipliers λ̇1 and λ̇2 are

λ̇1 =
ẋ2

1 + ẋ2
2 + ẋ2

3 + ẋ2
4

x2
1 + x2

2

= µ1 +
ẋ2

3 + ẋ2
4

x2
1 + x2

2

, λ̇2 =
gx1

x2
1 + x2

2

= µ2 +
ẋ1ẋ3 − ẋ2ẋ4

x2
1 + x2

2

.

Inserting these values into (63) we deduce

ẍ1 = −x1

(
ẋ2

1 + ẋ2
2

)

x2
1 + x2

2

, ẍ2 =
x2

(
ẋ2

1 + ẋ2
2

)

x2
1 + x2

2

,

ẍ3 = −g +
x1 (ẋ2ẋ4 − ẋ1ẋ3 + gx1)

x2
1 + x2

2

, ẍ4 = −x2 (ẋ2ẋ4 − ẋ1ẋ3 + gx1)

x2
1 + x2

2

.

These equations coincide with equations (61) everywhere because |W1| =
l2

4
, where l is the

length of the rod.

The transpositional relations in this case are
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(64)

δ
dx1

dt
− dδx1

dt
= − 2x2

x2
1 + x2

2

(ẋ1δx2 − ẋ2δx1) ,

δ
dx2

dt
− dδx2

dt
=

2x1

x2
1 + x2

2

(ẋ1δx2 − ẋ2δx1) ,

δ
dx3

dt
− dδx3

dt
=

x1

x2
1 + x2

2

(ẋ1δx3 − ẋ3δx1 + ẋ4δx2 − ẋ2δx4) ,

+
x2

x2
1 + x2

2

(ẋ1δx4 − ẋ4δx1 + ẋ2δx3 − ẋ3δx2) ,

δ
dx4

dt
− dδx4

dt
= − x2

x2
1 + x2

2

(ẋ1δx3 − ẋ3δx1 + ẋ4δx2 − ẋ2δx4)

+
x1

x2
1 + x2

2

(ẋ1δx4 − ẋ4δx1 + ẋ2δx3 − ẋ3δx2) .

From this example we again get that the virtual variations produce the non–zero trans-
positional relations.

Remark 21. From the previous example we observe that the virtual variations produce zero
or non–zero transpositional relations, depending on the arbitrary functions which appear in
the construction of the proposed mathematical model. Thus, the following question arises:
Can be choosen the arbitrary functions Lj for j = M + 1, . . . , N in such a way that for the
nonholonomic systems only the independent virtual variations would generate zero transpo-
sitional relations?

The positive answer to this question is obtained locally for any constrained Lagrangian
systems and globally for the Chaplygin-Voronets mechanical systems, and for the general-
ization of these systems studied in the next section.

8. MVM and nonholonomic generalized Voronets–Chaplygin systems.
Proofs of Theorem 4 and Proposition 5 and 6.

It was pointed out by Chaplygin [6] that in many conservative nonholonomic systems the
generalized coordinates

(x,y) := (x1, . . . , xs1 , y1, . . . , ys2) , s1 + s2 = N,

can be chosen in such a way that the Lagrangian function and the constraints take the
simplest form. In particular Voronets in [53] studied the constrained Lagrangian systems

with Lagrangian L̃ = L̃ (x,y, ẋ, ẏ) and constraints (22). This systems is called the Voronets
mechanical systems.

We shall apply equations (12) to study the generalization of the Voronets systems, which
we define now.

The constrained Lagrangian mechanical systems

(65)
(
Q, L̃ (t,x,y, ẋ, ẏ) , {ẋα − Φα (t,x,y, ẏ) = 0, α = 1, . . . , s1}

)
,

is called the generalized Voronets mechanical systems.

An example of generalized Voronets systems is Appell-Hamel systems analyzed in the
previous subsection.

Corollary 22. Every Nonholonomic constrained Lagrangian mechanical systems locally is
a generalized Voronets mechanical systems.
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Proof. Indeed, the independent constraints can be locally represented in the form (26). Thus
by introducing the coordinates

xj = xj , for j = 1, . . . , M, xM+k = yk, for k = 1, . . . , N − M,

then we have that any constrained Lagrangian mechanical systems is locally a generalized
Voronets mechanical systems. �

Proof of Theorem 4. For simplicity we shall study only scleronomic generalized Voronets
systems.

To determine equations (12) we suppose that

(66) Lα = ẋα − Φα (x,y, ẏ) = 0, α = 1, . . . , s1.

It is evident from the form of the constraint equations that the virtual variations δy, are
independent by definition. The remaining variations δx, can be expressed in terms of them
by the relations (Chetaev’s conditions)

(67) δxα −
s2∑

j=1

∂Lα

∂ẏj
δyj = 0, α = 1, . . . , s1.

We shall apply Theorem 2. To construct the matrix W1. We first determine Ls1+1, . . . , Ls1+s2 =
LN as follow:

Ls1+j = ẏj , j = 1, . . . , s2.

Hence, the Lagrangian (4) becomes

(68) L = L0 −
s1∑

j=1

λj (ẋα − Φα(x, y, ẏ)) −
N∑

j=s1+1

λ0
j ẏj ≃ L0 −

s1∑

j=1

λj (ẋα − Φα(x, y, ẏ)) .

The matrices W1 and W−1
1 are

(69)




1 . . . 0 0 a11 . . . as21

0 . . . 0 0 a12 . . . as22

... . . .
...

...
... . . .

...

0 . . .
... 1 a1s1 . . . as2s1

0 . . . 0 0 1 . . . 0
... . . .

...
...

... . . .
...

0 . . . 0 0 0 . . . 1




,




1 . . . 0 0 −a11 . . . −as21

0 . . . 0 0 −a12 . . . −as22

... . . .
...

...
... . . .

...

0 . . .
... 1 a1s1

. . . −as2s1

0 . . . 0 0 1 . . . 0
... . . .

...
...

... . . .
...

0 . . . 0 0 0 . . . 1




,

respectively, where aα j =
∂Lα

∂ẏj
, and the matrices Ω1 and A are

(70) A = Ω1 :=




E1(L1) . . . Es1(L1) Es1+1(L1) . . . EN (L1)
... . . .

... . . . . . .
...

E1(Ls1
) . . . Es1

(Ls1
) Es1+1(Ls1

) . . . EN (Ls1
)

0 . . . 0 . . . 0 0
... . . .

... . . . . . .
...

0 . . . 0 . . . 0 0




,

respectively. Consequently the differential equations (12) take the form (18).

The transpositional relations (13) in view of (67) take the form (21). As we can observe
from (21) the independent virtual variations δy for the systems with the constraints (66)
produce the zero transpositional relations. The fact that the transpositional relations are
zero follows automatically and it is not necessary to assume it a priori, and it is valid in
general for the constraints which are nonlinear in the velocity variables.
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We observe that the relations (34) in this case take the form

δ
dxα

dt
− d

dt
δ xα +

s2∑

m=1

∂Lα

∂ẏm

(
δ
dym

dt
− d

dt
δ ym

)
=

s1∑

k=1

Ek(Lα)δxk +

s2∑

k=1

Ek(Lα)δyk.

for α = 1, . . . , s1. Clearly from (21) these relations hold identically.
From differential equations (18), eliminating the Lagrangian multipliers we obtain equa-

tions (19). After some computations we obtain

(71)

d

dt

(
∂ L0

∂ẏk
−

s1∑

α=1

∂ Lα

∂ẏk

∂ L0

∂ẋα

)
−

(
∂ L0

∂yk
−

s1∑

α=1

∂ Lα

∂yk

∂ L0

∂ẋα

)
+

s1∑

α=1


∂ L0

∂xα
−

s1∑

β=1

∂ Lβ

∂xα

∂ L0

∂ẋβ


 ∂ Lα

∂ẏk
= 0,

for k = 1, . . . , s2.
By introducing the function Θ = L0|L1=...=Ls1=0 , equations (71) can be written as

(72)
d

dt

(
∂ Θ

∂ẏk

)
−
(

∂ Θ

∂yk

)
+

s1∑

α=1

(
∂ Θ

∂xα

)
∂ Lα

∂ẏk
= 0,

for k = 1, . . . , s2. Here we consider that
d

dt

(
∂Lβ

∂ẋα

)
= 0, for α, β = 1, . . . , s1.

We shall study the case when equations (72) hold identically, i.e. Θ = 0. We choose

(73) L0 = L̃ (x,y, ẋ, ẏ) − L̃ (x,y, Φ, ẏ) = L̃ − L∗,

being L̃ the Lagrangian of (65). Now we establish the relations between equations (18) and

the classical Voronets differential equations with the Lagrangian function L∗ = L̃
∣∣∣
L1=...=Ls1=0

.

The functions L̃ and L∗ are determined in such a way that equations (19) take place in view
of the equalities

EkL̃ =

s1∑

α=1

EαL̃
∂ Lα

∂ẏk
,

and

EkL∗ = −
s1∑

α=1

(
−Ek(Lα ) +

s1∑

ν=1

Eν (Lα)
∂ Lν

∂ẏk

)
∂ L̃

∂ẋα
−

s1∑

ν=1

Eν(L∗)
∂Lν

∂ẏk
,

for k = 1, . . . , s2, which in view of equalities
d

dt

(
∂L∗

∂ẋν

)
= 0 for ν = 1, . . . , s1, take the form

(20). �

Proof of Proposition 5. Equations (20) describe the motion of the constrained generalized
Voronets systems with Lagrangian L∗ and constraints (66). The classical Voronets equations

for scleronomic systems are easy to obtain from (20) with Φα =

s2∑

k=1

aα k(x,y)ẏk. �

Finally by considering Corollary 22 we get that differential equations (20) describe locally
the motions of any constrained Lagragian systems.
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8.1. Generalized Chaplygin systems. The constrained Lagrangian mechanical systems
with Lagrangian L̃ = L̃ (y, ẋ, ẏ) , and constraints (24) is called the Chaplygin mechanical
systems.

The constrained Lagrangian systems
(
Q, L̃ (y, ẋ, ẏ) , {ẋα − Φα (y, ẏ) = 0, α = 1, . . . , s1}

)

is called the generalized Chaplygin systems. Note that now the Lagrangian do not depend
on x and the constraints do not depend on x and ẋ. So, the generalized Chaplygin systems
are a particular case of the generalized Voronets system.

Proof of Proposition 6. To determine the differential equations which describe the behavior
of the generalized Chaplygin systems we apply Theorem 2, with

L0 = L0 (y, ẋ, ẏ) , Lα = ẋα − Φα (yẏ) , Lβ = ẏβ ,

for α = 1, . . . , s1 and β = s1 + 1, . . . , s2 and consequently the matrix W1 is given by the
formula (69) and

(74)

A = Ω1 :=




E1(L1) . . . Es1(L1) Es1+1(L1) . . . EN (L1)
... . . .

... . . . . . .
...

E1(Ls1) . . . Es1(Ls1) Es1+1(Ls1) . . . EN (Ls1)
0 . . . 0 . . . 0 0
... . . .

... . . . . . .
...

0 . . . 0 . . . 0 0




=




0 . . . 0 Es1+1(L1) . . . EN (L1)
... . . .

... . . . . . .
...

0 . . . 0 Es1+1(Ls1) . . . EN (Ls1)
0 . . . 0 . . . 0 0
... . . .

... . . . . . .
...

0 . . . 0 . . . 0 0




,

Therefore the differential equations (12) take the form

(75)

EjL0 =
d

dt

(
∂L0

∂ẋα

)
= λ̇j j = 1, . . . , s1,

EkL0 =

s1∑

α=1

(
EkLα

∂L0

∂ẋα
+ λ̇α

∂Lα

∂ẏk

)
k = 1, . . . , s2.

The transpositional relations are

(76)
δ
dxα

dt
− d

dt
δ xα =

s2∑

k=1

Ek(Lα)δyk, α = 1, . . . , s1,

δ
dym

dt
− d

dt
δ ym = 0, m = 1, . . . , s2.

By excluding the Lagrangian multipliers from (75) we obtain the equations

EkL0 =

s1∑

α=1

(
Ek(Lα)

∂L0

∂ẋα
+

d

dt

(
∂L0

∂ẋα

)
∂Lα

∂ẏk

)
,

for k = 1, . . . , s2.

In this case equations (73) take the form

(77)
d

dt

(
∂ Θ

∂ẏk

)
−
(

∂ Θ

∂yk

)
= 0,
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Analogously to the Voronets case we study the subcase when Θ = 0. We choose L0 =
L̃ (y, ẋ, ẏ) − L̃ (y, Φ, ẏ) := L̃ − L∗. We assume that the functions L̃ and L∗ are such that

(78) EkL∗ = −
s1∑

α=1

Ek(Lα)
∂L̃

∂ẋα
Ψα,

where Ψα =
∂L̃

∂ẋα

∣∣∣∣∣
L1=...=Ls1=0

and

Ek(L̃) =

s1∑

α=1

d

dt

(
∂L̃

∂ẋα

)
∂Lα

∂ẏk
,

for k = 1, . . . , s2.

By inserting ẋj =

s2∑

k=1

aj k(y)ẏk, j = 1, . . . , s1, into equations (78) we obtain system

(25). Consequently system (78) is an extension of the classical Chaplygin equations when
the constraints are nonlinear. �

For the generalized Chaplygin systems the Lagrangian L takes the form

(79) L = L̃(y, ẋ, ẏ) − L̃(y, Φ, ẏ) −
s1∑

j=1

(
∂L∗

∂ẋj
+ Cj

)
(ẋj − Φj(y, ẏ)) −

s2∑

j=

λ0
j ẏj ,

for j = 1, . . . , s1 where the constants Cj for j = 1, . . . , s1 are arbitrary. Indeed, from (75)
follows that

λj =
∂L0

∂ẋj
+ Cj =

∂L∗

∂ẋj
+ Cj .

By inserting in (4) L0 = L̃ − L∗ and λj for j = 1, . . . , s1 we obtain function L of (79).

We note that Vorones and Chaplygin equations with nonlinear constraints in the velocity
was also obtained by Rumiansev and Sumbatov (see [44, 47]).

Example 4. We shall illustrate the above results in the following example.
In the Appel’s and Hamel’s investigations the following mechanical system was analyzed.

A weight of mass m hangs on a thread which passes around the pulleys and is wound round
the drum of radius a. The drum is fixed to a wheel of radius b which rolls without sliding
on a horizontal plane, touching it at the point B with the coordinates (xB , yB). The legs
of the frame that support the pulleys and keep the plane of the wheel vertical slide on the
horizontal plane without friction. Let θ be the angle between the plane of the wheel and
the Ox axis; φ the angle of the rotation of the wheel in its own plane; and (x, y, z) the
coordinates of the mass m. Clearly,

ż = bφ̇, b > 0.

The coordinates of the point B and the coordinates of the mass are related as follows (see
page 223 of [35] for a picture)

x = xB + ρ cos θ, y = yB + ρ sin θ.

The condition of rolling without sliding leads to the equations of nonholonomic constraints:

ẋB = a cos θφ̇, ẏB = a sin θφ̇ b > 0.

We observe that the constraints ż = bφ̇ admits the representation

ż =
b

a

√
ẋ2 + ẏ2 − ρ2θ̇2.
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Denoting by m1, A and C the mass and the moments of inertia of the wheel and neglecting
the mass of the frame, we obtain the following expression for the Lagrangian function

L̃ =
m + m1

2

(
ẋ2 + ẏ2

)
+

m

2
ż2 + m1ρθ̇ (sin θẋ − cos θẏ) +

A + m1ρ
2

2
θ̇2 +

C

2
φ̇2 − mgz.

The equations of the constraints are

ẋ − a cos θφ̇ + ρ sin θθ̇ = 0, ẏ − a sin θφ̇ − ρ cos θθ̇ = 0, ż − bφ̇ = 0,

Now we shall study the motion of this constrained Lagrangian in the coordinates

x1 = x, x2 = y, x3 = φ̇, y1 = θ, y2 = z.

i.e., we shall study the nonholonomic system with Lagrangian

L̃ = L̃ (y1, y2, ẋ1, ẋ2, ẋ3, ẏ1, ẏ2)

=
m + m1

2

(
ẋ2

1 + ẋ2
2

)
+

C

2
ẋ2

3 +
J

2
ẏ2
1 +

m

2
ẏ2
2 + m1ρẏ1 (sin y1ẋ1 − cos y1ẋ2) − mg

b
y2,

and with the constraints

l1 = ẋ1 − a

b
ẏ2 cos y1 − ρẏ1 sin y1 = 0,

l2 = ẋ2 − a

b
ẏ2 sin y1 + ρẏ1 cos y1 = 0,

l3 = ẋ3 − 1

b
ẏ2 = 0.

Thus we have a classical Chaplygin system. To determine differential equations (78) and
the transpositional relations (76) we define the functions:

L∗ = − L̃|l1=l2=l3=0 =
m(a2 + b2)m + a2m1 + C

2b2
ẏ2
2 +

mρ2 + J

2
ẏ2
1 − mg

b
y2,

L1 = l1, L2 = l2, L3 = l3, L4 = ẏ1, L5 = ẏ2.

After some computations we obtain that the matrix A (see formulae (74)) in this case
becomes

A =




0 0 0 −a

b
ẏ2 sin y1

a

b
ẏ1 sin y1

0 0 0
a

b
ẏ2 cos y1 −a

b
ẏ1 cos y1

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




,

thus differential equations (78) take the form

(
mρ2 + J

)
ÿ1 +

aρm

b
ẏ1ẏ2 = 0,

(
(m + m1)a

2 + mb2
)
ÿ2 − mabρẏ2

1 = −mgb.

Assuming that (m + 2m1)ρ
2 + J ̸= 0 and by considering the existence of the first integrals

C2 = ẏ1 exp

(
− aϱmy2

b (mρ2 + J)

)
,

h =

(
(m + m1)a

2 + mb2
)

2
ẏ2
2 +

b2
(
mρ2 + J

)

2
ẏ2
1 + mgby2,
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after the integration of these first integrals we obtain
∫ √

(m + m1)a2 + mb2dy2√
2h − 2mgby2 − b2 (mρ2 + J)C3 exp

(
aρmy2

bmρ2 + J

) = t + C1,

y1(t) = C3 + C2

∫
exp

(
2
aρmy2(t)

bmρ2 + J

)
dt.

Consequently, if ρ = 0 then

y1 = C3 + C2t,

∫ √
(m + m1)a2 + mb2dy2√
2h − 2mgby2 − JC3

= t + C1.

Hamel in [15] neglect the mass of the wheel (m1 = J = C = 0). Under these conditions the
previous equations become

ρ2ÿ1 +
aρ

b
ẏ1ẏ2 = 0,

(a2 + b2)ÿ2 − abρẏ2
1 = −gb

Appell and Hamel obtained the example of nonholonomic system with nonlinear constraints
by means of the passage to the limit ρ → 0. However, as a result of this limiting process,
the order of the system of differential equations is reduced, i.e., they become degenerate. In
[35] the authors study the motion of the nondegenerate system for ρ > 0 and ρ < 0. From
these studies it follows that the motion of the nondegenerate system (ρ ̸= 0) and degenerate
system (ρ → 0) differ essentially. Thus the Appell-Hamel example with nonlinear constraints
is incorrect.

The transpositional relations (76) become

δ
dx1

dt
− dδ x1

dt
=

a

b
sin y1

(
dy1

dt
δy2 − dy2

dt
δy1

)
,

δ
dx2

dt
− dδ x2

dt
=

a

b
cos y1

(
(
dy1

dt
δy2 − dy2

dt
δy1

)
,

δ
dx3

dt
− dδ x3

dt
= 0, δ

dy1

dt
− dδ y1

dt
= 0, δ

dy2

dt
− dδ y2

dt
= 0.

Clearly these relations are independent of ϱ, A, C and m1.

9. Consequences of Theorems 2 and 3 and the proof of Corollary 7.

We observe the following important aspects from Theorems 2 and 3.

(I) Conjecture 8 is supported by the following facts. (a) As a general rule the constraints
studied in classical mechanics are linear in the velocities. However Appell and Hamel in
1911, considered an artificial example with a constraint nonlinear in the velocity . As it
follows from [35] (see example 2) this constraint does not exist in the Newtonian mechanics.

(b) The idea developed for some authors (see for instance [4]) to construct a theory
in Newtonian mechanics, by allowing that the field of force depends on the acceleration,
i.e. function of ẍ as well as of the position x, velocity ẋ, and the time t is inconsistent
with one of the fundamental postulates of the Newtonian mechanics: when two forces act
simultaneously on a particle the effect is the same as that of a single force equal to the
resultant of both forces (for more details see [38] pages 11–12). Consequently the forces
depending on the acceleration are not admissible in Newtonian dynamics. This does not
preclude their appearance in electrodynamics, where this postulate does not hold.
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(c) Let T be the kinetic energy of the constrained Lagrangian systems. We consider the
generalization of the Newton law: the acceleration (see [46, 37])

d

dt

∂T

∂ẋ
− ∂T

∂x

is equal to the force F. Then in the differential equations (12) with L0 = T we obtain that
the field of force F generated by the constraints is

F =
(
W−1

1 Ω1

)T ∂T

∂ẋ
+ WT

1

d

dt
λ := F1 + F2.

The field of force F2 = WT
1

d

dt
λ = (F21, . . . , F2N ) is called the reaction force of the con-

straints. What is the meaning of the force

(80) F1 =
(
W−1

1 Ω1

)T ∂T

∂ẋ
?

If the constraints are nonlinear in the velocity, then F1 depends on ẍ. Consequently
in Newtonian mechanics does not exist a such field of force. Therefore, the existence of
nonlinear constraints in the velocity and the meaning of force F1 must be sought outside of
the Newtonian model.

For example, for the Appel-Hamel constrained Lagrangian systems studied in the previous
subsection we have that

F1 =

(
− a2ẋ

ẋ2 + ẏ2
(ẋÿ − ẏẍ),

a2ẏ

ẋ2 + ẏ2
(ẋÿ − ẏẍ), 0

)
.

For the generalized Voronets systems and locally for any nonholonomic constrained La-
grangian systems from the equations (18) we obtain that the field of force F1 has the
following components
(81)

Fk 1 =

s1∑

α=1

EkLα
∂L0

∂ẋα

=
N∑

j=1

s1∑

α=1

(
∂2Lα

∂ẋkẋj

∂L0

∂ẋα
ẍj +

∂2Lα

∂ẋk∂xj

∂L0

∂ẋα
ẋj

)
+

s1∑

α=1

∂2Lα

∂ẋk∂t

∂L0

∂ẋα
, for k = 1 . . . , N, s1 = M.

consequently such field of force does not exist in Newtonian mechanics if the constraints are
nonlinear in the velocity.

(II) Equations (12) can be rewritten in the form

(82) Gẍ + f(t,x, ẋ) = 0,

where G = G(t,x, ẋ) is the matrix (Gj,k) given by

Gjk =
∂2L0

∂ẋj∂ẋk
−

N∑

n=1

∂Ank

∂ẍj

∂L0

∂ẋn
, j, k = 1, . . . , N,

and f(t,x, ẋ) is a convenient vector function. If detG ̸= 0 then equation (82) can be solved
with respect to ẍ. This implies, in particular that the motion of the mechanical system at
time t ∈ [t0, t1] is uniquely determined, i.e. the principle of determinacy (see for instance
[2]) holds for the mechanical systems with equation of motion given in (12).
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In particular for the Appel-Hamel constrained Lagrangian systems we have (see formula
(48)) that

x = (x, y, z)
T

, f =

(
aẋ√

ẋ2 + ẏ2
λ̇,

aẏ√
ẋ2 + ẏ2

λ̇, g − λ̇

)T

G =




1 +
a2ẏ2

ẋ2 + ẏ2
− a2ẋẏ

ẋ2 + ẏ2
0

− a2ẋẏ

ẋ2 + ẏ2
1 +

a2ẋ2

ẋ2 + ẏ2
0

0 0 1




, |G| = 1 + a2.

So in the Appel–Hamel system the principle of determinacy holds.

(III)

Proof of Corollary 7. From Theorems 2 and 3 (see formulas (13) and (17)) and from all
examples which we gave in the previous sections we see that are examples with zero trans-
positional relations and examples where all they are not zero. By contrasting the MVM
with the Lagrangian mechanics we obtain that for the unconstrained Lagrangian systems
the transpositional relations are always zero. Thus we have the proof of the corollary. �
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[30] J. Llibre, R. Raḿırez and N. Sadovskaia, Integrability of the constrained rigid body, preprint,

(2012).
[31] J. Llibre, R. Raḿırez and N. Sadovskaia, Inverse problems in ordinary differential equations,

preprint, (2012).
[32] A.I. Lurie, Analytical dynamics, Ed. Fisiko–matematisheskoi literatury, 1961.
[33] C.M. Marle, Various approaches to conservative and nonconservative nonholonomic systems, Reports

on Math. Physics 42 (1998), 211–229.

[34] J.M. Marushin, A.M. Bloch, J.E. Marsden andD.V. Zenkov, A fiber bundle approach to the
transpositional relations in nonholonomic mechanics, J. of Nonlinear Sci. 22 (2012), 431–461.

[35] Ju.I. Neimark and N.A. Fufaev, Dynamics of Nonholonomic Systems, American Mathematical
Society, Rhode Island, 1972.

[36] V.S.Novoselov, Example of a nonlinear nonholonomic constraints that is not of the type of N.G.
Chetaev, Vestnik Leningrad Univ., 12 (1957) (in Russian).

[37] W.Muniz Oliva, Geometric mechanics, Springer–Verlag, 2002.

[38] L.A. Pars, A treatise on analytical dynamics, Heinemannn, London, 1968.
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