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Abstract We characterize the zero–Hopf bifurcation at the singular points of a
parameter co-dimension four hyperchaotic Lorenz system. Using averaging theory,
we find sufficient conditions so that at the bifurcation points two periodic solutions
emerge and describe the stability of these orbits.

Keywords hyperchaotic Lorenz system; zero–Hopf bifurcation; periodic orbits;
averaging theory

1 Introduction

In 1963 Edward Lorenz [19] introduced a system of ordinary differential equations
in R3 soon to became famous for exhibiting chaotic solutions for certain param-
eter values and initial conditions. More precisely, the Lorenz system displays a
set of chaotic solutions which, when plotted, looks as a butterfly or figure eight
(the Lorenz attractor). The origins of this system lies in atmospheric modeling.
However, the Lorenz equations also appear in the modeling of lasers see [11], and
dynamos see [15].

Recently, a so-called hyperchaotic Lorentz system was introduced; see for in-
stance [1,6,10,13,14,25,27–33] and the references therein. (MathSciNet presently
lists 24 papers on hyperchaotic Lorenz systems.) We remark that not all these
hyperchaotic Lorenz systems coincide, as they can vary in one or two terms. A
precise definition of a hyperchaotic system comprises 1) an autonomous differential
equations system with a phase space of dimension at least four, 2) a dissipative
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structure, and 3) at least two unstable directions, out of which at least one is due
to a nonlinearity. Since it generates multiple positive Lyapunov exponents, the
dynamics of hyperchaotic systems is hard to predict and control. Consequently,
such systems are of use in secure communication and thus received a great deal
of attention mainly in engineering (circuit and communications systems; see, for
instance, [24] and references therein).

In this paper, we approach a hyperchaotic system from a dynamical systems
point of view. More precisely, we investigate a 4-dimensional zero–Hopf equilibrium

(that is, an isolated equilibrium with a double zero eigenvalue and a pair of purely
imaginary eigenvalues), and the birth of periodic solutions as parameters vary.

There are several works studying the unfolding of the 3–dimensional zero–Hopf

equilibria. Recall that a 3–dimensional zero–Hopf bifurcation is a two–parameter
unfolding (or family) of a 3–dimensional autonomous differential system with a
zero–Hopf equilibrium. The unfolding has an isolated equilibrium with a zero eigen-
value and a pair of purely imaginary eigenvalues if the two parameters take zero
values, and the unfolding has different topological type of dynamics in the small
neighborhood of this isolated equilibrium as the two parameters vary in a small
neighborhood of the origin. The zero–Hopf bifurcation has been studied by Guck-
enheimer [8], Guckenheimer and Holmes [9], Han [12], Kuznetsov [16], Llibre [18],
Marsden and Scheurle [23]. It has been shown that, under certain conditions, some
complicated invariant sets of the unfolding could be bifurcated from the isolated
zero–Hopf equilibrium and hence, in some cases, a zero–Hopf equilibrium could
signal a local birth of “chaos” (see [5,23]). Also, recently Li and Wang [17] pub-
lished a paper on a Hopf bifurcation in a (three-dimensional) Lorentz-type system.
Due to the complexity related to the high dimensionality, there is very little work
done on the n–dimensional zero–Hopf bifurcation with n > 3.

Here we study the following hyperchaotic Lorenz system (as given in [6,14])

ẋ = a(y − x) + w,

ẏ = cx− y − xz,

ż = −bz + xy,

ẇ = dw − xz,

(1)

which displays for a zero–Hopf equilibrium for an appropriate choice of the pa-
rameters a, b, c and d. Using the method of averaging and a blow-up of both the
variables and the parameters at the zero–Hopf equilibrium, we show that two pe-
riodic solutions emerge as parameters vary. Further, we characterize the stability
of these periodic solutions.

To our knowledge zero–Hopf equilibria and bifurcations in systems (which have
a central manifold) of dimension n ≥ 4 has not been studied yet. While we focus
on the case of a hyperchaotic Lorentz system, we mention that the method used
here is amenable to a larger class of nonlinear differential systems in Rn. We plan
to develop this in future work.

2 Statements of the main results

One may verify that for any choice of the parameters the origin of coordinates of R4

is always an equilibrium point for the hyperchaotic Lorenz system (1). Moreover,
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if

abd 6= 1 and abd(1− c)/(c− ad) > 0,

then system (1) has two additional equilibria p±, namely

(
±
√

abd(1− c)√
c− ad

,±
√

abd(1− c)(c− ad)

1− ad
,
ad(1− c)

1− ad
,±a(1− c)

√
abd(1− c)

(1− ad)
√
c− ad

)
.

In the next proposition we characterize when the equilibrium point localized
at the origin of coordinates of the hyperchaotic Lorenz system (1) is a zero–Hopf
equilibrium point.

Proposition 1 There is an one–parameter family of hyperchaotic Lorenz system (1)
for which the origin of coordinates is a zero–Hopf equilibrium point. Namely a = −1,
b = d = 0 and c > 1. Moreover, the eigenvalues at the origin for this one–parameter

family are 0, 0 and ±i
√
c− 1.

We shall study when the hyperchaotic Lorenz system (1) having a zero–Hopf
equilibrium point at the origin of coordinates has a zero–Hopf bifurcation produc-
ing some periodic orbit.

Theorem 1 For

b 6= 0 , d 6= 0 (2)

and

1

2
d2 − (a+ 1) > 0 if (a+ 1) d > 0 (3)

1

2
d2 − (a+ 1) < 0 if (a+ 1) d < 0 (4)

the hyperchaotic Lorenz system has a zero–Hopf bifurcation at the equilibrium point

localized at the origin of coordinates. Two periodic solutions born at this equilibrium

and they are stable if (a+ 1) > 0, b > 0 and d > 0 .

3 The averaging theory for periodic orbits

The averaging theory is a classical and matured tool for studying the behavior of
the dynamics of nonlinear smooth dynamical systems, and in particular of their
periodic orbits. The method of averaging has a long history that starts with the
classical works of Lagrange and Laplace who provided an intuitive justification of
the process. The first formalization of this procedure is due to Fatou [7] in 1928.
Important practical and theoretical contributions in this theory were made by
Krylov and Bogoliubov [3] in the 1930s and Bogoliubov [2] in 1945. The averaging
theory of first order for studying periodic orbits can be found in [26], see also [9].
It can be summarized as follows.

We consider the problem of the bifurcation of T–periodic solutions from dif-
ferential systems of the form

ẋ = F0(t,x) + εF1(t,x) + ε2F2(t,x, ε), (5)
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with ε = 0 to ε 6= 0 sufficiently small. Here the functions F0, F1 : R×Ω → Rn and
F2 : R×Ω × (−ε0, ε0) → Rn are C2 functions, T–periodic in the first variable, and
Ω is an open subset of Rn. The main assumption is that the unperturbed system

ẋ = F0(t,x), (6)

has a submanifold of periodic solutions. A solution of this problem is given using
the averaging theory.

Let x(t, z, ε) be the solution of system (6) such that x(0, z, ε) = z. We write the
linearization of the unperturbed system along a periodic solution x(t, z, 0) as

ẏ = DxF0(t,x(t, z, 0))y. (7)

In what follows we denote by Mz(t) some fundamental matrix of the linear differ-
ential system (7).

We assume that there exists an open set V with Cl(V ) ⊂ Ω such that for
each z ∈ Cl(V ), x(t, z, 0) is T–periodic, where x(t, z, 0) denotes the solution of the
unperturbed system (6) with x(0, z, 0) = z. The set Cl(V ) is isochronous for the
system (5); i.e. it is a set formed only by periodic orbits, all of them having the
same period. Then, an answer to the bifurcation problem of T–periodic solutions
from the periodic solutions x(t, z, 0) contained in Cl(V ) is given in the following
result.

Theorem 2 [Perturbations of an isochronous set] We assume that there exists

an open and bounded set V with Cl(V ) ⊂ Ω such that for each z ∈ Cl(V ), the solution

x(t, z) is T–periodic, then we consider the function F : Cl(V ) → Rn

F(z) =
1

T

∫ T

0

M−1
z (t, z)F1(t,x(t, z))dt. (8)

Then the following statements holds:

(a) If there exists a ∈ V with F(a) = 0 and det ((∂F/∂z) (a)) 6= 0, then there exists a

T–periodic solution x(t, ε) of system (5) such that x(0, ε) → a as ε → 0.
(b) The type of stability of the periodic solution x(t, ε) is given by the eigenvalues of

the Jacobian matrix ((∂F/∂z) (a)).

For an easy proof of Theorem 2(a) see Corollary 1 of [4]. In fact the result of
Theorem 2 is a classical result due to Malkin [20] and Roseau [21].

For additional information on averaging theory see the book [22].

4 Proofs

Proof of Proposition 1 The Jacobian matrix evaluated at (x, y, z, w) = (0, 0, 0, 0)
is

A =




−a a 0 1
c −1 0 0
0 0 −b 0
0 0 0 d
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with characteristic equation (−b− λ)(d− λ)[λ2 + (a+ 1)λ+ a(1− c)] = 0. Solving
this equation we find that the eigenvalues of A are λ1 = −b, λ2 = d and λ3,4 =
(−(a+1)±

√
(a+ 1)2 − 4a(1− c))/2. To satisfy the conditions for the origin to be

a zero-Hopf equilibrium, it must be satisfied that b = d = 0, and for the other two
eigenvalues to be purely imaginary we must have a = −1 and 4(c − 1) < 0, this
is c > 1. Note that when this conditions are satisfied, the only equilibrium of the
system is the origin.

Therefore, when a = −1, b = d = 0 and c > 1, we obtain a one parameter family
of hyperchaotic Lorenz systems for which the origin is a zero-Hopf equilibrium.
Moreover, the eigenvalues for this one parameter family are λ1 = λ2 = 0 and
λ3,4 = ±i

√
c− 1. �

Proof of Theorem 1 Let (a, b, d) = (−1 + εa1, εb1, εd1) where ε > 0 is a suffi-
ciently small parameter and a1, b1 and d1 are real non-zero numbers. With these
substitutions, the Lorenz system becomes

ẋ = (−1 + εa1)(y − x) + w,

ẏ = cx− y − xz,

ż = −εb1z + xy,

ẇ = εd1w − xz.

(9)

Next we rescale the variables. Let (x, y, z) = (εX, εY, εZ), and by denoting
again the variables (X,Y, Z) by (x, y, z) the system (9) is written as follows

ẋ = (−1 + εa1)(y − x) + w,

ẏ = cx− y − εxz,

ż = −εb1z + εxy,

ẇ = εd1w − εxz.

(10)

To describe the the behavior of the system (10) we will apply the averaging
method described in Theorem 2. Using the same notation as in section 3, we have
x=(x, y, z, w),

F0(t,x) =




−y + x+ w

cx− y

0
0


 , F1(t,x) =




a1(y − x)
−xz

−b1z + xy

d1w − xz


 ,

and F2(t,x, ε) = 0. Let us consider the next initial value problem given by the
unperturbed system

ẋ = F0(t,x), x(0, ε) = (x0, y0, z0, w0) = z. (11)

The solution to this unperturbed system is x(t, z, ε) = (x(t), y(t), z(t), w(t))
where

x(t) =
w0 + (cx0 − x0 − w0) cos

(√
c− 1 t

)
+

√
c− 1(w0 + x0 − y0) sin

(√
c− 1 t

)

c− 1
,

y(t) =
−cw0 + (cw0 − cy0 + y0) cos

(√
c− 1 t

)
+

√
c− 1(y0 − cx0) sin

(√
c− 1 t

)

c− 1
,

z(t) = z0,

w(t) = w0.
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Note that all the solutions x(t, z, ε) with z 6= 0 are periodic, and have the same

period T =
2π√
c− 1

. We know write the linearization of the unperturbed system

along a periodic solution x(t, z, 0) as

ẏ = DxF0(t,x(t, z, 0))y. (12)

The fundamental matrix Mz(t) is given by

Mz(t) =




r cos(rt) + sin(rt)

r
− sin(rt)

r
0
1− cos(rt) + r sin(rt)

r2
c sin(rt)

r

r cos(rt)− sin(rt)

r
0

c(1− cos(rt))

r2
0 0 1 0

0 0 0 1




,

and

M−1
z (t) =




r cos(rt)− sin(rt)

r

sin(rt)

r
0

r(1− cos(rt)− sin(rt))

r3
c sin(rt)

r

r cos(rt)− sin(rt)

r
0

c(1− cos(rt))

r2
0 0 1 0
0 0 0 1




.

where r :=
√
c− 1. Computing the integral established in Theorem 2

F(z) =
r

2π

∫ 2π
r

0

M−1
z (t)F1(t,x(t, z))dt = (F1(z),F2(z),F3(z),F4(z)),

where the components of F(z) are given as follows

F1(z) =
d1(4w0 − cw0 + 2x0 − y0 − 2cx0 + cy0)

2(c− 1)
+

a1(−cw0 + 2w0 + 2x0 − y0 − 2cx0 + cy0)

2(c− 1)

+
(c− 1)x0z0 − 3w0z0

2(c− 1)2
,

F2(z) =
cd1(3w0 − cx0 + x0) + ca1(cx0 − x0 − w0)

2(c− 1)
+

3cw0z0 + y0z0 − cy0z0
2(c− 1)2

,

F3(z) =
3cw2

0 + c(c− 1)x20
2(c− 1)2

− y0(w0 + x0)

(c− 1)
+

y20
2(c− 1)

− b1z0,

F4(z) =
w0d1(c− 1)− w0z0

c− 1
,

and solving the nonlinear system given by F(z) = 0 we can conclude that the
system has the next three solutions

s0 =(0, 0, 0, 0) ,

s1 =

(
−
√

b1d1(c− 1)√
c

,−
√

cb1d1(c− 1), d1(c− 1),
−
√

b1d1(c− 1)3√
c

)
,

s2 =

(√
b1d1(c− 1)√

c
,
√

cb1d1(c− 1), d1(c− 1),

√
b1d1(c− 1)3/2√

c

)
.
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The first solution corresponds to the equilibrium point localized at the origin.
For the other two solutions, we note that

F(s1) = F(s2) = 0

det ((∂F/∂z) (s1)) = det ((∂F/∂z) (s2)) =
1

2
b1d

3
1 + a1b1d1(d1c− 1)

Conditions (2) ensure that

1

2
b1d

3
1 + a1b1d1(d1c− 1) 6= 0

and so by Theorem 2(a) there exists two T -periodic solution x1(t, ε) and x2(t, ε) of
system (10) such that x1(0, ε) → s1 and x2(0, ε) → s2 as ε → 0, where its period

is T =
2π√
c− 1

.

To determine the type of stability of the two periodic solutions, we look at the
eigenvalues of the Jacobian matrices Γ1 = ((∂F/∂z) (s1)) and Γ2 = ((∂F/∂z) (s2)).
We have that the eigenvalues are the same for both matrices and given as follows

λ1,2 =
−b1 ±

√
b1(b1 − 8d1)

2

λ3,4 =
−a1 ± i

√
(a1 + d1)2(c− 1)

2

The stability follows by imposing a negative real part to all eigenvalues and
substituting a1, b1 and d1 in terms if a, b and d.

Finally, the periodic solutions x1 = (x1(t, ε), y1(t, ε), z1(t, ε), w1(t, ε)) and x2 =
(x2(t, ε), y2(t, ε), z2(t, ε), w2(t, ε)) of system (10), provide the periodic solutions

εx1 = (εx1(t, ε), εy1(t, ε), εz1(t, ε), εw1(t, ε))

and
εx2 = (εx1(t, ε), εy2(t, ε), εz2(t, ε), εw2(t, ε))

of system (9). Since each of the later periodic solutions tends to the equilibrium
point (0, 0, 0, 0) when ε → 0, they correspond to a zero–Hopf bifurcation of the
zero–Hopf equilibrium point. �
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4. A. Buică, J. P. Françoise and J. Llibre, Periodic solutions of nonlinear periodic differ-
ential systems with a small parameter, Comm. on Pure and Appl. Anal. 6, 103–111, (2007).

5. A.R. Champneys and V. Kirk, The entwined wiggling of homoclinic curves emerging from
saddle-node/Hopf instabilities, Physica D 195, 77–105, (2004).

6. M.M. El-Dessoky and E. Saleh, Generalized projective synchronization for different hy-
perchaotic dynamical systems, Discrete Dynamics in Nature and Society Volume 2011, Ar-
ticle ID 437156, 19 pp., (2011).
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