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Abstract. We consider the class of polynomial differential equations ẋ =
λx + P n(x, y), ẏ = λy + Qn(x, y), in R2 where P n(x, y) and Qn(x, y) are ho-

mogeneous polynomials of degree n > 1 and λ ̸= 0, i.e. the class of polynomial
differential systems with homogeneous nonlinearities with a star node at the
origin.

We prove that these systems are Darboux integrable. Moreover, for these
systems we study the existence and non–existence of limit cycles surrounding
the equilibrium point located at the origin.

1. Introduction and statement of the main results

By definition a two dimensional polynomial differential system in R2 is a differ-
ential system of the form

(1)
dx

dt
= ẋ = P (x, y),

dy

dt
= ẏ = Q(x, y),

where the dependent variables x and y, and the independent one (the time) t are
real, and P (x, y) and Q(x, y) are polynomials in the variables x and y with real
coefficients. We denote by m = max{deg P, deg Q} the degree of the polynomial
system.

Let U be a non–empty open and dense subset of R2. We say that a non–locally
constant C1 function H : U → R is a first integral of the polynomial differential
system (1) in U if H is constant on the trajectories of the polynomial differential
system (1) contained in U , i.e. if

dH

dt
=

∂H

∂x
P +

∂H

∂y
Q = 0,

in the points of U .

It is well known that for differential systems defined on the plane R2 the existence
of a first integral determines their phase portrait. Thus for polynomial differential
systems a natural question arises: Given a polynomial differential system in R2,
how to recognize if it has a first integral?

The easiest planar differential systems having a first integral are the Hamiltonian
ones. The integrable planar differential systems which are not Hamiltonian are, in
general, very difficult to detect. For non–Hamiltonian differential systems many
different methods have been used for studying the existence of a first integral.
These methods are based on: Noether symmetries [3], the Darbouxian theory of
integrability [9], the Lie symmetries [27], the Painlevé analysis [2], the use of Lax
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pairs [19], the direct method [14] and [17], the linear compatibility analysis method
[30], the Carlemann embedding procedure [6] and [1], the quasimonomial formalism
[2], ... For a general introduction to the integrability of planar differential systems
see the book of Goriely [16].

The problem of the integrability of the planar polynomial differential systems
is very classical, but there is another classical problem related with the planar
polynomial differential systems, the second part of the 16–th Hilbert problem. This
problem essentially consists in finding a uniform upper bound for the maximum
number of limit cycles that a planar polynomial differential systems of a given
degree can exhibit, see for more details the surveys [18] and [22].

Roughly speaking an elementary function is a function which is composition
of polynomials, exponentials, logarithmic and algebraic functions. Again roughly
speaking a Liouvillian function is a function that can be expressed by quadratures of
elementary functions. Note that the class of all elementary functions is a particular
subclass of the class of all Liouvillian functions. A polynomial differential system is
Darboux integrable if it has a first integral which is a Liouvillian function. For precise
definitions of elementary and Liouvillian functions, and Darboux integrability see
the works of Prelle and Singer [28] and of Singer [29], respectively.

Let F = F (x, y) be a real polynomial not identically zero. The algebraic curve
F (x, y) = 0 is an invariant algebraic curve of the polynomial differential system (1)
if for some polynomial K = K(x, y) we have

(2) P
∂F

∂x
+ Q

∂F

∂y
= KF.

On the points of the algebraic curve F = 0 the gradient (∂F/∂x, ∂F/∂y) of F is
orthogonal to the vector field (P, Q) (see (2)). Hence at every point of F = 0 the
vector field (P,Q) is tangent to the curve F = 0, so the curve F = 0 is formed by
trajectories of the vector field (P, Q). This justifies the name “invariant algebraic
curve” because it is invariant under the flow of system (1). There is a strong relation
between the invariant algebraic curves and the Darboux theory of integrability, see
for instance the Chapter 8 of [10].

We consider the polynomial differential systems of the form

(3) ẋ = λx + Pn(x, y), ẏ = λy + Qn(x, y),

defined in R2 where λ ̸= 0, n > 1, and Pn(x, y) and Qn(x, y) are homogeneous
polynomials of degree n.

Note that the polynomial differential systems (3) have a star node at the origin
(i.e. a node with equal eigenvalues), and that those systems have homogeneous
nonlinearities. These systems for n = 2 have been completely studied in the book
of Ye Yanqian et al. [31], where they proved that they are Darboux integrable
and have no periodic solutions, and consequently no limit cycles. Recall that a
limit cycle of a system (3) is an isolated periodic solution in the set of all periodic
solutions of system (3).

Our first result shows that the polynomial differential systems (3) for all n > 1
always are Darboux integrable, and we provide an explicit Liouvillian first integral
for them and an invariant algebraic curve.

Theorem 1. Consider a polynomial differential system with homogeneous nonlin-
earities (3) with λ ̸= 0 and n > 1.
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(a) The curve xQn(x, y) − yPn(x, y) = 0 is an invariant algebraic curve of
system (3).

(b) System (3) is Darboux integrable with the Liouvillian first integral

H = (x2 + y2)
n−1

2 e(1−n)
∫ arctan

y
x

f(θ)
g(θ)

dθ + (1 − n)λ

∫ arctan y
x e(1−n)

∫ θ f(µ)
g(µ)

dµ

g(θ)
dθ,

where

f(θ) = cos θPn(cos θ, sin θ) + sin θQn(cos θ, sin θ),

g(θ) = cos θQn(cos θ, sin θ) − sin θPn(cos θ, sin θ).

Theorem 1 is proved in section 2.

Our second result is about the periodic solutions of the differential systems (3)
surrounding the origin.

Theorem 2. Consider a polynomial differential system with homogeneous nonlin-
earities (3) with λ ̸= 0 and n > 1.

(a) If n is even, then system (3) has no periodic solutions surrounding the
origin.

(b) If n is odd and g(θ) vanishes for some θ ∈ [0, 2π), then system (3) has no
periodic solutions surrounding the origin.

(c) If n is odd, g(θ) ̸= 0 for all θ ∈ [0, 2π), the origin is the unique equilibrium
point of system (3), and

λ

g(θ)

∫ 2π

0

f(θ)

g(θ)
dθ < 0,

then system (3) has at least one limit cycle surrounding the origin.

(d) System (3) has at most one limit cycle surrounding the origin.

(e) The system

ẋ = −x + x3 − x2y + xy2 − y3, ẏ = −y + x3 + x2y + xy2 + y3,

satisfies all the assumptions of statement (c), and it has a unique cycle
x2 + y2 = 1. Moreover, this system has the first integral H = (x2 + y2 −
1)e−2 arctan(y/x).

Theorem 2 is proved in section 2.
On the other hand, the polynomial differential systems

ẋ = −y + Pn(x, y), ẏ = x + Qn(x, y),

defined in R2 where n > 1 and Pn(x, y) and Qn(x, y) are homogeneous polynomials
of degree n with a linear center at the origin (instead of a star node) have been
intensively studied for their limit cycles, centers and integrability, see for instance
[4, 5, 7, 8, 12, 13, 15, 20, 21, 24, 26]. Other work close to the one here studied is
the paper [11] where the authors studied the dynamics of the systems of the form

ẋ = Pn(x, y) + xRm(x, y), ẏ = Qn(x, y) + yRm(x, y),

where Pn, Qn and Rm are homogeneous polynomials of degrees n, n and m ≥ n,
respectively.
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2. Proof of Theorems 1 and 2

In what follows Fx denotes the partial derivative of the function F = F (x, y)
with respect to the variable x, and similar for Fy.

In the proofs of statements (a) and (b) of Theorem 1 we shall use the following
notations F = xQn(x, y) − yPn(x, y), P (x, y) = λx + Pn(x, y) and Q(x, y) =
λy + Qn(x, y).

Proof of statement (a) of Theorem 1. We must prove that F = 0 is an invariant
algebraic curve of the differential system (3). Indeed, we have

∂F

∂x
P +

∂F

∂y
Q =

∂F

∂x
λx +

∂F

∂y
λy +

∂F

∂x
Pn +

∂F

∂y
Qn.

Then, taking into account that

xPn
x + yPn

y = nPn and xQn
x + yQn

y = nQn

due to the Euler’s theorem for homogeneous functions, we obtain

∂F

∂x
λx +

∂F

∂y
λy = (Qn + xQn

x − yPn
x )λx + (xQn

y − Pn − yPn
y )λy

= λ
(
x(Qn + xQn

x + yQn
y ) − y(Pn + xPn

x + yPy)
)

= (n + 1)λ(xQn − yPn) = (n + 1)λF.

On the other hand, substituting

xQn
x = nQn − yQn

y and yPn
y = nPn − xPn

x ,

in what follows, we get

∂F

∂x
Pn +

∂F

∂y
Qn = (Qn + xQn

x − yPn
x )Pn + (xQn

y − Pn − yPn
y )Qn

=
(
xPnQn

x − yPnPn
x + xQnQn

y − yQnPn
y

)

=
(

− yPnQn
y − yPnPn

x + xQnQn
y + xQnPn

x

)

= (Pn
x + Qn

y )(xQn − yPn) = (Pn
x + Qn

y )F.

In short, we have

∂F

∂x
P +

∂F

∂y
Q =

(
(n + 1)λ + Pn

x + Qn
y

)
F.

Therefore, F = 0 is an invariant algebraic curve of the polynomial differential
system (3). Hence, statement (a) is proved. �
Proof of statement (b) of Theorem 1. In polar coordinates (r, θ), defined by x =
r cos θ and y = r sin θ, system (3) becomes

(4) ṙ = λr + f(θ)rn, θ̇ = g(θ)rn−1,

being f(θ) and g(θ) the functions defined in statement (b) of Theorem 1. Note that
f(θ) and g(θ) are homogeneous trigonometric polynomials of degree n + 1 in the
variables cos θ and sin θ.

The differential system (4) where g(θ) ̸= 0 can be written as the equivalent the
differential equation

(5)
dr

dθ
=

λ

g(θ)

1

rn−2
+

f(θ)

g(θ)
r.
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Now we change the variable r by the new variable ρ = rn−1, and the differential
equation (5) becomes the linear differential equation

(6)
dρ

dθ
= (n − 1)

λ

g(θ)
+ (n − 1)

f(θ)

g(θ)
ρ.

Solving it we find the first integral

H = ρe(1−n)
∫ f(θ)

g(θ)
dθ + (1 − n)λ

∫
e(1−n)

∫ θ f(s)
g(s)

ds

g(θ)
dθ.

Going back through the changes of variables we obtain the first integral of the
statement (b) of Theorem 1. Since this first integral is a function that can be
expressed by quadratures of elementary functions, it is a Liouvillian function, and
consequently system (4) is Darboux integrable. �

Proof of statement (a) of Theorem 2. By statement (a) of Theorem 1 we know that
F = xQn(x, y) − yPn(x, y) = 0 is an invariant algebraic curve of system (3). Since
F is a homogeneous polynomial of degree n + 1 odd, because for assumptions n is
even, we have that F has at least a linear factor of the form ax + by ̸≡ 0.

It is well known (see for instance Proposition 8.4 of [10]) that if F = 0 is an
invariant algebraic curve, then any factor of F is also an invariant algebraic curve.
So the straight line ax + by = 0 through the origin of coordinates is invariant,
i.e. formed by solutions of system (3). Therefore, it cannot be periodic solutions
surrounding the origin. This completes the proof of statement (a). �

Proof of statement (b) of Theorem 2. If θ∗ ∈ [0, 2π) is a zero of g(θ) = 0, then
sin θ x− cos θ y is a factor of xQn(x, y)− yPn(x, y), and consequently by statement
(a) of Theorem 1 the straight line sin θ x − cos θ y = 0 is invariant. Therefore,
there are no periodic solutions surrounding the origin. Hence, statement (b) is
proved. �

Proof of statement (c) of Theorem 2. Since there are no zeros θ∗ ∈ [0, 2π) of g(θ) =
0, there are no real linear factors of the homogeneous polynomial xQn(x, y) −
yPn(x, y). Therefore, the Poincaré compactified vector field p(X ) of X = (λx +
Pn(x, y), λy+Qn(x, y)) has a periodic orbit at infinity, see for details the Appendix.

Now we shall use the notation and the expressions of the proof of statement (b)
of Theorem 1. System (3) in coordinates (ρ, θ) can be written as the differential
equation (6). From (6) it follows that the stability of the origin ρ = 0 is controlled
by the dominant term in the right hand part of (6) when ρ > 0 is sufficiently small,
i.e. by the sign of λ/g(θ), recall that either g(θ) > 0, or g(θ) < 0, for all θ ∈ [0, 2π).
So, the origin of the differential equation (6) is stable if λ/g(θ) < 0 and unstable if
λ/g(θ) > 0.

Note that for arriving to the differential equation (6) from the system (3) we
have changed the independent variable t by θ doing dθ = ρg(θ)dt, so if g(θ) < 0 we
have changed the orientation of all the orbits, and in particular the stability of the
origin and the stability of the periodic orbit at infinity.

The infinity of system (6) corresponds to ρ = ∞. Doing the change of variables
R = 1/ρ the infinity pass to the origin of the differential equation

(7)
dR

dθ
= (1 − n)

Rf(θ)

g(θ)
+ (1 − n)

λR2

g(θ)
.
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We can think this differential equation as the differential system

(8)

dR

dθ
= (1 − n)

Rf(θ)

g(θ)
+ (1 − n)

λR2

g(θ)
= fR,

dθ

dθ
= 1 = fθ,

on the cylinder (R, θ) ∈ R × S1 restricted to R ≥ 0. The periodic orbit of the
infinity corresponds now to the periodic orbit R = 0 on the cylinder. The kind
of stability of the periodic orbit R = 0 is determined by the sign of the integral
I between 0 and 2π of the divergence of the differential system (8) evaluated at
R = 0 if this sign is different from zero, if I < 0 the periodic orbit is stable, and if
I > 0 it is unstable, for more details see for instance Theorem 1.23 of [10]. In polar
coordinates (R, θ) the expression of the divergence of system (8) is

1

R

∂(RfR)

∂R
+

1

R

∂fθ

∂θ
.

Consequently

I = sign

(
2

∫ 2π

0

(1 − n)
f(θ)

g(θ)
dθ

)
= sign

(
−

∫ 2π

0

f(θ)

g(θ)
dθ

)
,

The stability of the origin is given by the sign of (n − 1)λ/g(θ) (see (6)), i.e. if
this sign is negative the origin is stable, and if it is positive the origin is unstable.
In short, if

sign

(
λ

g(θ)

∫ 2π

0

f(θ)

g(θ)
dθ

)
< 0,

then the origin of system (3) and its periodic orbit at infinity have the same sta-
bility. Since by assumption the unique equilibrium point is the origin, then by the
Poincaré–Bendixson theorem (see for instance Theorem 1.25 and Corollary 1.30 of
[10]) it follows that there is a periodic orbit γ surrounding the origin, recall that any
periodic orbit of a planar differential system must surround at least one equilibrium
point (see for instance Theorem 1.31 of [10]).

Now we shall prove that the periodic orbit γ is a limit cycle. We denote by ρ∗(θ)
the periodic solution of system (8) corresponding to the periodic orbit γ, and we
denote by ρ(θ, ρ0) the solution of system (8) such that ρ(0, ρ0) = ρ0. Since dθ/dθ =
1, it follows that the Poincaré map Π : (0, ∞) → (0, ∞) given by Π(ρ0) = ρ(2π, ρ0)
is well defined. Due to the fact that the differential equation (8) is analytic, the
map Π is analytic. Since ρ∗(θ) is a periodic solution ρ∗(0) is a fixed point of the
map Π. If this fixed point is not isolated in the set of all fixed points of the map Π,
we have that Π is the identity because Π is analytic, but Π cannot be the identity
because the origin is a node, otherwise it will be a center. Hence, the fixed point
ρ∗(0) of the map Π is isolated, and consequently the periodic orbit γ is a limit
cycle. This completes the proof of statement (c). �

Proof of statement (d) of Theorem 2. Our polynomial differential system (3) when
it can have periodic orbits surrounding the origin it can be written as the Riccati
differential equation (7), see the proof of the statement (c) of Theorem 2. It is
well known that a Riccati differential equation either has a continuum of periodic
orbits, or it has at most two periodic orbits, see for instance [23, 25]. Note that our
Riccati equation (7) already has a periodic the orbit R = 0, which corresponds to
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the infinity. So it has at most one periodic orbit without taking into account the
one at infinity.

In short system (3) has a continuum of periodic orbits or at most one periodic
orbit surrounding the origin, but since it has a node at the origin it cannot have a
continuum of periodic orbits surrounding it. Hence the statement (d) is proved. �

Proof of statement (e) of Theorem 2. For the differential system of the statement
(d) we have n = 3, λ = −1, f(θ) = g(θ) = 1, and consequently

λ

g(θ)

∫ 2π

0

f(θ)

g(θ)
dθ = −2π < 0.

Of course, the origin is an equilibrium point for that system. Since the system in
polar coordinates becomes

ṙ = r(r2 − 1), θ̇ = r2.

It is clear that the unique equilibrium point of the system is the origin. Note that
from the system in polar coordinates it follows that the limit cycle is r = 1. From
statement (b) of Theorem 1 we get immediately the first integral H described in
the statement (d). This completes the proof of statement (d). �

Appendix: The Poincaré compactification

Let X = (P, Q) be any planar vector field of degree n. The Poincaré compactified
vector field p(X ) corresponding to X is an analytic vector field induced on S2 as
follows. Let S2 = {y = (y1, y2, y3) ∈ R3 : y2

1 + y2
2 + y2

3 = 1} (the Poincaré
sphere) and TyS2 be the tangent space to S2 at point y. Consider the central
projection f : T(0,0,1)S2 → S2. This map defines two copies of X , one in the
northern hemisphere and the other in the southern hemisphere. Denote by X ′ the
vector field Df ◦ X defined on S2 except on its equator S1 = {y ∈ S2 : y3 = 0}.
Clearly S1 is identified to the infinity of R2. In order to extend X ′ to a vector field
on S2 (including S1) it is necessary that X satisfies suitable conditions. In the case
that X is polynomial p(X ) is the only analytic extension of yn−1

3 X ′ to S2. On S2\S1

there are two symmetric copies of X , and knowing the behavior of p(X ) around
S1, we know the behavior of X at infinity. The projection of the closed northern
hemisphere of S2 on y3 = 0 under (y1, y2, y3) 7−→ (y1, y2) is called the Poincaré
disc, and it is denoted by D2. The Poincaré compactification has the property that
S1 (the infinity of X ) is invariant under the flow of p(X ).

We denote by Pn and Qn the homogeneous part of degree n of the polynomials
P and Q which define the vector field X of degree n. It is known that the real linear
factors of xQn(x, y) − yPn(x, y) provide the equilibrium points of the compactified
vector field p(X ) at infinity, see for more details Chapter 5 of [10]. Hence, since
the infinity S1 is invariant, if xQn(x, y) − yPn(x, y) has no real factors, then the
infinity is a periodic orbit.
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3 Département de Mathématiques, Université de Bordj Bou Arréridj, Bordj Bou
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