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We analyze the anomalous wave structure appearing in flow dynamics under the in-

fluence of magnetic field in materials described by non-ideal equations of state. We

consider the system of magnetohydrodynamics equations closed by a general equation

of state (EOS) and propose a complete spectral decomposition of the fluxes that al-

lows us to derive an expression of the nonlinearity factor as the mathematical tool to

determine the nature of the wave phenomena. We prove that the possible formation

of non-classical wave structure is determined by both the thermodynamic properties

of the material and the magnetic field as well as its possible rotation. We demonstrate

that phase transitions induced by material properties do not necessarily imply the

loss of genuine nonlinearity of the wavefields as is the case in classical hydrodynam-

ics. The analytical expression of the nonlinearity factor allows us to determine the

specific amount of magnetic field necessary to prevent formation of complex structure

induced by phase transition in the material. We illustrate our analytical approach

by considering two non-convex EOS that exhibit phase transitions and anomalous

behavior in the evolution. We present numerical experiments validating the analysis

performed through a set of one-dimensional Riemann problems. In the examples we

show how to determine the appropriate amount of magnetic field in the initial con-

ditions of the Riemann problem to transform a thermodynamic composite wave into

a simple nonlinear wave.
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I. INTRODUCTION

Simulation codes to solve physical processes in fluid dynamics are based on nonlinear

hyperbolic systems of conservation laws as Euler and magnetohydrodynamics (MHD) equa-

tions. The fluid equations describe conservation of mass, momentum, energy and magnetic

field in the latter case and are closed with the constitutive relations represented by an

equation of state (EOS) defining the equilibrium thermodynamic properties of the consid-

ered material. Hydrodynamic models are considered to simulate applications involving the

response of solids at high pressure where the dynamic properties of the material are charac-

terized by an EOS1–3.

The ideal EOS framework has been traditionally used in theoretical and numerical studies

because of its simplicity and convenience in simulation codes4–10. Nevertheless, the ideal EOS

does not represent laboratory environments as well as non-ideal equations of state do. Non-

ideal equations of state provide more realistic descriptions of the materials and the models

representing them are more difficult to analyze and use in simulation codes11–20.

The study of the wave dynamics in magnetohydrodynamics is essential to understand

physical processes like the ones performed in laboratory experiments associated to high

density physics, material processing and astrophysical phenomena. Magnetic acceleration

is the basis of magnetic pinch facilities where large magnetic pressure is used to compress

material samples21–25. Magnetic field is also commonly used to process materials in industry.

Metallurgical MHD include, among other applications, magnetic stirring, magnetic damping

and magnetic destabilization of liquid-liquid interfaces2,3,26. Magnetic outflows, accretion

disks, the evolution of stellar collapse supernovae are examples of astrophysical scenarios

where states of matter at extreme high densities and strong magnetic field are involved

in the evolution18,25,27. The study of the shock wave phenomena and material response at

high pressure and strong magnetic field is commonly addressed by means of fluid models

of compressible flows closed with non-ideal EOSs. The understanding of these models is a

challenge and a research area of interest with important applications in industry, geophysics

and astrophysics among other areas1–3,15–18,21–27.

The analysis of the wave structure in the evolution of classical hydrodynamics de-

scribed by Euler equations closed with a non-ideal EOS has been widely studied in the

literature1,13,14,28–32. It is well known that the structure and dynamics of waves are deter-
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mined by the properties of the material through a thermodynamic magnitude, the funda-

mental derivative G

G := −1

2
V

∂2P
∂V 2

∣∣
S

∂P
∂V

∣∣
S

(1)

where V is the specific volume (V ≡ 1
ρ
, ρ the density), S the specific entropy and P the

pressure. G measures the convexity of isentropes in the pressure-volume plane32,33. In this

context it is common to refer as convex EOS to those characterizing materials with strictly

positive fundamental derivative and non-convex EOS to those with negative one at some

state in the thermodynamic plane.

The acoustic waves in classical hydrodynamics are genuinely nonlinear when the funda-

mental derivative is positive12,30,33. This implies that the only possible waves allowed in

the solution are linear waves (contacts), compression shock waves and expansion fans. In

hydrodynamics the convexity of the EOS determines the convex dynamics of the system.

Most materials satisfy a strictly positive fundamental derivative. In other cases, where the

material undergoes phase transitions or the fluid is near the critical point region, non-convex

dynamics arise. Then isentropes lose convexity implying a loss of genuine nonlinearity of the

acoustic waves and a negative value of the fundamental derivative. The acoustic wave fam-

ily becomes more complex and the solution may generate anomalous structures like shock

waves attached to an expansion fan, double shocks separated by a rarefaction fan and dou-

ble rarefaction fans separated by a shock wave29,32,34,35. The emerging of composite wave

structures (typical in non-convex dynamics) where shocks break expansion fans might not

be a desirable effect in some applications. For example, in material processing, composite

waves represent the loss of continuity in the medium and in consequence inhomogeneities,

small cavities and porosity surfaces appear.

In the work of Lax36,37 the concepts of genuine and non-genuine nonlinearity of the

acoustic waves are generalized to hyperbolic systems of conservation laws. Decoupling the

system of hyperbolic conservation laws into characteristic wavefields these are classified

through an expression named nonlinearity factor that measures the monotonicity of the

characteristic wave speeds along wave curves. Positive nonlinearity factor implies genuine

nonlinearity of the nonlinear wavefields. In Euler dynamics it is proved that the nonlinearity

factor is proportional to the fundamental derivative and therefore change of sign of this

thermodynamic magnitude determines the same for the nonlinearity factor12,14. This relation
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is not longer valid when magnetic field is involved in the physical system under study.

The MHD system of equations is a system of hyperbolic conservation laws that results

from coupling Euler equations of hydrodynamics and Maxwell equations38,39. One of the

main properties of the MHD system is that the rotation of the magnetic field may induce

non-genuine nonlinearity in some characteristic wavefields. It has been analytically proved

for the case of the MHD system closed with convex EOSs that the nonlinearity factor vanishes

in isolated points depending on the values of the magnetic field5,8,40. MHD systems closed

with convex EOSs may exhibit anomalous wave structure because of the rotation of the

magnetic field. Let us point out that, in this case, the non-convex dynamics of the system

arises because of the orientation of the magnetic field and not because of the thermodynamic

properties inherited from the EOS.

In this work we focus on the characterization of the convexity of the MHD system closed

with non-convex EOSs. We explore the shock wave structure and discern the influence of

thermodynamic properties of materials and magnetic field on the formation of complex wave

structures.

In our analysis we consider the MHD system of equations governed by a general EOS.

We provide an analytical expression of the nonlinearity factor for the nonlinear wavefields

and prove that the loss of genuine nonlinearity of the wavefields depends on both: the

thermodynamic properties of the material and the magnetic field. We demonstrate that

phase transitions might not imply the loss of genuine nonlinearity. We also show that

complex wave structure induced by the loss of thermodynamic convexity can be neutralized

by prescribing a specific amount of magnetic field. Indeed, we prove that the non-convex

thermodynamic behavior induced by a non-convex EOS in a hydrodynamics system can be

reverted into convex dynamics by introducing an appropriate intensity of magnetic field in

the system.

We illustrate our analytical approach considering the MHD system and two non-convex

EOS that exhibit anomalous behavior. We analyze a van der Waals model that exhibits

phase transition28,30 and a Mie-Grüneisen type EOS1,41,42 which is considered as represen-

tative of real liquids and solids for which the fundamental derivative changes sign. In both

cases we analyze the structure and behavior of wave curves determined by the nonlinearity

factor. We present numerical experiments validating the analytical approach through a set

of one-dimensional Riemann problems. Firstly we show examples exhibiting non-convex
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dynamics in the absence of magnetic field and secondly we display their MHD counterparts

where the magnetic field has been chosen to revert the non-convex dynamics into convex

and therefore eliminating complex wave structure.

The characterization of the wave structure of the MHD system closed with a general

EOS presented in this paper provides a better understanding of the influential role of the

magnetic field in the dynamics of these complex flows. Our study might help to improve

characteristic-based code capabilities to simulate processes relevant in high energy-density

laboratory astrophysics where high power lasers (not well approximated by the ideal gas

EOS) are used to study jets and bow shocks. The proposed approach can also be of interest

in industrial applications of material processing when the properties of the material are

described through a non-convex EOS. Our characterization provides a mathematical tool

that might guide to predict the intensity of magnetic drive to increase pressure in a system

and therefore avoid shocks and other unwanted wave structures (loss of homogeneity in a

sample) intrinsic to non-convex dynamics.

The paper is organized as follows. In Sec. II we review general concepts on nonlinear

hyperbolic systems of conservation laws. Sec. III is devoted to the analysis of the wave

structure of MHD systems closed by a general equation of state where we derive a simple

expression of the nonlinearity factor in terms of the fundamental derivative and the magnetic

field. Sec. IV includes numerical examples of anomalous wave structure in magnetized

materials described by a van der Waals EOS and a Mie-Grüneisen EOS. In Sec. V we draw

our conclusions.

II. NONLINEAR HYPERBOLIC SYSTEMS OF CONSERVATION LAWS

In this Section we review general concepts on the theory of nonlinear hyperbolic systems

of conservation laws necessary to develop our study on the MHD wave structure under a

general EOS.

Mathematical models in fluid dynamics are represented by hyperbolic systems of conser-

vation laws of the form
∂u

∂t
+∇ · F(u) = 0 (2)

where u is the vector ofm conserved variables and F(u) is the corresponding one ofm fluxes.

The system is hyperbolic if the Jacobians of the fluxes in any direction are diagonalizable
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matrices with real eigenvalues and a complete set of eigenvectors in each neighborhood of

the solution36,37,39,43.

In one dimension the eigenvalues of the Jacobian of the flux f(u), f ′(u), are denoted

as λ1(u), · · · , λm(u) counting each one as many times as its multiplicity. The complete

system of right and left eigenvectors are defined as Ru = {r1(u), · · · , rm(u)} and Lu =

{l1(u), · · · , lm(u)} respectively diagonalizing f ′(u) such that ri · lj = δij and

Lu(u) f
′(u)Ru(u) = Λ = diag(λ1(u), · · · , λm(u)) (3)

The diagonalization of the Jacobians evaluated at same state decouples the linearized

hyperbolic system in m scalar conservation laws defining the so-called local characteristic

fields and their corresponding local characteristic fluxes36,37. The system is closed by an

EOS defining the thermodynamic properties of the material.

The eigenvalues of the Jacobian represent the characteristic speeds of the characteristic

fluxes analogous to the first derivative of the flux of a scalar conservation law. The nonlin-

earity of the corresponding characteristic fields is determined by the scalar quantity called

nonlinearity factor

σk(u) ≡ ∇uλk(u) · rk(u) (4)

where λk(u) and rk(u) are the kth characteristic field eigenvalue and eigenvector of the

Jacobian f ′(u) respectively. This magnitude corresponds to the second derivative of the

scalar flux in a scalar conservation law36,37,43.

The characteristic wavefields are classified as linearly degenerate, σk(u) = 0 , ∀u, genuinely
nonlinear (convex) σk(u) 6= 0 , ∀u and non-genuinely nonlinear (non-convex) when σk(u)

vanishes in isolated points u0.

Convex hyperbolicity occurs when characteristic fields are either linear or genuinely non-

linear. In convex dynamics the wave structure consists only of contacts, shocks and rarefac-

tion waves.

Non-convex hyperbolicity occurs when genuinely nonlinear fields become non-genuinely

nonlinear. The loss of genuine nonlinearity results in anomalous wave structure such compos-

ite (combination of smooth and discontinuous solutions), shock and rarefaction waves1,11–14.

It is well known in classical hydrodynamics represented by Euler equations that the

nonlinearity factor of nonlinear wavefields can be written in the equivalent form

σ±(u) = ±a
ρ
G (5)
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where G is the fundamental derivative, Eq. (1),

a =

√√√√∂P

∂ρ

∣∣∣∣∣
S

(6)

is the acoustic sound speed, P the pressure, ρ the density and S the specific entropy.

In Euler hydrodynamics the qualitative character of the solution of the conservation laws

depends on the thermodynamic properties of the material. From Eq. (5) it is clear that in

the case of hydrodynamics a change of sign of the fundamental derivative implies a change

of sign of the nonlinearity factor and therefore non-convex hyperbolicity and the consequent

anomalous wave structure.

In the following Section we analyze the wave structure of the MHD system of hyperbolic

conservation laws closed by a general EOS.

III. ANOMALOUS WAVE STRUCTURE IN NON-IDEAL MHD

EQUATIONS

The thermodynamic properties of a material have a decisive effect on the nature of the

shock wave phenomena that appears in it. In classical hydrodynamics the nature of the

EOS determines the behavior of the wave structure. In a region of negative value of the

fundamental derivative the dynamics might exhibit non-classical wave phenomena. The case

of MHD shock wave dynamics is more involved. Apart from the influence of the specific

material in the possible formation of anomalous wave structure, the presence of the magnetic

field adds complexity to the nonlinear wave dynamics. It has been proved in ideal MHD that

hyperbolic singularities appear when the magnetic field rotates causing the MHD eigensys-

tem to induce non-genuine nonlinearity in some of the nonlinear wavefields5,6,8,40,44. In this

Section we perform a complete analytical study of the MHD wave structure under a general

EOS. We present a full spectral decomposition of the Jacobians of the fluxes and derive

an expression of the nonlinearity factor for the nonlinear wavefields. We then analyze the

dependency of the non-genuinely nonlinear behavior of the shock wave phenomena in terms

of the fundamental derivative and the magnetic field.
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The MHD system of equations for real gases can be expressed as

∂ρ

∂t
+∇ · (ρv) = 0 (7a)

∂

∂t
(ρv) +∇ ·

(
ρvvT + (P +

1

2
B2)I −BBT

)
= 0 (7b)

∂B

∂t
−∇× (v ×B) = 0 (7c)

∂E

∂t
+∇ ·

((
E + P − 1

2
B2)v − (v ×B)×B

)
= 0 (7d)

where ρ,v = (u, v, w),B = (Bx, By, Bz) and E denote the mass density, the velocity field,

the magnetic field and the total energy respectively, being u = (ρ, ρu, ρv, ρw,Bx, By, Bz, E)

the vector of conserved variables. The energy is expressed as

E = ρε+
1

2
ρq2 +

1

2
B2 (8)

where q2 and B2 are the squares of the magnitudes of the velocity field and the magnetic field

respectively and ε the specific internal energy. P = P (ρ, ε) is the hydrodynamic pressure

defined through a real gas EOS. The system is completed with a condition on the magnetic

field, the divergence free constraint

∇ ·B = 0. (9)

Let us define (bx, by, bz) = (Bx, By, Bz)/
√
ρ and b2 = b2x+ b

2
y + b

2
z. The general expression

of the square of the acoustic sound speed (6) is given by

a2 = Pρ + Pε
P

ρ2

where Pρ represents the partial derivative of P with respect to ρ and Pε the partial derivative

of P with respect to ε. The specific total enthalpy is defined as

h∗ =
E + P ∗

ρ
(10)

where P ∗ = P + 1
2
B2 is the total pressure.

We propose a complete spectral decomposition of the MHD system (7) for the one-

dimensional case under a general equation of state. In the one-dimensional case the diver-

gence free constraint (9) is reduced to the case where Bx is constant. The constancy of Bx

implies that this quantity is considered an initial condition acting as a parameter. Thus the

evolution equation for the x-component of the magnetic field is not solved. The system of

equations provides an eigensystem composed of seven waves: one entropy wave, two Alfvén
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waves and four magnetoacoustic waves. Their corresponding eigenvalues λ, left eigenvectors

l and right eigenvectors r are defined as follows.

The spectral decomposition reflects the dependency of the wave structure on the magnetic

field B and on the thermodynamics induced by the EOS through magnitudes a2 and the

Grüneisen coefficient33,

Γ =
Pε

ρ
(11)

The Alfven wave speed is denoted by cA = |bx| and the fast and slow wave speeds are

given by

cf,s =

√
1

2

(
(a2 + b2)±

√
(a2 + b2)2 − 4a2b2x

)
(12)

The eight characteristic wave speeds associated to the system (7) are: λ1(u) = u − cf ,

λ2(u) = u− cA, λ3(u) = u− cs, λ4(u) = u, λ5(u) = u+ cs, λ6(u) = u+ cA, λ7(u) = u+ cf .

Depending on the direction and magnitude of the magnetic field, these wave speeds may

coincide making the MHD equations a non-strictly hyperbolic system of conservation laws.

Thus, the set of eigenvectors of the system can be singular at the points where the eigenvalues

are degenerate. From the original approach by Jeffrey and Taniuti38 the eigensystem of the

MHD equations closed with an ideal EOS has been extensively studied with the purpose of

proposing different normalizations avoiding these singularities5–8,40.

In this section we propose a set of eigenvectors which are an extension to the general

EOS case of the ones presented for ideal MHD in8. The latter approach exhibits an scaled

version of the complete system of eigenvectors proposed by Brio and Wu5,40 and therefore

are well defined providing a proper normalization to avoid singularities at the points where

the eigenvalues are degenerate. Our scaling also guarantees continuity of the eigenvectors

with respect to the conserved variables in the neighborhood of singular points8.

We present a unified expression for the eigenvectors of the nonlinear characteristic wave-

fields. We define sgn(t) = 1 for t ≥ 0 and sgn(t) = −1 otherwise and set βy and βz values

from

βy =

{ By√
B2

y+B2
z

; B2
y +B2

z 6= 0

1√
2
; otherwise

βz =

{
Bz√
B2

y+B2
z

; B2
y +B2

z 6= 0

1√
2
; otherwise

The right and left eigenvectors associated to the fast (k = 1, 7) and slow (k = 3, 5)

magnetoacoustic wavefields with eigenvalues λ1, λ3, λ5 and λ7, can be written for k = 1, 3, 5, 7

respectively as
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rk =

(
α, α(u+ c), αv − ᾱc̄ sgn(c2 − a2) sgn(Bx)βy, αw − ᾱc̄sgn(c2 − a2)sgn(Bx)βz,

ᾱ
a√
ρ

sgn(c2 − a2)βy, ᾱ
a√
ρ
sgn(c2 − a2)βz,

α
(
h∗ − a2 − b2 + c2 + uc

)
− sgn(c2 − a2)ᾱc̄ sgn(Bx)(vβy + wβz)

)T

(13)

lk =
1

2a2

(
Γα
(a2
Γ

+ q2 + b2 − h∗
)
− αuc+ sgn(c2 − a2)ᾱc̄ sgn(Bx)(vβy + wβz),−Γαu+ αc,

−Γαv − ᾱc̄ sgn(c2 − a2) sgn(Bx)βy,−Γαw − ᾱc̄ sgn(c2 − a2) sgn(Bx)βz,

−ΓαBy +
√
ρ aᾱ sgn(c2 − a2)βy,−ΓαBz +

√
ρ aᾱ sgn(c2 − a2)βz,Γα

)
(14)

where c and c̄ and α and ᾱ are determined as:

• for k = 1 and k = 7, c = ∓cf , c̄ = ∓cs and

α =

{
αf · sgn(By); a < cA

αf ; otherwise
ᾱ =

{
αs · sgn(By); a < cA

αs; otherwise

• for k = 3 and k = 5, c = ∓cs, c̄ = ∓cf and

α =

{
αs · sgn(By); a > cA

αs; otherwise
ᾱ =

{
αf · sgn(By); a > cA

αf ; otherwise

and αf and αs are defined from the following expressions

αf =

{ √
a2−c2s√
c2f−c2s

; B2
y +B2

z 6= 0 or cA 6= a

1√
2
; otherwise

αs =

{ √
c2f−a2√
c2f−c2s

B2
y +B2

z 6= 0 or cA 6= a

1√
2
; otherwise

We define τ = Γ
a2

to express the eigenvector associated to linear wavefield λ4 as

r4 =

(
1, u, v, w, 0, 0, h∗ − b2 − a2

Γ

)T

l4 = τ

(
1

τ
+

1

2

(
h∗ − b2 − a2

Γ
− q2

)
, u, v, w,By, Bz,−1

)
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The eigenvectors associated to the Alfven wavefields with eigenvalues λ2 and λ6 are

expressed as proposed in Ref.38 as

r2 =

(
0, 0,−βzsgn(Bx), βysgn(Bx),−

βz√
ρ
,
βy√
ρ
,−sgn(Bx)(βzv − βyw)

)T

r6 =

(
0, 0,−βzsgn(Bx), βysgn(Bx),

βz√
ρ
,− βy√

ρ
,−sgn(Bx)(βzv − βyw)

)T

l2 =

(
1

2
sgn(Bx)(βzv − βyw), 0,−βz

2
sgn(Bx),

βy
2
sgn(Bx),−βz

√
ρ

2
, βy

√
ρ

2
, 0

)

l6 =

(
1

2
sgn(Bx)(βzv − βyw), 0,−βz

2
sgn(Bx),

βy
2
sgn(Bx), βz

√
ρ

2
,−βy

√
ρ

2
, 0

)

The proposed complete system of eigenvectors is continuous with respect to the conserved

variables similarly as defended in Ref.8 for ideal MHD.

The extension of this seven wave eigensystem to the multidimensional case of the MHD

system under a general equation of state such that it satisfies the eight wave approach by

Powell et. al7 is obtained in a simple manner. Similarly as explained in6, the extended left

eigenvectors l1,8, l2,7, l3,6 and l4 are obtained, respectively, by inserting into l1,7, l2,6, l3,5 and

l4 of the seven wave eigensystem and a 5th component whose value is −ΓαBx. Likewise the

right eigenvectors r1,8, r2,7,r3,6 and r4 are obtained, respectively, by adding a 5th component

with a null value to r1,7, r2,6,r3,5 and r4 of the seven wave eigensystem. In addition, l5 and

r5 are given by

r5 = (0, 0, 0, 0, 1, 0, 0, Bx)
T , l5 = (0, 0, 0, 0, 1, 0, 0, 0, 0)

The system of eigenvectors for the Jacobian of the flux in the y− direction can be obtained

by interchanging Bx by By, u by v, the second component by the third and the fifth by the

sixth.

From the expression of the nonlinear right eigenvectors (13) we can derive the nonlinearity

factor for the nonlinear wavefields and study the wave structure of the MHD system under

a general EOS.

Let us first provide a thermodynamic relation that will be useful in the derivation of the

nonlinearity factor of the nonlinear wavefields. The following identity links the component of

the gradient of the specific internal energy in the direction of any nonlinear right eigenvector

with a thermodynamic relation that appears in the calculation of derivatives at constant

specific entropy with respect to density of thermodynamic magnitudes.
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Lemma 1 Let rc(u) represent the right nonlinear eigenvector of the Jacobian of the MHD

system and ε the specific internal energy. The following thermodynamic relation is satisfied

∇u ε · rc(u) = α
P

ρ2
(15)

Proof. We consider equation (8) to obtain an expression for the specific internal energy

ε = E
ρ
− 1

2
q2 − 1

2ρ
B2. We calculate the gradient of the specific internal energy with respect

to the conserved variables:

∇u ε =
( ∂ε
∂uj

)7
j=1

=
1

ρ

(1
2
q2 − ε,−u,−v,−w,−By,−Bz, 1

)
(16)

Using expression (13) and considering D = ᾱc̄ sgn (c2−a2)sgn(Bx) and E = ᾱ a√
ρ
sgn(c2−a2)

to simplify notation, the scalar product becomes

∇u ε · rc(u) =
1

ρ

(
α
(1
2
q2 − ε

)
− αu2 − αuc− αv2 +Dβyv − αw2 +Dβzw − Ebyβy

−Ebzβz + α(h∗ − a2 − b2 + uc+ c2)−D(βyv + βzw)

)

=
α

ρ

(1
2
q2 − ε− q2 − uc+ h∗ − a2 − b2 + uc+ c2

)
− E

ρ
(Byβy +Bzβz)

Then, from expressions (10) and (8), substituting E and using identities ᾱa sgn(c2 − a2) =

α(c2−a2)√
b2y+b2z

, By√
ρ
= by and βy =

by√
b2y+b2z

the scalar product simplifies to

∇u ε · rc(u) =
α

ρ

(
− 1

2
q2 − ε+ ε+

1

2
q2 +

1

2
b2 +

P

ρ
+

1

2
b2 − a2 − b2 + c2

)

− ᾱa√
ρ
sgn(c2 − a2)

Byβy +Bzβz
ρ

=
α

ρ

(
c2 − a2 +

P

ρ

)
− 1√

ρ

α(c2 − a2)√
b2y + b2z

1√
ρ

b2y + b2z√
b2y + b2z

=
α

ρ

(
c2 − a2 +

P

ρ
− (c2 − a2)

)
= α

P

ρ2
�

Theorem 1 (Formula of the nonlinearity factor for general MHD) The nonlinearity

factor for the nonlinear wavefields of the MHD system is expressed as

σc(u) ≡ ∇uλc(u) · rc(u) =
αc

ρ
(α2G +

3

2
ᾱ2) (17)

where λc(u) = u+ c with c = ±cf,s is the eigenvalue corresponding to a fast (f) or slow (s)

characteristic field, rc(u) the associated right eigenvector, G is the fundamental derivative

and α and ᾱ are defined following the normalization of the nonlinear wavefields.
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In the case of no rotation of the magnetic field, expression (17) is simplified to

σ±
cf
(u) = ±αfcf

ρ

(
α2
fG +

3

2
α2
s

)
(18)

σ±
cs(u) = ±αscs

ρ

(
α2
sG +

3

2
α2
f

)
(19)

where λ±cf (u) = u ± cf , λ
±
cs(u) = u ± cs are the eigenvalues corresponding to a fast or slow

characteristic wavefield, r±cf (u) and r±cs(u) are the associated right eigenvectors and αf and

αs are defined following the normalization of the nonlinear wavefields.

Proof. For the purpose of computing the scalar product ∇λc(u) · rc(u) we first calculate

the expression of the vector ∇λc(u) where λc = u + c is an eigenvalue associated to a

nonlinear characteristic wavefield and c represents the fast or slow wave speeds, ±cf or ±cs,
respectively. The gradient of the eigenvalue is calculated as

∇uλc(u) =
( ∂

∂uj
(u+ c)

)7
j=1

(20)

In order to simplify the calculation of the partial derivatives of c with respect to the

conserved variables uj, j = 1, · · · , 7 we use an equivalent expression of ∂c
∂uj

. We consider the

identity ∂c2

∂uj
= 2c ∂c

∂uj
and manipulate expression (12) as follows.

From (12) it is stated that c satisfies

c4 − (a2 + b2)c2 + a2b2x = 0 (21)

Taking partial derivatives of (21) with respect to the conserved variables uj, j = 1, · · · , 7
we have

∂

∂uj
c4 − ∂

∂uj

(
(a2 + b2)c2

)
+

∂

∂uj

(
a2b2x

)
=

2c2
∂c2

∂uj
− (a2 + b2)

∂c2

∂uj
− c2

(∂a2
∂uj

+
∂b2

∂uj

)
+ a2

∂b2x
∂uj

+ b2x
∂a2

∂uj
= 0 (22)

Since c is associated to a nonlinear wavefield, we have that 2c2 − (a2 + b2) = c2 − c̄2 6= 0.

We can then isolate ∂c2

∂uj
from (22) and we obtain for j = 1, · · · , 7,

∂c2

∂uj
=
c2 − b2x
c2 − c̄2

∂a2

∂uj
+

c2

c2 − c̄2
∂b2

∂uj
− a2

c2 − c̄2
∂b2x
∂uj

(23)
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Taking into account that c2−b2x
c2−c̄2

= c2

a2
α2 we compute the gradient of the eigenvalue λc(u)

plugging (23) into (20) and applying the chain rule as

∇uλc(u) =

(
∂u

∂uj
+

1

2c

∂c2

∂uj

)7

i=1

=
1

2c

(
2c
∂u

∂uj
+ α2 c

2

a2
∂a2

∂uj
+

c2

c2 − c̄2
∂b2

∂uj
− a2

c2 − c̄2
∂b2x
∂uj

)7

i=1

=
1

2c

(
− 2c

u

ρ
+ α2 c

2

a2

(∂a2
∂ρ

+
∂a2

∂ε

∂ε

∂u1

)
− c2

c2 − c̄2
b2

ρ
+

a2

c2 − c̄2
b2x
ρ
,

2c
1

ρ
+ α2 c

2

a2
∂a2

∂ε

∂ε

∂u2
, α2 c

2

a2
∂a2

∂ε

∂ε

∂u3
, α2 c

2

a2
∂a2

∂ε

∂ε

∂u4
, α2 c

2

a2
∂a2

∂ε

∂ε

∂u5
+

2c2

c2 − c̄2
by√
ρ
,

α2 c
2

a2
∂a2

∂ε

∂ε

∂u6
+

2c2

c2 − c̄2
bz√
ρ
, α2 c

2

a2
∂a2

∂ε

∂ε

∂u7

)
(24)

The nonlinearity factor is obtained through the scalar product between (24) and (13) by

using identities ᾱa sgn(c2 − a2) = α(c2−a2)√
b2y+b2z

and bx
c
a
= c̄ sgn(Bx),

σc(u) = −α
ρ
u+

α(u+ c)

ρ
+

1

2c

(
α2 c

2

a2

(
∂a2

∂ρ
α+

∂a2

∂ε

7∑

j=1

rc(u)j
∂ε

∂uj

)

−b2 c2

c2 − c̄2
α

ρ
+

a2

c2 − c̄2
b2x
α

ρ
+

2c2

c2 − c̄2
α

ρ
(c2 − a2)

)
(25)

Then, we first substitute the value of ∇uε · rc(u) accordingly with Lemma 1 and second we

identify ∂a2

∂ρ
+ P

ρ2
∂a2

∂ε
with ∂a2

∂ρ

∣∣∣
S
and ᾱ = c2−a2

c2−c̄2

σc(u) = α
c

ρ
+

1

2c

(
α3 c

2

a2

(
∂a2

∂ρ
+
P

ρ2
∂a2

∂ε

)
+

c2

c2 − c̄2
α

ρ

(
2c2 − 2a2 − b2 +

a2b2x
c2

))

= α
c

ρ
+

1

2c

(
α3 c

2

a2
∂a2

∂ρ

∣∣∣∣∣
S

+
α

ρ
ᾱ2c2

)
(26)

From the equivalent expression of the fundamental derivative G = 1 + ρ
a
∂a
∂ρ

∣∣∣
S
and the facts

that ∂a2

∂ρ

∣∣∣
S
= 2a∂a

∂ρ

∣∣∣
S
and α2 + ᾱ2 = 1 we can rewrite (26) as

σc(u) =
αc

ρ
+
αc

2ρ

(α2

a2
ρ
∂a2

∂ρ

∣∣∣
S
+ ᾱ2

)
=
αc

ρ

(
1 +

1

2

α2

a2
2ρa

∂a

∂ρ

∣∣∣
S
+
ᾱ2

2

)

=
αc

ρ

(
α2G +

3

2
ᾱ2
)

�

Remark 1 An alternative dimensionless expression of the nonlinearity factor (17) could be

derived if the general expression of the right eigenvectors (13) was multiplied by ρ
c
(the left

eigenvectors should be consequently multiplied by c
ρ
). However, with this normalization the
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eigensystem would not be complete since the eigenvectors would present singularities when

c = cs degenerates to zero at singular points.

Remark 2 Let us remark that the expressions of the nonlinearity factors, Eqs. (18) and

(19), differ from the corresponding one for the hydrodynamic case, Eq. (5), on terms that

depend on the magnetic field.

The following corollaries describe particular cases of special relevance.

Corollary 1 Let B be a magnetic field with Bx 6= 0 and B2
y +B2

z 6= 0 and no rotation and

let the fundamental derivative G < 0. The following cases apply

1. If −3
2
< G < 0 at some point then there exists a δ > 0 such that if ρa2 − δ ≤ B2 ≤

ρa2+ δ then the nonlinearity factors are both positive and therefore the wave structure

is classical.

2. If G < −3
2
at some point then at least one of the nonlinear wavefields induces a negative

nonlinearity factor and therefore there might be anomalous wave structure.

Proof:

In order to demonstrate both statements we first shall prove that both nonlinearity factors

are non-negative if and only if

G ≥ −3

2
min

(α2
s

α2
f

,
α2
f

α2
s

)
(27)

Indeed, by hypothesis 0 < α2
s < 1 and 0 < α2

f < 1. The non-negativity of nonlinearity

factors is satisfied if

α2
fG +

3

2
α2
s ≥ 0 and α2

sG +
3

2
α2
f ≥ 0

Both inequalities are fulfilled if and only if G ≥ −3
2
min

(
α2
s

α2
f
,
α2
f

α2
s

)

In order to prove the first assertion we use the explicit expressions

α2
s

α2
f

=
c2f − a2

a2 − c2s

obtained from the definitions of α2
s and α2

f . Then, using the formulas of the fast and slow

wave speeds we have that

α2
s

α2
f

=

√
(a2 − b2) + 4a2(b2 − b2x)− (a2 − b2)√
(a2 − b2) + 4a2(b2 − b2x) + (a2 − b2)

16



From this expression it is straightforward to see that a2 = b2 ⇐⇒ α2
s = α2

f = 1
2
and

a2 > b2 (a2 < b2 respectively) if and only if α2
s < α2

f (α2
s > α2

f). Since B2 = ρb2, we have

that

lim
B2→ρa2

α2
s

α2
f

= 1 = lim
B2→ρa2

α2
f

α2
s

(28)

We set ǫ = 1 − 2
3
|G| > 0. From the definition of limit in (28) we can find a δ > 0 such

that if ρa2− δ ≤ B2 ≤ ρa2+ δ then
∣∣∣1− α2

s

α2
f

∣∣∣ < ǫ and
∣∣∣1− α2

f

α2
s

∣∣∣ < ǫ. We distinguish two cases:

in the first case, ρa2 − δ ≤ B2 ≤ ρa2, we have that α2
s

α2
f
≤ 1 and 1 − α2

s

α2
f
≤ ǫ = 1 − 2

3
|G| and

therefore 2
3
|G| ≤ α2

s

α2
f
. This implies that

G > −3

2

α2
s

α2
f

= −3

2
min

(α2
s

α2
f

,
α2
f

α2
s

)

Thus, from (27) it follows that both nonlinearity factors are positive.

The other case, ρa2 − δ ≤ B2 ≤ ρa2, follows using the same argument over the ratio
α2
f

α2
s
.

Second assertion of the Corollary follows from the fact that

min
(α2

s

α2
f

,
α2
f

α2
s

)
≤ 1

and therefore if G < −3
2
at some point then (27) never holds and therefore at least one of

the nonlinearity factors is negative. �
The following corollary describes the cases where nonlinear wavefields degenerate to linear

wavefields depending on the magnitude and direction of the magnetic field.

Corollary 2 The following are possible degenerate cases

1. If B ≡ 0 (i.e.(Bx, By, Bz) = (0, 0, 0)), then α2
f = 1 and α2

s = 0 and system (7) reduces

to Euler equations and therefore

σ±
cf
(u) = ±a

ρ
G (29)

2. Let Bx 6= 0 and By = Bz = 0.

(a) If a > cA then c2f = a2, c2s = b2x, α
2
f = 1, α2

s = 0 and therefore

σ±
cf
(u) = ±a

ρ
G

The only nonlinear wavefields are fast and the change of sign of G implies non-

convex hyperbolicity of the fast wavefield.
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(b) If a < cA then c2f = b2x, c
2
s = a2, α2

f = 0, α2
s = 1 and therefore

σ±
cs(u) = ±a

ρ
G

The only nonlinear wavefields are the slow ones. Fast nonlinear wavefields degen-

erate to linear Alfven waves. Change of sign of G implies non-convex hyperbolicity

of the slow wavefield.

(c) If a = cA then c2f = c2s = a2 + b2x, α
2
f = 1

2
, α2

s =
1
2
and therefore

σcf (u) = 0 and σcs(u) = 0

Nonlinear wavefields degenerate to linear.

3. If Bx = 0 and B2
y + B2

z 6= 0 then c2f = a2 + b2, c2s = 0, α2
f = a2

a2+b2
, α2

s = b2

a2+b2
and

therefore

σ±
cf
(u) = ± a

ρ(a2 + b2)
(a2G +

3

2
b2)

The slow wavefield degenerates to a linear one and the only nonlinear wavefields are

fast.

We summarize previous results in Table I.

Remark 3 In case 3, if b2 > 2
3
a2|G| then the sign of a2G + 3

2
b2 is positive and therefore the

wave structure is genuinely nonlinear and anomalous wave structure is not given.

Remark 4 Corollary 2 indicates specific scenarios where the wave structure of a fluid is

not influenced by the presence of the magnetic field. It also reveals the situation where a

specific amount of magnetic field B can counterbalance the possible negative value of the fun-

damental derivative. Therefore, an appropriate prescription of magnetic field could prevent

the formation of composite waves induced by phase transition in the material.

The performed analysis provides a suitable insight on the MHD wave structure. The

analysis can also be considered as a mathematical tool to determine the possibilities of

transforming non-classical behavior of the wave structure in hydrodynamic simulations into

classical regimes under the influence of the magnetic field. In the following Section we

illustrate the above analysis considering the MHD system of equations together with two
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TABLE I. Degenerate cases of the nonlinear wavefields described in Corollary 2

c2f c2s α2
f α2

s Nonlinearity factor

Bx = 0

and a2 0 1 0 a
ρG

B2
y +B2

z = 0

a > cA a2 b2x 1 0 a
ρG

Bx 6= 0

and a < cA b2x a2 0 1 a
ρG

B2
y +B2

z = 0

a = cA b2x b2x
1
2

1
2 0

Bx = 0

and a2 + b2 0 a2

a2+b2
b2

a2+b2
a

ρ(a2+b2)
(a2G + 3

2b
2)

B2
y +B2

z 6= 0

non-convex EOS. For each of them we analyze the wave structure for Riemann problems

as the tool to investigate phenomena associated with shocks and expansion waves and their

interactions.

IV. NUMERICAL EXAMPLES OF ANOMALOUS WAVE STRUCTURE

IN MAGNETIZED MATERIALS

In this Section we consider two analytical models of non-convex EOS namely the van der

Waals and the Mie-Grüneisen to illustrate the analysis performed in the previous Section.

Van der Waals and Mie-Grüneisen models are simple models to investigate phenomena re-

lated to negative nonlinearity1,15–17,29,34,35. We particularize the study for each non-convex

model performing numerical experiments showing the anomalous wave phenomena that ap-

pears in the evolution of specific Riemann problems proposed in the literature for hydro-

dynamic codes. We extend these Riemann problems to planar magnetohydrodynamics sce-

narios (Bz = 0) prescribing specific amounts of magnetic field in the initial conditions that

allow to modify the wave structure preventing the formation of thermodynamical composite
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waves.

In order to determine the amount of magnetic field needed to change the wave structure in

each scenario we take into account case 1 of Corollary 1 and case 3 of Corollary 2. Case 1 in

Corollary 1 asserts that positive nonlinearities are obtained for the fast and slow wavefields

when the fundamental derivative keeps negative values in ]− 3
2
, 0[ and the oblique magnetic

field (Bx 6= 0 and B2
y +B2

z 6= 0) does not rotate and is confined to a bounded corona region.

On the other hand following case 3 in Corollary 2 we can obtain positive nonlinearity for a

specific amount of transversal magnetic field (Bx = 0 and B2
y + B2

z 6= 0) and any negative

value of the fundamental derivative.

We are going to consider different hydrodynamic problems in which anomalous structure

effects due to negative nonlinearities appear in the simulation. In order to revert a non-

classical hydrodynamics wave structure into a classical regime we use either of these results.

The general way we proceed is as follows.

We run the hydrodynamics code for the problem under study at a certain time t∗ and ex-

amine the profile of the fundamental derivative. As the present wave dynamics is anomalous,

the thermodynamical variable holds negative values at some points of the flow field inducing

negative nonlinearity in the system. We set Gmin(< 0) the minimum value of the fundamen-

tal derivative in our hydrodynamical scene and look up the values of the density ρ and the

square of the acoustic sound speed a2 at the same position and time and label them ρ∗ and

a2∗ respectively. We use two practical criteria to estimate the amount of magnetic field that

counterbalances the negative weight of the fundamental derivative in (18) and (19) so that

we obtain positive values of the nonlinearity terms. Consequently the non-classical behavior

in the hydrodynamics scenario is reverted into a classical one in the MHD framework. The

practical criteria read as follows.

Practical criterion 1: Following case 1 in Corollary 1, if Gmin ∈] − 3
2
, 0[ we apply an

oblique magnetic field to the hydrodynamics initial data such that its magnitude isB2 ≈ a2∗ρ∗

with Bx > 0 and By > 0. Then the appearing wave structure in the MHD scene is entirely

classical. In this case where the x−component of the magnetic field is present the slow

nonlinear wavefield is activated and a more involved wave structure appears.

Note that for large or very small amounts of oblique magnetic field such that B2 is not

confined into the corona region defined in Corollary 1 the negative weight of the fundamental

derivative cannot be counterbalanced and therefore nonlinearity terms remain negative and
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anomalous wave structure might appear.

Practical criterion 2: Following case 3 in Corollary 2, for Gmin < 0 we apply a transver-

sal magnetic field (Bx = 0) with By >
√

2
3
|Gmin|a2∗ρ∗. Then the non-classical phenomena is

turned into a classical regime. Note that in this case there is not lower bound condition for

the minimum value of the fundamental derivative.

The evolution of the MHD system with either the oblique or the transversal magnetic

field as prescribed in the practical criteria together with the initial data of density, velocity,

and pressure as in the purely hydrodynamical original problem will provide a classical wave

structure at the considered time t∗.

Next we present several numerical examples of hydrodynamics problems and their ex-

tended magnetohydrodynamics versions where the magnetic field has been determined fol-

lowing the practical criteria described above.

In order to perform numerical simulations we extend to general MHD the shock capturing

scheme presented in Ref.8 for ideal MHD. The high order numerical scheme is based on the

Marquina Flux Formula (MFF) as Riemann solver9. The flux formulation has been proved

to behave robust in multiple scenarios8,10,18–20,25,45,46. It computes the numerical fluxes at cell

interfaces by means of two linearizations at each side of the interface following the Marquina’s

interface strategy. The procedure satisfies Rankine-Hugoniot relations approximately and

avoids the computation of arithmetic averages to define intermediate states as it is common

in other Riemann solvers when Roe linearizations are not available4. We implement to

high order accuracy in space following the Shu-Osher flux formulation47 by using a third

order reconstruction procedure based on hyperbolas48,49. High order accuracy in time is

achieved by using a third order TVD Runge-Kutta time stepping procedure47. Details on

the implementation of the high order shock-capturing scheme for general MHD are expanded

in the Appendix A.

In our hydrodynamics experiments we compute the approximate solution of the problem

using the hydrodynamics version of the MHD code by setting B ≡ 0.

21



A. The van der Waals model for dense fluids under the influence of magnetic

field

The van der Waals gas is a model often considered in hydrodynamic scenarios to in-

vestigate phenomena related to anomalous shock wave dynamics. It represents a power-

ful analytical model that allows thermodynamic phase change and therefore complex wave

dynamics1,12,28,30,33,39.

The expression to define the pressure by the van der Waals EOS model is as follows. Let

us define κ = R
CV

where R is the gas constant, CV is the specific heat at constant volume

and ηa > 0 and ηb > 0 are positive constants accounting for the intermolecular forces and

the molecule size respectively. The pressure is obtained from

P = κ
ρ

1− ηbρ
(ε+ ηaρ)− ηaρ

2 (30)

From this expression we can derive the thermodynamic magnitudes relevant for the wave

structure analysis: the Grüneisen coefficient,

Γ =
κ

1− ηbρ
(31)

the square of the acoustic sound speed

a2 =
κ(κ+ 1)

(1− ηbρ)2
(ε+ ηaρ)− 2ηaρ

and the fundamental derivative

G(ρ, ε) = (κ+ 2)(κ+ 1)κ(ε+ ηaρ)− 6ηaρ(1− ρηb)
3

2(κ+ 1)κ(ε+ ηaρ)(1− ρηb)− 4ηaρ(1− ρηb)3
(32)

In order to explore the wave dynamics arising in MHD systems under a van der Waals

EOS we first examine the behavior of shock waves in the case of hydrodynamics described

by Euler equations.

We consider three Riemann problems proposed for Euler equations in references28,30. The

initial data for the dense gas are defined in the interval [0, 1] as two constant states at both

sides of 0.5, uL (left) and uR (right). Initial values for the density, velocity and pressure for

the three dense gas problems are shown in Table II. The values of the EOS parameters are

the same for the three problems: R = 1;CV = 80; ηa = 3; ηb = 1/3, (ηa and ηb are chosen

such that critical pressure and critical specific volume are equal to 1).
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TABLE II. Initial conditions for the Van der Waals hydrodynamics shock tube problems

ρL uL PL ρR uR PR

DG1 1.8181 0 3.000 0.275 0 0.575

DG2 0.879 0 1.090 0.562 0 0.885

DG3 0.879 0 1.090 0.275 0 0.575

TABLE III. Initial data for Hydrodynamics and MHD DG1 Riemann problems

HD-DG1 MHD-DG1-Oblique MHD-DG1-Transversal

DG1 and B ≡ 0 DG1 and B = (0.34, 0.34, 0) DG1 and B = (0, 0.45, 0)

The three problems develop non-classical wave structure. In each case there exist a region

where the fundamental derivative G is negative inducing negative nonlinearity. We are going

to use these problems to show different ways of inverting the non-classical behavior of the

hydrodynamic simulations into a classical wave structure by means of applying a specific

amount of magnetic field in the initial conditions of the problem. In order to prescribe an

appropriate intensity of magnetic field we follow the practical criteria presented previously.

Figures exhibiting results of the van der Waals dense gas Riemann problems are struc-

tured such that the first row displays the hydrodynamic simulation and second and third

rows show extensions of the corresponding hydrodynamics Riemann problems to magne-

tohydrodynamics scenarios where the initial values of the magnetic field have been chosen

following the first and second criteria respectively. All pictures in the Figures display a

reference solution of the shock tube problem under study computed with 5000 grid points

versus the obtained approximate solution using 800 grid points.

1. DG1 hydrodynamic and MHD Riemann problems

The initial data of the DG1 hydrodynamics Riemann problem in Table II provide positive

initial states of the fundamental derivative. The thermodynamical variable becomes negative

at some points of the flow evolution inducing formation of non-classical waves. Figure

1 exhibits results for the hydrodynamics and magnetohydrodynamics simulations at time
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FIG. 1. Numerical solutions at time t = 0.15 of the Hydrodynamics and MHD van der Waals

DG1 Riemann problems. First row, Hydrodynamics-DG1. Second row, MHD-DG1 with Oblique

magnetic field. Third row, MHD-DG1 with Transversal magnetic field. Form left to right profiles of:

density, fundamental derivative and the corresponding nonlinearity factors of nonlinear wavefields

for each case.

t∗ = 0.15. First row of Figure 1 displays the profiles of the density, fundamental derivative

and nonlinearity term of the hydrodynamic simulation. The solution of the hydrodynamic

problem presents a three wave structure: a contact (entropy) wave separating a compression

shock wave traveling to the right and a composite wave traveling to the left. The composite

wave, consisting of an expansion shock attached to an expansion fan, is located in ]0.5, 0.6[
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TABLE IV. Initial data for Hydrodynamics and MHD DG2 Riemann problems

HD-DG2 MHD-DG2-Oblique MHD=DG2-Transversal

DG2 and B ≡ 0 DG2 and B = (0.31, 0.31, 0) DG2 and B = (0, 0.43, 0)

where negative values of the fundamental derivative appear. The nonlinearity term profile

also presents negative values in the same region since the nonlinearity and the fundamental

derivative share sign in hydrodynamics (29). From the simulation we have that Gmin =

−0.8554 and the density and the square of the acoustic sound speed at the same location

are ρ∗ = 0.7781 and a2∗ = 0.2981.

Second and third rows of Figure 1 include MHD simulations with initial values as shown

in Table III. The initial values of magnetic field for each simulation have been calculated

following practical criteria 1 and 2.

From criterion 1 we obtain r = a2∗ρ∗ = 0.4816 from where we choose an oblique magnetic

field of 45◦ setting Bx = By ≈ r cos(π
4
). We set Bx = By = 0.34 constant in the whole

domain. Results of the MHD Riemann problem are displayed in the second row of Figure 1.

Taking into account the same hydrodynamics scenario, practical criterion 2 determines

that applying a transversal magnetic field B = (0, By, 0) with By > 0.3637 the wave structure

will become classical. We set Bx = Bz = 0 and By = 0.45 constant. Results are displayed

in the third row of Figure 1.

Both MHD simulations show classical wave structure. In both cases the nonlinearity

factors are entirely positive in spite of the phase transition reflected in the profile of the

fundamental derivative. The composite wave that appears in the hydrodynamics simulation

in the first row of Figure 1 is transformed into a simple expansion fan in the MHD simulations

in second and third rows of the same Figure. We also observe the more involved wave

structure in the MHD-DG1-Oblique simulation in second row due to the presence of the

x-component of the magnetic field. Four nonlinear waves appear, two at each side of the

entropy wave.
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2. DG2 hydrodynamic and MHD Riemann problems

The initial data of the DG2 hydrodynamics Riemann problem are displayed in Table

II. The value of the fundamental derivative at the initial time is negative at both sides of

the interface. This example represents the case where the flow field remains with negative

fundamental derivative during the flow evolution. This issue, in the hydrodynamics case,

implies that the nonlinearity is also negative everywhere and therefore the wave dynamics

is entirely non-classical.

We compute the solution at time t∗ = 0.45. Figure 2 includes the hydrodynamic and

MHD simulations. First row displays the hydrodynamic results. We observe non-classical

phenomena as nonlinear waves appear in reverse form: an expansion shock propagating to

the left and a compression fan propagating to the right. From this simulation we compute

the required values to apply our practical criteria and determine the amount of magnetic

field to revert the non-classical behavior into a classical regime. We obtain Gmin = −1.3179

and ρ∗ = 0.7807 and a2∗ = 0.2445 in the same location.

Following criterion 1 we have that r = a2∗ρ∗ = 0.4816 from which we prescribe an oblique

magnetic field of 45◦ setting Bx = By = r cos(π
4
) ≈ 0.31.

Criterion 2 for this problem states a transversal magnetic field where By > 0.4095. We

set Bx = Bz = 0 and By = 0.43 constant. Initial data of the MHD-DG2 Riemann problems

are summarized in Table IV and results are displayed in second and third row of Figure 2

respectively.

In both MHD simulations we observe a classical wave structure: rarefactions moving

to the left, and shocks moving to the right side of the flow field. The nonlinearity terms

exhibit positive values in both problems while the fundamental derivative remains negative

in the whole domain. We also observe a more involved wave structure in the oblique case as

expected because of the presence of the x-component of the magnetic field.

3. DG3 hydrodynamic and MHD Riemann problems

Initial data of problem DG3 are included in Table II. This initial data present a phase

change since GL = −0.031 and GR = 0.703. The solution of the hydrodynamic problem

at time t∗ = 0.2 exhibits a three wave structure: a contact (entropy) wave separating
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FIG. 2. Numerical solutions at time t = 0.45 of the Hydrodynamics and MHD van der Waals

DG2 Riemann problems. First row, Hydrodynamics-DG2. Second row, MHD-DG2 with Oblique

magnetic field. Third row, MHD-DG2 with Transversal magnetic field. Form left to right profiles of:

density, fundamental derivative and the corresponding nonlinearity factors of nonlinear wavefields

for each case.

a compression shock wave traveling to the right and a composite wave traveling to the

left consisting of an expansion shock attached to an expansion fan. The structure of the

composite wave is located in the position where the fundamental derivative changes sign.

The nonlinearity factor presents a similar profile as the fundamental derivative and becomes

negative at the same locations since both share sign in the hydrodynamic case (29). From the
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TABLE V. Initial data for Hydrodynamics and MHD DG3 Riemann problems

HD-DG3 MHD-DG3-Oblique MHD-DG3-Transversal

DG3 and B ≡ 0 DG3 and B = (0.4, 0.6, 0) DG3 and B = (0, 0.38, 0)

simulation we obtain Gmin = −0.3733 and the values for density and square of the acoustic

sound speed at the same location are ρ∗ = 0.7703 and a2∗ = 0.3910 respectively. With these

values we use the practical criteria to determine different amounts of magnetic field to revert

non-classical wave phenomena into classical.

The initial data for the MHD-DG3 are shown in Table V. The initial values of the

magnetic field have been estimated satisfying practical criteria 1 and 2.

From practical criterion 1 we have that r = a2∗ρ∗ = 0.5488. This value provides an

estimation of the radius of the corona region where the total magnitude of magnetic field

needs to be defined to counterbalance negative values of the fundamental derivative. In this

example we choose a magnetic field in the corona region setting Bx = 0.4 and By = 0.6

which gives B2 = 0.52. Results are displayed in the second row of Figure 3.

Practical criterion 2 states By > 0.2738 and we set the magnetic field as Bx = Bz = 0

and By = 0.38 constant. Third row of Figure 3 exhibits the results for this MHD test.

We observe positive nonlinearity factors in both, oblique and transversal, MHD compu-

tations. In spite of the phase transition that takes place in the interval ]0.3, 0.4[, reflected

with a change of sign of the fundamental derivative, there is not thermodynamical composite

wave showing up in the MHD quantities because both nonlinearity factors are positive. The

composite wave appearing in the hydrodynamics case (represented in the first row of Figure

3) is transformed in second and third rows into simple expansion fans.

In the three examples presented up to this point we have added positive amounts of

magnetic field in the initial states of the evolution of the hydrodynamic systems. The

magnetic field has dissolved thermodynamical composite waves induced by phase transitions

transforming anomalous phenomena in the wave structure in the hydrodynamic simulations

into classical regimes in the MHD framework. In each example we have reverted a situation

where the nonlinearity was negative in some regions of the domain to the case where the

nonlinearity terms associated to nonlinear wavefields in MHD were entirely positive.

As mentioned in Section III it is well known in MHD systems that the rotation of the
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FIG. 3. Numerical solutions at time t = 0.2 of the Hydrodynamics and MHD van der Waals

DG3 Riemann problems. First row, Hydrodynamics-DG3. Second row, MHD-DG3 with Oblique

magnetic field. Third row, MHD-DG3 with Transversal magnetic field. Form left to right profiles of:

density, fundamental derivative and the corresponding nonlinearity factors of nonlinear wavefields

for each case.

magnetic field might induce non-genuinely nonlinearity in some of the nonlinear wavefields.

The loss of genuniely nonlinearity entails the consequent anomalous wave structure in the

form of composite waves5,6,8,40.

In the next example we consider a case where the magnetic field rotates. We add to the

DG3 problem initial data a transversal magnetic field with change of sign in the y-direction
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FIG. 4. Numerical solution at time t = 0.2 of the MHD van der Waals DG3 Riemann problem

with Rotated Oblique magnetic field. Profiles of density, zoomed region for the compound wave

in density, y-component of the magnetic field, fundamental derivative and nonlinearity factors of

nonlinear wavefields

which will induce a magnetic composite wave. This example shows that the anomalous wave

behavior in MHD systems is independent from the EOS model used.

4. Planar MHD-DG3 Riemann problem with rotating magnetic field

We consider the hydrodynamics initial data DG3 together with a magnetic field that

has a change of sign in the y-component, BL = (0.4, 0.6, 0) and BR = (0.4,−0.6, 0). Let us

remark that the total amount of magnetic field in this problem is the same as in the previous

MDG3-0blique problem. The difference relies on the minus sign of the y-component at the

right side of the interface. This change of sign implies rotation of the magnetic field and the

subsequent formation of a magnetic composite wave5,40.

We compute the approximate solution at time t∗ = 0.2 and display results in Figure 4.

Similarly as in the previous example the total amount of magnetic field (B2) counterbalances
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the negative value of the fundamental derivative in the expression of the nonlinearity factor

(17) implying the suppression of the thermodynamical composite wave that was originally

in the hydrodynamic DG3 example in first row of Figure 3.

In Figure 4 we observe a phase transition in the interval ]0.3, 0.4[ but not anomalous

structure appears in the same region in the density profile. This is because both nonlinear-

ity factors are positive in the interval. However we recognize a magnetic composite wave in

the region ]0.48, 0.52[ where By changes sign. A zoomed region of the anomalous structure

in density is displayed at the center of the first row of the Figure. The generation of this

composite wave is due to the rotation of the magnetic field and not because of thermody-

namic effects (fundamental derivative is positive in ]0.48, 0.52[). Let us remark that this

composite wave has the same structure as the one appearing in ideal MHD systems under a

rotating magnetic field5,6,8,40,44.

This is an illustrative example of the way the magnetic field influences the wave structure

of the MHD system. While the total amount of B has balanced out the negative weight of

the fundamental derivative in the nonlinearity term dissolving the thermodynamic composite

wave, its rotation caused by a change of sign in the y-component has induced negative values

in the nonlinearity term (17).

5. Planar MHD-DG3 Riemann problem with large amount of magnetic

field: Bx = 1 and By = 1 constant.

In this example we consider the DG3 hydrodynamics initial data together with a large

amount of magnetic field in an oblique direction. We evolve the initial data DG3 together

with a constant magnetic field B = (1, 1, 0) in the interval [−0.5, 1.5].

Let us remark that By remains positive at both sides of 0.5 and therefore no magnetic

composite wave formation is expected. We display in Figure 5 the profiles of the density,

fundamental derivative and both nonlinearity factors corresponding to the slow and fast

wavefields of the solution at time t∗ = 0.2 with 1000 points.

We observe a thermodynamical composite wave in the density profile in the same region

as the fundamental derivative changes sign. The nonlinearity factor of the slow wavefield

reflects the behavior of the fundamental derivative changing sign accordingly. This induces

non-classical behavior and the formation of the anomalous structure. The nonlinearity
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FIG. 5. Numerical solution at time t = 0.2 of the MHD van der Waals DG3 Riemann problem with

large amount of oblique magnetic field. Profiles of density, fundamental derivative and nonlinearity

factors of nonlinear wavefields

term changes sign once, therefore the composite wave consists only of two components: a

compression fan attached to a shock wave. In this example the amount of oblique magnetic

field is out of the corona region defined in Corollary 1 and is not the appropriate one to

cancel out the negative value induced by the fundamental derivative and avoid the formation

of the thermodynamic composite wave.

B. A Mie-Grüneisen model for fluids under the influence of magnetic field

The Mie-Grüneisen type EOS is usually considered to model solid and liquid materials

in hydrodynamics and is commonly adopted for reactive problems in which detonations

arise in solids. The Mie-Grüneisen EOS is specially interesting for the studies of shock

waves with multiple phase transitions and mixtures at high pressures and is used to model

condensed phase materials to effectively describe the hydrodynamic shock response of many

materials included metals1,15–17,41,42. In this Section we consider a particular case of this

formulation representing a fictitious material called “Bizarrium” proposed in Refs.41,42 and

extensively studied in Ref.42. The Bizarrium EOS is built such that the material describes

wave propagation with continuous changes of concavity in the isentropes. Phase transitions

are reflected through a change of sign in the fundamental derivative and exhibiting a complex

wave structure.
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We define the pressure following the notation presented in Ref.42 as

P = Pk0(ρ) + Γ0ρ0(ε− εk0(ρ)) (33)

with

εk0(ρ) = ε0 − Cv0T0(1 + g(ρ)) +
K0

2ρ
x2f0(ρ) (34)

g(ρ) = Γ0

(
1− ρ0

ρ

)
(35)

f0(ρ) =
1 + ( s

3
− 2)x+ qx2 + rx3

1− sx
(36)

Pk0(ρ) = −ε′k0(ρ) (37)

where x = ρ
ρ0

− 1 and ρ0, T0, Γ0 and Cv0 are the density, temperature, Grüneisen coefficient

and the specific heat at constant volume of the reference state respectively.

The thermodynamic quantities relevant in our study are the square of the acoustic sound

speed

a2 =
1

ρ2

(
Γ0ρ0(P − Pk0(ρ))− P ′

k0(ρ)
)

(38)

the Grüneisen coefficient

Γ = Γ0
ρ0
ρ

(39)

and the fundamental derivative

G =
1

2

1

γρ2P

(
P ′′
k0(τ) +

(
ρ0Γ0

)2
(P − Pk0(ρ))

)
(40)

where

γ =
1

ρP

(
Γ0ρ0(P − Pk0(ρ))− P ′

k0(ρ)
)

(41)

Other functions presented in Ref.42 and needed for the computation of the above quan-

tities are

f1(x) = f ′
0(x) =

s
3
− 2 + 2qx+ 3rx2 + sf0(x)

1− sx
(42)

f2(x) = f ′′
0 (x) =

2q + 6rx+ 2sf ′
0(x)

1− sx
(43)

f3(x) = f ′′′
0 (x) =

6r + 3sf ′′
0 (x)

1− sx
(44)
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Similarly, from Eq. (34) we get

Pk0(ρ) = −Cv0T0Γ0ρ0 +
K0x(1 + x)2

2

(
2f0 + xf1

)

P ′
k0(ρ) = −K0(1 + x)3ρ0

2

(
2(1 + 3x)f0(x) +

2x(2 + 3x)f1(x) + x2(1 + x)f2(x)
)

P ′′
k0(ρ) = −K0(1 + x)4ρ20

2

(
12(1 + 2x)f0(x)

+6(1 + 6x+ 6x2)f1(x)

+6x(1 + x)(1 + 2x)f2(x) + x2(1 + x)2f3(x)
)

As stated in Ref.42 the domain of validity of this EOS is determined by relevant values

of the reference potential and thermodynamic stability. These conditions provide that the

density must be restricted between 8113.102 and 16666.666 kg/m3.

From expression (40) it can be checked that the change of sign of the fundamental deriva-

tive happens twice. Indeed, the loss of convexity of the Bizarrium EOS occurs when the

density ρ varies in the interval [11428, 13333]

In the following we analyze a test problem proposed in Ref.42 for Euler equations ruled by

the Mie-Grüneisen EOS. We reproduce the hydrodynamic results and extend the data to a

MHD test adding specific amounts of magnetic field such that the anomalous wave structure

originally present in the hydrodynamic problem is dissolved.

1. Bizarrium test for hydrodynamics

We consider the so-called Bizarrium test problem for hydrodynamics presented in Ref.42

(ρ, u, P ) =





(14285.7, 0, 1011); x ≤ 0.5

(10000, 250, 0); x > 0.5

with parameters as showed in Table VI.

This test problem has been designed to exhibit composite wave structure at both sides of

the entropy wave. The initial state consists of two states where the fundamental derivative

is positive and the jump discontinuity in 0.5 contains two points where G changes sign.

The complex wave structure appearing in the evolution of this initial data is considered

a benchmark to evaluate the behavior of numerical methods42. Before considering an exten-
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TABLE VI. Coefficients of the Bizarrium EOS

ρ0 (kg/m3) 10000 s 1.5

K0 (Pa) 1011

Cv0(J/kg/K) 1000 q −42080895
14941154

T0 (K) 300

ε0(J/kg) 0

S0 0 r 727668333
149411540

Γ0 1.5

sion of this problem to MHD scenarios we approximate the solution of the hydrodynamics

problem to test the robustness of the numerical scheme.

We compute the approximate solution at time t∗ = 8 · 10−5 using 1000 grid points and

CFL= 0.8. Figure 6 displays the profiles of the density, velocity, pressure, fundamental

derivative and nonlinearity factor. We observe composite waves at both sides of the entropy

wave. The rarefaction fan traveling to the left splits into two branches that are connected

through an expansion shock. The shock wave traveling to the right splits into two compres-

sion shocks connected through a compression fan.

We calculate the value of the fundamental derivative from the computed values of the

conserved variables at final time of the evolution. We observe that the profile of the funda-

mental derivative presents a numerical artifact near the entropy wave. The “spike” reaches

negative values which are non-physical. This numerical effect is the result of the evolution of

a startup error which occurs when the initial data includes a phase change as is the case in

the Bizarrium test. The formation of the nonlinear wave that propagates away from the en-

tropy wave generates the “spike” due to the presence of numerical diffusion. This numerical

artifact cannot generate spurious composite waves because entropy waves are linear waves

and the theory states that anomalous wave structure is only developed around nonlinear

waves. This effect is also reflected in the profile of the nonlinearity factor.

Our interest focuses on transforming the appearing non-classical wave structure into a

classical one. In the next example we add a specific amount of magnetic field in the initial

states of the evolution to perturb the complex wave structure induced by phase transitions.
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FIG. 6. Numerical solution at time t = 8 · 10−5 of the Bizarrium test for hydrodynamics. Top to

bottom and left to right profiles of density, velocity, pressure, fundamental derivative and nonlin-

earity factor of the nonlinear wavefield at time.

2. MHD Bizarrium test

The evolution of the hydrodynamics Bizarrium initial data problem at time t∗ = 8 · 10−5

presents anomalous structure supported by negative values of the nonlinearity which are

induced by the fundamental derivative. The thermodynamical variable provides a profile

with minimum value equal to Gmin = −7.0725. In order to determine an amount of magnetic

field to counterbalance this value and obtain positive nonlinearity terms in the magnetohy-

drodynamics framework we use the criteria presented at the beginning of this section. Since

the minimum value of the fundamental derivative is smaller than −3
2
the possibility of re-

verting the non classical wave structure into a classical one by using a oblique magnetic field

is excluded and the only way to revert it is by determining a transversal magnetic field as

suggested in practical criterion 2.

The values of the density and square of the acoustic sound speed at the same location

where the fundamental derivative reaches its minimum value are ρ∗ = 1.2591 · 104 and
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FIG. 7. Numerical solution at time t = 8·10−5 of the MHD Bizarrium test with constant Transversal

magnetic field. Profiles of density, fundamental derivative and nonlinearity factor of the nonlinear

wavefield.

a2∗ = 4.5716 ·106. From this quantities criterion 2 determines Bx = 0 and By > 5.20970 ·105.
We initiate the MHD Bizarrium test considering the hydrodynamics initial data together

with Bx = Bz = 0 and prescribing By = 7.5 · 105 constant in the domain. We compute the

approximate solution in the interval [−0.5, 1] at time t∗ = 8 · 10−5 with 1000 grid points.

Figure 7 displays the profiles of the density, fundamental derivative and nonlinearity factor

of the fast wavefield (the slow wavefield degenerates to linear). We observe a classical wave

structure. One expansion fan travels to the left and one compression shock does to the right

of the entropy wave. The slow wave degenerates to the linear entropy wave. The composite

wave that appeared in the hydrodynamic case has been dissolved because of the effect of

the magnetic field.

We note that the initial constant value of the transversal magnetic field has not only

reverted the non-classical waves structure into a classical regime but it has also transformed

a blast wave hydrodynamics scenario into a typical shock tube profile.

V. CONCLUSIONS

We have presented an analytical study of the wave structure of MHD system of equations

closed with a general EOS. We have proposed a complete spectral decomposition of the

fluxes of the system and derived an expression of the nonlinearity factor for the nonlinear

wavefields. We demonstrate that the non-ideal MHD wave structure depends crucially on

both: the EOS characterizing the material and the magnetic field and its possible rotation.
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We prove that phase transitions induced by materials properties might not imply the loss

of genuinely nonlinearity. We also show that complex wave structure induced by thermo-

dynamical properties can be neutralized by prescribing a specific amount of magnetic field.

We present numerical experiments consisting of a set of one-dimensional Riemann problems

for two non-convex EOS that exhibit phase transitions and anomalous behavior in the evo-

lution. In the experiments we show how the non-convex thermodynamic behavior induced

by a non-convex EOS in a hydrodynamics system can be reverted into convex dynamics by

introducing an appropriate intensity of magnetic field in the system.
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Appendix A: A numerical scheme for general MHD

A one dimensional numerical scheme in conservation form for a system of conservation

laws can be written as

un+1
j = un

j −
∆t

∆x

(
f̃j+ 1

2
− f̃j− 1

2

)
(A1)

where un
j ≈ u(xj , tn) is a numerical approximation of the solution in the computational cell

xj = jh, tn = n∆t where h and ∆t are the spatial and time step sizes respectively and f̃j+ 1
2

represents the numerical flux.

The specific form of the first order accurate approximation of the system of equations

reads as

un+1
j = un

j −
∆t

∆x

(
f̃(un

j ,u
n
j+1)− f̃(un

j−1,u
n
j )
)

such that f̃(u,u) = f(u).

The first order accurate Marquina’s flux splitting formula to compute f̃ in terms of two

linearizations for each flux and interface reads, as proposed in Ref.9, as

f̃(un
j ,u

n
j+1) =

7∑

p=1

(
ψp
+r

f
p(u

n
j ) + ψp

−r
f
p(u

n
j+1)

)
(A2)
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where ψp
+ and ψp

− represent the lateral numerical characteristic fluxes.

In order to compute the lateral numerical characteristic fluxes we proceed similarly as

proposed in Ref.8 for ideal MHD. The proposed entropy-fix upwind scheme for ideal MHD

is proved to behave low dissipative. It is designed such that the upwind strategy is used in

each interface unless the interface is located in a region containing sonic points or points

where the magnetic field rotates inducing non-convexity of the nonlinear wavefields. In those

cases a Local Lax-Friedrichs strategy is proposed by prescribing a local viscosity calculated

in terms of the characteristic wave speeds and the magnetoacoustic sound speed.

In the present case of general MHD we extend the mentioned methodology in a way that

the Local Lax-Friedrichs strategy is also used when non-convex hyperbolicity is induced by

phase transitions, i.e., changes of sign of the fundamental derivative.

The procedure reads as follows. We first compute the complete system of eigenvectors

at un
j and un

j+1 and the associated eigenvalues λp(u
n
j ) and λp(u

n
j+1) for p = 1, 2, · · · , 7 as

proposed in Section 2. The local characteristic fluxes and variables are calculated at both

sides of the interface as

φp
j = f(un

j ) · lp(un
j )

wp
j = un

j · lp(un
j )

for p = 1, 2, · · · , 7.
Then, a first order computation of the numerical characteristic fluxes ψp

+ and ψp
− is

determined at both sides of the interface from the following procedure.

We distinguish three types of interfaces namely: singular, sonic and upwind. Singular

interface is the interface that contains a point of non-convex hyperbolicity, i.e., an isolated

point where the nonlinearity factor vanish. A sonic interface is an interface where the

characteristic wave speeds change sign, i.e., there is at least one q ∈ {1, 2, · · · , 7} such that

λq(u
n
j ) · λq(un

j+1) ≤ 0. An upwind interface is an interface that is neither singular nor sonic.

For the singular and sonic interfaces we compute the lateral numerical characteristic

fluxes following a Local Lax-Friedrichs approach as,

ψp
+ =

1

2
(φp

j + αwp
j ); ψp

− =
1

2
(φp

j+1 − αwp
j+1); (A3)

for p = 1, 2, · · · , 7. The local viscosity α is computed as

αp = max(|λp(un
j )|, |λp(un

j+1)|) (A4)
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for the sonic interface and as

α = max(|λ4(un
j )|, |λ4(un

j+1)|) + max(cj , cj+1)

where

ci =
√
cf(u

n
i )

2 + cs(u
n
i )

2 for i = j, j + 1

for the singular case.

Upwind interfaces are solved following the upwind strategy:

• If λp(u
n
j ) > 0,

ψp
+ = φp

j ; ψp
− = 0 (A5)

• If λp(u
n
j ) ≤ 0,

ψp
+ = 0; ψp

− = φp
j+1 (A6)

for p = 1, 2, · · · , 7.
High order approximation in space can be achieved by computing the numerical charac-

teristic fluxes in terms of φ+p

j+ 1
2

, φ−p

j+ 1
2

, w+p

j+ 1
2

and w−p

j+ 1
2

which represent the extended values

of the local characteristic fluxes and variables at the interface. This is made by substituting

φ
p

j by φ+p

j+ 1
2

, φ
p

j+1 by φ−p

j+ 1
2

, w
p

j by w+p

j+ 1
2

and w
p

j+1 by w−p

j+ 1
2

.

High order accurate extended values of the local characteristic fluxes and variables are

computed following the Shu-Osher flux formulation47 applying a reconstruction procedure.

In particular, we have implemented the numerical scheme to achieve third order accu-

racy in space and time. As the reconstruction procedure in space we have used the third

order accurate Power Piecewise Hyperbolic Method48,49 which has a three point stencil. For

the integration in time we have utilized the third order accurate TVD Runge-Kutta time

stepping procedure proposed in Ref.47.

The proposed numerical method is stable under a CFL condition50 determined by

∆t = C
∆x

max(|u|+ cf)
(A7)

Remark 5 An alternative method to compute the numerical characteristic fluxes ψp
+ and

ψp
− consists on solving all interfaces following the Local Lax-Friedrichs approach. This option

is computationally simpler although more dissipative than the proposed one.
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