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Abstract We consider an age-structured model that describes the regulation of ery-
thropoiesis through the negative feedback loop between erythropoietin and hemoglobin.
This model is reduced to a system of two ordinary differential equations with two con-
stant delays for which we show existence of a unique steady state. We determine all
instances at which this steady state loses stability via a Hopf bifurcation through a
theoretical bifurcation analysis establishing analytical expressions for the scenarios in
which they arise. We show examples of supercritical Hopf bifurcations for parameter
values estimated according to physiological values for humans found in the literature.
Numerical simulations displaying the resulting oscillatory dynamics in agreement with
the theoretical analysis are provided.
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1 Introduction

Dynamical diseases are characterized as those that occur through changes in the qual-
itative dynamics of physiological processes. This definition leads naturally to the de-
scription of dynamical diseases as a nonlinear system undergoing one or more bifurca-
tions [21]. Indeed, mathematical models have proven to be an effective way to describe
several dynamic pathologies [4,13,21,22,25,28]. In this paper, we focus on character-
izing irregular dynamics of one specific physiological control system, the regulation of
erythropoiesis via the feedback loop between erythropoietin and hemoglobin.
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Erythropoiesis, the production of erythrocytes (red blood cells), involves interaction
between two organ systems: the bone marrow, where the precursors to mature red blood
cells are located, and the kidney, which produces the hormone erythropoietin. When the
partial pressure of oxygen in the blood drops, suggesting hypoxia, specialized epithelial
cells in the kidney release erythropoietin into the bloodstream. The erythropoietin
then travels to the bone marrow where it both accelerates erythropoiesis and recruits
additional stem cells into the committed pathway to become mature red blood cells.

Hemoglobin is an iron-containing metalloenzyme essential to erythropoiesis. Be-
cause a high percentage of the dry volume of a red blood cell consists of hemoglobin,
low levels of this protein result in suboptimal red blood cell production regardless of
erythropoietin release. On the other hand, high availability of hemoglobin allows for
maximal levels of erythropoiesis. The function of hemoglobin is to act as a transport
protein for oxygen in the bloodstream. For this reason, the increase in hemoglobin
content (or red blood cell number) caused by elevated erythropoietin raises the oxy-
gen carrying capacity of the blood and corrects hypoxia, thus removing the original
pressure for the release of erythropoietin. This is an example of a negative feedback
system, in which an excess of product suppresses its production. Many biological con-
trol systems involve negative feedback, and the disruption of such a loop can result in
severe pathology [12,15].

A mathematical model of hematopoiesis was introduced by Mackey [19], who pro-
posed a model of two nonlinear differential equations with one constant delay rep-
resenting the average cell cycle duration. Mackey’s model is called an age-structured
model, where populations are classified and tracked according to their age. Modifi-
cations of this model have been analyzed to be applied to a variety of hematological
diseases by different authors, [2,3,6,27]. Application of similar models to erythropoiesis
can be found in [3,5,23]. For an extended review of past work, we refer to Foley and
Mackey [12].

Many studies use bifurcation analysis to provide an understanding of the underlying
system dynamics leading to pathology [16,20]. Specifically, periodic diseases can be
simulated by systems which undergo a Hopf bifurcation, a local bifurcation in which
a limit cycle arises from an equilibrium point, resulting in oscillatory behavior [18,29].
Such a bifurcation in a model of erythropoiesis would result in oscillatory behavior in
both erythropoietin and hemoglobin levels 2,4, 5]. In particular, this behavior has been
observed in patients with renal failure treated with erythropoiesis-stimulating agents,
or ESAs [11].

In this paper we consider a modification of the age structured model presented by
Bélair et al. in [5] to describe red blood cell production. Since the total population of red
blood cells actually consists of two distinct subpopulations, committed precursor cells
and mature erythrocytes, the model analyzed in this paper implements two discrete
delays corresponding to the lifespan of each of these subpopulations. We perform a
complete theoretical bifurcation analysis to identify Hopf bifurcations. The derivation
of analytical expressions which describe the conditions for which Hopf bifurcations
occur provide a good understanding of how such models are relevant in reproducing
oscillatory dynamics associated with dynamical diseases.

The paper is organized as follows. We introduce the mathematical model for regu-
lation of erythropoiesis in Section 2. In Section 3, we perform a linear stability analysis
after reducing the model to a system of ordinary differential equations with two dis-
crete delays. We determine the unique equilibrium point of the system and derive the
characteristic equation for the linearized system around this point. In Section 4 we



perform a bifurcation analysis providing a complete parameter study and determining
the conditions for Hopf bifurcations. In this analysis, we demarcate three subregions of
the parameter space under different conditions on the parameters, in which we demon-
strate the existence of Hopf bifurcations. In this manner, we identify all possible Hopf
bifurcations and establish analytical expressions for the scenarios in which they arise.
We present simulations which provide examples of oscillatory dynamics resulting from
Hopf bifurcations for physiologically relevant parameters in Section 5, and a concluding
discussion in Section 6.

2 Model for regulation of erythropoiesis

In the process of erythropoiesis, new red blood cells are created from precursor cells in
the bone marrow at a rate proportional to the amount of the hormone erythropoietin
present in the body. These cells age over a period of months through abrasion in the
capillaries, eventually losing all ability to transport oxygen, at which point they are
destroyed by phage cells. Mature red blood cells carry hemoglobin, the concentration
of which is fairly constant among the population of red blood cells and therefore a
good measure of red blood cell levels. Erythropoietin and hemoglobin are involved in
a negative feedback loop [14]. The mathematical model we consider for modeling these
interactions is based on the age-structured system of equations introduced in [5].

Let ¢ represent time and v represent red blood cell age. Let m(t,v) be the density
of red blood cells in the body with respect to time ¢ and red blood cell age v. We
assume that the cells age at a constant rate «, since the age of a red blood cell depends
mainly on the number of times it passes through the capillary system. The level of
hemoglobin M (t) is determined as a proportion of the total density of red blood cells
and influences the level of the hormone erythropoietin A(t). Consistent with the idea
of negative feedback, the concentration of erythropoietin will decrease with increasing
numbers of mature erythrocytes.

‘We describe the evolution of the red blood cell population by the transport equation

%—TJra%—T:o, for t>0 and 0<v < vmax, (1)
where vmax is the maximum age of a mature cell.

We impose the following time-dependent Dirichlet boundary condition

m(t,0) = + B(A(t = Ty)), 2)

where T}, is the time required for a stem cell committed to erythropoiesis to reach matu-
rity, and F is a monotone increasing function that represents the rate of erythropoietin-
driven production of red blood cells. We consider E to be a Hill function, as is common
to enzyme kinetic models [7]. We express it as

s
E(S) = Emax'8—+ E507 s >0, (3)
where Fmax and Esg are the maximum concentration and pre-image of 50% satura-
tion, respectively. This indicates that as the erythropoietin concentration increases, the
amount of incoming red blood cells at time ¢ increases as well, until it asymptotically

reaches a saturation point. Note that there is a delay of time T} in equation (2) due



to the time required for committed stem cells to mature fully. This delay signifies that
the input at every time ¢ is dependent on A(t — Tp). We consider A (t) to be known
for t € [-Tp,0].

Since hemoglobin concentration is directly related to the total population of red
blood cells, we have

Vmax

M(t) = R/() m(t,v) dv, (4)

where R is a scaling constant representing the mean corpuscular hemoglobin—i.e. the
amount of hemoglobin in a typical red blood cell.

We consider the negative feedback loop between the levels of hemoglobin M (¢) and
erythropoietin A(¢). The time evolution of A(t) is given by the differential equation

dA(t
WA A + POIW), %)
where k£ > 0 represents the elimination rate of erythropoietin, and we consider the rate
of hemoglobin-driven production of erythropoietin F' to be given by a decreasing Hill
function

Fso"
R >
FSOT + P S Z 07 (6)

F (5) = Fhax
where Fmax and Fjg are defined analogously to Emax and Ejg in equation (3). The
parameter r indicates the speed of response of the rate of hemoglobin-driven production
to the level of hemoglobin. Consistent with the concept of negative feedback, an increase
in hemoglobin concentration leads to a fall in the rate of erythropoietin production, as
seen by the decrease of F'(M(t)), and consequently of the left hand side of equation (5),
as M(t) rises.

We review the parameters we have introduced and their associated units in Table 1.

Table 1 Parameter values and associated units.

Parameter Units
«a none
Vmax day
To day
k day !
R g
Fmax 1/(¢-day)
FEso U / 0
Frax U/(¢-day)
Fso g/t
r none

The existence of Hopf bifurcations in similar models to the one we have presented
have been suggested in different approaches [4,5,20]. In the following sections we
determine the conditions for existence of Hopf bifurcations in the dynamics of the
erythropoietin-hemoglobin regulation loop for the complete parameter space. In order
to perform a bifurcation analysis we first present a linear stability analysis to deter-
mine the conditions under which the unique equilibrium point of the system can lose
stability.



3 Linear stability analysis

The system introduced above consists of three equations describing red blood cell pop-
ulation (eq. (1)), hemoglobin levels (eq. (4)) and erythropoietin levels (eq. (5)). In this
section we express the system as a pair of ordinary differential equations with two
delays. Such a reduction is natural as it allows us to concentrate on the feedback loop
between rates of erythropoietin and hemoglobin production. We then show the exis-
tence of a unique, physiologically relevant equilibrium point, and analyze the stability
of the system linearized around this point.

3.1 Reduction to a system of ordinary differential equations with delay

We first use the method of characteristics to solve the transport equation (1). The
directional derivative of m along the vector (1, a) is zero, implying that m is constant
in the direction of this vector, and thus

mmm:mg—gp) (1)

Combining equation (7) with the boundary condition (2), we can express the solution
of the transport equation for large time ¢ and all age v as

m@m:éE@@—g—n». ®)

We now express the levels of hemoglobin M and erythropoietin A in terms of a
system of equations that does not depend explicitly on the partial differential equa-
tion (1). Integrating equation (1) over age v and then using equation (8) we obtain
a differential equation with two delays describing the time evolution of the level of
hemoglobin:

dM(t)
dt

= —Ra (m (¢, vmax) — m (¢,0))
=—R[E(A(t — Tipe — Tp)) — E (At — Tp))],

where

Vmax

Tipe = T (9)

is the lifespan of erythrocytes. Thus, together with equation (5), we describe the time
evolution of the levels of hemoglobin and erythropoietin by the following non-linear
system of ordinary differential equations:

dM(t)
dt
dA(t)
Tdt

=—R[E(A(t = Tipe — Tp)) — E(A(t — Tp))] (10a)

= —kA(t) + F(M(t)). (10b)



3.2 Existence and uniqueness of steady state
We show existence of an equilibrium point of system (10) and verify its uniqueness.

Using the solution of the transport equation as expressed in equation (8) and ap-
plying a change of variables 7 = £, we write equation (4) as

M(t) = S/OVWE(A (t—g—Tp»dy

Tibe
R/o E(A(t — 7 —Tp))dr. (11)

Let us define the values of M(¢) and A(t) at equilibrium as Moo and Ao, Tespec-
tively. To find an expression for the equilibrium values in terms of the reduced system,
we let M (t) = M and A(t) = Aco, also implying d’?lgt) = 0. From equations (11)

and (10b) we have

Moo = RTpe E(Aso) (12a)
0= kAo + F(Mso). (12b)

Solving equation (12b) for A and plugging the result back into equation (12a) we
find

0= RTrbCE(%F(MDO» ~ Moo. (13)

Every solution to this equation with respect to M gives an equilibrium point of
the system. We see that the right hand side of equation (13) takes on a positive value
when Mo = 0, is negative for large values of Moo, and is a continuous function of
M. By the intermediate value theorem, equation (13) must have at least one positive
solution. Furthermore, the right hand side of equation (13) is a monotone decreasing
function, and so there exists a unique positive Moo such that equation (13) holds.
Since Ao is a function of Moo, we conclude that there is a unique equilibrium point
(Moo, Aso) with both Moo and Aso positive.

3.3 Conditions for stability of the steady state

We study the behavior of the system (10) around the equilibrium point (Moo, Aco)
through the roots of the characteristic equation, which we derive from the linearized
system of equations around the equilibrium point. We linearize the system by calcu-
lating the first order Taylor expansions in the neighborhood of the equilibrium point
for the functions ¥ and F'

E(5) = E(Aso) + E' (Ao) (5 — Aoe) + O ((s - AOO)Q)
F(s) = F (Moo) + F' (Moo) (5 — Moo) + O ((s - Moo)2> .
Thus, neglecting second and higher order terms, system (10) becomes

dM(t)
dt
dA(t)

= = R (A(t) ~ Ao) + F (Moo) (M (1) ~ M), (14b)

= ~RE' (Aco) [[A(t = Tipe — Tp) — Aco] = [A(t = Tp) — Asd]] (14a)



where we used equation (12b) to get equation (14b). This system locally describes the
time evolution of (M (t), A (t)) around the equilibrium point (Moo, Aso). We introduce
perturbations from the stationary values

M(t) =M (t) — Moo

At) = A(t) — Aco.

Plugging these into system (14) we obtain

d]Zt(t) — 7RE/ (Aoo) {A (t - Trbc - TP) - A (t - Tp)] (15a)
# = —kA(t) + F' (Moo) M (t). o)

We are interested in finding the characteristic values of this linearized system. We
search for solutions of the form

M (t) = Mpe™
A(t) = Age™,

where A is the characteristic value of the system. Plugging this form of M and A
into system (15), we arrive at the following homogeneous system of linear equations in
(Mo, Ag):

(RE/ (Aso) (e**TP - e*MTv*Trbc))) A+ (=\) Mo =0
A+ k)Ag + (—F' (Moo)) Mo = 0.

To find a non-trivial solution the determinant of the system has to be zero. This
condition provides the characteristic equation associated with system (14),

A2 4 kA — RE' (Aoo) F' (Moo) [e*”’p _ e*A<Tp+Trbc)} —o. (17)

We note that, as a consequence of the two delays in the model, the characteristic
equation is transcendental. The steady state of the linearized system is asymptoti-
cally stable if all solutions to the characteristic equation have negative real parts, and
is unstable if there exists a solution with positive real part [17]. We are interested
particularly in the loss of stability through Hopf bifurcations.

Hopf bifurcations occur in the system when a pair of complex eigenvalues crosses
the imaginary axis. We therefore search for purely imaginary eigenvalues, i.e. those of
the form A = iw, w € R. Enforcing this form into equation (17) and using trigonometric
identities we obtain

—w? +ikw = {2RE’ (Aoo) F' (Mso) sin (w (Tp + TT")) sin (wTTb)}
+i [QRE’ (Aoo) F' (M) cos (w (Tp + TYQ'“)) sin (w%” .

We present three conditions to ensure that the complex numbers on either side of
equation (18) are equal. Two conditions are to satisfy equal arguments of the complex
numbers: first, we need that the ratios of the imaginary part over the real part of
both sides are equal, and second, the real parts on both sides of (18) need to have the

(18)




same sign. Finally, the third condition is the requirement that the absolute values of
both sides need to be equal. The three conditions are represented respectively by the

following relations:
w Tip
— = tan (w (Tp + %)) (19a)

1 Trbe
sin (w Tp + §TN,C)> sin (W'Tb‘> >0 (19b)

2 T
w#%%9:4mE%&dF%Mm»ﬁf(w%%). (19¢)
We name equations (19a), (19b) and (19c) the argument equation, the sign condition
and the modulus equation, respectively.
In the following section, we determine the regions of the parameter space for which
all conditions in (19) are met, implying that there may exist a Hopf bifurcation in that
region.

4 Bifurcation analysis

In this section, we study the conditions under which the model presented in Section 2
can reproduce a dynamical disease. We determine the instances where the equilibrium
point loses stability through a Hopf bifurcation. A Hopf bifurcation occurs when a pair
of complex conjugate eigenvalues of the system crosses the imaginary axis through the
varying of one or more parameters [18,29]. In order to find Hopf bifurcations, we first
find all purely imaginary solutions of the characteristic equation, i.e. when equations
(19a) and (19c) have a solution simultaneously and condition (19b) is satisfied. We
then verify that we indeed have Hopf bifurcations at these points.

If A = iw is a root of the characteristic equation, w must satisfy equations (19a),
(19b), and (19c). The possible values of w that satisfy the argument equation (19a) are
characterized in the following proposition.

Proposition 1 (a) For each £ = 1,2, ... there exists a unique wy > 0 belonging to the
interval

] —5 + 7l 5+l [ (20)

TP + %Trbc, TP + %Trbc

such that wy is a solution of the argument equation

T, w
Tp + —be ) ) = £ 21
tan (e (T + 2 ) ) = - (21)

(b) There are infinitely many solutions wy > 0 to the argument equation such that the
“sign condition” (19b) is satisfied.

Proof Straightforward.

Determining when w satisfies the modulus equation is more involved. Let us re-write
modulus equation (19¢) as

_ wVw? 4 k2

—RE' (Aso) F' (M,
(Aoo) " (Moo) 2| sin(wLgpe )|

(22)



and define the function g as the right hand side of this equation

_|wVw? + k2

= 23
Q\Sin(w%&ﬂ (23)

g(w):

The left hand side of equation (22) is found in the characteristic equation (17) as
the coefficient of a combination of exponential functions, the absolute value of which
is bounded by 2 when A is purely imaginary. We note that for imaginary A, the term
|/\2 + Ak| in the characteristic equation can be arbitrarily large. As we wish to consider
arbitrary values of |A|, the named coefficient must be able to take on arbitrarily large
values to fulfill the characteristic equation. Thus, we focus on the exponent r, as it is
directly responsible for the speed of increase of this term. This exponent will act as
the key parameter in the following analysis.

We express the left hand side of equation (22) as the function b depending on 7.

b(r) = —RE' (Aso) F' (M) . (24)

As we have a large number of parameters in our model, we facilitate our analysis
by introducing two strictly positive dimensionless parameters, P and Q:

G
= 2
5Emg (25)
D
= 2
Q= 5p (26)
where D and G are defined as the upper bounds of M« and Aso, respectively:
D = RT}pcEmax (27)
G = @ (28)

k

We will use the dimensionless parameters P and @ to perform the bifurcation analysis.
These allow a simple and precise description of the imaginary roots of the characteristic
equation.

The next proposition determines the dependence of the equilibrium point on r.

Proposition 2 The unique equilibrium point (Moo, Aso), defined by equations (12a)
and (12b), can be expressed as

Moo(r) = % (r) (290)
G
Al = 75 (29b)

where (1) is the unique positive solution of the equation S(¢) = 0, where
SW) =" + (14 2P)y — 4PQ. (30)

Proof Using equation (13) and the definition of P and @, we obtain

1 1
5 Moo(r) " + (1 n ﬁ>F§0Moo(r) — DFly = 0. (31)

We eliminate the constant F5g by introducing a dimensionless positive function (r):
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= M _ 29
0(r) i= e = T M) (32)
We substitute (32) into (31) and obtain
DN+l 1
(35)  [zps@)] =0, (33)

implying that S(3)) = 0. As S(0) = —4PQ < 0 and
52Q) =27 T1Q™ M 4 (14 2P)(2Q) — 4PQ =2"T1Q" T 420 > 0,

we see that there must exist at least one 1 (r) such that S(¢) = 0 with 0 < ¥(r) < 2Q,
and so there exists a solution to equation (30).

From d
S () = wsw) =(r+1)y" 4+ 1+2P, (34)

we see that for ¥ > 0, §'(¥) > 0, and so the function S(4) is strictly increasing for all
r > 1. Therefore, we can conclude that S(¢) = 0 has a unique positive solution. O

The following proposition shows the dependence of the left hand side of the modulus
equation (22) on r.

Proposition 3 The left term of modulus equation (22) can be expressed as

k)™t k (1+2P)¢(r)
b(r) B Trpe 4PQ B T’rbcr<1 4PQ ) (35)
Proof We consider the derivatives of E (see eq. (3)) and F (see eq. (6)):
o ngosr_l
F (S) = Fmax—(FgO T ST)Q (368,)
F'(s) = Fmax——230 (36D)
T (Eso + 5)2
and substitute into (24) to obtain
k Es M
b(r) = — . 37
) = T o + Am0) (PR, + M) 0
We define f as
E50 Mgo (7”)
r)= r 38
IO = oo + 4 ) (75 + ME () )
so that b(r) = bec f(r). Rewriting f as
Moo \"
T < Fso >
flr) = y 7 (39)
oo Mo
1 Fso 1+ (Fso)
and using the following relations that follow from (25), (26), (29a) and (29b):
Acso(r) 2P
= 40
Eso L+ 9(r)" (40)
Mee®) — ), (40b)

Fs



11

where 9 (r) is the unique root of (30) as proved in Proposition 2, we have that

r Yr)" ()’ _ ro(r)"
T =17 S THOGY  TH2PO0) | (1 2P+ ) (41)

From (30) we know that " Tt = 4PQ — (1 + 2P)% > 0 and then

()™ APQ — (1 +2P)y(r) (14 2P)e(r)
I =—pg =" 1PQ - T(l - W)‘ (42)
Therefore (35) holds. o

Now that we have introduced some notation which facilitates our analysis of the
imaginary roots of the characteristic equation, we separate the following analysis into
two cases based on the value of r: r = 1 and r > 1. For the case r = 1, we show
that there exists no possible solution for the modulus equation (19c). For r > 1, we
partition the parameter space based on relations between the dimensionless parameters
P and @, and determine the conditions under which Hopf bifurcations occur within
each subregion.

4.1 Bifurcation analysis for r = 1

Theorem 1 Forr = 1, there exists no possible solution for the modulus equation (19c),
implying that no Hopf bifurcations exist in this case.

Proof Let us first look at the right hand side of the modulus equation (22). At w
the function g(w) (see (23)) has a removable discontinuity: limy—0 g(w) = 7=
the infimum of g(w) occurs in the limit as w — 0:

k
Trbc .

: i _
min lg(w)| = limey 0 |g (W)]

Thus, g(wg) > 7— for each £ =1,2,.
Now let us look at the left hand side of the modulus equation (22). From Proposi-
tion 3 we have that

b(1) =

L(l — w (43)

Trbc

since P, Q and ¢ (1) are all positive.
Thus we see that the left hand 51de of (22) is always less than ~—, while the right

hand side of (22) is always at least m, showing that the modulus equation (22) is
never satisfied for r = 1. O



12

4.2 Bifurcation analysis for r > 1

We now consider the case r > 1. In the following, we divide the parameter space
into three regions according to the dependence of the equilibrium point (Meo, Aso) on
r. We define the nullcline where the derivative M4, (r) is identically zero, and the sub-
and supercline where this derivative is negative and positive, respectively. Within each
region, we determine the conditions for which there exists pure imaginary roots to the
characteristic equation (17). Finally, we show that all such imaginary roots correspond
to a loss of stability of the equilibrium point via a Hopf bifurcation.

4.2.1 Nullcline

Proposition 4 In the nullcline the function 1 (r) from Proposition 2 satisfies ¢(r) = 1
for allr > 1.

Proof From Proposition 2 we have that 1 (r) is the unique solution of S(3)) = 0 (see
eq. (30)). Computing the derivative of S(¢(r)) with respect to r we have

rd r d
(r+ 1 %y og) + (142P) 2 <0 (44)
Isolating % we obtain
r+1
v _ g og(y) (45)

dr —  (r+1)yr+1+2P°

From the definition of M (r) in (29a) we have that if M), (r) = 0, then 3'(r) = 0.
Since 9 # 0, we have from (45) that log(¢)) = 0, implying that ¢(r) =1 for all » > 1.
O

We characterize the nullcline of our parameter space in the following theorem.
Theorem 2 Forr > 1, M4, (r) = 0 if and only if Q = %_

Proof First assume that Q = % From Proposition 2, ¢(r) > 0 is the unique positive
solution of equation S(1) = 0, (see (30)). Plugging Q = % into S(¢) we obtain

()" T+ (14 2P)(r) — 2(1+ P) = 0.

It is immediately seen that ¥(r) = 1 is a solution of this equation. Then from equation
(29a) we see that Mo (1) = %, i.e. Moo (1) is a constant. Thus, M’ oo (1) = 0.

Now assume that M’so(r) = 0, i.e. we are on the nullcline. From Proposition 4 we
know that ¥(r) = 1, for all » > 1 in the nullcline, and from Proposition 2 we know
that ¥(r) is the unique root of S(¢») = 0. Substituting ¢(r) = 1 in S(¥) = 0 we obtain

1" 4 (142P) —4PQ = 0.

. : _ 14P
Isolating @, we obtain Q = S5 ]
In the following, we identify the family of values of  where bifurcations can occur
in the nullcline. Recall that there exists a sequence wy, £ = 1,2,... which satisfies the
argument equation stated in Proposition 1.
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Theorem 3 Let us assume QQ = % Then, for every ¢ = 1,2,..., the only values

of v that solve the argument equation (19a) and the modulus equation (19c) are the
exponents

T,
rpi= 2 g(we)2(1 + P). (46)
This implies that Hopf bifurcations can only occur at these values of r.

Proof We assume that P and @ satisfy the nullcline condition, Q = %, and con-
sequently ¢(r) = 1, for all » > 1 from Proposition 4. From the expression of b(r) in
Proposition 3 we obtain that

k r
M) =g ey

Recall that b(r) is the left hand side of the modulus equation (22). Evaluating the
modulus equation (22) at the roots wy of the argument equation (19a), we obtain

k T?ull
=t g(wy),
Trpe 2(1 + P) g( (/,)
and so ! satisfies (46). O

We have determined conditions for the existence of imaginary roots to the charac-
teristic equation in the nullcline. In the following sections we perform a similar analysis
for the subcline and the supercline.

4.2.2 Subcline

Recall that we define the subcline as the region of the parameter space for which
Ml (r) < 0.

Proposition 5 We are on the subcline, i.e. Mbo(r) < 0, if and only if Q > %ﬁ.
Proof This proof is analogous to the proof of Theorem 2.

IfQ > % then S(1) < 0 and so 1 < #(r). Since ¥ (r) > 1, equation (45) implies
that % < 0 and from the definition of Moo (r) in Proposition 2 we conclude that
Ml (r) < 0.

Conversely, suppose M. (r) < 0. Then from the definition of Mso(r) in Proposi-
tion 2 we have that % < 0. Equation (45) then implies that ¢(r) > 1, which then
means that S(1) < 0, which is equivalent to @ > %. O

Let us define the set of values rzub > 1 such that both the modulus equation and
the argument equation are satisfied in the subcline. Recall again that there exists a
sequence wy, £ = 1,2,... which satisfies the argument equation stated in Proposition 1.

Theorem 4 In the subcline, there exists a sequence of exponents T,f“b for which the
modulus equation (19¢) and the argument equation (19a) are satisfied simultaneously.
That is, there exists a unique 7“2"}) > 1 for every £ =1,2,... such that

b(ri"") = g(we). (47)
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Proof Since b(r) > 0 and from Proposition 2 we know that ¢(r) > 0, it follows from
equation (35) in Proposition 3 that

(14 2P)y(r)

1.
iPQ  °

0<

This provides a sharper estimate for the upper bound of 1:

APQ . 2P
0<¥<Gi2p =215 <

2Q.
The derivative of b(r) with respect to r is

V) = e | (1= Lt =2l (18)

From Proposition 5 we have that 1’ (1) < 0. Therefore from (48) we have that b'(r) > 0
for all » > 1 and thus b(r) will be strictly increasing for r > 1. Since ¥(r) is strictly
decreasing, we also have that the function 1 — %w(r) is strictly increasing. From

here we have that

min
r>1

1+2P ., 142P ~ap(1)?
(1_ 1PQ w(r)) =1-—po YW =155

where we used that v satisfies S()) = 0 (see (30)). Therefore

P(1)2 o Lt2P

0< 2P0 1P0

¥(r), (49)

for all » > 1. Multiplying the inequality (49) by r and ﬁ we obtain

r< T
Trbc 4PQ Trbc

ko(1)? k ( 1+42P

From this we see that lim,— o0 b(r) = 400, implying that b(r) may take on any value
larger than b(1). Since b(r) is strictly increasing, there exists a unique 75% > 1 for
every £ = 1,2, ... such that equation (47) is satisfied. m|

4.2.8 Supercline

Recall that we define the supercline as the region of the parameter space for which
Mo (r) > 0.

Proposition 6 We are on the supercline, i.e. Mb,(r) > 0, if and only if Q < %.

Proof This proof is analogous to the proof of Theorem 2 and Proposition 5.

IfQ < % then S(1) > 0 and so 1 > ¥(r). Since ¥ (r) < 1, equation (45) implies
that % > 0 and from the definition of Mso(r) in Proposition 2 we conclude that
Ml (r) > 0.

Conversely, suppose M., (r) > 0. Then from the definition of Mo (r) in Proposi-
tion 2 we have that % > 0. Equation (45) then implies that ¢(r) < 1, which then
means that S(1) > 0, which is equivalent to @ < %. ]
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In the following proposition, we divide the supercline into two subregions with different
behaviors.

Proposition 7 Let us assume we are in the supercline region, that is, Q < % We
set B = % Then,

(a) If B <1 then limy—so0 b(1) = +00.

(b) If B > 1 then limy 00 b(r) = 0.

Proof (a) From Proposition 3 we have that

0 <b(r) = (1= Bi(r)) (50)

rbc

and from Proposition 6 we have that ¢(r) < 1. This immediately implies that

1"(1 - 5)7

so for 8 < 1, this implies that limy 00 b (1) = +00.

In the case of 8 = 1, the above argument is insufficient to show that limy 00 b (1) =
~+00, which, by (50), is equivalent to lim; sco7 (1 — % (r)) = +o0o0. Suppose on the
contrary that ¢ := liminf, 00 7 (1 — 1 (r)) < co. Then there exists a sequence {r; }]Oil
such that lim; . r; = co and r; (1 — (rj)) < 2c¢ for all j, i.e.,

¥ () >1- %

T

for all j. Then, using the fact that 1+ 2P = 4P(Q because 8 = 1, we have

ri+1
liminf S (¢ (r;)) > lim inf {(1 - 2—6) +(1+42P) (1 — ?) —4PQ] —e 2050,

j—o0 j—ro0o Tj j

But this implies that S (1,[) T‘j)) > 0 for large enough j, which is a contradiction, since
1 is a Toot of S, i.e. S (¢ (r;)) = 0 for all j.

(b) We have
k k r+1
b) = (1 = B0() = = AT

From the definition of function S(z)) in equation (30) in Proposition 2 we have that
S(%) > 0, and for every r > 1, 0 < ¢(r) < % Consequently

)

k r l)T‘-‘-l
4TTbCPQ ﬂ

and so limy— 0 b(r) = 0. [}

0<b(r)<

Let us remark that 1+2P < 1+P . In addition, if Q < 1+P then 5 <1 if and only
if % << %. On the other hand, § > 1 if and only 1f Q< %.

Theorem 5 Assume 1—I+2£ <Q< S5 1+P (i.e. B<1). Foreach{=1,2,..., there exists
a unique rl‘?up > 1 satisfying the argument equation (19a) and the modulus equation
(19¢) simultaneously

b(ry ") = g(we)- (51)
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Proof From Proposition 7(a), since 8 < 1, limy o0 b(r) = co. Therefore b(r) attains

any real value larger that b(1). m
Theoriilg 6 Folr Q< 11'12313 (i.e. B >_1) there exist at most a ﬁn_z'te _number of expo-
nentsr, © associated to the corresponding we > 0, £ =1,2,..., satisfying the argument
equation (19a) and modulus equation (19c) simultaneously

b(ry"") = g(we). (52)
Proof From Proposition 7(b), we have limy 00 b(r) = 0 since 8 > 1. Therefore the
function b (r) attains its maximum for some 7 € [1, +oo[. O

We have identified all possible pure imaginary roots A = iw to the characteristic
equation. To ensure that the equilibrium loses stability through a Hopf bifurcation at
these points, the roots must cross the imaginary axis. In the following section, we show
that all imaginary roots in our system define Hopf points.

4.2.4 Ezistence of Hopf points

Recap: In Section 3, we defined three conditions for the existence of purely imaginary
roots of the characteristic equation (17). We have shown that there is an increasing
sequence of frequencies wy > 0,¢ = 1,2,... for which the argument equation (19a) is
satisfied and the sign condition (19b) holds. These frequencies depend only on T} > 0,
Trpe = 2222 > 0, and k > 0.

Fulfilling the third condition, the modulus equation (19c), is more involved. To
facilitate the analysis we introduced three dimensionless parameters: P,@Q and r > 1.

For r = 1, we showed that the modulus equation is never satisfied and therefore
there exist no purely imaginary roots to the characteristic equation. For » > 1, we
define three regions with distinct properties on the first quadrant of the (P, @) plane,
namely the nullcline, subcline and supercline.

The nullcline consists of the set of points (P, Q) belonging to the positive branch
of Q = % with asymptotes Q = % and P = 0. In the nullcline, we establish explicit
formulas for the exponents 7, > 1 for which the modulus equation is satisfied and
therefore A = iw, are purely imaginary roots of the characteristic equation.

The subcline consists of the set of points (P, Q) such that Q > %. We show the
existence of a unique sequence of values ry, > 1 such that A = dw, is a root of the
characteristic equation.

The supercline consists of the set of points (P, Q) such that Q < %. We con-
sider two subregions in this region. For % <Q< %, we obtain a similar result
as the one for the subcline for the existence of a unique sequence of values rp > 1.
For @ < %PE» we prove that there exist at most a finite number of solutions of the
characteristic equation.

In the following, we show that all purely imaginary roots A = iw, define Hopf
bifurcations. This implies that the equilibrium point (Mo, Aco) changes stability from
being spirally stable to being repellent.

Theorem 7 A Hopf bifurcation occurs for each of the pure imaginary roots of the
characteristic equation, that is, there exists a small neighborhood of a critical value
r = 1y > 1 such that when |r —ry| < €, € < 1, the real part of the root of the
characteristic equation changes sign, i.e., the root crosses the imaginary axis.
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Proof We consider here only the case of the nullcline (where we have explicit expressions
for vy, > 0). This analysis can be extended easily to the other regions.
Recall the characteristic equation

0=\ +k\— RE' (Aco) F' (M) [G—ATP _ e—A(Tp+T,.bc>]

and let A =9 +iw with n, w € R.
We define
L:= —RE' (Axo) F' (M)

and consider the case of the nullcline, when

k r
= [ >
L=L(r) T 30 £ P)’ r>1

Equating real and imaginary parts we have the equations

n? —w?+kn+ Le "7 (cos0 — e e cos @) = 0 (53)
2n+ k)w+ Le " (eﬂlTrbc sing —sinf) = 0 (54)
where 0 = wTp and ¢ = w(Tp + Trbe)-
From
,_ o (OQFON . 0—0
X = costcos¢>—251n( 2 )sm( 2 )
e o+0N . (p—0
Y :=sin¢ —sinf = 2cos (T) sin (T),

we have that

cosf — e " cos b = cos O — cos ¢ + cos p(1 — e TTrve)

=X 4 cosp(1l — efnT’b‘:)
and

e Tve sin¢g —sinf = (e_nTrbc —1)sin¢ + sin¢ — sin @

=Y -(1- efnTrbC) sin ¢.

Thus equations (53) and (54) can be rewritten as

T ik . (55)
X + cos (1 — e~ Tine)
L= (k + 2y (56)

Y — (1 — e nTwc)sing’

Since w? > 0, there exists an ¢ > 0 such that || < e implies w? — % — kn > 0. Let
us consider equation (55) for || < ¢ and w € Jwp — v, wy + ], for small v > 0.

For n = 0 and w = wy the following equation is satisfied
k Ty wy

L A N
Trbc2(1+P) Xo

L(ry) =

where i
Xo = X(we) = 2sin(we(Tp + 5Tibe)) sin( Trve) > 0
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is the sign condition (equation (19b)).
We consider the right-hand side of equation (55) for w = wy and || < € as a
function of n:
2

2
—n? —kny
h(n) = etr o | 57
() =e Xo + cos ¢p(1 — e~ Trbe) (57)

where ¢y = we(Tp + Trne)-
k

Since L(r) = 77— 2(1113) we can write r as a function of n
21+ P
r=rim) = 2 g ).

We show that the behavior of r with respect to n for || < e depends on the sign of
1'(0). Differentiating equation (57) and computing h’(0) we can see that if A’(0) < 0
(and h’(0) > 0 respectively) there exists an eg < e such that h'(n) < 0 (and h'(n) > 0
respectively) for |n| < eg since h(n) is continuous in a neighborhood of 0. For singular
values h’(0) might vanish depending on the values of wy, Tp and Typ..

Thus r(n) is strictly increasing for || < ¢ if h'(0) > 0 and strictly decreasing if
h'(0) < 0. Therefore n changes sign when perturbing r around r = r; and so that in
both cases the bifurcation at n = 0 results in a change of stability of the equilibrium.
O

5 Examples of Hopf bifurcations and simulations

In this section we provide examples of Hopf bifurcations. We use parameters (shown
in Table 2) which reproduce results within physiological ranges of hemoglobin and
erythropoietin [9,10,24,26]. As the dynamics that results from supercritical Hopf bi-
furcations is oscillatory in nature, the goal of this approach is to study how the model
can reproduce behavior characteristic to that of a dynamical hematological disease.

As hematological pathology is often associated with a change in the turnover rate of
red blood cells, we consider examples varying « in the interval [1, 5], a range larger by a
factor of two that would be expected for healthy individuals. An example could be the
oscillatory dynamics in levels of erythropoietin and hemoglobin often seen in patients
with renal failure who are treated with erythropoiesis-stimulating agents (ESAs), which
act on the longevity of red blood cells [11]. We then choose three different values of «
from which we can calculate T}, using expression (9). Together with the values of T}
and k we use a bisection method to solve equation (21) for [ = 1 and obtain w.

Each « places us in a different region of the parameter space. In order to determine
the region represented by each «, we compare P and @, where a value of @ equal
to, greater than, or less than % places us in the nullcline, subcline, or supercline,
respectively. We compute the values of these parameters from expressions (25) and (26)
using the definitions of D (see equation (27)) and G (see equation (28)). We calculate
critical values of r where a Hopf bifurcation arises in each of the regions. We compute
these critical values of r from expressions (46), (47), or (51) from Theorems 3, 4, or 5,
respectively, depending on whether we are in the nullcline, subcline, or supercline.

In Table 3, we show results obtained for values of « corresponding to the nullcline,
subcline, and supercline, respectively. We observe that for the given parameter values
in Table 2 and any value of a, P = 0.34 remains constant and so % = 1.97058
is constant as well. On the other hand, as @ depends on «, it varies in the interval



19

Table 2 Typical values of the parameters of the model

Vmax 120 days

k 2 day~!

R 3.0-10" g
Emax | 6-10101/(1- day)
Eso 50U/1
Frax 68U/(1- day)
Fso 15g/1

T 12 days

Table 3 Results for three regions of the parameter space

a | P Q Region w1 1 Moo Ao

3.6537 0.34 1.97058 nullcline 0.10862  4.89839 15 17
3.1 0.34  2.32258 subcline 0.09862  4.63712 15.88188  14.76133
5 0.34 1.44 supercline  0.12823  6.79943 13.51835 22.7724

0| oo oo

0| o0 oo

ool oo oo

oz 2 : oo : ooz

oo a0 oo

ool a0 o0

ol a0 oo

ool - : a0 : oo

Fig. 1 Values of n, the real part of the complex root of the characteristic equation, as a function
of r in an interval containing the critical value r1. From left to right: nullcline, subcline and
supercline cases.

[1.4,7.2] for the given interval of «, therefore placing us in different regions of the
parameter space. Each pair (w1, r1) satisfies the argument and modulus equations,
(19a) and (19c), respectively, for purely imaginary roots of the characteristic equation.

As stated in Theorem 7, we expect a change of behavior in the evolution of the sys-
tem’s dynamics when varying the value of parameter r around the critical value 1. We
study this behavior numerically by looking for complex solutions to the characteristic
equation, A = n + iw1, fixing the value of wy as in Table 3. We compute the solutions
for a range of r values around the corresponding critical values r; in each region in
Table 3.

Figure 1 displays the values of 7, the real part of the rightmost root of the charac-
teristic equation, as a function of r. The pictures, from left to right, show how 7 varies
for the nullcline case for r € [3.5,6.5] (r1 = 4.89839), the subcline case for r € [3,6.5]
(r1 = 4.63712), and the supercline case for r € [4.5,9.5] (r; = 6.79943).

From Figure 1, we observe in each case that for values of r < r1 the characteristic
equation is only satisfied for negative n values, implying that the equilibrium point is
spirally stable. Since the roots of the characteristic equation never cross the imaginary
axis for r = 1, this implies that all eigenvalues of system (10) will have negative real
part for any choice of parameter values. Thus, the steady state (12) is asymptotically
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Fig. 2 Evolution of hemoglobin and erythropoietin until time ¢ = 1000 for the nullcline case.
Top: convergence to the equilibrium point for r = 4.2 < 4.89839 = r;. Bottom: convergence
to a limit cycle for r = 5.2 > 4.89839 = r;.

wy

[l
A

Fig. 3 Evolution of hemoglobin and erythropoietin until time ¢ = 1000 for the subcline case.
Top: convergence to the equilibrium point for r = 4 < 4.63712 = r1. Bottom: convergence to
a limit cycle for r =5 > 4.63712 = ry.

stable for any choice of parameters when r = 1 [17]. For r > rj, the characteristic
equation is only satisfied for positive 7 values, implying that the equilibrium point
loses stability, repelling all trajectories to a stable limit cycle. Since the slope of 7
as a function of r in each case is positive at the critical r1, we have that the Hopf
bifurcations are supercritical [8].

Next, we illustrate this behavior by simulating the long term dynamics of the model
for the presented values. We examine the evolution of the levels of hemoglobin M (t)
and erythropoietin A(t) in the three regions until time ¢ = 1000 days for the same
initial values of M(t) and A(t).
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Fig. 4 Evolution of hemoglobin and erythropoietin until time ¢ = 1000 for the supercline case.
Top: convergence to the equilibrium point for r = 6 < 6.79943 = r1. Bottom: convergence to
a limit cycle for r =7 > 6.79943 = ry.

We display three figures, one for each region of the parameter space. In each,
we present the long term dynamics of the model for some » < r1 and r > r;. The
top of Figure 2 displays results in the nullcline for r = 4.2, showing the trajectories
converging to the stable equilibrium point. The bottom of Figure 2 shows periodic
behavior resulting from a Hopf bifurcation in the nullcline for » = 5.2. Figure 3 displays
similar behavior in the subcline. The top picture shows a stable, attracting equilibrium
point for 7 = 4 while the bottom picture shows trajectories which converge to a stable
limit cycle with positive amplitude after the emergence of a Hopf bifurcation for r = 5.
Similarly, in the supercline case in Figure 4, we observe the stable equilibrium point
for r = 6 attracting all trajectories in the top picture and the formation of a stable
limit cycle resulting from a Hopf bifurcation for r = 7.

We have given examples showing that for £ = 1, w; > 0 gives a root of the argu-
ment equation satisfying the sign condition, and we can compute a unique exponent
r1 > 1 at which a supercritical Hopf bifurcation occurs. The real part of the root of
the characteristic equation is positive for r > rq, and therefore the equilibrium point
becomes unstable and a stable limit cycle emerges, its amplitude increasing with r.
All trajectories starting near the equilibrium point are attracted to the limit cycle.
In all three cases, for r < 71 the equilibrium point is spirally stable and attracts all
trajectories.

6 Conclusions

Periodic diseases can be simulated by systems in which the equilibrium point loses
stability through a Hopf bifurcation. In a model of erythropoiesis, this would result
in oscillations in erythropoietin and hemoglobin levels. Clinically, such behavior is ob-
served in patients who use erythropoiesis-stimulating agents (ESAs) after renal failure.

The goal of this paper was to provide a clearer understanding of the dynamics of
an age-structured model of erythropoiesis through a theoretical bifurcation analysis.
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We have reduced the model presented in Section 2 to a system of nonlinear ordinary
differential equations with two constant delays and determined the conditions under
which the unique equilibrium point can lose stability. We have performed a complete
bifurcation analysis and derived analytical expressions which allow the identification of
all Hopf bifurcations that occur over the parameter space. We have presented examples
and shown through a numerical analysis of the roots of the characteristic equation that
the Hopf bifurcations in our system are supercritical, implying long-term oscillations
in hemoglobin and erythropoietin levels. Numerical simulations are in agreement with
our analysis, showing the existence of oscillatory dynamics in both erythropoietin and
hemoglobin levels for long time computations.
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