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ON A FAMILY OF POLYNOMIAL DIFFERENTIAL EQUATIONS

HAVING AT MOST THREE LIMIT CYCLES

ARMENGOL GASULL AND YULIN ZHAO

Abstract. We prove the existence of at most three limit cycles for a family of planar
polynomial differential equations. Moreover we show that this upper bound in sharp.
The key point in our approach is that the differential equations of this family can be
transformed into Abel differential equations.

1. Introduction and main results

Hilbert’s 16th Problem has been one of the main problems in the qualitative theory of
ordinary differential equations in the last century, and continues to attract widespread
interest. It is concerned with the number and possible configurations of limit cycles for
planar polynomial differential systems. This problem has not been solved even for the
quadratic case.

In this paper we are interested in the study of the number of limit cycles of polynomial
differential systems of the form

(1)
ẋ = x(Pn−1(x, y) + Pn+2m−1(x, y) + Pn+3m−1(x, y)) +Qn+m(x, y),
ẏ = y(Pn−1(x, y) + Pn+2m−1(x, y) + Pn+3m−1(x, y)) +Rn+m(x, y),

where the dot denotes the derivative with respect to the time t, n and m are positive
natural numbers and Pk(x, y), Qk(x, y) and Rk(x, y) are homogeneous polynomials of
degree k. We introduce the new homogeneous polynomial

Gn+m+1(x, y) = xRn+m(x, y)− yQn+m(x, y),

and associated to it, the function gn+m+1 defined by gn+m+1(θ) = Gn+m+1(cos θ, sin θ).
Our main result is:

Theorem 1. Consider system (1). Then

(a) When n+m is even it has no limit cycles.
(b) When n+m is odd and gn+m+1 vanishes it has no limit cycles.
(c) When n+m is odd, gn+m+1 does not vanish and Pn+3m−1 does not change sign

it has at most three limit cycles counting their multiplicities. Moreover:
(i) When n is odd (and so m is even) there exist systems of the form (1)

satisfying the above hypotheses and having exactly 0, 1, 2 or 3 limit cycles,
taking into account their multiplicities.

(ii) When n is even (and so m is odd), then it has at most one limit cycle and
when it exists it is hyperbolic. Furthermore this upper bound is sharp.

(d) When n+m is odd, gn+m+1 does not vanish and Pn+3m−1 changes sign then:
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(i) For any n odd and m even there are systems having at least four limit
cycles.

(ii) For any n even and m odd there are systems having at least two limit
cycles.

Notice that in the literature there are many results about non existence or uniqueness
of limit cycles for planar polynomial vector fields. On the other hand in this paper we
have been able to give an exact upper bound of three limit cycles for some subcases of
system (1). As we will see, our proof shows that when system (1) has limit cycles then
its only critical point is the origin and so, all them must surround it.

Observe also that the only situation for which the above theorem gives no an upper
bound for the number of limit cycles is the case (d), namely n+m is odd, gn+m+1 does
not vanish and Pn+3m−1 changes sign. We do not know which is the maximum number
of limit cycles in this case, although, from our proof of item (d), we suspect that it
might increase with n and m.

Part (c) of the above theorem extends a result of [15] where the existence of systems of
the form (1) having exactly three limit cycles is established in a particular subcase which
is Darboux integrable. The integrability of some similar systems has been also studied
in [16, 21]. Finally observe that generically the infinity of the Poincaré compactification
of system (1) is full of critical points. Systems with degenerate infinity are frequently
studied in the literature, see for instance [5, 13, 20]

The above result can be refined when Pn+3m−1 instead of not changing sign is iden-
tically zero.

Theorem 2. Consider system (1) and assume that Pn+3m−1(x, y) ≡ 0. Then

(a) When n+m is even it has no limit cycles.
(b) When n+m is odd and gn+m+1 vanishes it has no limit cycles.
(c) When n +m is odd, gn+m+1 does not vanish and Pn+2m−1(x, y) ≡ 0 it has at

most one limit cycle and when it exists it is hyperbolic. Moreover:
(i) When n is odd (and so m is even) there exist systems of the form (1) sat-

isfying the above hypotheses and having exactly one hyperbolic limit cycle.
(ii) When n is even (and so m is odd) it has no limit cycles.

(d) When n +m is odd, gn+m+1 does not vanish and Pn+2m−1(x, y) 6≡ 0 it has at
most two limit cycles counting their multiplicities. Moreover:
(i) When n is odd (and so m is even) there exist systems of the form (1)

satisfying the above hypotheses and having exactly 0, 1 or 2 limit cycles,
taking into account their multiplicities.

(ii) When n is even (and so m is odd), then indeed it has at most one limit
cycle and when it exists it is hyperbolic.

A key point for proving the above theorems is that when system (1) can have limit
cycles, it can be written in some coordinates as an Abel differential equation,

(2)
dR

dθ
= A0(θ) +A1(θ)R+A2(θ)R

2 +A3(θ)R
3.

Moreover, if Pn+3m−1(x, y) ≡ 0 then A3(θ) ≡ 0 and this Abel differential equation is
indeed a Riccati differential equation. The same idea has already been used in several
papers, see for instance [4, 6, 9, 12, 15, 14, 17]. As we will see, a main difference between
our situation and these papers is that in our Riccati or Abel equations the function A0

is not necessarily identically zero. This fact provokes that while most of the results of
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these papers prove the existence of at most two limit cycles for the planar differential
equation, we will get a result of existence of at most three limit cycles.

2. Proof of Theorem 1

To prove both theorems we introduce some notations. In polar coordinates (r, θ),
defined by x = r cos θ, y = r sin θ, system (1) becomes

(3)
ṙ = fn+1(θ)r

n + fn+m+1(θ)r
n+m + fn+2m+1(θ)r

n+2m + fn+3m+1(θ)r
n+3m,

θ̇ = gn+m+1(θ)r
n+m−1,

where

(4)
fn+m+1(θ) = cos θQn+m(cos θ, sin θ) + sin θRn+m(cos θ, sin θ),
fk+1(θ) = Pk−1(cos θ, sin θ), k = n, n+ 2m, n+ 3m.

By using the new variable R = rm, when gn+m+1(θ) 6= 0, equation (3) can be written
as the Abel equation

(5)
dR

dθ
=

m

gn+m+1(θ)
(fn+1(θ) + fn+m+1(θ)R+ fn+2m+1(θ)R

2 + fn+3m+1(θ)R
3).

In the rest of this paper we will denote by R(θ,R0) the solution of the Abel equation
(5) with the initial condition R(0, R0) = R0. Notice that, under the above changes
of variables, a limit cycle of equation (1) is transformed into a solution of the Abel
equation starting at a R = R∗

0 > 0 and satisfying R(2π,R∗
0) = R∗

0, which is isolated
in the set of solutions satisfying this property. We will also call this kind of solutions,
limit cycles of the Abel equation. It is clear that the multiplicity of R∗

0 as a zero of the
map R0 → R(2π,R0)−R0, coincides with the multiplicity of the associated solution of
system (5) as a limit cycle of the system.

Proof of Theorem 1.
(a)-(b) By using equation (3) we can deduce that, apart from the origin, all the

critical points of (1) are located on the straight lines {θ = θ̄}, where θ̄ ranges over all
the solutions of the equation gn+m+1(θ) = 0. Clearly, if some of these solutions θ = θ̄
exists then this line is invariant by the flow of (1) and no limit cycles of the differential
equation can exist. So the proof of item (b) follows. The proof of item (a) is a
consequence of the same fact, because when n+m is even the equation gn+m+1(θ) = 0
has always real solutions.

(c) Note that in this case the only singularity of (1) is the origin. Firstly we will prove
that equation (1) has at most three limit cycles, taking into account their multiplicities.

We will use the following result, proved in [12]: Let equation (2) be an Abel differ-
ential equation with Ai(θ), for i = 0, 1, 2, 3, 2π-periodic smooth functions and A3(θ)
not changing sign. Then its maximum number of limit cycles, taking into account their
multiplicities, is three. In our situation, writing equation (1) as equation (5) we get
that A3(θ) = fn+3m+1(θ)/gn+m+1(θ) does not change sign and so this upper bound
follows.

When n is even and m is odd we want to prove that the upper bound of three
limit cycles can be reduced to a result of uniqueness of limit cycles. Note that in this
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situation,

fn+1(π + θ) = −fn+1(θ), fn+m+1(π + θ) = fn+m+1(θ),
gn+m+1(π + θ) = gn+m+1(θ), fn+2m+1(π + θ) = −fn+2m+1(θ),
fn+3m+1(π + θ) = fn+3m+1(θ).

These equalities imply that, if R = ρ(θ) is a solution of equation (5), then so is R =
−ρ(π + θ). Thus, if system (5) had two limit cycles given by R = ρ1(θ) > 0 and
R = ρ2(θ) > 0, then R = −ρ1(π+ θ) and R = −ρ2(π + θ) would also be limit cycles of
equation (5). This would imply that equation (5) has at least four limit cycles, which
is in contradiction with the upper bound proved in the above paragraph. Similarly, a
non hyperbolic limit cycle of equation (1) would give rise to two non hyperbolic limit
cycles of the Abel equation, again in contradiction with the result that we have proved
in the previous paragraph.

To end the proof of this item we give examples, when n is odd with 0, 1, 2 or 3 limit
cycles (taking into account the multiplicities) and when n is even having 0 or 1 limit
cycle.

When n is odd we consider (1) with

Pn+km−1(x, y) = ck(x
2 + y2)

n+km−1
2 , when k = 0, 2, 3,

and

Qn+m(x, y) = (c1x−my)(x2 + y2)
n+m−1

2 , Rn+m(x, y) = (mx+ c1y)(x
2 + y2)

n+m−1
2 ,

with ci ∈ R. Then (3) writes as

dR

dθ
= c0 + c1R+ c2R

2 + c3R
3.

Since the constants ci can be chosen arbitrarily, it is clear that there exist systems with
the desired number of limit cycles.

When n is even, in the above example we have to take c0 = c2 = 0 and thus only
examples with 0 or 1 limit cycle can be constructed, as we wanted to prove.

The above examples are essentially the ones appearing in [15].

(d) For n+m odd, we consider the following particular family of systems of de form
(1): Pn+km−1(x, y), for k = 2, 3, arbitrary homogeneous polynomials, Pn−1(x, y) =
1−(−1)n

2
c0(x

2 + y2)
n−1
2 and

Qn+m(x, y) = (c1x−my)(x2 + y2)
n+m−1

2 , Rn+m(x, y) = (mx+ c1y)(x
2 + y2)

n+m−1
2 ,

with c0, c1 ∈ R. Then equation (3) writes as

(6)
dR

dθ
= 1−(−1)n

2
c0 + c1R+ fn+2m+1(θ)R

2 + fn+3m+1(θ)R
3.

We consider first the case c0 = c1 = 0. We study how many limit cycles bifurcate from
R = 0.

Given an analytic 2π-periodic Abel equation of the form

(7)
dR

dθ
= A2(θ)R

2 +A3(θ)R
3,

let R = r(θ, ρ) be the solution that takes the value ρ when θ = 0. Therefore,

(8) r(θ, ρ) = ρ+ u2(θ)ρ
2 + u3(θ)ρ

3 + . . . , with uk(0) = 0 for k ≥ 2,
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where the functions uk(θ) satisfy simple differential equations: u′2(θ) = A2(θ), u
′
3(θ) =

A3(θ)+2A2(θ)u2(θ), . . . , see for instance [2]. Clearly the first no zero value uℓ(2π) gives
the stability of R = 0, and the number Vℓ := uℓ(2π), defined when V2 = V3 = · · · =
Vℓ−1 = 0 is called the ℓ-th Lyapunov constant of R = 0. These quantities can be used
to study the bifurcations of limit cycles from the origin, as the Lyapunov constants
in the usual Andronov-Hopf bifurcations, see [1, 11]. In these papers, the following
expressions for Vℓ are given:

V2 =
∫ 2π
0 A2(θ) dθ, V3 =

∫ 2π
0 A3(θ) dθ,

V4 =
∫ 2π
0

(
A3(θ)(

∫ θ
0 A2(ψ) dψ)

)
dθ, V5 =

∫ 2π
0

(
A3(θ)(

∫ θ
0 A2(ψ) dψ)

2
)
dθ.

Let us compute some of them for equation (6). We start with the case n odd, and
so m even. By convenience we write the real polynomials A2(θ) and A3(θ) as complex
Fourier series:

A2(θ) = P2k(cos θ, sin θ) =
k∑

j=−k
D2je

2jθi, whereD2j ∈ C andD−2j = D2j ,

A3(θ) = P2k+m(cos θ, sin θ) =

k+m/2∑

j=−(k+m/2)

E2je
2jθi, whereE2j ∈ C andE−2j = E2j ,

where k := (n+ 2m− 1)/2. Then

V2 = 2D0π ∈ R, V3 = 2E0π ∈ R and V4 = 2π
k∑

j=−k, j 6=0

Im(D2jE2j)

j
.

By using standard arguments, see for instance [8, Ex. C], we know that taking in
equation (6), V0 := c0, V1 := c1 and Vℓ, ℓ = 2, 3, 4 as above, satisfying VjVj+1 < 0,
j = 0, 1, 2, 3, and

|V0| ≪ |V1| ≪ |V2| ≪ |V3| ≪ |V4|,
we obtain a system of the form (1) with at least 4 limit cycles, all them bifurcating
from the origin. Notice that the bifurcation associated to the parameter V0 = c0 is not
an Andronov-Hopf bifurcation, because when c0 6= 0 the origin is not a focus but a
kind of star-shape node, which stability is given by the sign of c0.

By computing more Lyapunov constants it seems clear that in general we will
get more limit cycles. It is important to notice that when Pn+3m−1(cos θ, sin θ) =
fn+3m+1(θ) is not identically zero, and does not change sign, then

V3 =

∫ 2π

0
A3(θ)dθ =

∫ 2π

0
fn+3m+1(θ)dθ = 2E0π 6= 0

and the above procedure can give rise to at most 3 limit cycles, as Theorem 1 asserts.
When n is even (and so m is odd) we obtain that equation (6) writes as

dR

dθ
= c1R+ fn+2m+1(θ)R

2 + fn+3m+1(θ)R
3.

By doing similar computations that in the above case we get that V2 = V4 = 0,
V3 = 2E0π and that V5 can take arbitrary values. Hence by choosing suitable c1, V3
and V5, at least two limit cycles bifurcate from the origin of system (1), as we wanted
to prove. Similarly that in the previous case, when Pn+3m−1(cos θ, sin θ) = fn+3m+1(θ)
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is not identically zero, and does not change sign, then V3 6= 0 and at most one limit
cycle bifurcates from the origin of system (1). �

The examples given in item (c) of the proof of Theorem 1, showing that our upper
bounds for the number of limit cycles are sharp, are integrable systems and moreover
their limit cycles are circles. In the next proposition we show that there are more
complicated systems having the same number of limit cycles. We remark that the
proof of item (d) of Theorem 1 also provides a method to give examples with the
maximal number of limit cycles predicted by the theorem.

Proposition 3. Consider the system

(9)
ẋ = −y(x2 + y2)(n+m−1)/2 + εP(x, y),

ẏ = x(x2 + y2)(n+m−1)/2 + εQ(x, y),

where ε is a small parameter,

P(x, y) = Q̄n+m(x, y) + x(Pn−1(x, y) + Pn+2m−1(x, y) + Pn+3m−1(x, y)),

Q(x, y) = R̄n+m(x, y) + y(Pn−1(x, y) + Pn+2m−1(x, y) + Pn+3m−1(x, y)),

and Pk(x, y), Q̄k(x, y) and R̄k(x, y) are homogeneous polynomials of degree k.
If n is odd and m is even (respectively, n is even and m is odd), then there exist

polynomials P(x, y) and Q(x, y) such that Pn+3m+1(θ) does no change sign and system
(9) has three (respectively, one) limit cycles.

Proof. For small ε, we have Gn+m+1(x, y) = (x2 + y2)(n+m+1)/2 + ε(xR̄n+m(x, y) −
yQn+m(x, y)) = (x2+ y2)(n+m+1)/2 +O(ε) > 0 for (x, y) 6= 0. By re-parameterizing the
time, we can rewrite system (9) in the form

(10) x′ = −y + εP(x, y)

(x2 + y2)(n+m−1)/2
, y′ = x+

εQ(x, y)

(x2 + y2)(n+m−1)/2
,

which is a perturbation of the linear system

(11) x′ = −y, y′ = x.

The Abelian integral, associated to system (10), is defined as

(12) I(h) =

∮

Γh

P(x, y)

(x2 + y2)(n+m−1)/2
dy − Q(x, y)

(x2 + y2)(n+m−1)/2
dx,

where Γh is the the closed orbit of system (11) given by x2 + y2 = h2, h ∈ (0,+∞).
It is well known (see for instance [17]) that the displacement function of the perturbed
system (10) can be expressed in the form

d(h, ε) = εI(h) +O(ε2),

and the following statements hold:

(a) If there exists h∗ ∈ (0,+∞) such that I(h∗) = 0 and I ′(h∗) 6= 0, then system
(10) has a unique limit cycle bifurcating from Γ∗

h, moreover, this limit cycle is
hyperbolic,

(b) When I(h) 6≡ 0, the total number (counting the multiplicities) of limit cycles
of system (10) bifurcating from the period annulus of system (11) is bounded
by the maximum number of isolated zeros (also taking into account their mul-
tiplicities) of the Abelian integral I(h) for h ∈ (0,+∞).
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The substitution x = h cos θ, y = h sin θ and (12) gives

(13)
I(h) = h2−m

(∫ 2π
0 fn+1(θ)dθ + hm

∫ 2π
0 f̄n+m+1(θ)dθ

+h2m
∫ 2π
0 fn+2m+1(θ)dθ + h3m

∫ 2π
0 fn+3m+1(θ)dθ

)
,

where fk+1(θ), k = n, n+ 2m, n+ 3m, are defined as in (4), and

f̄n+m+1(θ) = cos θQ̄n+m(cos θ, sin θ) + sin θR̄n+m(cos θ, sin θ).

Writing Pk(x, y) =
∑
i+j=k aijx

iyj, Q̄n+m(x, y) =
∑
i+j=n+m āijx

iyj and Rn+m(x, y) =∑
i+j=n+m b̄ijx

iyj, direct computations give that, for k = n, n+ 2m, n+ 3m,
∫ 2π

0
fk+1(θ)dθ =

∑

2i+2j=k−1

a2i,2j

∫ 2π

0
cos2i θ sin2j θdθ

∫ 2π

0
f̄n+m+1(θ)dθ =

∑

2i+2j−1=n+m

(ā2i−1,2j + b̄2i,2j−1)

∫ 2π

0
cos2i θ sin2j θdθ.

Since h ∈ (0,+∞), the number of the positive zeros of I(h) is an upper bound of the
number of limit cycles of system (9) which born from the period annulus of system
(11). By Descarte’s rule, this upper bound is three. Note that this result proves that
even in the case where Theorem 1 does not apply, three is the maximum number of
limit cycles provided by this approach.

Notice that when n is odd and m is even, then for k = n, n+2m,n+3m, k− 1 is an
even number. Therefore the coefficients in I(h) can take arbitrary values and there exist
many polynomials P(x, y) and Q(x, y) such that I(h) has exactly 0, 1, 2, or 3 positive
zeros counting their multiplicities. Moreover it is not difficult to find situations where
fn+3m+1(θ) = Pn+3m−1(cos θ, sin θ) does not change sign.

Finally notice that when n is even and m is odd, then
∫ 2π
0 fn+1(θ)dθ = 0 and∫ 2π

0 fn+2m+1(θ)dθ = 0. Therefore

I(h) = h2(

∫ 2π

0
f̄n+m+1(θ)dθ + h2m

∫ 2π

0
fn+3m+1(θ)dθ)

and at most one limit cycle bifurcates from the period annulus of system (11). �
Remark 4. In the above proposition we have proved that there are many systems of
the form (1), under the hypotheses of Theorem 1, having the maximum number of limit
cycle that it predicts. For instance, in case a.(i), they have 3 limit cycles. In the
same situation it is not difficult to construct examples having exactly k limit cycles,
for k ∈ {0, 1, 2}. To do this it suffices to take systems of the form (9) with ε small
enough and such that the function I(h) given in (13) has exactly k positive simple
zeros and no limit cycles bifurcate neither from the origin nor from infinity. These
two bifurcations can be prevented for instance by taking perturbations satisfying that
fn+1(θ) 6= 0 and fn+3m+1(θ) 6= 0, respectively. The presence of double limit cycles can
as well be guaranteed by using the results of [3, Thm. 1.3].

3. Proof of Theorem 2

To prove Theorem 2, we firstly recall a general result for Riccati equations. Consider
the Riccati equation

(14)
dR

dθ
= A0(θ) +A1(θ)R+A2(θ)R

2,
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where A0(t), A1(t), A2(t) : [0, 2π] → R are smooth 2π-periodic functions. As for Abel
equations, it is said that a solution of (14) is a periodic solution if it is defined in the
interval [0, 2π] and R(0) = R(2π). An isolated periodic solution, in the set of all the
periodic solutions, is called a limit cycle. It is well known that Riccati equations can
have at most two limit cycles, see for instance [7, 19, 18]. For the sake of completeness
we present a proof of this fact, which is based on the approach of [7] and also takes
into account the multiplicities of the limit cycles.

Proposition 5. (a) The Riccati equation (14) has at most two limit cycles, taking into
account their multiplicities.

(b) The linear equation, (14) with A2(θ) ≡ 0, has at most one limit cycle and when
it exists it is hyperbolic.

Proof. (a) Suppose that the equation (14) has a limit cycle R = ρ(θ). Make the change
of variables

(15) W (θ) = R(θ)− ρ(θ).

It transforms the solution R = ρ(θ) into W = 0, and equation (14) into

(16)
dW

dθ
= B(θ)W +A2(θ)W

2,

where B(θ) = A1(θ) + 2ρ(θ)A2(θ). Since R = ρ(θ) is a periodic orbit, a solution of
(14) is periodic if and only if the corresponding solution W = ω(θ) is periodic. Let
W = ω(θ,W0) be the solution of (16) with the initial condition ω(0,W0) = W0. It
is well known that the above equation can be transformed into a linear one. Direct
computations give that for θ ∈ [0, θ∗(W0)), where θ

∗(W0) is the first positive solution
of the equation 1− β(θ)W0 = 0,

W (θ,W0) =
α(θ)W0

1− β(θ)W0
,

where

α(θ) = exp

(∫ θ

0
B(ψ)dψ

)
, β(θ) =

∫ θ

0
A2(ψ) exp

(∫ ψ

0
B(φ)dφ

)
dψ.

Consider the displacement function

(17) d(W0) := W (2π,W0)−W0 =
(α(2π) − 1)W0 + β(2π)W 2

0

1− β(2π)W0
,

defined for W0 ∈ I := {W0 : 1−β(θ)W0 > 0 for θ ∈ [0, 2π]}. Therefore the limit cycles
of equation (14) correspond with solutions W (θ,W0) whose initial conditions W0 are
in I and satisfy the quadratic equation

(18) ((α(2π) − 1) + β(2π)W0)W0 = 0.

Moreover its multiplicity coincides with the multiplicity of W0 as a zero of the function
d(W0). Therefore, the result for Riccati equations follows. Note also that, once we
know a particular periodic solution of the Riccati equation, this approach is also useful
to know the total number of periodic solutions of the equation. It suffices to check how
many solution has equation (18) in the interval I. For instance, the Riccati equation has
a continuum of periodic orbits if and only if α(2π)− 1 = β(2π) = 0, or it has a unique
limit cycle R = ρ(θ) with multiplicity two if and only if α(2π) = 1 and β(2π) 6= 0.
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(b) The result for the linear equation, i.e. A2(θ) ≡ 0, follows from the above reason-
ing noticing that in this case β(θ) ≡ 0. �

Proof of Theorem 2. Items (a) are (b) are already proved in Theorem 1. Notice
that when Pn+2m−1(x, y) ≡ 0 (respectively, Pn+2m−1(x, y) 6≡ 0) then the differential
equation (5) is a linear equation (respectively, a pure Riccati equation). The key
results for proving items (c) and (d) are Proposition 5 and the following property of
the equation (5), already used in the proof of Theorem 1: When n is even and m is
odd, if R = ρ(θ) is one of its solutions, then so is R = −ρ(π + θ).

The same type of examples given in previous section can be easily adapted to this
situation providing the lower bound stated in the theorem. �
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