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THE SYMMETRIC CENTRAL CONFIGURATIONS

OF THE 4–BODY PROBLEM WITH MASSES

m1 = m2 ̸= m3 = m4

MARTHA ALVAREZ–RAMÍREZ1 AND JAUME LLIBRE2

Abstract. We characterize the planar central configurations of the 4-
body problem with masses m1 = m2 ̸= m3 = m4 which have an axis of
symmetry.

It is known that this problem has exactly two classes of convex central
configurations, one with the shape of a rhombus and the other with the
shape of an isosceles trapezoid.

We show that this 4-body problem also has exactly two classes of
concave central configurations with the shape of a kite, this proof is
assisted by computer.

1. Introduction and statement of the main results

The main problem of the classical Celestial Mechanics is the n-body prob-
lem; i.e. the description of the motion of n particles of positive masses
under their mutual Newtonian gravitational forces. This problem is com-
pletely solved only when n = 2, and for n > 2 there are only few partial
results. In this paper all the results commented or proved will be on positive
masses, and we do not mention this again.

Central configurations are initial positions of the n bodies where the posi-
tion and the acceleration vector of each particle with respect to the center of
mass are proportional, with the same constant of proportionality for all the
n particles. Central configurations started to be studied in the second part of
the 18th century, there is an extensive literature concerning these solutions.
For a classical background, see the sections on central configurations in the
books of Wintner [28] and Hagihara [10]. For a modern background see, for
instance, the papers of Saari [24], McCord [18], Palmore [22], Schmidt [25],
Xia [29], ...

One of the reasons why central configurations are important is that they
allow to obtain the unique explicit solutions in function of the time of the
n–body problem known until now, the homographic solutions for which the
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2 M. ALVAREZ–RAMÍREZ AND J. LLIBRE

ratios of the mutual distances between the bodies remain constant. They
are also important because the total collision or the total parabolic escape
at infinity in the n-body problem is asymptotic to central configurations, see
for more details Dziobek [7] and Saari [24]. Also if we fix the total energy
h and the angular momentum c of the n–body problem, then some of the
bifurcation points (h, c) for the topology of the level sets with energy h and
angular momentum c are related with the central configurations, see Meyer
[19] and Smale [27] for a full background on these topics.

We note that if q = (q1, · · · ,qn) ∈ (R2)n is a planar central configura-
tion for the n–body problem, then kq and Aq = (Aq1, · · · , Aqn) are also
central configurations for any constant k > 0 and any rotation A ∈ SO(2).
Therefore we count the planar central configurations modulo rotations and
scalar changes, and we call them classes of central configurations.

In 1910 Moulton [20] classified the collinear central configurations by
showing that there exist exactly n!/2 classes of collinear central configura-
tions of the n-body problem for a given set of masses, one for each possible
ordering of the particles.

For an arbitrary given set of masses the number of classes of planar non-
collinear central configurations of the n-body problem has been only solved
for n = 3. In this case they are the three collinear and the two equilateral
triangle central configurations, due to Euler [8] and Lagrange [12] respec-
tively. Recently, Hampton and Moeckel [11] proved that for any choice of
four masses there exist a finite number of classes of central configurations.
For five or more masses this result is unproved, but recently an impor-
tant contribution to the case of five masses has been made by Albouy and
Kaloshin [4].

Under the assumption that every central configuration of the 4-body prob-
lem has an axis of symmetry when the four masses are equal, the central
configurations were characterized studying the intersection points of two
planar curves in [15]. Later on in [1, 2] Albouy provided a complete proof
for the classes of central configurations of the 4–body problem with equal
masses.

We say that a planar non–collinear central configuration of the 4-body
problem has a kite shape or simply is a kite central configuration if it has an
axis of symmetry passing through two of the masses.

Bernat, Llibre and Pérez–Chavela [5] complet the characterization of the
kite planar non–collinear classes of central configurations with three equal
masses, started by Leandro in [14].

The goal in this paper is to complete the characterization of the classes
of central configurations having an axis of symmetry for the planar 4–body
problem with masses m1 = m2 ̸= m3 = m4.
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For the 4-body problem a central configuration is convex if none of the
bodies is located in the interior of the convex hull of the other three, other-
wise and if the configuration is not collinear we say that the central config-
uration is concave.

MacMillan and Bartky [17] stated that, for any four masses and any
assigned order, there is a convex planar central configuration of the 4-body
problem, also they shown that there is a unique isosceles trapezoid central
configuration of the planar Newtonian 4–body problem with m1 = m2 ̸=
m3 = m4 when two pairs of equal masses are located at adjacent vertices of
the trapezoid. Xia in [30] gave a simpler proof of the first mentioned result of
[17]. Recently the isosceles trapezoid central configuration has been revisited
by Xie [31].

Also for the 4-body problem with masses m1 = m2 > m3 = m4 Long and
Sun [16] proved that any convex central configuration such that the diagonal
determined by the masses m1 is not shorter than that determined by the
masses m3, must possess an axis of symmetry and this central configuration
has the shape of a rhombus.

All these results about the central configurations with an axis of sym-
metry for the 4–body problem with masses m1 = m2 ̸= m3 = m4 can be
summarized as follows.

Theorem 1. There are exactly two classes of convex central configurations
having an axis of symmetry for the planar 4–body problem with masses m1 =
m2 ̸= m3 = m4. One has the shape of a rhombus when the diagonal opposite
masses are equal, and the other has the shape of an isosceles trapezoid when
the equal masses are adjacent.

Related with Theorem 1 the readers can look the results of the papers of
Albouy, Fu, and Sun[3] and of Perez–Chavela and Santoprete [23].

The rest of the paper is dedicated to show the following result.

Theorem 2. There are exactly two classes of concave kite central configu-
rations for the planar 4–body problem with masses m1 = m2 ̸= m3 = m4.

The proof of Theorem 2 is analytical modulo the computations of the
roots of polynomials of one variable which are computed numerically with
the help of the algebraic manipulator mathematica.

We must mention that the results of these two theorems are compatible
with the numerical results obtained by Simó in [26], and by Grebenikov,
Ikhsanov and Prokopenya [9].

The paper is organized as follows. In section 2 we present the system of
equations for the kite concave central configurations of the 4–body problem
here studied. Finally, in section 3 we prove Theorem 2.
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2. Equations of the concave kite central configurations

Newton’s planar n–body problem is about the motion of n point particles
with masses mi and position vectors qi ∈ R2 for i = 1, . . . , n, under their
mutual attractions due to Newtonian gravitation. Its equations of motion
are

mi q̈i = −
n∑

j=1, j ̸=i

mi mj
qi − qj

∥qi − qj∥3
, i = 1, . . . , n ,

where the units have been taken in such a way that the gravitation constant
be equal to the unity. Here ∥ · ∥ denotes the Euclidean norm of R2.

Assume that the center of mass of the n particles is at the origin of
coordinates, i.e.

n∑

j=1

miqi = 0.

We say that the n bodies form a central configuration if there exists a con-
stant λ such that

(1) λqi = −
n∑

j=1, j ̸=i

mj
qi − qj

∥qi − qj∥3
, i = 1, . . . , n .

In the case of n = 4 bodies, Dziobek [7] reduces the equations of the
central configurations (1) to the following system of 12 equations and 12
unknowns:

(2)

1

r3
ij

= c1 + c2
∆i∆j

mimj
,

ti − tj = 0,

for 1 ≤ i < j ≤ 4, with
rij = ∥qi − qj∥,

ti =
4∑

j=1, j ̸=i

∆j r2
ij ,

where ∆1, ∆2, ∆3 and ∆4 denote the oriented area of the triangle of ver-
tices (m2,m3,m4), (m4,m3,m1), (m1,m2, m4) and (m3,m2,m1), respec-
tively. More precisely,

∆1 =
1

2

∣∣∣∣∣∣

x2 y2 1
x3 y3 1
x4 y4 1

∣∣∣∣∣∣
,

where (xi, yi) is the position vector of the mass mi. Similarly, for ∆2, ∆3

and ∆4. The 12 unknowns in equations (2) are the 6 mutual distances rij ,
the 4 oriented areas ∆i, and the two constants ck.

Now we shall obtain the equations for the concave kite central configura-
tions of the 4–body problem with masses m1 = m2 ̸= m3 = m4.
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By convenience, but without loss of generality, we can assume that the
bodies have masses m1 = m2 = 1 > m3 = m4 = m. Moreover, due to
the fact that we are interested in the classes of central configurations, again
without loss of generality we can suppose that the positions of the four
particles are q1 = (−1/2, 0), q2 = (1/2, 0), q3 = (0, a) and q4 = (0, b) with
0 < a < b. Of course, the axis of symmetry here is the y–axis and the
configuration is kite because the masses m3 and m4 are on this axis. Then,
easy computations shown that the 12 equations (2) reduce to the following
two equations
(3)

f1 = 8(a − b)2(m2a2 + m2b2 − 2m2ab + 4ab) + (4b2 + 1)3/2(2ma4 − 4a3b
−6ma3b + 8a2b2 + 6ma2b2 − 4ab3 + m2a − 2mab3 + 2ma − m2b)

= A + B,

f2 = 8(a − b)2(m2a2 + m2b2 − 2m2ab + 4ab) − (4a2 + 1)3/2(−2mb4 + 4ab3

+6mab3 − 8a2b2 − 6ma2b2 + 4a3b + m2b + 2ma3b + 2mb − m2a)
= A − C,

where fi = fi(a, b) for i = 1, 2.

For a fixed m ∈ (0, 1) the solutions (a, b) with 0 < a < b of system
f1 = f2 = 0, provide the classes of concave kite central configurations of the
4–body problem with masses m1 = m2 = 1 > m3 = m4 = m.

3. Proof of Theorem 2

For solving system f1(a, b) = f2(a, b) = 0 we define the polynomials

g1(a, b) = A2 − B2 and g2(a, b) = A2 − C2.

Clearly if (a, b) is a solution of the system f1(a, b) = f2(a, b) = 0, then (a, b)
is a solution of the polynomial system g1(a, b) = g2(a, b) = 0. Of course,
the converse is not true. We shall work with g1 and g2 because they are
polynomials in the variables a and b, and for studying the solutions of the
polynomial system g1(a, b) = g2(a, b) = 0 we can use resultants, see [13, 21]
for definitions and results on the resultants.

Now we consider the resultant h(a) of the polynomials g1(a, b) with g2(a, b)
with respect to the variable b. Therefore h(a) is a polynomial in the variable
a with coefficients polynomials in the variable m. More precisely, h(a) is

268435456m12(1 + m)4a4(1 + 4a2)9(4a + 4a2 + m2)4(−4032a6 + 768a8+
3072a10 + 4096a12 + 16ma3 + 192ma5 + 8192ma6 + 768ma7 + 1024ma9+
m2 + 12m2a2 + 48m2a4 − 4032m2a6)(16a2 − 16a3 + 16a4 − 4m2a−
4m2a2 + m4)4h1(a),

where h1(a) is a polynomial in the variable a of degree 90 with coefficients
polynomials in the variable m of degree at most 34 that we do not write
here because is too much long. By the properties of the resultant note that
if (a, b) is a solution of the polynomial system g1(a, b) = g2(a, b) = 0, then a
is a root of the polynomial h(a). Again the converse is not true.
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We define h̄(a) as the following polynomial

(−4032a6 + 768a8 + 3072a10 + 4096a12 + 16ma3 + 192ma5 + 8192ma6+
768ma7 + 1024ma9 + m2 + 12m2a2 + 48m2a4 − 4032m2a6)(16a2 − 16a3+
16a4 − 4m2a − 4m2a2 + m4)h1(a).

Note that the polynomials h(a) and h̄(a) have the same real positive roots.
These are the roots of the polynomial h(a) which we need to study.

Now we compute the resultant r(m) of the polynomials h̄(a) and dh̄(a)/da
with respect to the variable a. Thus r(m) is a polynomial in the variable m.
Since the common roots of h̄(a) and dh̄(a)/da are the roots of the polynomial
h̄(a) with multiplicity larger than one. By the properties of the resultant the
real roots m ∈ (0, 1) of the polynomial r(m) provide the possible values of
m where the number of classes of concave kite central configurations of the
4–body problem with masses m1 = m2 = 1 > m3 = m4 = m can change.

The 21 roots m ∈ (0, 1) of the polynomial r(m) are

0.0766875918991752976 0.4209299414821865653
0.1059682673291668694 0.4695378062378132584
0.1607304170827556946 0.4836525776747220757
0.2394770604609108232 0.4916016592961264249
0.2500000000000000000 0.5543951429506980495
0.2515934674257706168 0.5836310277625886914
0.3491312860079313915 0.5946353542558213906
0.3500392425656423452 0.7333650742201544896
0.3574351108259872461 0.8144614240009864465
0.4072033461399394284 0.8291393975330882794
0.4139942466981757925

Now we choose 22 values of m in the interval (0, 1) separating the 21
previous roots, and we will compute the solutions (a, b) with 0 < a < b of
system f1(a, b) = f2(a, b) = 0 for every one of these 22 values of m. Using
resultants the computation of these solutions is analytic with the exception
of the roots of a polynomial in one variable. More precisely, by the properties
of the resultant if (a∗, b∗) is a solution of the system f1(a, b) = f2(a, b) = 0,
then a∗ is a root of the polynomial h(a), and b∗ is a root of the polynomial
i(b), where this polynomial is the resultant of the polynomials g1(a, b) with
g2(a, b) with respect to the variable a. Therefore, given a value of m we
can compute all the roots of the polynomials h(a) and i(b), and check which
pairs of these roots are solutions of the system f1(a, b) = f2(a, b) = 0. In
this way we compute all the solutions of the system f1(a, b) = f2(a, b) = 0,
only computing numerically the roots of polynomials of one variable.

In short, we obtain that for every value m of these 22 values described in
Table 1, there are exactly two solutions (a, b) satisfying 0 < a < b. Hence,
the number of kite concave central configurations is constant and equal to
two for all m ∈ (0, 1), and consequently Theorem 2 is proved.



ON THE CENTRAL CONFIGURATIONS OF A 4–BODY PROBLEM 7

m a b
0.0755 0.0035279616758150515 0.7900771163967845

0.7147850192650812 1.03417855000925
0.09 0.004441954024599277 0.7787882094296523

0.7060019036050289 1.0438844559856253
0.135 0.007775225074186264 0.7487832179510557

0.6833789836115126 1.0672672711484206
0.18 0.011866067055554435 0.7250808571727829

0.6648260814917821 1.0839750871480232
0.245 0.019115712686377427 0.6995511906542532

0.6417643498270774 1.1005808387742313
0.25075 0.019833062485639572 0.6977131904357448

0.6398615024672192 1.1017168361652598
0.30036 0.02653232580677746 0.6843003904109473

0.6240559396301911 1.1096706193316743
0.34958 0.03407707966214664 0.6748652570504416

0.6091407677058371 1.1146855833194436
0.351 0.03430795950783352 0.6746447867500059

0.6087181752812121 1.1147921039179474
0.4 0.04272794868139528 0.6686650390177226

0.5943059037979875 1.1172619449723382
0.41 0.04455456411806872 0.6678152168702742

0.591393537473783 1.1174898328710987
0.42 0.046417967023960775 0.6670846706971966

0.5884868015506847 1.1176279758001728
0.46 0.054241355381497006 0.6653092022875151

0.5768835718417511 1.1173085360386747
0.4765 0.05764233692960265 0.6650905027128892

0.5720923676000066 1.1167808549456162
0.486 0.059647067866711305 0.6650959384734173

0.569328491469086 1.116374289208752
0.5 0.06266403664343717 0.6652756726893431

0.5652452037426297 1.1156395115984925
0.57 0.07890214700031103 0.6691408852540138

0.544516240507697 1.1095658817324812
0.589 0.0836559924036139 0.6710211897239738

0.5387579029545071 1.107226090713527
0.6 0.08647950174898113 0.6722698996426629

0.5353900418852396 1.1057346294920007
0.8 0.14927214021151938 0.7169152728637981

0.466392164652557 1.0586892090164706
0.82175 0.15791851398180692 0.7247768403083018

0.4573924814606644 1.050704688313241
0.91455 0.2028555259533622 0.7695992886389915

0.4114255661938648 1.0054497508935787

Table 1
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8 M. ALVAREZ–RAMÍREZ AND J. LLIBRE

[6] F.N. Diacu, Singularities of the N-body problem. An introduction to celestial mechan-
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1 Departamento de Matemáticas, UAM–Iztapalapa, San Rafael Atlixco 186,
Col. Vicentina, 09340 Iztapalapa, México, D.F., México.
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