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Abstract. We consider the class of polynomial differential equa-
tions ẋ = λx + Pn(x, y), ẏ = µy + Qn(x, y) in R2 where Pn(x, y)
and Qn(x, y) are homogeneous polynomials of degree n > 1 and
λ 6= µ, i.e. the class of polynomial differential systems with a
linear node with different eigenvalues and homogeneous nonlinear-
ities. For this class of polynomial differential equations we study
the existence and non–existence of limit cycles surrounding the
node localized at the origin of coordinates.

1. Introduction and statement of the main results

A two dimensional polynomial differential system in R2 is a differen-
tial system of the form

(1)
dx

dt
= ẋ = P (x, y),

dy

dt
= ẏ = Q(x, y),

where the dependent variables x and y, and the independent one (the
time) t are real, and P (x, y) andQ(x, y) are polynomials in the variables
x and y with real coefficients. The degree of the polynomial system is
m = max{degP, degQ}. Recall that a limit cycle of a system (1) is an
isolated periodic solution in the set of all periodic solutions of system
(1).

One of the more difficult problems in the qualitative theory of the
polynomial differential equations in the plane R2 is the study of their
limit cycles. Thus a classical problem related with these polynomial dif-
ferential systems is the second part of the unsolved 16–th Hilbert prob-
lem [12], which essentially consists in finding a uniform upper bound
for the maximum number of limit cycles that a planar polynomial dif-
ferential system of a given degree can have, see for more details the
surveys [13] and [11].
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Here we want to study the existence and non–existence of limit cycles
for the class of polynomial differential systems in R2 of the form

(2) ẋ = P1(x, y) + Pn(x, y), ẏ = Q1(x, y) +Qn(x, y),

where n > 1, and Pk(x, y) and Qk(x, y) are homogeneous polynomials
of degree k.

The limit cycles of the polynomial differential systems (2) of the form

ẋ = −y + Pn(x, y), ẏ = x+Qn(x, y),

i.e. having a focus at the origin have been intensively studied, see for
instance [2, 3, 4, 6, 8, 9, 10, 14, 16]. But there are almost no results
about the limit cycles of the polynomial differential systems of the form

(3) ẋ = λx+ Pn(x, y), ẏ = µy +Qn(x, y),

i.e. having a node at the origin. Recently, the polynomial differential
systems (3) with λ = µ and n > 1 have been studied in [1], where it is
proved that if n is even then these systems have no periodic solutions,
and that if n is odd then they have at most one limit cycle, and there
are examples with one limit cycle. In Proposition 6.3 and Remark 6.4
of [7] the authors provide examples of systems (3) having two, one or
zero limit cycles surrounding the origin.

The objective of this paper is to study the existence and non–existence
of limit cycles for the class of polynomial differential systems in R2 of
the form (3) with λ 6= µ having the same sign and n > 1. Our methods
are different from those of [1] for studying limit cycles around a star
node. We can assume that µ < λ, otherwise we interchange the names
of the variables x and y.

In order to state our results we write the polynomial differential
system (3) in polar coordinates (r, θ), defined by x = r cos θ and y =
r sin θ, then the system becomes

(4)
ṙ = (λ cos2 θ + µ sin2 θ)r + f(θ)rn,

θ̇ = (µ− λ) cos θ sin θ + g(θ)rn−1,

where

f(θ) = cos θPn(cos θ, sin θ) + sin θQn(cos θ, sin θ),
g(θ) = cos θQn(cos θ, sin θ)− sin θPn(cos θ, sin θ).

Note that f(θ) and g(θ) are homogeneous trigonometric polynomials
of degree n + 1 in the variables cos θ and sin θ. For simplifying the
notation we define

(5) θ0 = 0, θ1 =
π

2
, θ2 = π, θ3 =

3π

2
, θ4 = 2π.
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Our main results on the non–existence of limit cycles for the poly-
nomial differential systems (3) surrounding the origin are stated in the
next theorem.

Theorem 1. Consider a polynomial differential system with homoge-
neous nonlinearities (3) with µ < λ, µλ > 0 and n > 1.

(a) If n is even, then system (3) has no periodic solutions surround-
ing the origin.

(b) If g(θ) has a zero θ∗ such that cos θ∗ sin θ∗ = 0, then system (3)
has no limit cycles surrounding the origin.

(c) Let θ∗ be a zero of g(θ) and θi be one of those defined in (5).
If g(θ) cos θ sin θ > 0 for θ ∈ (θi, θ

∗) or (θ∗, θi), then system (3)
has no limit cycles surrounding the origin.

(d) If g(θ) has two consecutive zeros, one in the interval (θi−1, θi)
and the other in the interval (θi, θi+1) for some i ∈ {1, 2, 3},
then system (3) has no limit cycles surrounding the origin.

Theorem 1 is proved in section 2.

The curve θ̇ = 0 along the orbits shall play a main role in the proof
of Theorem 1. From (4) this curve is given by

(6) r(θ) =

(
(λ− µ) cos θ sin θ

g(θ)

) 1

n− 1
when

(λ− µ) cos θ sin θ

g(θ)
> 0.

In what follows we shall denote this curve by r = r∗(θ).

Our main results on the existence of limit cycles for the polynomial
differential systems (3) surrounding the origin are stated in the follow-
ing theorem.

Theorem 2. Consider a polynomial differential system with homoge-
neous nonlinearities (3) with µ < λ, µλ > 0 and n > 1 odd.

(a) If system (3) has a limit cycle surrounding the origin, then it
cannot intersect the curve r = r∗(θ).

(b) If λf(θ) < 0 for all θ ∈ [0, 2π), and the origin is the unique
singularity of system (3), then at least one limit cycle surrounds
the origin.

(c) If µ is sufficiently close to λ, g(θ) 6= 0 and λf(θ) < 0 for all
θ ∈ [0, 2π), and the origin is the unique singularity of system
(3), then the system has exactly one limit cycle surrounding the
origin.
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(d) If µ is sufficiently close to λ and g(θ) 6= 0 for all θ ∈ [0, 2π),
then system (3) has at most two limit cycles surrounding the
origin.

Theorem 2 is proved in section 3. We remark that in statements (b)
and (c) we have the additional assumption: the origin is the unique
equilibrium point of system (3). This condition also appeared in [1,
Theorem 2(c)], but there it is not necessary because it can be obtained
from g(θ) 6= 0 for θ ∈ [2π, 0). But for λ 6= µ it is not the case as the
following example shows. This example also satisfies all the conditions
of statement (c).

Example. Consider the polynomial differential system

(7)
ẋ = λx+ x3 − x2y + xy2 − y3,
ẏ = µy + x3 + x2y + xy2 + y3.

Write it in polar coordinates we have

(8)
ṙ = (λ cos2 θ + µ sin2 θ)r + r3,

θ̇ = (µ− λ) cos θ sin θ + r2.

Using the notation given in (6) we have f(θ) = g(θ) = 1. So for any
given λ < 0, if |µ− λ| ≪ 1 then system (8) (consequently (7)) has the
origin as a unique singularity. By statement (c) of Theorem 2 system
(7) has a unique limit cycle.

Of course our results on the limit cycles for the degree n odd are
partial. But to control the maximum number of limit cycles for a given
class of polynomial differential systems is in general a very difficult
problem specially when this class depends on many parameters as in
our systems (3). For instance if the polynomials of the differential
system (1) are quadratic (i.e. of degree 2), there are more than one
thousand of papers published on those systems and their maximum
number of limit cycles is unknown.

2. Proof of Theorem 1

Recall that

θ0 = 0, θ1 =
π

2
, θ2 = π, θ3 =

3π

2
, θ4 = 2π.

Proof of statement (b) of Theorem 1. Clearly θ∗ = θi for some i =
0, 1, 2, 3. If θ∗ ∈ {θ0, θ2}, then Qn has the factor y, and so y = 0
is an invariant straight line. Consequently system (3) has no limit cy-
cles around the origin. If θ ∈ {θ1, θ3}, then the straight line x = 0 is
invariant. And consequently system (3) has no limit cycles surrounding
the origin. �
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In what follows we consider the case that g(θ) does not vanish in θi
for i = 0, 1, 2, 3.

Proof of statement (c) of Theorem 1. We consider the case that g(θ)
cos θ sin θ > 0 in the interval (θi, θ

∗). The proof for the other interval is
completely similar. Since by the assumption µ < λ, we have that the
curve r = r∗(θ) of (6) has a branch γ defined in the interval (θi, θ

∗).
This branch is at the origin at θ = θi and tends to infinity when θ → θ∗.

We can assume that in the topological sector S1 limited by the ray
θ = θi and the branch γ we have θ̇ > 0, and in the topological sector S2

limited by the branch γ and the ray θ = θ∗ we have θ̇ < 0; otherwise
we reverse the sign of the time in the differential system (3).

Let Γ be a limit cycle surrounding the origin of system (3). We
separate the proof in two cases.

Case 1: Assume that Γ crosses the branch γ. In the interior of the
sector S2 we have that θ̇ < 0. Just after Γ enters in S2 its distance to
the origin decreases. If Γ does not exit the sector S2, then either its
ω–limit set is the origin (see Figure 1(a)), or it is a singularity on γ
(see Figure 1(b)). If Γ exits the sector S2 (see Figure 1(c)), then the
ω–limit set of Γ must be either a singularity on γ, or a periodic orbit
surrounding a singularity on γ. So Γ cannot be a limit cycle.

o θi

p

S2

γ
S1
Γ

θ∗

o θi

p

S2

γ
S1
Γ

θ∗

(a) (b)

o θi

p

S2

γ
S1
Γ

θ∗

o θi

p

S2

γ
S1

Γ

θ∗

(c) (d)

Figure 1. The branch having one end at the origin and
the other at infinity
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Case 2: Suppose that Γ is tangent to the branch γ at some points (see
Figure 1(d)). In a neighborhood of a tangent regular point the orbits
in the bounded component limited by Γ when enters in the sector S2

where θ̇ < 0, their angular coordinate θ decreases and such an orbit
cannot follow the limit cycle Γ, in contradiction with the Theorem of
Continuous Dependence on the Initial Conditions (see [17]). �

Proof of statement (d) of Theorem 1. Let θ∗1 ∈ (θi−1, θi) and θ∗2 ∈ (θi,
θi+1) be two consecutive zeros of g(θ). Then we have g(θ) cos θ sin θ > 0
either for θ ∈ (θ∗1, θi), or for θ ∈ (θi, θ

∗
2). So, by statement (c) of

Theorem 1 system (3) cannot have limit cycles. �

Lemma 3. If g(θ) has an odd number of zeros taking into account
their multiplicities in some interval (θi, θi+1) with i ∈ {0, 1, 2, 3}, then
system (3) has no limit cycles surrounding the origin.

Proof. Let θ∗1 ≤ . . . ≤ θ∗2l+1 be the zeros of g(θ) in (θi, θi+1) being l
a non–negative integer. Then g(θ) has different signs in the intervals
(θi, θ

∗
1) and (θ∗2l+1, θi+1). Therefore, we must have g(θ) cos θ sin θ > 0 for

the values of θ either in (θi, θ
∗
1), or in (θ∗2l+1, θi+1). So from statement

(c) of Theorem 1 it follows that system (3) has no limit cycles around
the origin. �

Proof of statement (a) of Theorem 1. If n is even, g(θ) is a homoge-
neous trigonometric polynomial of odd degree. So g(θ) has an odd
number of zeros taking into account their multiplicities. This implies
that in at least one of the intervals (θi, θi+1), i = 0, 1, 2, 3, the function
g(θ) has an odd number of zeros taking into account their multiplicities.
Hence the proof follows Lemma 3. �

3. Proof of Theorem 2

In what follows and from the proof of statement (c) of Theorem 1

we only need to consider the case that the curve θ̇ = 0, i.e. the curve
r = r∗(θ) given by (6) has all its branches having both endpoints either
at the origin, or at infinity. See Figures 2 and 3. Moreover, due to
statement (d) of Theorem 1 in every quadrant of the plane determined
by the two axes of coordinates x and y, only can be branches of the same
kind. In fact, if in a quadrant there is one branch with endpoints at
the origin, then this is the unique branch of r = r∗(θ) in this quadrant.

Obviously g(θ) 6= 0 on r = r∗(θ). Also if g(θ) 6= 0 for all θ ∈ [0, 2π],
then r = r∗(θ) has only two branches, both having their two endpoints
at the origin.
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Proof of statement (a) of Theorem 2. All singularities of system (3) are
on the curve r = r∗(θ), so they are located on the curve r = r∗(θ).

Since the curve r = r∗(θ) has only branches satisfying that their two
endpoints are at the origin, or at the infinity. Denote by γk

0 for k = 1, 2
the formers and by γl

∞ the latters for l = 1, . . . , 2L. From the comments
at the beginning of this section there are only two branches γk

0 . The
number of the branches γl

∞ is even due to the fact that if g(θ) = 0 then
g(θ+ π) = 0, because g(θ) is a homogeneous trigonometric polynomial
in the variables cos θ and sin θ.

We denote by Ωk
0 the closed region of the plane whose boundary

is formed uniquely by the curve γk
0 and the origin (see Figure 2(b)),

and by Ωl
∞ the closed region of the plane whose boundary is formed

uniquely by the curve γl
∞ (see Figure 2(a)). Set

Ω+ = R2 \ {Ω1
0 ∪ Ω2

0 ∪ Ω1
∞ ∪ · · · ∪ Ω2L

∞ }.
Without loss of generality (if necessary we change the sign of the time)

we assume that θ̇ > 0 in Ω+ and θ̇ < 0 in Ω1
0 ∪ Ω2

0 ∪ Ω1
∞ ∪ · · · ∪ Ω2L

∞ .

o x

y

Γ
Ω+

γl
∞

Ωl
∞

o x

y

Γ

Ω+γk
0

Ωk
0

o x

y

Γ

p

Ω+

γl
∞

Ωl
∞

(a) Branch γl
∞ (b) Branch γk

0 (c) Orbit tangent to γl
∞

Figure 2. The branches with their two ends either both
at infinity or both at the origin

Let Γ be a limit cycle of system (3). Then, from the shapes of γk
0

and γl
∞ it follows that since Γ surrounds the origin then it cannot be

completely contained in Ωk
0 or Ωl

∞.

We separate the rest of the proof in two cases.

Case 1: Assume that Γ crosses the curve θ̇ = 0. First we suppose that
it crosses the branch γl

∞ of the curve r = r∗(θ), see Figure 2(a). In the

interior of the region Ωl
∞ we have that θ̇ < 0. Just after Γ enters in

the region Ωl
∞ its distance to the origin increases. If Γ does not exit

the region Ωl
∞, then its ω–limit set is either a singularity in γl

∞, or it is
at infinity. If Γ exits the region Ωl

∞, then the ω–limit set of Γ must be
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either a singularity on γl
∞, or a periodic orbit surrounding a singularity

on γl
∞. So Γ cannot be a limit cycle.

Suppose that Γ crosses the curve γk
0 , see Figure 2(b). Arguments

completely similar to the ones of the previous paragraph show that if
Γ crosses the curve γk

0 , then it cannot be a limit cycle.

Case 2: Assume now that the limit cycle Γ is tangent to the curve γl
∞

in some points, see Figure 2(c). In a neighborhood of a tangent regular
point the orbits in the unbounded component limited by Γ when enters
in the region where θ̇ < 0, their angular coordinate θ decreases and
such an orbit cannot follow the limit cycle Γ, in contradiction with the
Theorem of Continuous Dependence on the Initial Conditions.

If the limit cycle Γ is tangent to the curve γk
0 , then similar arguments

show that this is not possible. In short the statement (a) is proved. �
Proof of statement (b) of Theorem 2. Since λf(θ) < 0 for all θ ∈ [0, 2π),
we assume that λ > 0 and f(θ) < 0 for all θ ∈ [0, 2π). The proof when
λ < 0 and f(θ) > 0 for all θ ∈ [0, 2π) is completely similar.

From the expression of ṙ in the system (4) it follows that for the
boundary of a very big disc centered at the origin the flow of the system
enters because f(θ) < 0 for all θ ∈ [0, 2π). Then, since the origin is an
unstable node and there are no other singularities, by the Poincaré–
Bendixson Theorem (see for instance Corollary 1.30 of [5]) it follows
that at least exists one periodic orbit surrounding the origin. We claim
that this periodic orbit is isolated in the set of all periodic orbits of
system (4). Then it is a limit cycle and the statement (b) is proved.
Now we prove the claim.

Suppose that all the periodic orbits surrounding the origin are form-
ing an annulus A filled only by periodic orbits. Since the origin is a
node, it cannot be in the boundary of the annulus A. Take the periodic
orbit γ of the boundary of this annulus more closest to the unstable
node localized at the origin. The orbit γ is the ω–limit set of the or-
bits which have its α–limit set in the node at the origin. When one of
such orbits is sufficiently close to γ it spirals tending to γ in forward
time. The return map is defined on the annulus and sufficiently near it.
Since the system is analytic the return map is analytic (see for instance
[17]). Clearly this return map is the identity on the annulus, since it
is analytic, it is also the identity sufficiently near to the annulus, in
contradiction with the fact that sufficiently near to the annulus the
orbits spiral tending to the annulus. So the claim is proved. �
We shall use the following result of Lloyd, see Theorems 3 and 4 of

[15].
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Theorem 4. Consider the differential system in polar coordinates

ṙ = R(r, θ), θ̇ = Θ(r, θ) (r > 0),

where both functions R and Θ are 2π–periodic in the variable θ. Sup-
pose that in a topological annular region A surrounding the origin, the
function Θ 6= 0. Let S(r, θ) = R(r, θ)/Θ(r, θ) in A.

(a) If either ∂S/∂ r > 0 or ∂S/∂ r < 0 in A, then A can entirely
contain no more than one limit cycle.

(b) If either ∂2S/∂ r2 > 0 or ∂2S/∂ r2 < 0 in A, then A can entirely
contain no more than two limit cycles.

Proof of statement (c) of Theorem 2. By statement (a) of Theorem 2
the limit cycles surrounding the origin must live in the unbounded open
topological annular region A which has as boundary all the branches
of the curve r = r∗(θ), see Figure 3 for illustration (we remark that in
the case g(θ) 6= 0 the branches γl

∞ do not appear). Using the notation
of the proof of statement (a) of Theorem 2 we have that A = Ω+. By

definition in A either θ̇ > 0, or θ̇ < 0. Therefore our system in polar
coordinates (4) satisfies the assumption Θ 6= 0 of Theorem 2.

o x

y

γl
∞

γl
∞

γk
0

Ωl
∞

Ωl
∞

Ωk
0

A

A

A A

Figure 3. The unbounded annulus bounded by the
branches of r = r∗(θ)

Since λf(θ) < 0, we can assume without loss of generality that
f(θ) < 0. The assumption g(θ) 6= 0 implies that the infinity is a
periodic orbit, and it is unstable. Moreover the origin is an unstable
node because λ > 0. So there exist a neighborhood U0 of the origin and
a neighborhood U∞ of the infinity such that the orbits of system (3) or
(4) starting from U0 or U∞ will positively and transversally intersect
the boundary of U0 or U∞. In addition, a tedious but easy computa-
tion shows that the function S in the statement of Theorem 2 for our



10 J. LLIBRE, J. YU, X. ZHANG

system (4) satisfies

∂S

∂ r
=

r−n (f(θ)rn + (2− n)λr)

g(θ)
+O(λ− µ).

Set A∗ = A ∩ (R2 \ (U0 ∪ U∞)). Combining the proof of the last
paragraph and from statement (a) and its proof, we get that for |µ−λ|
sufficiently small, if system (4) has a limit cycle it must be located
in A∗, because all orbits starting from Ω0 or Ω∞ will also positively
pass through the boundary of the region and get into R2 \ (Ω0 ∪ Ω∞)
for |µ − λ| ≪ 1. Moreover, since A∗ is compact and ∂S/∂ r is either
positive or negative for λ = µ, it follows that ∂S/∂ r is either positive
or negative in the annulus A∗ for |λ− µ| sufficiently small. Therefore,
from the statement (a) of Theorem 4 we obtain that in the topological
annulus A∗ there is at most one limit cycle. Moreover, by statement
(b) there is one limit cycle. So statement (c) is proved. �

Proof of statement (d) of Theorem 2. By statement (d) of Theorem 2
of [1] and its proof we know that system (4) with µ = λ has at most
one periodic orbit in the finite plane. Since g(θ) 6= 0, the infinity is
an invariant periodic orbit. So working in a similar way as that in
the proof of statement (c) we have a compact annulus A∗ as that in
the proof of statement (c) such that for |µ − λ| sufficiently small any
periodic orbit of system (4) in the finite plane must be located in A∗.

Some tedious but direct calculation shows that the function S in the
statement of Theorem 2 for our system (4) satisfies

∂2S

∂ r2
=

(n− 2)(n− 1)r−nλ

g(θ)
+O(λ− µ).

Under the assumptions of statement (d) the derivative ∂2S/∂ r2 always
is either positive or negative when λ = µ. Therefore, it follows from
the compactness of A∗ that ∂2S/∂ r2 is either positive or negative in A∗

for |λ− µ| sufficiently small. Then from the statement (b) of Theorem
4 we obtain that in the annulus A∗ there is at most two limit cycles.
This completes the proof of statement (d). �
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