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Abstract

We consider a class of limited diffusion equations and explore the forma-
tion of diffusion fronts as the result of a combination of diffusive and hy-
perbolic transport. We analyze a new class of Hamilton-Jacobi equations
arising from the convective part of general Fokker-Planck equations ruled by
a non-negative diffusion coefficient that depends on the unknown and on the
gradient of the unknown. We explore the main features of the solution of
the Hamilton-Jacobi equations that contain shocks and propose a suitable
numerical scheme that approximates the solution in a consistent way with
respect to the solution of the associated Fokker-Planck equation. We ana-
lyze three model problems covering different scenarios. One is the relativistic
heat equation model where the speed of propagation of fronts is constant. A
second one is a standard porous media model where the speed of propagation
of fronts is a function of the density, is unbounded and can exceed any fixed
value. We propose a third one which is a porous media model whose speed of
propagating fronts depends on the density media and is limited. The three
model problems satisfy a general Darcy law. We perform a set of numeri-
cal experiments under different piecewise smooth initial data with compact
support and compare the behavior of the three different model problems.
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1. Introduction

Many complex physical systems like plasmas, porous media, transport in
statistical mechanics, geometric flows among others are described by a class
of (anisotropic) diffusion equations that model transport by diffusion of a
physical magnitude in a continuum medium ([1, 2, 3, 4, 7, 17, 18, 19, 22, 23]).
Fokker-Planck formulation represents these models whose solutions contain
diffusion fronts propagating with finite speed. Because of this feature these
equations are known as limited diffusion equations.

Limited diffusion equations can be understood as an extension of Fourier
theory of heat conduction ruled by the heat equation ut = ν∆u where ν > 0
is the coefficient of heat diffusion in a specific media ([10]). The solution
to this model for a delta initial signal is a Gaussian distribution defined
over all Rn for any time t. The main drawback of this model relies on the
fact that transport of heat conduction occurs at infinite speed making the
model not appropriate for the description of many dissipative processes in
thermodynamics. This issue has been widely discussed in the literature and
different attempts to overcome it have been presented ([6, 12, 13, 18, 22]).

We can understand the inadequacy of Fourier theory from the theory of
relativity. Relativistic astrophysical flows are based on the assumption that
light propagates with finite speed in vacuum, c, where c is an upper bound
of light speed in any other media. The principles of special relativity state
that, to preserve causality, no physical signal can travel faster than c ([14]).
On the other hand, in non-relativistic physics it is advisable that the range of
possible speeds of propagation be restricted to a validity region. In this work
we explore mathematical models of transport prescribing a limited speed of
propagation for the specific medium under study.

We consider the transport model represented by limited diffusion Fokker-
Planck equations that written in conservation form read as

ut = div
(
g(u, |∇u|)∇u

)
(1)

where g(u, p) is a non-negative real function of u ≥ 0 and |∇u|. This trans-
port model allows the formation of diffusion fronts propagating with finite
speed under certain conditions on function g and the solution for a compact
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supported initial data is confined to a bounded region in Rn at any time
t > 0 ([1, 2, 4, 5, 18]).

In our approach we analyze a particular class of limited diffusion Fokker-
Planck equations of type (1). We study the dynamics of the solution of the
model in terms of their convective and diffusive terms and investigate the
speed of propagation of diffusion fronts for three model examples.

The simplest model of transport with finite speed of propagation is repre-
sented by the hyperbolic model where finite speeds are intrinsically prescribed
from real eigenvalues of the Jacobian of the fluxes. Hyperbolic transport pre-
scribes a finite speed of propagation of fronts, ([15]).

For the purpose of analyzing the transport in limited diffusion Fokker-
Planck equations we expand spatial derivatives of the flux equation (1) ob-
taining the expression

ut =
∂g

∂u
|∇u|2 + g(u, |∇u|)∆u+

∂g

∂p

L(u)

|∇u| (2)

where p represents the second argument of function g and

L(u) = u2
xuxx + 2uxuyuxy + u2

yuyy (3)

is a second order nonlinear elliptic operator expressing the second derivative
of u in the direction of the gradient.

Expression (2) reveals that propagation of fronts in limited diffusion equa-
tions of the form (1) is the result of a combination of nonlinear effects that
include hyperbolic convection (first term) and transport by anisotropic dif-
fusion (second and third terms). Therefore we can state that convective dy-
namics and possible formation of shocks are ruled according to a hyperbolic
law, the first term in (2), which in this case is a Hamiltonian.

In this work we study the Hamiltonian term as the convective part of
the Fokker-Planck equations and the cause of the formation of shocks in the
solution of the limited diffusion equations. In our study we consider a new
class of Hamilton-Jacobi equations associated to the Hamiltonian in (2) as

ut =
∂g

∂u
|∇u|2 (4)

that result from removing diffusion terms in (2). We investigate the formation
of shocks in the solution of these Hamilton-Jacobi equations.
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We study three model problems of limited diffusion equations namely: the
relativistic heat equation, a standard porous media equation and a limited
speed porous media equation. The model problems satisfy a general Darcy
law and cover three different scenarios: one prescribing a constant speed of
propagation of diffusion fronts; a second case where diffusion fronts propagate
with unbounded finite speed and a third case where diffusion fronts propa-
gate with density dependent speed bounded in magnitude by an established
reference speed C.

We analyze the different behaviors of the limited diffusion equations
throughout their Hamilton-Jacobi counterparts. We perform a set of nu-
merical experiments and compare the solution for the three model problems
for the limited diffusion equations and their corresponding Hamilton-Jacobi
equations. For the numerical approximation of the solution of the limited
diffusion Fokker-Planck equations we use the conservative numerical scheme
presented in [18]. For the numerical approximation of the new class of
Hamilton-Jacobi equations we propose a suitable finite difference numeri-
cal scheme to approximate the viscosity solution with shocks arising in the
models. The new numerical scheme is designed as an extension of the stan-
dard classical schemes that only approximate viscosity solutions of Hamilton-
Jacobi equations that develop discontinuities in first derivative [9, 20, 21, 27].
The proposed numerical scheme combines the properties of classical numer-
ical schemes for Hamilton-Jacobi equations together with the features of a
shock capturing scheme to ensure formation of shocks and correct propaga-
tion of waves.

The paper is organized as follows. In section 2 we present three model
problems of a class of limited diffusion equations and analyze the behavior of
their convective terms as Hamilton-Jacobi equations that develop shocks in
the solution. Section 3 is devoted to presenting a suitable numerical scheme
for the approximation of the viscosity solution with shocks associated to the
Hamilton-Jacobi equations. In section 4 we perform numerical experiments
for different initial data. Section 5 includes our conclusions.
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2. Hamilton-Jacobi equations arising from limited diffusion equa-
tions

We focus on limited diffusion Fokker-Planck equations of type (1) where
the function g is defined as

g(u, |∇u|) = f(u)
r√

u2 + r2|∇u|2
, r =

ν

C
, (5)

with flux f(u) convex and a positive function of u, C > 0 an established
reference speed and ν > 0 the kinematic viscosity in a specific medium. The
limited diffusion equation (1) reads then as

ut = div

(
f(u)r∇u√
u2 + r2|∇u|2

)
(6)

and its convective Hamiltonian term as

r |∇u|2√
u2 + r2|∇u|2

(
f ′(u)− uf(u)

u2 + r2|∇u|2
)

(7)

From (7) and following (4) we define a new class of Hamilton-Jacobi
equations arising from limited diffusion equations of type (6) as

ut =
r |∇u|2√

u2 + r2|∇u|2

(
f ′(u)− uf(u)

u2 + r2|∇u|2
)

(8)

Let us perform a heuristic asymptotic analysis of the limited diffusion
equation (6) in one spatial dimension.

In one dimension the limited diffusion Fokker-Planck equation with the
flux f(u) can be expressed as

ut =

(
f(u)rux√
u2 + r2u2

x

)

x

(9)

where the non-divergence form of this equation is

ut =
r u2

x√
u2 + r2u2

x

(
f ′(u)− uf(u)

u2 + r2u2
x

)
+ f(u)

r u2

(u2 + r2u2
x)

3/2
uxx(10)
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The convective part written as a Hamilton-Jacobi equation is

ut =
r u2

x√
u2 + r2u2

x

(
f ′(u)− uf(u)

u2 + r2u2
x

)
(11)

We wish to identify the dynamics of propagating fronts in both limited
diffusion and Hamilton-Jacobi equations, (9) and (11) respectively. Let us
assume that around jump discontinuities or “large gradients” where |ux| >>
u, the ratio u

r|ux| << 1 is small. Then for y = ( u
rux

)2 and using Taylor

expansion of (1 + y)−
1
2 = 1− 1

2
y+ 3

4
y2 − · · · (convergent for |y| < 1) we have

that

(
1 +

( u

rux

)2)−1/2

= 1− 1

2

( u

rux

)2

+
3

4

( u

rux

)4

− · · ·

Hence, defining sgn(ux) =
ux

|ux| , around jumps we obtain

ut =

(
f(u)

rux√
u2 + r2u2

x

)

x

=

(
f(u)sgn(ux)

(
1 +

( u

rux

)2)−1/2
)

x

that resembles a hyperbolic conservation law like

ut ≈ (f(u) sgn(ux))x

ruling the dynamics of the diffusion fronts in (9). This means that shock
waves may be generated in finite time at the boundaries of the support of
the solution.

On the other hand, and disregarding the term

uf(u)

u2 + r2u2
x

≈ O
(( u

rux

)2)
(12)

equation (11) around jump discontinuities resembles

ut ≈ sgn(ux)f
′(u)ux

because it follows that, if | u
rux

| << 1, then

r ux√
u2 + r2u2

x

≈ sgn(ux) (13)
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From this analysis we conclude that propagation fronts in limited diffu-
sion equations of type (9) behave according to the features of a hyperbolic
conservation law with hyperbolic flux f(u) and their speed of propagation is
determined approximately from sgn(ux)f

′(u).
In what follows we analyze three different types of model problems of

limited diffusion equations corresponding to three possible definitions of the
flux f(u). We consider the one dimensional limited diffusion equation (9)
and the Hamilton-Jacobi counterparts for the hyperbolic fluxes f(u) = Cu,
f(u) = C u2

2
and f(u) = C(u− log(1 + u)). The first flux is a linear flux and

the other two are nonlinear and convex. Therefore the only possible jump
discontinuities for the latter two cases are shock waves ([14]).

2.1. Relativistic Heat Equation

With the hyperbolic flux f(u) = Cu, with C = c representing an es-
tablished reference speed, the limited diffusion Fokker-Planck equation (6)
becomes the so-called relativistic heat equation,

ut = ν div

(
u∇u√

u2 + (ν
c
)2|∇u|2

)
(14)

where ν > 0 and r = ν
c
.

This equation represents a mathematical model describing transport by
diffusion with finite speed of propagation. It was proposed by Rosenau
to overcome limitations of Fourier heat conduction classical theory ([22]).
Fourier model written in conservation form is expressed as

ut = −∇(u~v) (15)

where the velocity field ~v = −ν∇u
u

is proportional to the possibly unbounded
gradient of u. Rosenau proposed to change the velocity field in (15) by

~vR = − ν∇u√
u2 + (ν

c
|∇u|)2

(16)

so it is bounded by c ([22]). Then equation (15) becomes the relativistic heat
equation (14).

The relativistic heat equation has been widely studied from the analytical
point of view [1, 2, 3, 4, 18, 22] and more recently a numerical approach
has been presented in [18]. In the later the author proposes a conservative
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numerical scheme for the approximation of a specific class of Fokker-Planck
equations in which the relativistic heat equation is a model problem.

In one dimension, the relativistic heat equation reads as

ut = ν

(
uux√

u2 + r2u2
x

)

x

, t > 0, u ≥ 0 (17)

and its convective part, the Hamilton-Jacobi equation, is

ut = c
( rux√

u2 + r2u2
x

)3

ux (18)

From the asymptotic analysis performed previously in this section we
can assert that equation (17) behaves as a hyperbolic conservation law with
flux sgn(ux) c u. Therefore, diffusion fronts in (17) and shock waves in (18)
propagate at finite speed with constant value c > 0 according to the direction
prescribed by the sign of ux. An analytical proof of this result can be found
in [1].

The relativistic heat equation overcomes limitations of heat conduction
classical model by Fourier by prescribing a finite speed of propagation. Ho-
wever the description is still not realistic since it is not able to represent
diffusion phenomena where the speed of propagation depends on the density
of the moving quantity.

Let us consider a hyperbolic flux f(u) that is nonlinear with respect to
u.

2.2. Porous-media equation

Setting the hyperbolic flux f(u) = C um

m
with m > 1 and C an estab-

lished reference speed, the limited diffusion equation (6) becomes the so-
called porous-media equation ([1, 2]). The convective hyperbolic transport of
the porous media equation was studied in [18] and more recently in [5] where
it is proved that diffusion fronts propagate according to Rankine-Hugoniot
relations. In one dimension the porous media equation reads as

ut = div

(
νumux

m
√

u2 + r2|ux|2

)
ν > 0, m > 1 (19)

and the corresponding Hamilton-Jacobi porous-media equation as

ut = Cum−1 r|ux|2√
um + r2|ux|2

[
m− u2

u2 + r2|ux|2
]

(20)
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Following the previously presented asymptotic analysis, limited diffusion
porous media equation (19) behaves around jump discontinuities as

ut ≈
(
C
um

m
sgn(ux)

)
x

(21)

and the Hamilton-Jacobi one as

ut ≈ C um−1sgn(ux) (22)

Thus, when present, diffusion fronts propagate with speed proportional to
um−1. In this case the speed of propagation is finite although an unbounded
function of the density of the moving quantity. The moving quantity can
travel with a speed exceeding any fixed value, including C. In our experi-
ments we will consider the case for m = 2.

Next we propose a nonlinear hyperbolic flux f(u) generating a limited dif-
fusion equation where diffusion fronts propagate with bounded non constant
speed.

2.3. Limited speed porous media equation

Considering the hyperbolic flux f(u) = C(u− log(1 + u)) in (6) where C
represents an established reference speed, the limited diffusion Fokker-Planck
equation becomes what we call the limited speed porous media equation. In
one dimension it is expressed as

ut =

(
C(u− log(1 + u))rux√

u2 + r2u2
x

)

x

(23)

The convective term written as a Hamilton-Jacobi equation reads as

ut =
r u2

x√
u2 + r2u2

x

(
Cu

1 + u
− Cu(u− log(1 + u))

u2 + r2u2
x

)
(24)

From the asymptotic analysis performed at the beginning of the section
we observe that diffusion fronts in (23) and shock waves in (24) propagate
with speed proportional to

f ′(u) =
Cu

1 + u
(25)
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which is bounded by C. Therefore the speed of propagation of fronts depends
on the moving quantity and is bounded in magnitude by an established ref-
erence speed C > 0.

Remark: An observation on the differences of the hyperbolic fluxes pre-
sented in this section is the following. Possible jump discontinuities for the
case where f(u) is linear (relativistic heat equation case) are linear discon-
tinuities where characteristic curves are parallel. The cases where the hy-
perbolic flux f(u) is nonlinear with respect to u (porous media cases) the
characteristic curves intersect and therefore jump discontinuities are shock
waves.

The three model examples of Fokker-Planck equations analyzed in this
section are particular cases of a general Darcy law. Following Rosenau ([22])
we can formulate a general Darcy law expressed as the relation

∇P =
−µ(ρ)~v√
1− v2

V 2

(26)

where P represents the pressure (which is a function of the density ρ), ~v the
velocity field, |~v|2 = v2 and µ(ρ) is the permeability coefficient defined as

µ(ρ) =
ρ

ν
(27)

with ν > 0 the kinematic viscosity. V = V (ρ) is an upper bound of the speed
of the medium defined as

V = CP ′(ρ) (28)

where C > 0 is a reference speed of the porous medium and P ′(ρ) > 0 the
derivative of the pressure with respect to ρ.

From (26) we can express the continuity equation as

ρt = div(−ρ~v) = div
( ρ∇P√

µ(ρ)2 + |∇P |2
V 2

)
(29)

Since ∇P = P ′(ρ)∇ρ we can retrieve the Fokker-Planck equation as

ρt = div
( CρP ′(ρ)r∇ρ√

ρ2 + r2|∇ρ|2
)

(30)

where r = C
ν
> 0.
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As particular cases of the general Darcy law (26) we recover the three
model examples studied previously in this section. Indeed, for P ′(ρ) ≡ 1
(P (ρ) = ρ) we obtain the relativistic heat equation and if P ′(ρ) ≡ ρ

2
we

get the standard porous media equation. The limited speed porous media
equation is obtained by setting P ′(ρ) ≡ 1− log(1+ρ)

ρ
. In the later case V (ρ) ≤

C is satisfied for every ρ > 0.
In order to observe the behavior of the dynamics of the presented model

problems our next goal consists of performing numerical simulations of the
evolution of their solution. We will compare the results obtained for the limi-
ted diffusion equations with the ones for the Hamilton-Jacobi counterparts
for each model problem and for different initial data.

3. Numerical approximation of the Fokker-Planck and Hamilton-
Jacobi models

In this section we describe the numerical schemes we use for the appro-
ximation of the solution of the limited diffusion equations and their Hamilton-
Jacobi counterparts studied in previous section. The general set up is as
follows.

We consider one dimensional domains, x ∈ [a, b] and initial value u(x, 0) =
u0(x) and homogeneous Neumann boundary conditions. We settle the com-
putational grid as xj = a+jh, j = 0, · · · , N , h = b−a

N
where N is the number

of subintervals of the partition. We extend the index domain from j = −1 to
N + 1 where x−1 = a− h and xN+1 = b+ h. We denote by ∆t the time step
size and tn := n∆t. By un

j we represent the numerical approximation of the
solution u(xj , tn) with u0

j = u0(xj), j = 0, 1, · · · , N . Homogeneous Neumann
boundary conditions are enforced at every time step tn by setting un

−1 = un
0

and un
N+1 = un

N .

3.1. Conservative numerical scheme for limited diffusion models

For the numerical approximation of the solution of the limited diffusion
Fokker-Planck equations considered in the previous section we use the con-
servative finite difference numerical scheme proposed in [18]. The explicit
numerical scheme applies to limited diffusion equations written in divergence
form as

ut =
(
g(u, |ux|)ux

)
x

(31)
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with g as described in (5), ([18]). The numerical scheme reads as

un+1
j = un

j +
∆t

h2

(
g
(un

j + un
j+1

2
,
∣∣∣
un
j+1 + un

j

h

∣∣∣
)
(un

j+1 + un
j )

−g
(un

j−1 + un
j

2
,
∣∣∣
un
j + un

j−1

h

∣∣∣
)
(un

j + un
j−1)

)
(32)

As demonstrated in [18] the explicit numerical scheme is consistent, sta-
ble, conserves mass exactly, preserves positivity and satisfies a discrete local
maximum principle. The Courant-Friedrichs-Lewy (CFL) ([8]) time step re-
striction to ensure stability is a parabolic condition of the form

∆t

h2
≤ 1

2K
(33)

where K = max |g(u, p)| in the domain of the solution ([18]). We assume
g(u, p) is bounded for all u and p in the domain.

3.2. Numerical scheme for Hamilton-Jacobi equations developing shocks

Classical theory by Crandall and Lions ([9]) on viscosity solutions of
Hamilton-Jacobi equations ensures existence of a unique global continuous
solution in time (with possible discontinuities in derivative). Standard nu-
merical schemes for the approximation of classical viscosity solutions of Ha-
milton-Jacobi equations are designed to develop continuous approximations
([20, 21, 27]) and therefore are not appropriate for the approximation of
solutions with shocks.

In this section we introduce a new finite difference numerical scheme to
approximate the solution of the new class of Hamilton-Jacobi equations (11)
where shocks are allowed in the solution. The numerical scheme is based on
a new class of shock capturing numerical Hamiltonians.

In order to motivate the design of the new numerical scheme we first
review the main facts on the classical theory on continuous viscosity solutions
and their numerical approximation.

Classical theory on viscosity solutions ensures existence of a unique global
continuous solution in time for the initial value problem

ut = H(u,∇u), u(x, 0) = u0(x) (34)

for continuous initial data provided the Hamiltonian H is continuous and

u → H(u, p) (35)
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is a non increasing function for each p ∈ Rn.
Standard numerical schemes in one dimension for the numerical approxi-

mation of viscosity solutions of (34) are designed from Lipschitz, monotone
and consistent numerical Hamiltonians h̃ . These depend on three variables,

h̃(u, p−, p+), where p− =
un
j −un

j−1

h
and p+ =

un
j+1−un

j

h
. A first order numerical

scheme in one dimension for approximating the solution of (34) reads as

un+1
j = un

j +∆t h̃(un
j , p

−, p+), (36)

The scheme is stable under a CFL condition

∆t

h
≤ k0

1

maxu,p |H(u, p)p|
(37)

where k0 < 1 and converges to the classical viscosity solution provided h̃ is
monotone and consistent, i.e., h̃(u, p, p) = H(u, p), ([27]).

In our study we are considering Hamilton-Jacobi equations of the form

ut = G(u, |∇u|)|∇u|2 (38)

where G(u, p) = ∂g
∂u

≥ 0, g defined as in (5), i.e., g(u, p) = f(u)S(u, p),
f(u) > 0, convex and S(u, p) = r√

u2+r2p2
with r > 0.

The Hamiltonian in (38), H(u, p) = G(u, p)p2, does not satisfy monotoni-
city condition for every u since the partial derivative ∂H

∂u
may change sign as

a function of u for constant p . It follows from expression

∂2g

∂u2
= f ′′(u)S(u)− S(u)3

r2
(2uf ′(u) + f(u)) +

3u2

r4
S(u)5f(u) (39)

The sign of ∂2g
∂u2 depends on the choice of f(u) since S(u) > 0 and f ′′(u) > 0

(f(u) convex).
In the cases where f(u) induces non monotonicity to the Hamiltonian

in (38) the solution may develop jump discontinuities in finite time. This
can be proved following the method of characteristics ([15]). Hence conven-
tional theory of viscosity solutions by Crandall and Lions does not apply to
Hamilton-Jacobi equations of type (38). On the other hand convergence of
the numerical scheme (36) is not ensured in the presence of jump disconti-
nuities. The numerical scheme fails to be monotone when the monotonicity
condition on the Hamiltonian in (38) with respect to u is not satisfied.
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The three Hamiltonians under study defined from functions f(u) for the
cases described in subsections 2.1, 2.2 and 2.3 are non monotone with respect
to u. We seek to simulate through numerical approximation the formation of
shocks in the solution of the Hamilton-Jacobi equations deduced from limited
diffusion models.

In the following we design a numerical scheme based on a shock capturing
numerical Hamiltonian that combines the properties of classical numerical
schemes for Hamilton-Jacobi equations as (36), ([20, 26, 27]), together with
the features of a shock capturing scheme to ensure formation and correct
propagation of waves ([16, 26]). In particular we design a shock capturing
numerical Hamiltonian by using a Godunov type strategy where the upwind
component is plugged into the unknown u and gradients are approximated by
means of a local monotone scheme. We propose numerical Hamiltonians with
four arguments taking into account the flow of information contained in the
unknown u. Indeed, the numerical Hamiltonian will depend at each location

xj on the arguments u−, u+, p−, p+ where u− =
un
j−1+un

j

2
, u+ =

un
j +un

j+1

2
, p− =

un
j −un

j−1

h
and p+ =

un
j+1−un

j

h
.

Thus, the numerical scheme for the approximation of viscosity solutions
with shocks is defined as

un+1
j = un

j +∆t h̃(u−, u+, p−, p+) (40)

where the numerical Hamiltonian h̃(u−, u+, p−, p+) is consistent with (38)
i.e.,

h̃(u, u, p, p) =
∂g

∂u
(u, p)p2

The first order accurate shock capturing numerical Hamiltonian is de-
fined as follows. We apply the Osher-Sethian numerical Hamiltonian strategy
([20]) when gradients of uj in both directions (represented by p−, p+) share
sign. For the cases where p− and p+ have different signs we apply Godunov
shock capturing strategy ([11, 26]), i.e., zero flux when the characteristic
curves do not intersect (rarefaction waves) and upwind option otherwise de-
pending on the sign of the local speed defined as a function of p− and p+.

The algorithm, considering u, v, p and q real numbers, reads as:
if (p ≥ 0) and (q ≥ 0)

h̃(u, v, p, q) = G(v, q)q2

else
if (p < 0) and (q < 0)
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h̃(u, v, p, q) = G(u, p)p2

else
if (p < 0) and (q ≥ 0)

h̃(u, v, p, q) = 0
else

s = |q|−|p|
q−p

if s > 0
h̃(u, v, p, q) = G(v, q)q2

else
h̃(u, v, p, q) = G(u, p)p2

end
end

end
end
The new numerical scheme allows formation of shocks and correct prop-

agation of waves. The proposed first order numerical scheme for Hamilton-
Jacobi equations developing shocks is stable under a hyperbolic CFL time
step size restriction that combines the CFL restrictions for shock capturing
and classical Hamilton-Jacobi numerical schemes. It reads as the minimum
of both as

∆t

h
≤ k0min

( 1

maxu,p |H(u, p)p|
,

1

maxu |f ′(u)|
)

(41)

where k0 < 1. Let us note that in all our cases (H(u, p))p is uniformly
bounded for each fixed u, and p in [0,∞[.

The following section is devoted to perform numerical approximations of
the presented limited diffusion equations and their Hamilton-Jacobi counter-
parts.

4. Numerical experiments

In this section we show numerical evidence of the analysis performed
in section 2 presenting a set of numerical experiments using the numerical
schemes introduced in the previous section. We compute the solution and
examine the evolution of each of the model problems for the relativistic heat,
porous media and limited speed porous media Fokker-Planck equations and
the associated Hamilton-Jacobi equations for a set of one-dimensional initial
data. We also compare the solutions of the models in terms of their behavior
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with respect to the speed of propagation of diffusion fronts under different
initial data.

We present three examples with initial data defined in x ∈ [−3, 3] and
consider a partition of 500 grid points for each numerical approximation. We
set constant C = 1 for the three model problems. We run all experiments
at fifth order of accuracy. For the extension to fifth order accuracy in space
in the approximation of the solution of the limited diffusion Fokker-Planck
equations we proceed as explained in [18] using the Weighted PowerENO
reconstruction procedure ([24]).

Fifth order of accuracy in space for the Hamilton-Jacobi cases is obtained
from the basic first order scheme by computing high-order approximations to
arithmetic means u− and u+ and to the gradients at both sides of the node
xj , p

− and p+ by means of a reconstruction procedure ([21]). We use the
Weighted PowerENO fifth order reconstruction procedure. The implementa-
tion for Hamilton-Jacobi equations is detailed in [25].

High order accuracy in time is obtained in both cases by using an explicit
third order TVD Runge-Kutta scheme ([26]).

In order to ensure stability of the numerical scheme for the three lim-
ited diffusion models we set, according to (33), an upper bound of the CFL
restriction fixing ∆t = 0.25 ∗ h2. Stability of the numerical scheme for the
approximation of the solution of the Hamilton-Jacobi cases is ensured by
setting and upper bound to the CFL restriction according to (37) taking
∆t = 0.1 ∗ h.

4.1. Example 1: Double step initial data

We consider an initial data consisting of a piecewise constant function
containing jump discontinuities at the boundaries of the support and two
jump discontinuities at the interior of the support. The initial data is defined
as

u0(x) =





2 |x| ≤ 1
1 −2 ≤ x < −1
1 1 ≤ x ≤ 2
0 elsewhere

Numerical results for times 0.01, 0.3 and 0.75 are displayed in Figure 1. Left
column includes the approximate solutions to the limited diffusion Fokker-
Planck versions of each model problem and right column includes their Hamil-
ton-Jacobi counterparts. From top to bottom the models are: relativistic
heat, porous media and limited speed porous media equations.
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Figure 1: Double step initial data. Evolution at time, t = 0.01, 0.3 and t = 0.75 represented
by red “*” blue “o” and black “+” respectively. Top to bottom, relativistic heat, porous
media and limited speed porous media equations. Left column, limited diffusion equations,
right column, Hamilton-Jacobi counterparts.
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Left column of Figure 1 displays the three cases of limited diffusion
Fokker-Planck equations. Transport by diffusion occurs in the interior of the
support which expands with finite speed. We observe how diffusion smears
interior jump discontinuities from early times of the evolution. Diffusive ef-
fect is stronger in the relativistic heat equation case (first row) where at
larger times diffusion completely dissolves inner discontinuities.

Hyperbolic transport is localized at the boundaries of the support. Mag-
nitude of diffusion fronts vary along the evolution depending on the diffusion
rate. The speed of diffusion fronts at the boundaries of the support in the
relativistic heat equation case (first row) is constant equal to 1. In the second
row the speed of diffusion fronts for porous media limited diffusion equation
is the one prescribed by the Rankine-Hugoniot relations for the hyperbolic
flux (as mentioned in subsection 2.2). In the last row, for the case of the
limited speed porous media equation, the speed of diffusion fronts depends
on u and behaves similarly to the porous media case.

We observe differences on the numerical resolution of jump discontinu-
ities at the boundary of the support for the relativistic heat equation case
(first row) and porous media cases (second and third rows). These differ-
ences are justified since, as remarked in section 2, jump discontinuities in the
relativistic heat equation case are linear discontinuities which are advected
with constant speed while jump discontinuities in the porous media cases
are shock waves that propagate with speed magnitude proportional to the
derivative of the corresponding flux.

Right column of Figure 1 displays the results obtained for the Hamilton-
Jacobi associated equations. We observe a completely different dynamics in
the evolution compared to the one for the limited diffusion equation. In the
absence of diffusive effects, the three cases present shocks, linear disconti-
nuities and rarefactions waves as expected in a hyperbolic flux ([15]). We
observe in the first row that the support of the initial data for the relativistic
heat equation expands with same speed as the one for the corresponding lim-
ited diffusion equation (left column). For the porous media Hamilton-Jacobi
equations diffusion fronts propagate faster than in the corresponding limited
diffusion cases since the magnitude of the shocks are bigger due to the lack
of dissipation.

4.2. Example 2: Semi-circle wave problem

We consider an initial data with compact support consisting on a semi-
circle with radius equal to 2,
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Figure 2: Semi-circle initial data. Evolution at times t = 0.05, 0.25, 0.7 and t = 2 re-
presented with symbols red “square”, blue“+”, black “*” and red “+”. Top to bottom,
relativistic heat, porous media and limited speed porous media equations. Left column,
limited diffusion equations, right column, Hamilton-Jacobi counterparts.
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Figure 3: Semi-circle initial data. Zoomed region of second row of Figure 2. Porous media
equation case at evolution at times t = 0.05, 0.25, 0.7 and t = 2 represented with symbols
red “square”, blue“+”, black “*” and red “+”. porous media Left, limited diffusion
equations, right, Hamilton-Jacobi counterparts.

u0(x) =

{ √
4− x2 −2 ≤ x ≤ 2

0 elsewhere

This is a case of continuous function with discontinuities in first derivative
such that the slopes at the boundaries of the support are vertical. This
feature causes the creation of jump discontinuities at the boundaries of the
support from the beginning of the evolution.

Figure 2 displays the approximate solutions at times t = 0.05, 0.25, 0.7
and t = 2 for the limited diffusion and Hamilton-Jacobi models and Figure
3 shows a zoomed region of second row of Figure 2.

We observe that the two porous media type models develop discontinuous
diffusion fronts at the boundaries of the support from the beginning of the
evolution. For the relativistic heat equation model, the associated hyperbolic
flux is linear and the separation of the characteristic curves at the vertical
angle generates a linear discontinuity traveling with constant speed. The
cases of the porous media and limited speed porous media models join a
nonlinear hyperbolic flux and the characteristic curves at the vertical angle
intersect generating shock waves that propagate with signal dependent speed.

The corresponding Hamilton-Jacobi equations behave similarly at the
boundaries although without any diffusion in the interior of the support
contrarily to what occurs at the corresponding limited diffusion equations.
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Figure 4: Continuous initial data. Evolution at times t = 0.1, “*” and t = 0.3 “o”. Top to
bottom, relativistic heat, porous media and limited speed porous media equations. Left
column, limited diffusion equations, right column, Hamilton-Jacobi counterparts.
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Figure 5: Continuous initial data. Evolution at times t = 0.012, “*” and t = 0.022
“o”. porous media equation. Left, limited diffusion equations, right, Hamilton-Jacobi
counterpart.

4.3. Example 3: Continuous initial data

We consider a continuous initial data with compact support. The slope
of the function at the boundary of the support is finite i.e., the contact angle
is not vertical. The initial data is defined as

u0(x) =

{
0 |x| ≥ 1
20max(1− x2, 0) |x| < 1

Numerical results are displayed in Figure 4. Similarly to the presentation
of results of previous examples, left column includes the approximate solu-
tions to the limited diffusion Fokker-Planck versions of each model problem
and right column includes their Hamilton-Jacobi counterparts. From top to
bottom the models are: relativistic heat, porous media and limited speed
porous media equations. We plot in each picture the evolution at two times,
t = 0.1 and t = 0.3 represented in red with “*” symbol and blue with “o”
symbol respectively.

We observe in the first row that relativistic heat equation cases expand
the support with constant velocity C = 1 keeping the solution continuous.

Second and third rows correspond to the cases of limited diffusion porous
media and limited speed porous media equations for which the hyperbolic
fluxes are non linear. The dynamics of the evolution are similar and occur
in two stages. First stage lasts a period of time called “waiting time” where
the support of the signal does not expand while contact angles grow at both
sides until they reach the vertical position. From this moment the solutions
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break due to the fact that the characteristics intersect and shock waves are
generated at both sides of the boundary. This behavior is the same as the
one of the evolution of the initial data in Example 2 where the initial contact
angle is vertical.

The waiting time period for the porous media limited diffusion model
(second row of Figure 4) is measured as t ≈ 0.015. Figure 5 shows early
times of this evolution. One at time t = 0.012 just previous to reach vertical
angle at the boundaries of the support and another where the shock has
already developed, t = 0.022.

While the evolution for both limited diffusion porous media share a similar
dynamics, the speed of propagation of diffusion fronts are quite different
in both cases. In the left picture of second row in Figure 4 we observe
that propagation fronts for the porous media Fokker-Planck model travel
at both sides a distance equal to 0.47 in a period of time that lasts t ≈
0.3− 0.015 = 0.285 which is the total time minus the waiting time to break
in shocks. Therefore average speed of the propagating front in those runs is
0.470/0.285 = 1.649 which exceeds the established reference speed C = 1. In
the third row in Figure 4, the case of the limited speed porous media limited
diffusion equation, we observe that the diffusion fronts expand the support
with speed bounded by C = 1.

For the case of the associated Hamilton-Jacobi equations (right column)
the dynamics are similar. It can be observed that shock waves travel faster
than in the corresponding limited diffusion equations due to the fact that
jump discontinuities are bigger because of the lack of dissipation.

5. Conclusions

We have studied a class of limited diffusion Fokker-Planck equations and
their associated Hamiltonians. We have defined a new class of Hamilton-
Jacobi equations as the convective part of the Fokker-Planck equations and
the cause of the formation of shocks in the solution of the limited diffu-
sion equations. We propose a suitable finite difference numerical scheme to
approximate the viscosity solution with shocks arising in the new class of
Hamilton-Jacobi equations. The numerical scheme is designed in a way that
combines the properties of classical numerical schemes for Hamilton-Jacobi
equations together with the features of a shock capturing scheme to ensure
correct propagation of waves.
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We analyze three model problems covering three different scenarios of
the dynamics of front propagation. Two of the models are considered from
the literature: one prescribing a constant speed of propagation of diffusion
fronts and a second case where diffusion fronts propagate with unbounded
finite density dependent speed. We propose a third model where diffusion
fronts propagate with bounded density dependence speed. We perform a
set of numerical experiments and compare the solution for the three model
problems for the limited diffusion equations and their Hamilton-Jacobi coun-
terparts. Asymptotic analysis and numerical examples show the inadequacy
of standard porous media model to propagate fronts with limited speed. The
results demonstrate the capability of the proposed limited speed porous me-
dia equation to bound the speed of propagation of fronts by an established
reference speed.
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