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Abstract. The Hoyer polynomial differential systems depend on nine parameters. We
provide necessary conditions in order that these systems have two functionally independent
polynomial first integrals. We show that these conditions are not sufficient. Additionally,
we illustrate how can be computed the polynomial first integrals of these systems using
the Kovalevsky exponents.

1. Introduction and statement of the main results

Given a system of ordinary differential equations depending on parameters in general
is very difficult to recognize for which values of the parameters the equations have first
integrals because there are no satisfactory methods to answer this question.

In this paper we study the polynomial first integrals of the so-called Hoyer systems in
R3 depending on nine parameters. These differential systems were introduced by P. Hoyer
[6] in 1879 in his Ph.D Thesis. They have the form

ẋ = ayz + bxz + cxy = P1(x, y, z),

ẏ = Ayz + Bxz + Cxy = P2(x, y, z),

ż = αyz + βxz + γxy = P3(x, y, z),

(1)

where a, b, c, A, B, C, α, β, γ ∈ R. These systems are the most general quadratic systems
without self-interacting terms.

Among examples of Hoyer systems (1) there are the Euler systems describing the motion
of a free rigid body, the (A,B,C) Lotka-Volterra systems and the Halphen systems [5].
Papers of Moullin-Ollagnier about polynomial first integrals [10] and rational first integrals
of degree zero [11] for the three dimensional homogeneous Lotka-Volterra systems show
that searching for those parameter values for which the system possess a first integral of a
specified class is a very hard problem. The Hoyer systems admitting a quadratic polynomial
first integral and a Poisson structure has been studied by Maciejewski and Przybylska in
[9].

Given U an open set of R3, we say that a real non-constant function H : U → R is a first
integral if it is constant on every solution of system (1) contained in U , i.e., H satisfies

∂H

∂x
P1(x, y, z) +

∂H

∂y
P2(x, y, z) +

∂H

∂z
P3(x, y, z) = 0

on the points on U .
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The first integrals H1,H2 are functionally independent if the 2 × 3 matrix
(

∂H1/∂x ∂H1/∂y ∂H1/∂z
∂H2/∂x ∂H1/∂y ∂H2/∂z

)
(x, y, z)

has rank 2 at all points (x, y, z) ∈ R3 where they are defined with the exception (perhaps)
of a zero Lebesgue measure set.

By definition a Hoyer system is completely integrable in an open set U if it has two first
integrals functionally independent in U .

The first main result of this paper provides necessary conditions in order that the Hoyer
system have two functionally independent polynomial first integrals.

Theorem 1. In order that the Hoyer systems have two functionally independent polynomial
first integrals one of the following eight conditions must hold:

b = −A, c = −α, C = −β;

b = −A, c = −α, βC − Bγ =
pq

(p + q)2
(C + β)2;

b = −A, C = −β, αc − aγ =
kl

(k + l)2
(α + c)2;

b = −A, αc − aγ =
kl

(k + l)2
(α + c)2, βC − Bγ =

pq

(p + q)2
(C + β)2;

Ab − aB =
mn

(m + n)2
(A + b)2, c = −α, C = −β;

Ab − aB =
mn

(m + n)2
(A + b)2, c = −α, βC − Bγ =

pq

(p + q)2
(C + β)2;

Ab − aB =
mn

(m + n)2
(A + b)2, C = −β, αc − aγ =

kl

(k + l)2
(α + c)2;

Ab − aB =
mn

(m + n)2
(A + b)2, αc − aγ =

kl

(k + l)2
(α + c)2, βC − Bγ =

pq

(p + q)2
(C + β)2;

(2)

for some p, q ∈ Z coprime, k, l ∈ Z coprime and m,n ∈ Z coprime.

Theorem 1 is proved in section 2.

The eight conditions in order that the Hoyer systems can have two functionally indepen-
dent polynomial first integrals given in Theorem 1 are necessary but not sufficient. Thus we
shall provide Hoyer systems satisfying one of the eight conditions of Theorem 1 but having
0, 1 and 2 functionally independent polynomial first integrals.

Theorem 2. All the following Hoyer systems satisfy the first condition of Theorem 1.

(a) The Hoyer system

(3) ẋ = −xy − xz + yz, ẏ = −xy + xz + yz, ż = xy + xz + yz,

has no polynomial first integrals.
(b) The Hoyer system

(4) ẋ = −xy − xz + yz, ẏ = −xy + xz + yz, ż = xz + yz,

has no polynomial first integrals.
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(c) The Hoyer systems

(5) ẋ = ayz, ẏ = −βxy + Bxz, ż = γxy + βxz,

with aBβγ ̸= 0 have only one functionally independent polynomial first integral.
(d) The Hoyer systems

(6) ẋ = ayz, ẏ = Bxz, ż = γxy,

with aBγ ̸= 0 have two functionally independent polynomial first integrals.

Theorem 2 is proved in section 4. We shall see in the proof of Theorem 2 that the ways of
proving that the Hoyer systems in statements (a) and (b) have no polynomial first integrals
are completely different.

Note that in the Hoyer systems the parameter space is 9–dimensional and it is not covered
by the set of eight conditions of Theorem 1. Hence, it is possible to find Hoyer systems
having only one functionally independent polynomial first integral which do not satisfy any
of the eight conditions of Theorem 1. The next result shows this.

Theorem 3. The Hoyer systems

(7) ẋ = yz, ẏ = −xz + yz, ż = γxy,

with γ ̸= 0 do not satisfy any of the eight conditions of Theorem 1, and it has only one
functionally independent polynomial first integral.

Theorem 3 is proved in section 4.

The proofs of Theorems 1 and 3 rely on the fact that the Hoyer systems are homogeneous
polynomial differential systems of degree 2 (and consequently they are quasi-homogeneous
polynomial differential systems), and use the Yoshida’s results for studying the polyno-
mial first integrals of quasi-homogeneous polynomial differential systems. Hence we have
summarized in section 3 Yoshida’s results.

2. Proof of Theorem 1

As usual we denote by Z+, N, R and C the sets of non–negative integers, positive integers,
real and complex numbers, respectively; and C[x1, · · · , xn] denotes the polynomial ring over
C in the variables x1, · · · , xn. Here t can be real or complex. The following result, due to
Zhang [16], will be used in a strong way in the proof of Theorem 1.

Theorem 4. For an analytic vector field X defined in a neighborhood of the origin in Rn

associated to system

(8)
dx

dt
= ẋ = P(x), x = (x1, · · · , xn) ∈ Cn, P(x) = (P1(x), · · · , Pn(x)),

Pi ∈ C[x1, · · · , xn] for i = 1, · · · , n and with P(0) = 0, let λ1, . . . , λn be the eigenvalues of
DP(0). Set

G =

{
(k1, . . . , kn) ∈ (Z+)n :

n∑

i=1

kiλi = 0,

n∑

i=1

ki > 0

}
.

Assume that system (8) has r < n functionally independent analytic first integrals Φ1(x), . . . ,
Φr(x) in a neighborhood of the origin. If the Z-linear space generated by G has dimension
r, then any nontrivial analytic first integral of system (8) in a neighborhood of the origin
is an analytic function of Φ1(x), . . . , Φr(x).
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Extensions of Theorem 4 can be found in [1, 7].

We call each element (k1, . . . , kn) ∈ G a resonant lattice of the eigenvalues λ1, . . . , λn.

Direct calculations show that the Hoyer systems (1) have three planes of singularities,
S1 = (x, 0, 0), S2 = (0, y, 0) and S3 = (0, 0, z).

At the singularity S1 = (x, 0, 0), the 3-tuple of eigenvalues λ = (λ1, λ2, λ3) of the linear
part of the Hoyer systems (1) are

(9) λ = (λ1, λ2, λ3) =

(
0,

(A1 − √
B1)x

2
,
(A1 +

√
B1)x

2

)
,

where

A1 = β + C and B1 = A2
3 − 4∆1, ∆1 = βC − Bγ.

From Theorem 4 we know that the number of functionally independent analytic first in-
tegrals of the Hoyer systems (1) in a neighborhood of the singularities S1 is at most the
number of linearly independent elements of the set

G1 =

{
(k1, k2, k3) ∈ (Z+)3 :

3∑

i=1

kiλi = 0,

3∑

i=1

ki > 0

}
.

Consequently, the number of the functionally independent polynomial first integrals of the
Hoyer systems (1) are at most the number of the linearly independent elements of G1.

According to the eigenvalues (9) the resonant lattices satisfy

(10) (A1 −
√

B1)k2 + (A1 +
√

B1)k3 = 0.

This last equation has the linearly independent non–negative solution (k1, k2, k3) = (1, 0, 0).
In order that equation (10) has other linearly independent non–negative integer solutions
different from the (1, 0, 0), we must have

(i) either (A1 − √
B1)(A1 +

√
B1) = 0;

(ii) or (A1 − √
B1)(A1 +

√
B1) ̸= 0 and (A1 − √

B1)/(A1 +
√

B1) is a rational number.
Then ∆1 ̸= 0. Assume that A1 ̸= 0 and set

(A1 −
√

B1)/(A3 +
√

B1) = m1/n1, m1, n1 ∈ Z \ {0} coprime.

This last equality can be written in an equivalent way as

(11)
∆1

A2
1

=
m1n1

(m1 + n1)2
,

where we have used the fact that B1 = A2
1 − 4∆1.

If A1 = 0 then (A1 − √
B1)/(A1 +

√
B1) = −1.

In case (i) we obtain the independent solution βC − Bγ = 0.

In case (ii) if A1 ̸= 0 then from (11) and the expressions of ∆1 and A1 it follows that

βC − Bγ =
m1n1

(m1 + n1)2
(β + C)2.

If A1 = 0 then β = −C.

In short, by Theorem 4 the Hoyer systems can have two functionally independent poly-
nomial first integrals if and only if cases (i) or (ii) hold.
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At the singularity S2 = (0, y, 0), the 3-tuple of eigenvalues λ = (λ1, λ2, λ3) of the linear
part of the Hoyer systems (1) are

(12) λ =

(
0,

(A2 − √
B2)y

2
,
(A2 +

√
B2)y

2

)
,

where

A2 = α + c and B2 = A2
2 − 4∆2, ∆2 = αc − aγ.

According to the eigenvalues (12) the resonant lattices satisfy

(13) (A2 −
√

B2)k2 + (A2 +
√

B2)k3 = 0.

This last equation has the linearly independent non–negative solution (k1, k2, k3) = (1, 0, 0).
In order that equation (13) has other linearly independent non–negative integer solutions
different from the (1, 0, 0), we must have

(iii) either (A2 − √
B2)(A2 +

√
B2) = 0;

(iv) or (A2 − √
B2)(A2 +

√
B2) ̸= 0 and (A2 − √

B2)/(A2 +
√

B2) is a rational number.
Then ∆2 ̸= 0. Assume that A2 ̸= 0 and set

(A2 −
√

B2)/(A2 +
√

B2) = m2/n2, m2, n2 ∈ Z \ {0} coprime.

This last equality can be written in an equivalent way as

(14)
∆2

A2
2

=
m2n2

(m2 + n2)2
,

where we have used the fact that B2 = A2
2 − 4∆2.

If A2 = 0 then (A2 − √
B2)/(A2 +

√
B2) = −1.

In case (iii) we obtain the independent solution αc − aγ = 0.

In case (iv) if A2 ̸= 0 then from (14) and the expressions of ∆2 and A2 we have

αc − aγ =
m2n2

(m2 + n2)2
(α + c)2.

If A2 = 0 then c = −α.

In short, by Theorem 4 the Hoyer systems can have two functionally independent poly-
nomial first integrals if and only if cases (iii) or (iv) hold.

At the singularity S3 = (0, 0, z), the 3-tuple of eigenvalues λ = (λ1, λ2, λ3) of the linear
part of the Hoyer systems (1) are

(15) λ =

(
0,

(A3 − √
B3)z

2
,
(A3 +

√
B3)z

2

)
,

where

A3 = A + b and B3 = A2
3 − 4∆3, ∆3 = Ab − aB.

According to the eigenvalues (15) the resonant lattices satisfy

(16) (A3 −
√

B3)k2 + (A3 +
√

B3)k3 = 0.

This last equation has the linearly independent non–negative solution (k1, k2, k3) = (1, 0, 0).
In order that equation (16) has other linearly independent non–negative integer solutions
different from the (1, 0, 0), we must have

(v) either (A3 − √
B3)(A3 +

√
B3) = 0;
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(vi) or (A3 − √
B3)(A3 +

√
B3) ̸= 0 and (A3 − √

B3)/(A3 +
√

B3) is a rational number.
Then ∆3 ̸= 0. Assume that A3 ̸= 0 and set

(A3 −
√

B3)/(A3 +
√

B3) = m3/n3, m3, n3 ∈ Z \ {0} coprime.

This last equality can be written in an equivalent way as

(17)
∆3

A2
3

=
m3n3

(m3 + n3)2
,

where we have used the fact that B1 = A2
3 − 4∆3.

If A3 = 0 then (A3 − √
B3)/(A3 +

√
B3) = −1.

In case (v) we obtain the independent solution Ab − aB = 0.

In case (vi) if A3 ̸= 0 then from (17) and the expressions of ∆1 and A1 we get

Ab − aB =
m3n3

(m3 + n3)2
(A + b)2.

If A3 = 0 then b = −A.

In short, by Theorem 4 the Hoyer systems can have two functionally independent poly-
nomial first integrals if and only if cases (v) or (vi) hold.

Putting together the six necessary conditions (i)–(vi) we get the eight necessary condi-
tions described in the statement of Theorem 1.

3. Quasi-homogeneous polynomial differential systems

In this section we summarize some basic results on the analytic and polynomial integra-
bility of the polynomial differential systems as in (8).

The polynomial differential system (8) is quasi–homogeneous if there exist s = (s1, · · · , sn) ∈
Nn and d ∈ N such that for arbitrary α ∈ R+ = {a ∈ R, a > 0},

Pi(α
s1x1, · · · , αsnxn) = αsi−1+dPi(x1, · · · , xn),

for i = 1, . . . , n. We call s = (s1, · · · , sn) the weight exponent of system (8), and d the weight
degree with respect to the weight exponent s. In the particular case that s = (1, · · · , 1)
system (8) is the classical homogeneous polynomial differential system of degree d.

Note that if the polynomial differential system (8) is quasi–homogeneous with weight
exponent s and weight degree d > 1, then the system is invariant under the change of
variables xi → αwixi, t → α−1t, where wi = si/(d − 1).

Recently the integrability of quasi–homogeneous polynomial differential systems have
been investigated by several authors. Probably the best results have been provided by
Yoshida [13, 14, 15], Furta [2] and Goriely [4], see also Tsygvintsev [12] and Llibre and
Zhang [8].

A non–constant function F (x1, . . . , xn) is a first integral of system (8) if it is constant on
all solution curves (x1(t), · · · , xn(t)) of system (8); i.e. F (x1(t), · · · , xn(t)) = constant for
all values of t for which the solution (x1(t), · · · , xn(t)) is defined. If F is C1, then F is a
first integral of system (8) if and only if

n∑

i=1

Pi
∂F

∂xi
≡ 0.
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The function F (x1, . . . , xn) is quasi–homogeneous of weight degree m with respect to the
weight exponent s if it satisfies

F (αs1x1, . . . , α
snxn) = αmF (x1, . . . , xn),

for all α ∈ R+.

Given an analytic function F we can expand it in the form F =
∑

i F
i, where F i is a

quasi–homogeneous polynomial of weight degree i with respect to the weight exponent s;
i.e. F i(αs1x1, . . . , α

snxn) = αiF i(x1, . . . , xn). The following result is well known, see for
instance Proposition 1 of [8].

Proposition 5. Let F be an analytic function and let F =
∑

i F
i be its decomposition

into weight–homogeneous polynomials of weight degree i with respect to the weight exponent
s. Then F is an analytic first integral of the weight–homogeneous polynomial differential
system (8) with weight exponent s if and only if each weight homogeneous part F i is a first
integral of system (8) for all i.

Suppose that system (8) is a quasi–homogeneous polynomial differential system of weight
degree d with respect to the weight exponent s. Then we define w = s/(d−1). The interest
for the quasi–homogeneous polynomial differential systems is based in the existence of the
particular solutions of the form

(x1(t), . . . , xn(t)) =
(
c1t

−w1 , . . . , cnt−wn
)
,

where the coefficients c = (c1, . . . , cn) ∈ Cn \ {0} are given by the algebraic system of
equations

(18) Pi(c1, . . . , cn) + wici = 0 for i = 1, . . . , n.

For a given (w1, . . . , wn) there may exist different c’s, called the balances.

For each balance c we introduce a matrix

(19) K(c) = DP(c) + diag(w1, . . . , wn),

where as usual DP(c) denotes the differential of P evaluated at c, and diag(w1, . . . , wn)
denotes the matrix whose diagonal is equal to (w1, . . . , wn) and zeros in the rest.

The eigenvalues of K(c) are called the Kowalevsky exponents of the balance c. Sophia
Kowalevskaya was the first to introduce the matrix K to compute the Laurent series so-
lutions of the rigid body motion. It can be shown that there always exists a Kowalevsky
exponent equal to −1 related to the arbitrariness of the origin of the parametrization of the
solution by the time. The eigenvector associated to the eigenvalue −1 is (w1c1, . . . , wncn),
for more details see [13] or [2].

Probably the best results in order to know if a weight homogeneous polynomial of weight
degree m with respect to the weight exponent s is a first integral of a quasi–homogeneous
polynomial differential system (8) with weight degree d with respect to the weight exponent
s is essentially due to Yoshida [13], and are the following two theorems.

Theorem 6. Let F (x1, . . . , xn) be a weighted homogeneous polynomial first integral of
weight degree m with respect to the weight exponent s of the quasi–homogeneous polyno-
mial differential system (8) with weight degree d with respect to the weight exponent s.
Suppose the gradient of F evaluated at a balance c is finite and not identically zero. Then
m/(d − 1) is a Kowalevsky exponent of the balance c.
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The proof of Theorem 6 is based on using the variational equation along convenient
particular solutions.

Theorem 7. Let r be a positive integer such that 1 < r < n, and let Fk(x1, . . . , xn) for
k = 1, . . . , r be weighted homogeneous polynomial first integrals of weight degree m with
respect to the weight exponent s of the quasi–homogeneous polynomial differential system
(8) with weight degree d with respect to the weight exponent s.

Suppose that the gradients of Fk for k = 1, . . . , r evaluated at a balance c are finite, not
identically zero and functionally independent. Then m/(d− 1) is a Kowalevsky exponent of
the balance c with multiplicity at least r.

In fact Yoshida in [13] published Theorems 6 and 7 with m instead of m/(d − 1). Later
on this was corrected, see [2, 3, 14].

4. Proof of Theorems 2 and 3

In this section we prove Theorems 2 and 3.

Proof of Theorem 2. The Hoyer system (3) satisfies the first condition of Theorem 1. It has
four balances one of which is c = (1, −1, 1). The corresponding Kowalevsky exponents are
(2 − i

√
3, 2 + i

√
3, −1). In view of Theorem 6, system (3) has no polynomial first integrals.

This concludes the proof of statement (a).

The Hoyer system (4) satisfies the first condition of Theorem 1. It has four balances one
of which is c = (1, 1, 0). The corresponding Kowalevsky exponents are (3, 1, −1). In view
of Theorem 6, system (4) can have at most two functionally independent polynomial first
integrals of degrees 1 and 3, and any other polynomial first integral must be functionally
dependent on them. Furthermore such a polynomial first integrals must be homogeneous.
We will see that such first integrals do not exist. Let H be a homogeneous polynomial of
degree one. We write it as H = d1x + d2y + d3z. Imposing that H is a first integral we
get that d1 = d2 = d3 = 0, i.e., H = 0 in contradiction with the fact that H is a first
integral. Analogously, if H is a homogeneous polynomial of degree three, we write it as
H = d1x

3 +d2x
2y+d3x

2z+d4xy2 +d5xyz+d6xz2 +d7y
3 +d8y

2z+d9yz2 +d10z
3. Imposing

that H is a first integral we get that d1 = d2 = · · · = d10 = 0, i.e. H = 0 in contradiction
with the fact that H is a first integral. This concludes the proof of statement (b).

The Hoyer system (5) satisfies the first condition of Theorem 1. It has four balances one
of which is

c =
( 1

S
, −

√
S2 − βS

γ
√

aBS2
(S2 + βS),

√
S2 − βS√

aBS

)

with S =
√

β2 + Bγ. The corresponding Kowalevsky exponents are (2, 2, −1). In view
of Theorem 7, system (5) can have at most two functionally independent polynomial first
integrals of degree 2, and any other polynomial first integral must be functionally dependent
on them. Furthermore such a polynomial first integrals must be homogeneous. Let H be a
first integral of degree two. We write it as H = d1x

2 + d2xy + d3xz + d4y
2 + d5yz + d6z

2.
Imposing that H is a first integral we get that d1 = d2 = d3 = 0, d4 = −γd6/B and
d5 = −2βd6/B. This implies that system (6) has at most one functionally independent
polynomial first integral, and a polynomial first integral is H = −γy2 − 2βyz + Bz2. This
concludes the proof of statement (c).
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The Hoyer system (6) satisfies the first condition of Theorem 1. It has four balances one
of which is

c =
(

− 1√
Bγ

, − 1√
aγ

, − 1√
aB

)
.

The corresponding Kowalevsky exponents are (2, 2, −1). In view of Theorem 7, system
(6) can have at most two functionally independent polynomial first integrals of degree 2,
and any other polynomial first integral must be functionally dependent on them. Direct
computations show that

H1 = Bx2 − ay2 and H2 = γy2 − Bz2

are two functionally independent polynomial first integrals. This concludes the proof of
statement (d). �

Proof of Theorem 3. It is easy to check that the Hoyer systems (7) do not satisfy any of
the eight conditions of Theorem 1. It has four balances one of which is

c =
(

− 1 + i
√

3

2
√

γ
, − 1√

γ
, −1 + i

√
3

2

)
.

The corresponding Kowalevsky exponents are (2, (3 − i
√

3)/2, −1). In view of Theorem
6, systems (7) can have at most one functionally independent polynomial first integral of
degree 2, and any other polynomial first integral must be functionally independent of it.
Furthermore such a polynomial first integral must be homogeneous. Let H be a first integral
of degree two. We write it as H = d1x

2 + d2xy + d3xz + d4y
2 + d5yz + d6z

2. Imposing that
H is a first integral we get that d2 = d3 = d4 = d5 = 0 and d1 = −γd6. Then a polynomial
first integral is H = −γx2 + z2. This concludes the proof of the theorem. �
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