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SHAPE AND PERIOD OF LIMIT CYCLES BIFURCATING
FROM A CLASS OF HAMILTONIAN PERIOD ANNULUS

R. PROHENS1 AND J. TORREGROSA2

Abstract. In this work we are concerned with the problem of shape and period
of isolated periodic solutions of perturbed analytic radial Hamiltonian vector
fields in the plane. Françoise develop a method to obtain the first non vanishing
Poincaré-Pontryagin-Melnikov function. We generalize this technique and we
apply it to know, up to any order, the shape of the limit cycles bifurcating
from the period annulus of the class of radial Hamiltonians. We write any
solution, in polar coordinates, as a power series expansion in terms of the small
parameter. This expansion is also used to give the period of the bifurcated
periodic solutions. We present the concrete expression of the solutions up to
third order of perturbation of Hamiltonians of the form H = H(r). Necessary
and sufficient conditions that show if a solution is simple or double are also
presented.

Keywords: Polynomial differential equation; bifurcation of limit cycles; shape,
number, location and period of limit cycles

1. Introduction

Consider a Hamiltonian vector field having a continuous domain of closed tra-
jectories (period annulus) in a neighbourhood of an equilibrium point. A classical
problem in perturbation theory is the boundedness of the number of isolated peri-
odic solutions bifurcating from the period annulus through analytic perturbations.
In last years the shape and period of such periodic solutions have also been studied.
Let us consider the equation

{
ẋ = − ∂

∂y
H(x, y) + εP (x, y, ε),

ẏ = ∂
∂x
H(x, y) + εQ(x, y, ε),

(1)

where H(x, y), P (x, y, ε) and Q(x, y, ε) are analytic functions and ε is a small
parameter. Let us assume that, in (r, θ)-polar coordinates, H only depends on r,
H = H(r), and that the equilibrium point is at the origin. When ε = 0, we call
this equation of Hamiltonian radial type. In this work we are involved with former
problems concerning the perturbed Hamiltonian equation (1).
Equation (1) writes in polar coordinates as a 1-form

dH + εω(r, θ, ε) = 0, (2)

see [4, §2.6] for instance. For equation (2) let r(θ; ρ, ε) be the solution such that
r(0; ρ, ε) = ρ. Since for ε = 0 we have that H(r(θ; ρ, 0)) ≡ H(ρ) for any ρ and
θ, then r(θ; ρ, ε) can be written as the explicit power series expansion in ε, with
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coefficients depending on the angle θ and the initial condition ρ,

r(θ; ρ, ε) = r0(θ) + εr1(θ) + ε2r2(θ) + . . . , (3)

where r0(θ) = ρ for all θ. Even thinking that ri(θ) depends on ρ, to simplify
the reading, we do not make it explicit. For sake of shortness we will refer this
expansion as the shape of the orbit.
The goal of this paper is to give shape and period of the bifurcated limit cycles

from radial Hamiltonians, up to any order in ε, under a unified treatment. We
observe that the method described in this work also applies to get lower bounds
of the number of limit cycles of polynomial vector fields, however this is not the
aim of this paper. In [24] this problem, among others, is studied for equations like
(2). Our work is based on a generalization of the method introduced by Françoise.
This method, see [6], provides formulas for computing the first nonzero derivative
of the return map associated to orbits of the perturbed Hamiltonian system with
H(x, y) = x2 + y2.
The method is developed in Section 2. In the rest of sections, as an applica-

tion, we study small perturbations of linear centers, isochronous centers with a
polynomial linearization (linear-like) and non-linear radial Hamiltonians. Some
of the presented examples have been studied previously but, to the best of our
knowledge, the study of the period for the perturbed periodic orbits is new, except
for the van der Pol equation for which we present some improvements. All the
computations are made with the algebraic manipulator MAPLE.
The Poincaré-Pontryagin-Melnikov theory applied to equation (1) gives nec-

essary and sufficient conditions so that, up to first order, limit cycles bifurcate
from the period annulus. In this setting the first Poincaré-Pontryagin-Melnikov
function takes the form

F1(r) =
1

2π

∫ 2π

0

β(r, θ, 0)dθ

where ω(r, θ, ε) = α(r, θ, ε)dr+β(r, θ, ε)dθ. Then from each simple zero, ρ, of F1(r)
emerges a hyperbolic limit cycle of (1) which tends to the curve H(r) = H(ρ) when
ε goes to zero, see [23]. This result gives the shape of the limit cycle up to order
0 in ε.
The general expressions of the functions ri(θ) appearing in (3) are given in

Theorem 1. Although in this result we only present the concrete expressions of
the first three coefficients, higher order terms are computed in the applications.
Moreover the method also provides an explicit way to obtain the series expansion
of the period of periodic solutions, see Corollary 4.
Theorem 2 provides necessary conditions for which equation (2) has a periodic

orbit written as (3) up to order 0, 1 or 2. For each simple zero of F1, Theorem 3.(i)
gives the explicit expression of r1(θ) and the initial condition r1(0). In each step
of our procedure we obtain not only the Poincaré-Pontryagin-Melnikov function
of order i, Fi, but also the expression of ri(θ). It is important to remark that to
get the shape up to order i, in ε, it is necessary take into account terms that
appear for orders higher than i. For example the expression of r1(0) that appears
in Theorem 3.(i) depends on the first and second order terms. The shape of the
limit cycles that bifurcates from a perturbed analytic system can also be studied,



LIMIT CYCLES BIFURCATING FROM A PERIOD ANNULUS 3

in cartesian coordinates, in an implicit form. This is the approach of the works of
Giacomini, Llibre and Viano, see [12, 13, 14, 15].
Section 3 is devoted to check the accuracy of our results. We start with a system

which exhibits an explicit algebraic limit cycle and then the well known van der
Pol equation is considered. For this classical example the shape, the maximum
amplitude and the period of the limit cycle are provided up to higher order in ε.
We improve some previous works given in the literature. Approximations of type
(3) are presented in [18, §9.2], where a van der Pol oscillator is considered to give a
procedure for carrying approximations, up to third order, of the total energy stored
in a oscillation. In [26], the shape of closed trajectories of rotated vector fields
is also studied and an implementation to the van der Pol equation is presented.
The period and frequency of the periodic solution are studied in [1] and [3] and its
Fourier expansion in [20]. The amplitude up to order 10 is done in [5] and up to
order 25 in [3] where all the computations use exact rational arithmetic. Finally,
in [19] the maximum amplitude for large values of ε is computed numerically. Our
results give, for ε ∈ (0, 1.34), values for the maximum amplitude which coincide
up to six digits with the numerical approximations.
Another classical examples are the polynomial Liénard equations. In Section 4

next Liénard quintic equations are considered,





ẋ = −y +
n∑

i=1

εi(a1,ix+ a3,ix
3 + a5,ix

5),

ẏ = x.
(4)

Perko, see [21, Th. 6, §3.8], proves that former equation up to first order analysis
has exactly two limit cycles for some choice of the parameters. Proposition 10
provides the shape as well as the period for such perturbed limit cycles. Blows
and Perko, in [2], give explicit sufficient conditions for which equation (4) has a
double limit cycle. This problem is also studied in [14], where an algorithm for
computing the saddle-node limit cycle bifurcation hypersurface in a neighbour-
hood of the origin of the parameter space is provided. As a generalization of these
conditions for any system of type (2), Theorem 3.(ii) provides necessary and suffi-
cient conditions to have two limit cycles bifurcating from each double zero of F1.
Moreover we get the initial conditions r1(0). An application of this result is done
in Proposition 11 where the shape and period of both limit cycles are explicitly
computed up to higher order. As a consequence of Theorem 2 it can be seen how
this method also applies when F1 vanish identically and a higher order study is
necessary.
The method presented can be also used to study perturbations of some iso-

chronous centers. In Section 5 we study some polynomial isochronous centers for
which the linearization and its inverse are both polynomial. These transforma-
tions are called Jacobian changes, see [28] where a small class of them, the Tame
transformations, are also considered. From a quadratic Tame transformation we
can recover a cubic system studied in [27]. For these type of systems, as in the
previous families, a higher order analysis can be done. A similar study is presented
in [24] when the transformation is not polynomial but birational.
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As an illustration, in the proof of Proposition 13, we prove that, for ε small
enough, system

{
u̇ = −v,
v̇ = u+

ε

2
(v − u2 + 2v2 − 4u2v + 2u4) ,

has a limit cycle cycle whose shape, up to second order approximation, is

r(θ; 1, ε) = 1 + r1(θ)ε+ r2(θ)ε
2 + · · · ,

where

r1(θ) = −3

4
cos θ − 1

8
sin(2θ) +

1

16
cos(3θ) +

1

16
sin(4θ)− 1

80
cos(5θ),

r2(θ) = − 307

1024
+

39

80
sin θ +

213

512
cos(2θ)− 17

960
sin(3θ)− 1

1280
cos(4θ)

− 153

1600
sin(5θ) +

523

15360
cos(6θ) +

23

2240
sin(7θ)− 9

1024
cos(8θ)

− 1

320
sin(9θ) +

9

25600
cos(10θ),

and the corresponding period is

T (ε) ≈ 2π

(
1 +

251

320
ε2 +

23683041

14336000
ε4 +

117449035916903

20230963200000
ε6

+
370726500803682522263539

16330562973204480000000
ε8
)
.

This system, with the Tame transformation (u, v) = (x, y + Cx2), becomes a
perturbed isochronous cubic system previously studied by Toni in [27].
In last section we exemplify, perturbing the Hamiltonian H = (2r2 + r4)/4,

how the method presented in this paper also works for other radial Hamiltonian
equations.
Finally we recall some related works, where the computation of the Poincaré

first return map is considered, are Gasull and Torregrosa [10, 11], Iliev [16], Iliev
and Perko [17], Poggiale [22] and Roussarie [25]. The results of these papers allow
to compute the first non null term of the Poincaré map, Fn(r) = rn(2π), just
under the assumption that Fi(r) = ri(2π) ≡ 0, for i = 1, . . . , n − 1, but when an
arbitrary Hamiltonian H is considered, up to our knowledge, there are no general
methods to compute explicitly such functions for any order.
We thank Armengol Gasull for his comments and suggestions during the real-

ization of this work.

2. Describing the method and main results

We start by giving some definitions and notations. Let us assume that, in
equation (1), we have that

P (x, y, ε) =

∞∑

i=0

εiPi(x, y), Q(x, y, ε) =

∞∑

i=0

εiQi(x, y),



LIMIT CYCLES BIFURCATING FROM A PERIOD ANNULUS 5

where Pi, Qi are analytic functions. In polar coordinates given by (x, y) =
(r cos θ, r sin θ) equation (1) writes as

dr

dt
= −1

r
Hθ +

1

r

∞∑
i=1

εiRi(r, θ),

dθ

dt
=

1

r
Hr +

1

r

∞∑
i=1

εiSi(r, θ),
(5)

or

dr

dθ
=

−Hθ +
∞∑
i=1

εiRi(r, θ)

Hr +
∞∑
i=1

εiSi(r, θ)
, (6)

where Hθ = ∂H/∂θ, Hr = ∂H/∂r and

Ri(r, θ) = r cos θ Pi(r cos θ, r sin θ) + r sin θ Qi(r cos θ, r sin θ),
Si(r, θ) = cos θ Qi(r cos θ, r sin θ)− sin θ Pi(r cos θ, r sin θ).

(7)

Since the Hamiltonian is of radial type we have that H = H(r), hence Hθ ≡ 0
and dH = Hr dr = H ′(r) dr. Therefore equation (6) writes as the 1-form

dH +

∞∑

i=1

εiwi(r, θ) = 0 (8)

where

ωi(r, θ) = αi(r, θ) dr + βi(r, θ) dθ, (9)

being αi(r, θ) = Si(r, θ) and βi(r, θ) = −Ri(r, θ). We point out that both, αi and
βi, are 2π-periodic functions in θ.
The results of this work are based in a special decomposition, given in Lemma 5,

of an arbitrary 1-form written in polar coordinates. It is reminiscent of the de-
compositions used by Françoise [6, 7, 8] and it is a generalization of Lemma 2.3
of Gasull and Torregrosa given in [11]. This generalization has been also de-
scribed in [16] and [17]. Basically, the idea of the decomposition for any 1-
form ω(r, θ) = α(r, θ)dr + β(r, θ)dθ, is described in the following. Since, in

general,
∫ θ

0
β(r, ψ) dψ is not a 2π-periodic function in θ, we decompose ω as

h(r, θ) dH + dG(r, θ) + F (r) dθ, where G(r, θ) is 2π-periodic in θ. This fact will
make easier the calculation of the integrals of the 1-form dG(r, θ) + F (r) dθ that
appear in the proof of Theorem 1.
Next theorem gives the way to obtain the power series expansion (3) of any

solution of equation (8). We note that it is not only an existential result but also
an explicit method to compute all the functions that appear in its statement.

Theorem 1. Let us consider polar coordinates in the plane. Let H = H(r) be
an analytic function and let ρ be a real number such that H(r) = H(ρ) gives a
closed curve in the plane such that H ′(ρ) does not vanish. Consider r(θ; ρ, ε) the
solution of equation (8) with r(0; ρ, ε) = ρ. For each positive integer, n, there exist
functions Fn(r), Gn(r, θ) and hn(r, θ), 2π-periodic in θ, such that the 1-form

Wn = −
n∑

i=1

ωihn−i,
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writes as Wn = W 0
n +W 1

n , where W
0
n = hndH + dGn and W 1

n = Fndθ. By way of
notation we take h0 ≡ 1. If we write the solutions of equation (8) in the form

r(θ; ρ, ε) = r0(θ) + εr1(θ) + ε2r2(θ) + ε3r3(θ) + · · · ,
then we have that

r0(θ) = ρ,

r1(θ) = r1(0) +
1

H ′(ρ)

(
F1(ρ)θ +G1(ρ, θ)−G1(ρ, 0)

)
,

r2(θ) = r2(0) +
1

H ′(ρ)

(
− 1

2
H ′′(ρ)

(
r21(θ)− r21(0)

)
+ F ′

1(ρ)

∫ θ

0

r1(ψ)dψ

+
∂G1

∂r
(ρ, θ)r1(θ)−

∂G1

∂r
(ρ, 0)r1(0) + F2(ρ)θ +G2(ρ, θ)−G2(ρ, 0)

)
,

r3(θ) = r3(0) +
1

H ′(ρ)

(
−H ′′(ρ)(r1(θ)r2(θ)− r1(0)r2(0))

− 1

6
H ′′′(ρ)(r31(θ)− r31(0)) + F ′

1(ρ)

∫ θ

0

r2(ψ)dψ +
1

2
F ′′
1 (ρ)

∫ θ

0

r21(ψ)dψ

+
∂G1

∂r
(ρ, θ)r2(θ)−

∂G1

∂r
(ρ, 0)r2(0) +

1

2

∂2G1

∂r2
(ρ, θ)r21(θ)−

1

2

∂2G1

∂r2
(ρ, 0)r21(0)

+ F ′
2(ρ)

∫ θ

0

r1(ψ)dψ +
∂G2

∂r
(ρ, θ)r1(θ)−

∂G2

∂r
(ρ, 0)r1(0)

+ F3(ρ)θ +G3(ρ, θ)−G3(ρ, 0)

)
.

In the above result, and in the rest of the paper, we have written ri(θ) instead of
ri(θ; ρ), in order to simplify notation, when it is not necessary to make explicit the
dependence in ρ. Moreover, from the expressions of ri(θ), we can obtain necessary
conditions to know if a solution of equation (8) is periodic as it is proved in next
theorem.

Theorem 2. Let us assume hypotheses of Theorem 1 and let us define

C1 = F1(ρ),

C2 = F ′
1(ρ)

∫ 2π

0

r1(ψ)dψ + 2πF2(ρ),

C3 = F ′
1(ρ)

∫ 2π

0

r2(ψ)dψ +
1

2
F ′′
1 (ρ)

∫ 2π

0

r21(ψ)dψ + F ′
2(ρ)

∫ 2π

0

r1(ψ)dψ + 2πF3(ρ).

Hence, conditions C1 = 0, C1 = C2 = 0 and C1 = C2 = C3 = 0, are necessary
so that r(θ; ρ, ε) = ρ + O(ε), r(θ; ρ, ε) = ρ + r1(θ)ε + O(ε2) and r(θ; ρ, ε) =
ρ + r1(θ)ε + r2(θ)ε

2 + O(ε3) are periodic solutions up to order 0, 1 and 2 in ε of
equation (8), respectively.

We note that in previous result, nevertheless, nothing is said about sufficient
conditions guaranteeing the existence of such limit cycle. In next theorem we give
sufficient conditions so that, close to the solution H(r) = H(ρ) of the unperturbed
equation, the equation (8) has isolated periodic solutions for ε small enough.
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Theorem 3. Let us assume the hypotheses of Theorem 1.

(i) If F1(ρ) = 0 and F ′
1(ρ) 6= 0 then equation (8) has a hyperbolic limit cycle

close to r(θ; ρ, ε) = ρ + r1(θ)ε + O(ε2), where r1(θ) is given in Theorem 1
and

r1(0) = −F2(ρ)

F ′
1(ρ)

− 1

2π

∫ 2π

0

G1(ρ, θ)−G1(ρ, 0)

H ′(ρ)
dθ.

(ii) If F1(ρ) = F ′
1(ρ) = F2(ρ) = 0 and F ′′

1 (ρ) 6= 0 then equation (8) gives rise for
ε small enough two (no) limit cycles when ∆ > 0 (∆ < 0). Here we take
∆ = B2 − 4AC where

A = πF ′′
1 (ρ),

B = 2πF ′
2(ρ) + F ′′

1 (ρ)

∫ 2π

0

g1(θ, ρ) dθ,

C = 2πF3(ρ) + F ′
2(ρ)

∫ 2π

0

g1(θ, ρ) dθ +
1

2
F ′′
1 (ρ)

∫ 2π

0

g21(θ, ρ) dθ,

being g1(θ, ρ) = (G1(θ, ρ)−G1(0, ρ)) /H
′(ρ). When the two limit cycles exist,

they can be written as r(θ; ρ, ε) = ρ+ r1(θ)ε+ O(ε2) where r1(θ) is given in
Theorem 1. Moreover the corresponding r1(0) is each of the two solutions of
the equation Aλ2 +B λ+ C = 0.

(iii) If F1(ρ) ≡ 0, F2(ρ) = 0 and F ′
2(ρ) 6= 0 then equation (8) has a hyperbolic

limit cycle close to r(θ; ρ, ε) = ρ + r1(θ)ε + O(ε2), where r1(θ) is given in
Theorem 1 and

r1(0) = −F3(ρ)

F ′
2(ρ)

− 1

2π

∫ 2π

0

G1(ρ, θ)−G1(ρ, 0)

H ′(ρ)
dθ.

The procedure used in the proof of the former theorem provides explicit expres-
sions for ri(0), i = 2, 3, . . . We do not write down these expressions because of
their complexity, but in next sections we compute them for the families described
in the introduction.
We observe that, from the expressions that appear in Theorem 3, if F1 has

a simple zero then the shape up to first order depends on the functions F1, G1,
corresponding to first order, and F2 that comes from the second order study. When
F1 has a double zero or vanishes identically we also need the expression of F3 that
comes from the third order. This happens in general for any order.
Next result gives the expression of the period of the perturbed periodic orbits.

Corollary 4. Let us assume the hypotheses of Theorem 1. Then the period of the
periodic solution, r(θ; ρ, ε), of equation (8) given in Theorem 3 satisfies

T (ε; ρ) =

∫ 2π

0

r(θ; ρ, ε)

H ′(r(θ; ρ, ε)) +
∑∞

i=1 ε
iSi(r(θ; ρ, ε), θ)

dθ,

where Si is defined in (7) and developing it up to first order we obtain

T (ε; ρ) ≈ 2π

(
ρ

H ′(ρ)
− ερH ′′(ρ)r1(0)

)
.

For proving our main results we need to introduce some notation and technical
lemmas.
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Lemma 5. Let Ω = α(r, θ)dr + β(r, θ)dθ be an arbitrary analytic 1-form, 2π-
periodic in θ, let H = H(r) be an analytic function, let ρ be a real number such
that H(r) = H(ρ) gives a closed curve in the plane and H ′(ρ) does not vanish.
Then taking next functions, 2π-periodic in θ,

F (r) =
1

2π

∫ 2π

0

β(r, ψ)dψ,

G(r, θ) =

∫ θ

0

β(r, ψ) dψ − F (r)θ,

h(r, θ) =

(
α(r, θ)− ∂G(r, θ)

∂r

)
/H ′(r),

we can write
Ω = Ω0 + Ω1, (10)

where
Ω0 = h dH + dG and Ω1 = F dθ. (11)

Moreover ∫

H=ρ

Ω =

∫

H=ρ

Ω1. (12)

Proof. To get decomposition (10) fulfilling equalities (11), it is necessary that
conditions h(r, θ)H ′(r) + ∂G(r, θ)/∂r = α(r, θ) and ∂G(r, θ)/∂θ + F (r) = β(r, θ)
are met. By imposing the periodicity of G(r, θ), i.e. that G(r, 0) = G(r, 2π), the
decomposition follows. From these conditions and by taking into account that∫
H=ρ

Ω =
∫
H=ρ

β(r, θ) dθ, equality (12) follows straightforward. �

Remark 6. (i) A noteworthy fact is that previous lemma does not depends on
the interval of integration on which we define the functions F (r) and G(r, θ).
The integrals depend only on the length of the interval, i.e. one could consider
not only the interval [0, 2π] but also any interval of length 2π obtaining an
equivalent decomposition. This approach is done in [24].

(ii) From the proof of previous lemma one can see that there are different ways to
define the function G(r, θ) so that Ω0 = h dH + dG. However, since G(r, θ)
is forced to be a 2π-periodic function, there is a unique way in which G(r, θ)
can be chosen, except for the constant of integration.

Definition 7. (i) Let f(θ; ρ, ε) =
∑

i≥0 fi ε
i be given. We define

Di(f) = fi =
1

i!

di

dεi
f(θ; ρ, ε)

∣∣∣∣
ε=0

.

(ii) Let us consider the 1-form ω = α(r, ψ, ε)dr + β(r, ψ, ε)dψ and, for each
θ ∈ [0, 2π], the curve γε(θ) given by r(ψ; ρ, ε) = ρ + εr1(ψ) + ε2r2(ψ) + · · · ,
whenever 0 ≤ ψ ≤ θ. For each i we define

Qi(ω, γε(θ)) =
1

i!

(
di

dεi

∫

γε(θ)

ω

)∣∣∣∣
ε=0

.

By way of notation we write Qi(ω) = Qi (ω, γε(θ)) .

Next result follows straightforward from the power series expansion, in a neigh-
bourhood of a point, of a one variable function.
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Lemma 8. Let f(r) be an analytic function. If r = r0 + εr1 + ε2r2 + · · · , then
f(r) = f0(r0) + εf1(r0) + ε2f2(r0) + · · · where

f0(r0) = D0(f) = f(r0),

f1(r0) = D1(f) = f ′(r0)r1,

f2(r0) = D2(f) = f ′(r0)r2 +
1

2
f ′′(r0)r

2
1,

f3(r0) = D3(f) = f ′(r0)r3 + f ′′(r0)r1r2 +
1

6
f ′′′(r0)r

3
1,

f4(r0) = D4(f) = f ′(r0)r4 +
1

2
f ′′(r0)(2r1r3 + r22) +

1

2
f ′′′(r0)r

2
1r2 +

1

24
f (4)(r0)r

4
1,

for ε small enough.

Lemma 9. In polar coordinates, let us consider the 1-form ω = α(r, θ)dr +
β(r, θ)dθ, where α and β are analytic functions, 2π-periodic in θ, and let γε be a
curve written as r = r(θ; ρ, ε) = ρ+ εr1(θ) + ε2r2(θ) + · · · . Then, for all n

Qn(ω) =

∫ θ

0

(
Dn (β(ρ, ψ)) +

n−1∑

i=0

Di

(
∂rn−i(ψ)

∂ψ
α(ρ, ψ)

))
dψ, (13)

and Q0(ω) =
∫ θ

0
β(ρ, ψ)dψ. In particular we have that

(i) if α ≡ 0 then

Qn(ω) =

∫ θ

0

Dn(β(ρ, ψ)) dψ,

(ii) if there exists a function W such that dW = ω then

Qn(ω) = Dn(W )(θ)−Dn(W )(0).

Proof. For simplicity we will write r(θ, ε) instead of r(θ; ρ, ε). From Definition 7.(i)
and using the parametrization of γε, we have that

∂n

∂εn

∫

γε(θ)

ω

∣∣∣∣
ε=0

=
∂n

∂εn

∫ θ

0

(
α(r(ψ, ε), ψ)

∂

∂ψ
r(ψ, ε) + β(r(ψ, ε), ψ)

)
dψ

∣∣∣∣
ε=0

=

∫ θ

0

n∑

i=0

(
n

i

)
∂i

∂εi
α(r(ψ, ε), ψ)

∂n−i

∂εn−i

(
∂

∂ψ
r(ψ, ε)

)
dψ

∣∣∣∣∣
ε=0

+ n!

∫ θ

0

Dn(β(ρ, ψ))dψ.

(14)

Using again the parametrization of γε, we have that

∂n−i

∂εn−i

(
∂

∂ψ
r(ψ, ε)

)
=

∂n−i

∂εn−i

( ∞∑

j=1

εj
∂

∂ψ
rj(ψ)

)
=

∞∑

j=0

cn,i,jε
j ∂

∂ψ
rn−i+j(ψ),
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for some real numbers cn,i,j such that cn,i,0 = (n− i)!. Hence,

∫ θ

0

1

n!

n∑

i=0

(
n

i

)
∂i

∂εi
α(r(ψ, ε), ψ)

∂n−i

∂εn−i

(
∂

∂ψ
r(ψ, ε)

)
dψ

∣∣∣∣∣
ε=0

=

∫ θ

0

1

n!

n−1∑

i=0

(
n

i

)
∂i

∂εi
α(r(ψ, ε), ψ) cn,i,0

∂

∂ψ
rn−i(ψ) dψ

=

∫ θ

0

n−1∑

i=0

Di

(
∂rn−i(ψ)

∂ψ
α(ρ, ψ)

)
dψ,

which finishes the proof of expression (13). �

We end this section with the proofs of the main results.

Proof of Theorem 1. First, let us obtain the decomposition of the 1-form Wn =
−∑n

i=1 ωi hn−i as Wn = W 0
n +W 1

n , by induction on n. In case n = 1 we have,
assuming h0 ≡ 1, that W1 = −ω1. Since ω1 is under hypotheses of Lemma 5, we
have that there exist functions F1(r) and G1(r, θ), h1(r, θ), 2π-periodic in θ, such
that the 1-form W1 decomposes as W1 = W 0

1 +W
1
1 , where W

0
1 = h1 dH+ dG1 and

W 1
1 = F1 dθ. Thus, applying Lemma 5 to Wn for each n ≥ 2, it turns out that Wn

is well defined and decomposes as in the statement.
To obtain the expressions of ri(θ), i = 0, . . . , 3, we consider r(θ; ρ, ε) as the

solution of the initial value problem given by equation (8) with r(0; ρ, ε) = ρ. For
purposes of notation we briefly write it as γε. By integrating equation (8) over γε,
we have that ∫

γε

dH +

∞∑

i=1

εi
∫

γε

ωi(r, θ) = 0.

If we collect the constant term in ε, then we get

H(r0(θ))−H(r0(0)) = 0.

Hence, as H is an analytic function, we get that r0(θ) = r0(0) = ρ, for all θ ∈
[0, 2π]. The rest of the expressions are proved as follows. From equation (8) we
consider next equality

(
n∑

i=0

hi ε
i

)(
dH +

∞∑

i=1

wi ε
i

)
= 0,

which is equivalent to

dH +

∞∑

n=1

(
n∑

i=1

wihn−i + hn dH

)
εn = 0.

Hence, from the definition of Wn, we may write equation (8) as

dH −
∞∑

n=1

(Fn dθ + dGn) ε
n = 0,
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for some functions Fn and Gn the existence of which has been shown just before.
By integrating last equation over γε we get,

∫

γε

dH =

n∑

i=1

∫

γε

(Fn dθ + dGn) ε
i +O

(
εn+1

)
. (15)

Collecting terms in εi, i ≥ 1, both in the left and right hand sides of previous
expression, we get

Qi(dH) =

i−1∑

j=0

Qj(Fi−jdθ + dGi−j). (16)

Let us assume that last condition is imposed for i from 1 to n − 1. This forces
that equality (15) is satisfied up to powers of order n− 1 in ε. Let us recall that
γε is parametrized by the angle θ, as (3).
The condition to have equality (15) satisfied also for terms in εn follows from

expression (16), using relations given in Lemma 9 and by the fact that Qi is a
linear operator. This condition writes as

Dn(H)(θ)−Dn(H)(0) =

n−1∑

i=0

(∫ θ

0

Di(Fn−i)(ψ) dψ

+Di(Gn−i)(θ)−Di(Gn−i)(0)

)
. (17)

In particular, when n = 1 we have that D1(H) = H ′(ρ) and, hence,

H ′(ρ)(r1(θ)− r1(0)) = F1(ρ)θ +G1(ρ, θ)−G1(ρ, 0),

which gives the expression of r1(θ) of the statement of this theorem. The expres-
sions corresponding to r2(θ) and r3(θ) are also obtained from (17). �
Proof of Theorem 2. Let r(θ; ρ, ε) be the solution of the initial value problem given
by equation (8) with r(0; ρ, ε) = ρ. From Theorem 1 we know that the first nec-
essary condition so that r(θ; ρ, ε) is a solution up to order 0 in ε is that r0(θ) ≡ ρ.
Even more, this solution will be a periodic solution if r(2π; ρ, ε) = r(0; ρ, ε). Hence,
conditions r1(2π) = r1(0), r2(2π) = r2(0) and r3(2π) = r3(0), need to be satisfied
to have a periodic solution. Hence, again from Theorem 1 and since Gn(r, θ),
n = 1, 2, . . . , is a 2π-periodic function on θ, each one of previous conditions is,
respectively, equivalent to C1 = 0, C2 = 0 and C3 = 0, as we would prove. �

Proof of Theorem 3. Since F1(ρ) = 0, as a consequence of the Implicit Function
Theorem, the existence of limit cycles near r = ρ, for ε small enough, is guaranteed.
To see details we refer to [2]. Even more, from Theorem 1 we have that

r1(θ) = r1(0) +
1

H ′(ρ)
(G1(ρ, θ)−G1(ρ, 0)) .

In the case (i), the condition C2 = 0 given in Theorem 2 allow us to compute r1(0)
from

2πF ′
1(ρ)r1(0) + F ′

1(ρ)

∫ 2π

0

G1(ρ, θ)−G1(ρ, 0)

H ′(ρ)
dθ + 2πF2(ρ) = 0.
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The equivalent equation of degree one for r2(0) can be easily obtained substituting
the explicit expression of r1(θ) in the condition C3 = 0 given in Theorem 2. The
procedure described in Lemma 9 provides the sequence of equations of degree one
that satisfies ri(0) for all i ≥ 2.
In the case (ii), from condition C3 = 0 of Theorem 2, r1(0) satisfies the quadratic

equation of the statement. This equation may have two or no solutions according
to the sign of its discriminant, ∆. The values of ri(0) for all i ≥ 2 can be obtained
in a similar way as in the previous case.
The case (iii) follows similarly as case (i) and r1(0) comes from condition C3 =

0. �

Proof of Corollary 4. The expression for the period is an immediate consequence
of the explicit computation of (3) given in Theorem 1. Substituting it in equation
(5), corresponding to dθ/dt, and computing its power expansion in ε, the proof
ends by integrating the variable θ over the interval [0, 2π]. �

3. Test examples

In this section we apply the results of Section 2 to describe the periodic solution
of some families of differential equations used as test examples. The first one
exhibits an explicit algebraic limit cycle of degree two and hence all the expressions
can be checked explicitly. The second one is the well-known van der Pol equation.
For these differential equations the results have been tested doing a comparison
with some previous works that use different techniques.

3.1. An example with an explicit algebraic limit cycle. Next system
{
ẋ = −y,
ẏ = x+ εx− εy(x2 + y2 + εx2 − 1),

(18)

has the algebraic curve x2+ y2+ εx2− 1 = 0 as a limit cycle. From Theorem 3.(i)
and Lemma 5, for ε small enough, (18) presents limit cycles bifurcating from the
circles of radius ρ where ρ are the simple zeros of the function

F1(r) = −1

2
r4 +

1

2
r2.

This function has only one positive zero, which is simple, at ρ = 1. The expression
of r(θ; ρ, ε), from Theorem 1 and Theorem 3.(i), is

r(θ; 1, ε) = 1− 1

2
ε cos2 θ +

3

8
ε2 cos4 θ − 5

16
ε3 cos6 θ +

35

128
ε4 cos8 θ + · · · ,

that agrees with the series development of the real solution x2 + y2 + εx2 − 1 =
r2(1 + ε cos2 θ)− 1 = 0, that is r(θ, ε) := r(θ; 1, ε) = 1/

√
1 + ε cos2 θ.

From the above expression of the radius and the differential equation in polar
coordinates, the period of the limit cycle, see Corollary 4, can be computed as

T (ε; 1) =

∫ 2π

0

dθ

1 + ε sin θ(cos θ + sin θ cos θ − r2(θ, ε))− ε2 sin3 θ cos θr2(θ, ε)

=
2π√
1 + ε

= 2 π

(
1− 1

2
ε+

3

8
ε2 − 5

16
ε3 +

35

128
ε4 − 63

256
ε5 + · · ·

)
.
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It can be checked that the method described in Section 2 gives the previous Taylor
expansion up to any order.

3.2. The van der Pol equation. Let us consider van der Pol’s equation

{
ẋ = −y + εx(y2 − 1),
ẏ = x,

(19)

where ε is any real number. From Liénard’s Theorem it is known that, for ε 6= 0,
(19) has a unique hyperbolic limit cycle. Additionally it is known that when ε
goes to 0, the limit cycle tends to the circle of radius 2.
According Theorem 3.(i) and Lemma 5, initial conditions for limit cycles of

equation (19) are given by the simple zeros of

F1(r) =
1

8
r4 − 1

2
r2.

The above polynomial only has a positive root, ρ = 2, which is simple. Hence,
equation (19) has a limit cycle that tends to the circle of radius 2 when ε goes to
zero. The shape of this limit cycle r(θ; ρ, ε), from Theorem 1 and Theorem 3.(i),
is given by

r(θ; 2, ε) = 2 + εr1(θ) + ε2r2(θ) + ε3r3(θ) + ε4r4(θ) + · · ·

where the first values of ri(θ) are,

r1(θ) =− 1

2
sin(2θ)− 1

4
sin(4θ),

r2(θ) =
7

128
+

5

32
cos(2θ) +

3

32
cos(4θ)− 7

96
cos(6θ)− 7

128
cos(8θ),

r3(θ) =
19

512
sin(2θ) +

199

6144
sin(4θ)− 475

9216
sin(6θ)− 79

1536
sin(8θ)

+
15

1024
sin(10θ) +

33

2048
sin(12θ),

r4(θ) =− 167

1179648
− 515

49152
cos(2θ)− 2743

147456
cos(4θ)

+
9767

442368
cos(6θ) +

10505

294912
cos(8θ)− 1229

81920
cos(10θ)

− 3641

147456
cos(12θ) +

143

49152
cos(14θ) +

715

131072
cos(16θ).

We note that r1(0) = r3(0) = 0 (in fact, by symmetry, ri(0) = 0 for any odd
natural number i) and r2(0) = 17/96, r4(0) = −1577/552960. More terms of the
expression of r(θ; ρ, ε) can be easily computed.
From Corollary 4 and adding some extra terms to the above expression of

r(θ; 2, ε) the first terms of the Taylor series, in ε, of the period of the limit cycle
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can be obtained. Then

T (ε; 2) ≈ 2π

(
1 +

1

16
ε2 − 5

3072
ε4 − 431

884736
ε6 +

557039

5096079360
ε8 +

51720623

9172942848000
ε10

− 21232697921411

3698530556313600000
ε12 +

1954685779155368107

5219366321069752320000000
ε14

+
4076885097753254949526607

14731139504587268947968000000000
ε16

− 2241455425314264055576930783643

41577168137747107878744883200000000000
ε18

− 41643131119097700402368554721725348469

3872464178615255430139995425341440000000000000
ε20
)
.

The limit cycle in cartesian coordinates can be parametrized as

(x(θ, ε), y(θ, ε)) = (r(θ; 2, ε) cos θ, r(θ; 2, ε) sin θ).

As in the proof of Corollary 4 we obtain the series of the time, t(θ; ε), as a function
of θ. Using the inverse series we can compute θ(t; ε) and hence y(t; ε), which
satisfies

y′′ − ε(y2 − 1)y′ + y = 0. (20)

The Fourier series of y(t; ε), using the frequency

ν(ε; 2) =
2π

T (ε; 2)
≈ 1− 1

16
ε2+

17

3072
ε4+

35

884736
ε6− 678899

5096079360
ε8+

28160413

2293235712000
ε10,

writes as

y(t; ε) ≈
(
2 +

11

4096
ε4
)
sin (νt) +

(
−1

4
ε+

19

768
ε3
)
cos (νt)

+

(
3

16
ε2 − 29

768
ε4
)
sin (3νt) +

(
1

4
ε− 21

256
ε3
)
cos (3νt)

+

(
− 5

96
ε2 +

1385

27648
ε4
)
sin (5νt) +

5

72
ε3 cos (5νt)

− 2555

110592
ε4 sin (7νt)− 7

576
ε3 cos (7νt) +

61

20480
ε4 sin (9νt) .

The maximum amplitude of the periodic solution of (19) is reached for θ = π/2
and it is

A(ε) = r
(π
2
; 2, ε

)
≈ 2 +

1

96
ε2 − 1033

552960
ε4 +

1019689

55738368000
ε6

+
9835512276689

1573159698432

ε8

105
− 58533181813182818069

732614178920988672

ε10

107

− 640801647045453210569821034833

292728572708104739431120896

ε12

109

+
103228335564979777754605142464993301533597

1520541448265573517964321797244452864

ε14

1011
.

The previous expansions either agree or improve some previous works given in
literature. In [1] and [3] the series of the period and frequency of the periodic
solution of (20) are given. The Fourier series expansion of y(t; ε) with a time
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translation to eliminate the sin (νt) term is done in [20]. Finally, in [19] the
maximum amplitude for large values of ε is computed numerically.
In Figure 1 we depict the period and maximum amplitude of the periodic solu-

tion of equation (20) both approximated up to order 20 in ε (T20(ε) and A20(ε)) and
numerically (T (ε) and A(ε)). The differences are less than 10−6 when ε ∈ [0, 1.18)
and ε ∈ [0, 1.34), respectively.
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0.0 0.5 1.0 1.5 2.0

 

2.000

2.005

2.010

2.015

 
0.25 0.50 0.75 1.00 1.25 1.50

 

0

0.000005

0.000010
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Figure 1. The period and the maximum amplitude up to order 20
with respect to ε, T20(ε) and A20(ε), versus the numerical approx-
imation (dotted line), T (ε) and A(ε), of equation (19) with initial
condition ρ = 2.

4. Liénard examples

This section is devoted to apply the results of this paper to two Liénard families
of quintic differential equations. The first exhibits two simple limit cycles while in
the second a double limit cycle is studied. Another example of this second case is
also studied in [2].

4.1. An example with two simple limit cycles. Given equation{
ẋ = −y + ε(a1x+ a3x

3 + a5x
5),

ẏ = x,
(21)

using the first Poincaré-Pontryagin-Melnikov function, it is known that, up to first
order, it can have at most two limit cycles, in Perko [21, Th. 6, §3.8] it is also
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proved that equation (21), when ε is small enough, has exactly two limit cycles
for some choice of the parameters.

Proposition 10. For ε small enough, the system{
ẋ = −y + ε

6
(15x− 25x3 + 6x5) ,

ẏ = x,
(22)

has two limit cycles that bifurcate from the circles x2 + y2 = ρ2i , for ρ1 = 1 and
ρ2 = 2. Moreover these limit cycles can be written as

r(i)(θ; ρi, ε) = ρi + r
(i)
1 (θ)ε+ r

(i)
2 (θ)ε2 + · · · ,

where

r
(1)
1 (θ) = − 35

192
sin(2θ)− 1

12
sin(4θ) +

1

192
sin(6θ),

r
(1)
2 (θ) =

43577

221184
− 1231

4608
cos(2θ)− 12085

147456
cos(4θ)− 65

2304
cos(6θ)

− 653

73728
cos(8θ) +

1

512
cos(10θ)− 11

147456
cos(12θ)

and

r
(2)
1 (θ) =

5

12
sin(2θ) +

11

24
sin(4θ) +

1

6
sin(6θ),

r
(2)
2 (θ) =

39389

13824
− 3143

1152
cos(2θ)− 2065

1152
cos(4θ)− 1115

1152
cos(6θ)

−2071

4608
cos(8θ)− 11

64
cos(10θ)− 11

288
cos(12θ).

In addition r
(i)
1 (0) = r

(i)
3 (0) = r

(i)
5 (0) = 0, i = 1, 2, and

r
(1)
2 (0) = − 20711

110592
, r

(2)
2 (0) = −11401

3456
,

r
(1)
4 (0) =

695992493381

7191587192832
, r

(2)
4 (0) =

413104715543

7023034368
.

Finally, the period of the corresponding periodic orbits are

T (1)(ε) ≈ 2π

(
1 +

925

3072
ε2 − 2169875

169869312
ε4 − 20854739099125

394509926006784
ε6

+
2482145166302141667875

102616917365288186413056
ε8
)

and

T (2)(ε) ≈ 2π

(
1 +

175

192
ε2 − 860375

1327104
ε4 − 1245515960375

96315899904
ε6

+
33587358157317806375

195726237040115712
ε8
)
.

Proof. According Theorem 3.(i) and Lemma 5, for ε small enough, equation (22)
has two limit cycles emerging from the circles of radii which are the simple zeros
of the function

F1(r) = − 5

16
r2(r4 − 5r2 + 4) = − 5

16
r2(r2 − 1)(r2 − 4).
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In this case all the non null zeros, ρ1 = 1 and ρ2 = 2, are simple since F ′
1(1) =

15/8 and F ′
1(2) = −15. Then, from Theorem 1 and Theorem 3.(i), we obtain

the expression of r(i)(θ; ρi, ε) for i = 1, 2, that appear in the statement. From
Corollary 4 we get the corresponding periods. �

The above result only shows some of the explicit expressions, due to the size of
them, of the power expansion of r(i)(θ; ρi, ε) in ε. Nevertheless some extra terms
are necessary to provide all the terms that appear for r(i)(0; ρi, ε) and T (i)(ε).

Finally it can be proved that by symmetry all the odd terms, r
(i)
2k+1(0), vanish at

the origin.

4.2. An example with a double limit cycle. Here we present an example of
a Liénard system having two limit cycles that emerge, for ε small enough, from a
double zero of F1. This problem is also studied in [14]. The series expansion of the
period function of a semistable limit cycle is considered in [9], where it is proved
that, in general, the first non constant term depends on

√
ε. In this example, we

observe that, the first non constant term depends on ε2.

Proposition 11. For ε small enough, system





ẋ = −y + ε

(
10x− 80

3
x3 + 16x5

)
+ ε2

(
905

72
x− 475

27
x3 + x5

)
,

ẏ = x,
(23)

has two limit cycles that bifurcate form the circle x2+y2 = 1. Moreover these limit
cycles can be expressed as

r(i)(θ; 1, ε) = 1 + r
(i)
1 (θ)ε+ r

(i)
2 (θ)ε2 + · · · ,

for i = 1, 2, where

r
(1)
1 (θ) =

1

4
− 5

12
sin(2θ)− 1

12
sin(4θ)+

1

12
sin(6θ),

r
(1)
2 (θ) =

8461

2016
−1225

1728
sin(2θ)−79

72
cos(2θ)− 329

1728
sin(4θ)+

95

576
cos(4θ)

+
7

64
sin(6θ)+

35

288
cos(6θ)+

29

576
cos(8θ)+

1

32
cos(10θ)− 11

576
cos(12θ)

and

r
(2)
1 (θ) =

25

72
− 5

12
sin(2θ)− 1

12
sin(4θ)+

1

12
sin(6θ),

r
(2)
2 (θ) = −3043

1134
−1015

1728
sin(2θ)−79

72
cos(2θ)− 119

1728
sin(4θ)+

95

576
cos(4θ)

+
259

1728
sin(6θ)+

35

288
cos(6θ)+

29

576
cos(8θ)+

1

32
cos(10θ)− 11

576
cos(12θ).
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In addition

r
(1)
1 (0) =

1

4
, r

(2)
1 (0) =

25

72
,

r
(1)
2 (0) =

1545

448
, r

(2)
2 (0) = −12452936288,

r
(1)
3 (0) =

44204981

351232
, r

(2)
3 (0) = −64048647121

512096256
,

r
(1)
4 (0) =

1794546526490287

200741732352
, r

(2)
4 (0) = −32301462867376505

3613351182336
.

Finally, the corresponding periods are

T (1)(ε) ≈ 2π

(
1 +

25

12
ε2 +

1625

288
ε3 − 11501975

580608
ε4
)

and

T (2)(ε) ≈ 2π

(
1 +

25

12
ε2 +

4175

864
ε3 +

6915275

193536
ε4
)
.

Proof. Applying Lemma 5 to system (23) we obtain

F1(r) = 5r2(r2 − 1)2,

F2(r) =
5

144
r2(r2 − 1)(9r2 − 181).

We note that F1 has a double zero at ρ = 1 and F2(1) = 0. Then from The-
orem 3.(ii) equation (23) presents two limit cycles bifurcating from ρ = 1 and

r
(i)
1 (0), i = 1, 2, are the two roots of the quadratic polynomial

−125

72
+

215

18
λ− 20λ2 = −20

(
λ− 1

4

)(
λ− 25

72

)
= 0.

Hence Theorem 1 provides the expressions for r
(i)
1 (θ) and r

(i)
1 (0), i = 1, 2 given in

the statement. The proof ends computing, from Corollary 4, their corresponding
periods. �

5. Perturbing linear-like systems

The method described in Section 2 can be applied also for studying the shape
of limit cycles that appear, by small perturbations, from isochronous centers. For
these systems there exists a change of variables, the linearization, (u, v) = ϕ(x, y)
such that system {

ẋ = P0(x, y) + εP1(x, y),
ẏ = Q0(x, y) + εQ1(x, y),

(24)

linearizes to {
u̇ = −v + εP̃1(u, v),

v̇ = u+ εQ̃1(u, v).
(25)

In concrete examples the computations can be very intricate for most ϕ functions,
but in some cases we can do it in an explicit way, as we can show in the families
of this section.
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An easier case is when ϕ is a polynomial function whose inverse is also poly-
nomial. These functions are called Jacobian changes and satisfy that detDϕ is
constant. As an illustration we can consider the system
{
ẋ = −y−7x2+8xy+12y2+20x3−120x2y+240xy2−160y3+εP (x, y),
ẏ = x−6x2+14xy−4y2+10x3−60x2y+120xy2−80y3+εQ(x, y).

(26)

The change of variables

(u, v) =
(
x− 2(x− 2y)2, y − (x− 2y)2

)
(27)

whose inverse, which is also polynomial, is given by

(x, y) =
(
u+ 2(u− 2v)2, v + (u− 2v)2

)
(28)

writes (26) as




u̇ = −v+ε
(
(1− 4u+ 8v)P (u+ 8v2 − 8uv + 2u2, v + 4v2 − 4uv + u2)

+(8u− 16v)Q(u+ 8v2 − 8uv + 2u2, v + 4v2 − 4uv + u2)
)
,

v̇ = u+ε
(
(−2u+ 4v)P (u+ 8v2 − 8uv + 2u2, v + 4v2 − 4uv + u2)

+(1 + 4u− 8v)Q(u+ 8v2 − 8uv + 2u2, v + 4v2 − 4uv + u2)
)
.

(29)

Clearly, we could apply to previous system all the theory described along the paper
and we could obtain, for every k, the shape of the limit cycles up to order k. This
is so because the perturbation, for the new system, remains polynomial although
the degree increases up to 2n+ 1 if P and Q are polynomials of degree n.

Proposition 12. The system
{
ẋ = −y−7x2+8xy+12y2+20x3−120x2y+240xy2−160y3+ε(x2−5x),
ẏ = x−6x2+14xy−4y2+10x3−60x2y+120xy2−80y3

(30)

has a parametrized limit cycle

x(θ; ε) ≈ 5 + cos θ − 4 sin (2θ)− 3 cos (2θ)

+
6101

240
(−10− cos θ + 8 sin(2θ) + 6 cos(2θ)) ε,

y(θ; ε) ≈ 5

2
+ sin θ − 2 sin(2θ)− 3

2
cos(2θ)

+
6101

240
(−5− sin θ + 4 sin(2θ) + 3 cos(2θ)) ε,

where θ ∈ [0, 2π] and passing through the point (x(ε), y(ε)) where

x(ε) ≈ 3− 6101

48
ε− 13216604857

806400
ε2 − 228947349374103607

44706816000
ε3,

y(ε) ≈ 1− 6101

120
ε− 28791221

4480
e2 − 2249282681363173

1117670400
ε3

and the period satisfies

T (ε) ≈ 2π

(
1 +

499

4
ε+

9526313

192
ε2 +

590345743447

23040
ε3 +

233137962146049461

15482880
ε4
)
.
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Proof. With the change of variables (27), system (30) becomes (29), with P (x, y) =
x2 − 5x and Q(x, y) = 0. This last differential equation has a limit cycle which
emerges from ρ = 1, because Lemma 5 give us F1(r) = 5r2(r2 − 1)/2. Moreover,
from Theorem 1 and Theorem 3, we have the explicit expression of the radius up
to any order. For example, when θ = 0,

r(0; 1, ε) ≈ 1− 6101

240
ε− 2851765297

806400
ε2 − 49004734865049767

44706816000
ε3

− 12112729537967232398473411

25776877142016000
ε4.

Then the limit cycles can be parametrized by θ as (u, v) = r(θ; 1, ε)(cos θ, sin θ).
The expressions of the statement follow recovering the original coordinates, using
(28). Finally, the period is obtained from Corollary 4 because the change of
variables (27) does not modify the time. �

The change of variables chosen to generate the previous example belongs to a
particular Jacobian changes: the Tame transformations, see [28]. Now we briefly
introduce them and then we study the perturbation of a system, from [27], which
is isochronous and that linearizes through a Tame transformation. See Proposi-
tion 13.
We recall that a Jacobian change is a polynomial transformation ϕ : R2 → R2

with an inverse which is also polynomial. The name comes from the relation of
these changes with the Jacobian conjecture, whose statement says that all the
polynomial changes ϕ with constant detDϕ have a polynomial inverse, see [28]. It
is not restrictive consider only the case detDϕ ≡ 1.
First, we introduce the transformations

(u, v) = ϕu
n(x, y) = (x+ fn(y), y),

(u, v) = ϕl
n(x, y) = (x, y + gn(x)),

with fn(x) and gn(x) polynomials of degree n. We use them as upper and lower
Tame generators. We recall now that a Tame transformation is an element of the
transformation group, T , generated by ϕu

n, ϕ
l
n and the linear transformations with

determinant 1.
If we consider a collection of upper and lower transformations of different degrees

and we compose them we obtain a Jacobian change ϕ. Moreover for any ϕ ∈ T ,
the linear part of ϕ is the identity and the corresponding system (24) has a linear
part of type linear center. We can also compose with some linear transformations
as the change of variables (27). It is a Tame change because can be written as
L2 ◦ ϕu

2 ◦ L1, where ϕ
u
2(x, y) = (x− y2, y), L1(x, y) = (y,−x+ 2y) and L2(x, y) =

L−1
1 (x, y) = (2x− y, x).

Proposition 13. The system

{
ẋ = −y − Cx2,

ẏ = x(1 + 2Cy + 2C2x2) +
ε

2
(1 + 2y − 2x2 + 2Cx2)(y + Cx2 − x2),

(31)
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has a limit cycle that can be written, for ε small enough, as

x(θ; ε) ≈ cos(θ) + ε

(
−3

8
− 1

16
sin(θ)− 11

32
cos(2θ)− 1

32
sin(3θ)

+
1

40
cos(4θ) +

1

32
sin(5θ)− 1

160
cos(6θ)

)
,

y(θ; ε) ≈ − C

2
+ sin(θ)− C

2
cos(2θ) + ε

(
35C − 2

32
cos(θ)

+
3C − 13

32
sin(2θ) +

51C + 15

160
cos(3θ) +

3

80
sin(4θ)

− 3C + 5

160
cos(5θ)− 5C + 1

160
sin(6θ) +

C

160
cos(7θ)

)
,

for θ ∈ [0, 2π] and passes through the point

(1,−C) +
∞∑

i=1

εi(xi, Cyi)

where

x1 = − 7

10
, y1 =

7

5
,

x2 =
677

4800
, y2 = −1853

2400
,

x3 = − 87203

705600
, y3 =

1568663

3528000
,

x4 =
26159870617

54190080000
, y4 = −31386898801

27095040000
,

x5 = −1563866274535521169

2443433145753600000
, y5 =

4864284760285373849

2443433145753600000
.

Moreover, the corresponding period is

T (ε) ≈ 2π

(
1 +

251

320
ε2 +

23683041

14336000
ε4 +

117449035916903

20230963200000
ε6

+
370726500803682522263539

16330562973204480000000
ε8
)
.

Proof. With the change (u, v) = (x, y + Cx2) system (31) writes as




u̇ = −v,
v̇ = u+ ε

(
1

2
v + v2 − 1

2
u2 − 2u2v + u4

)
,

(32)

and using Lemma 5 we obtain that

F1(r) =
1

4
r2(r2 − 1).
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Figure 2. Approximations of degrees 1 to 6 and the numerical
limit cycle (dotted line) for ε = 0.4 and C = 1 of system (31)

Then system (32), from Theorem 3, has a limit cycle which emerges from ρ = 1,
for ε small enough. Moreover, using Theorem 1, we can also compute

r(θ; 1, ε) = 1 + r1(θ)ε+ r2(θ)ε
2 + · · · ,

where

r1(θ) = −3

4
cos θ − 1

8
sin(2θ) +

1

16
cos(3θ) +

1

16
sin(4θ)− 1

80
cos(5θ),

r2(θ) = − 307

1024
+

39

80
sin θ +

213

512
cos(2θ)− 17

960
sin(3θ)− 1

1280
cos(4θ)

− 153

1600
sin(5θ) +

523

15360
cos(6θ) +

23

2240
sin(7θ)− 9

1024
cos(8θ)

− 1

320
sin(9θ) +

9

25600
cos(10θ),

and

r1(0) = − 7

10
, r2(0) =

677

4800
, r3(0) = − 87203

705600
, r4(0) =

26159870617

54190080000
,

r5(0) = −1563866274535521169

2443433145753600000
, r6(0) =

14164506595172902414493

12510377706258432000000
.

Then recovering the original coordinates with the inverse changes of variables,
(x, y) = (u, v − Cu2) and computing the Taylor expansion in ε we obtain the
statement. Finally, Corollary 4 provided the expression for the period. �
We point out that for sake of brevity in the statement of the proposition we

only give the first order approximation in ε of the limit cycle but in Figure 2 we
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show approximations up to order six together with the numerical. Moreover, as it
can be seen in Figure 3, the approximation is not uniform with respect to ε, for
the angle θ.
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Figure 3. Approximations of degrees 1 to 6 and the numerical
(dotted line) limit cycle for ε = 0.4 of system (32) in polar coordi-
nates. The non-uniformity in the variable θ can be observed.

6. Radial but not linear Hamiltonians

If we consider a Hamiltonian H = H(r2), instead ofH = H(r) as in the previous
sections, with r2 = x2 + y2 then system

{
ẋ = −∂H

∂y
+ εP (x, y),

ẏ = ∂H
∂x

+ εQ(x, y),
(33)

is equivalent to the reparametrized system
{
x′ = −y + ε r

∂H
∂r

P (x, y),

y′ = x+ ε r
∂H
∂r

Q(x, y),
(34)

because ∂H
∂y

= ∂H
∂r

y
r
and ∂H

∂x
= ∂H

∂r
x
r
. For these systems we can apply the results of

this paper directly to system (33) or in its equivalent form (34). After the change
of time, the expression of the limit cycles in polar coordinates remains the same
but the period function changes. When the main objective is the period function
the first form is more convenient. Next example is an illustration of this fact.
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Proposition 14. For ε small enough, system{
ẋ = −y (1 + x2 + y2) +

ε

3
(3x2 − 4x3) ,

ẏ = x (1 + x2 + y2) + ε (1 + y) ,
(35)

has a limit cycle close to the curve 2r2 + r4 = 3, in polar coordinates, that writes
as

r(θ; 1, ε) = 1 + r1(θ)ε+ r2(θ)ε
2 + · · · ,

where

r1(θ) = −1

2
+

3

8
sin θ − 1

2
cos θ − 7

24
sin(2θ) +

1

24
sin(3θ)− 1

48
sin(4θ),

r2(θ) = −2863

3072
+

11

32
sin θ − 67

768
cos θ +

1

12
sin(2θ)− 11

96
cos(2θ)

+
7

64
sin(3θ) +

229

2304
cos(3θ)− 7

96
cos(4θ) +

1

64
sin(5θ)

+
347

11520
cos(5θ)− 1

72
cos(6θ) +

5

2304
cos(7θ)− 1

1536
cos(8θ).

Additionally,

r1(0) = −1, r2(0) = −50207

46080
, r3(0) = −219337

129024
,

r4(0) = −11972387810004169

2678117105664000
, r5(0) = −4223772604811883923

412430034272256000
and the corresponding period of the limit cycle satisfies

T (ε; 1) ≈ π

(
1 +

1

2
ε+

4301

4608
ε2 +

7679

4608
ε3 +

14597509901

4246732800
ε4 +

225290628911

29727129600
ε5
)
.

Proof. System (35) is a perturbation of the Hamiltonian H(r) = (2r2+ r4)/4, and
using Lemma 5 we obtain

F1(r) =
1

2
r2
(
r2 − 1

)
. (36)

Then for ε small enough, following Theorem 3.(i), there is one simple limit cycle
that emerges from H(r) = H(1) = 3/4, that corresponds to ρ = 1, which satisfies
F1(1) = 0 and F ′

1(1) = 1. For this case the limit cycle, using Theorem 1, can be
written as the expression given in the statement. The proof ends computing the
period using Corollary 4. �
Remark 15. As we have mentioned above, another way to do the computations
for system (35) is to consider the reparametrized rational system, in form (34),





x′ = −y + ε
3x2 − 4x3

3(1 + x2 + y2)
,

y′ = x+ ε
1 + y

1 + x2 + y2
.

Now the Hamiltonian is Ĥ(r) = r2/2, and the functions involved in the com-
putations of the shape of the limit cycles are not the same, for example, using
Lemma 5,

F̂1(r) =
r2(r2 − 1)

2(r2 + 1)
.
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Note that while the zeros of F1, given by (36), and F̂1 coincide, the period of the
periodic solutions is different.
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[26] S. Sun. The equations of the closed trajectories in rotated vector fields. Chinese Math.,
5:54–62, 1964.

[27] B. Toni. Higher order branching of periodic orbits from polynomial isochrones. Electron. J.
Differential Equations, 35:15 pp., 1999.

[28] A. van den Essen. Polynomial automorphisms and the Jacobian conjecture, volume 190 of
Progress in Mathematics. Birkhäuser Verlag, Basel, 2000.
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