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that for arbitrary α ∈ R+ = {a ∈ R, a > 0},

P (αs1x, αs2y) = αs1−1+dP (x, y), Q(αs1x, αs2y) = αs2−1+dQ(x, y), (2)

We call s1 and s2 the weight exponents of system (1), and d the weight degree
with respect to the weight exponents s1 and s2. In the particular case that
s1 = s2 = 1, then system (1) is the classical homogeneous polynomial differential
system of degree d.

Suppose that system (1) is quasi-homogeneous and with weight exponents s1
and s2 and with weight degree d. In what follows we denote by w = (s1, s2, d)
the weight vector formed with the weight exponents and the weight degree of
the system. We say that weight vector wm = (s∗1, s

∗
2, d

∗) is a minimal weight
vector of the polynomial differential system (1) if any other weight vector w =
(s1, s2, d) of system (1) verifies s∗1 ≤ s1, s

∗
2 ≤ s2 and d∗ ≤ d.

The homogeneous polynomial differential systems has been studied by sev-
eral authors. Thus, the quadratic homogeneous ones by [12, 18, 24, 25, 26, 27,
29]; the cubic homogeneous ones by [9]; the homogeneous systems of arbitrary
degree by [7, 9, 10, 19], and others. In these previous papers is described an
algorithm for studying the phase portraits of homogeneous polynomial vector
fields for all degree, the classification of all phase portraits of homogeneous
polynomial vector fields of degree 2 and 3, the algebraic classifications of homo-
geneous polynomial vector fields and the characterization of structurally stable
homogeneous polynomial vector fields.

The quasi–homogeneous (and in general non–homogeneous) polynomial dif-
ferential systems have been studied from many different points of view, mainly
for their integrability [3, 4, 14, 15, 16, 17, 22], for their rational integrability
[5, 30, 31, 32], for their polynomial integrability [8, 23, 28], for their centers
[1, 2, 20], for their normal forms [6], for their limit cycles [21], ... But up to
now there was not an algorithm for constructing all the quasi–homogeneous
polynomial differential systems of a given degree.

In section 2 we study the basic properties of the quasi–homogeneous poly-
nomial differential systems with weight vector (s1, s2, d). These properties will
be used in section 3 for providing an algorithm which allows to compute all the
quasi–homogeneous polynomial differential systems of a given degree. In par-
ticular, using this algorithm we compute all the quasi–homogeneous polynomial
differential systems of degree 2 and 3. This algorithm is our main result.

In section 4 first we recall that all the quasi–homogeneous polynomial dif-
ferential systems are Liouvillian integrable. After we show the existence of an
easy inverse integrable factor, which later on is used for computing the explicit
Liouvillian first integrals for all the quasi–homogeneous polynomial differential
systems of degree 2 and 3, see sections 5 and 6.

Finally in section 7 we provide all the quasi–homogeneous polynomial dif-
ferential systems of degrees 2 and 3 having a polynomial, rational or a global
analytical first integral.
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2. Properties of the quasi–homogeneous polynomial vector fields

The next result give us information about the possible weight vectors of a
given quasi–homogeneous polynomial differential system.

Lemma 1. If wm = (s∗1, s
∗
2, d

∗) is a minimal weight vector of (1), then all the
vectors of the form (rs∗1, rs

∗
2, r(d

∗−1)+1), where r is a positive integer number,
are weight vectors of (1).

Proof. The proof is easy from the definition of the weight vector.

Note that the converse is not true. If we consider the system ẋ = x2, ẏ = xy,
we can observe that wm = (1, 1, 2) and nevertheless w = (2, 1, 3) is other weight
vector of this system.

Now we shall obtain some properties of the coefficients of the quasi–homogeneous
polynomial vector fields. We write the polynomials P and Q of system (1) in
its homogeneous parts

P (x, y) =
l∑

j=0

Pj(x, y), where Pj(x, y) =

j∑

i=0

ai,j−ix
iyj−i, (3)

and

Q(x, y) =
m∑

j=0

Qj(x, y), where Qj(x, y) =

j∑

i=0

bi,j−ix
iyj−i. (4)

From (2), (3) and (4) we deduce that the coefficients of a quasi–homogeneous
polynomial vector field satisfy

ai,j−iα
(i−1)s1+(j−i)s2−(d−1) = ai,j−i (5)

and
bi,j−iα

is1+(j−i−1)s2−(d−1) = bi,j−i. (6)

Proposition 2. If the polynomial differential system (1) is quasi–homogeneous
with weight vector w = (s1, s2, d), then P0 = Q0 = 0. Furthermore, if d > 1
then b01 = a10 = 0.

Proof. It is an easy consequence of (5) and (6).

Corollary 3. If the polynomial differential system (1) is quasi–homogeneous
and m = l = 1, then system (1) becomes a homogeneous linear differential
system.

Proof. From Proposition 2 the corollary follows.

Proposition 4. Consider the quasi–homogeneous polynomial differential sys-
tem (1) with weight vector w = (s1, s2, d).
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(a) If s1 6= s2 then there is a unique q ∈ {0, 1, ...,m} such that bq,m−q 6= 0 and
a unique p ∈ {0, 1, ..., l} such that ap,l−p 6= 0, and

(p− q − 1)(s1 − s2) = (m− l)s2. (7)

(b) If s1 = s2 then m = l and (m− 1)s1 = d− 1.

Proof. Since deg(Q) = m we obtain that there exists at least a value of q such
that bq,m−q 6= 0 and from (6) we deduce that

qs1 + (m− q − 1)s2 = d− 1. (8)

Suppose that there exist two values q1 and q2 verifying (8). Then, using the
expressions of (8) for q1 and q2, we get that (q1 − q2)(s1 − s2) = 0. Therefore,
if s1 6= s2 we have a contradiction and the value of q is unique.

Since deg(P ) = l we obtain that there exists at least a value of p such that
ap,l−p 6= 0 and from (5) we deduce that

(p− 1)s1 + (l − p)s2 = d− 1. (9)

In a similar way to the equality (8), we can prove that if s1 6= s2 the value of p
in equality (9) is unique.

The proof of statement (a) is completed if we observe that if s1 6= s2, the
equality (7) is obtained from (8) and (9).

On the other hand, if s1 = s2 from (8) and (9) we obtain statement (b) and
the proposition follows.

Remark 5. In the following, in the case s1 6= s2, we can suppose without loss
of generality that s1 > s2, because in the other case we could interchange the
variables x and y.

2.1. Quasi–homogeneous polynomial differential systems with s1 > s2

By Corollary 3 we can suppose that the degree of the system is n > 1.

Proposition 6. If the polynomial differential system (1) is quasi–homogeneous
with weight vector w = (s1, s2, d) and s1 > s2, then each homogeneous part of
P and Q has at most one monomial different from 0.

Proof. We assume in (3) that there exist j ∈ {0, 1, ..., l} and two different values
p1 and p2 such that api,j−pi

6= 0. Then by substituting in (5) i by p1 and p2
an combining these two expressions we obtain that (p1 − p2)(s1 − s2) = 0,
hence p1 = p2. Using similar arguments with the polynomial Q the proposition
follows.

Now we analyze the relationship between the nonzero monomials of Pj and
Qj .
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Proposition 7. Consider the quasi–homogeneous polynomial differential sys-
tem (1) with weight vector w = (s1, s2, d) and s1 > s2. Let j ∈ {1, . . . ,min{l,m}}
and p, q ∈ N such that 0 < p ≤ j and 0 ≤ q < j.

(a) If bq,j−q 6= 0, then ai,j−i = 0 if i 6= q + 1 and i ≤ j.

(b) If ap,j−p 6= 0, then bi,j−i = 0 if i 6= p− 1 and i ≤ j.

Proof. We observe that ai,j−i is defined if and only if i ≤ j. Under the as-
sumptions of statement (a) if ai,j−i 6= 0, from (5) and (6), we obtain that
(q− i+1)(s1− s2) = 0, or equivalently i = q+1 and statement (a) follows. The
proof of statement (b) is similar.

Assume that the polynomial differential system (1) is quasi–homogeneous
with weight vector w = (s1, s2, d) and s1 > s2. Then, from Proposition 6 we can
establish a bijection between each nonzero homogeneous part Pj of P and the
corresponding coefficient ai,j−i 6= 0 associated to the unique nonzero monomial.
Furthermore, if the degree of system (1) is n, we can denote the homogeneous
parts of P as Pn−t for t = 0, 1, . . . , n, and in the following we identify Pn−t 6≡ 0
with the coefficient ai∗,n−t−i∗ where i∗ is the unique nonnegative integer i∗ ≤
n− t such that verify ai∗,n−t−i∗ 6= 0. In a similar way we can identify Qn−t 6≡ 0
with bj∗,n−t−j∗ , where j

∗ is the unique nonnegative integer j∗ ≤ n− t such that
bj∗,n−t−j∗ 6= 0 .

In short, ifX = (P,Q) is the vector field associated to the quasi–homogeneous
polynomial differential system (1), and we denote by Xn−t the homogeneous
part of X of degree n− t, then Xn−t satisfies one of the following statements:

(i) Xn−t ≡ 0.

(ii) If Xn−t 6≡ 0, then Xn−t is one of the following

(ii.1) Xn−t = (ai∗,n−t−i∗x
i∗yn−t−i∗ , 0),

(ii.2) Xn−t = (0, bj∗,n−t−j∗x
j∗yn−t−j∗),

(ii.3) Xn−t = (ai∗,n−t−i∗x
i∗yn−t−i∗ , bj∗,n−t−j∗x

j∗yn−t−j∗).

Furthermore, from Proposition 7 if ai∗,n−t−i∗bj∗,n−t−j∗ 6= 0, then j∗ = i∗ − 1
and we have proved the following result.

Corollary 8. Consider the quasi–homogeneous polynomial differential system
(1) of degree n with weight vector w = (s1, s2, d) and s1 > s2. Assume t < n.
Then Xn−t 6≡ 0 if and only if there is a unique i ∈ {0, 1, . . . , n− t+1} such that

a2i,n−t−i + b2i−1,n−t−i+1 6= 0 and (i− 1)s1 + (n− t− i)s2 = d− 1. (10)

Of course, if a0,n−t or bn−t,0 are nonzero, we define an−t+1,−1 = b−1,n−i+1 = 0.

We observe that if X is a quasi–homogeneous but non–homogeneous vector
field of degree n, then there exists at least t̃ (0 < t̃ < n) such that XnXn−t̃ 6= 0.
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2.2. Quasi–homogeneous but non–homogeneous polynomial differential systems
with d = 1

In this subsection we characterize the quasi–homogeneous but non–homogeneous
differential systems with d = 1. We can assume that s1 > s2 because if s1 = s2
and d = 1, then, from Proposition 4 (d), system is homogeneous of degree 1.

Proposition 9. Consider the quasi–homogeneous but non–homogeneous poly-
nomial differential system (1) with weight vector w = (s1, s2, 1), s1 > s2. Then
the following statements hold.

(a) l > m = 1, s1 = ls2 and wm = (l, 1, 1).

(b) The only coefficients of the system that can be different from zero are a1,0,
a0,l and b0,1.

Proof. From Proposition 4 one has that there is at most a unique q ∈ {0, 1, ...,m}
such that bq,m−q 6= 0 and a unique p ∈ {0, 1, ..., l} such that ap,l−p 6= 0, and
from (8) and (9) with d = 1 we have that

qs1 + (m− q − 1)s2 = 0, (11)

and
(p− 1)s1 + (l − p)s2 = 0, (12)

respectively. Since q ≥ 0 in order to verify (11) it is necessary that m−q−1 ≤ 0,
that is, q = m − 1 or q = m. If q = m − 1, using (11) one has that q = 0 and
m = 1, and the only coefficient that can be different form zero is b01. In the case
q = m, again from (11), one has that s2 = ms1 in contradiction with s1 > s2.

Since p ≤ l from (12) we obtain that p = 0 or p = 1. If p = 1, again from
(12) one has that l = 1 and we get l = m = 1 and the system is homogeneous in
contradiction with the assumptions. If p = 0, using (12), one has that s1 = ls2,
and since s1 > s2 then l > 1. If we suppose that furthermore there is a coefficient
ax,l−t−x with x 6= 0 , t > 0 and t ≤ l − x that can be different from zero, using
(5) and ls2 = s1 we obtain that (l−1)x = t and hence l−1 ≤ t . Since t ≤ l−x
we obtain that x = 1 and t = l− 1 and the corresponding coefficient is a1,0 and
(b) holds. The proof of (a) concludes if we observe that w = (ls2, s2, 1) implies,
from the definition of minimal weight vector that wm = (l, 1, 1). Consequently
statements (a) and (b) are proved.

3. Determining quasi–homogeneous but non–homogeneous vector fields
with d > 1

In this section we provide an algorithm for determining quasi–homogeneous
but non–homogeneous differential systems and with weight degree d > 1. Using
this algorithm we can get all the quasi-homogeneous vector fields if we add the
case d = 1 (using Proposition 9) and all the homogeneous vector fields.
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Proposition 10. Consider the quasi–homogeneous but non–homogeneous vec-
tor field of degree n ≥ 2 with weight vector w = (s1, s2, d), s1 > s2 and d > 1.
For each t̃ (0 < t̃ < n) such that XnXn−t̃ 6= 0 let us p ∈ {0, 1, . . . , n + 1}
and q ∈ {0, 1, . . . , n − t̃ + 1} the only values verifying (10) for t = 0 and t = t̃
respectively. Then the following statements hold.

(a) k = q − p ≥ 1 and k ≤ n− t̃− p+ 1;

(b) s1 = (t̃+k)(d−1)/D and s2 = k(d−1)/D, where D = (p−1)t̃+(n−1)k >
0;

(c) the minimal weight vector of system (1) is wm = ((t̃+ k)/s, k/s, 1+D/s)
where s is the greatest common divisor of t̃ and k.

Proof. . Since (10) holds for t = 0 and i = p, and for t = t̃ and i = q, we have

(p− 1)s1 + (n− p)s2 = d− 1,
(q − 1)s1 + (n− t̃− q)s2 = d− 1.

(13)

Then (q−p)(s1−s2) = t̃s2. Taking in account that s1−s2, s2 and t̃ are positive,
we obtain that q > p, and statement (a) follows.

By substituting q by p+ k in (13) we obtain

(p− 1)s1 + (n− p)s2 = d− 1,
(p+ k − 1)s1 + (n− t̃− p− k)s2 = d− 1.

(14)

If we consider s1 and s2 as unknowns, then (14) is a compatible and determined
linear system, if and only if D = (p− 1)t̃+ (n− 1)k 6= 0.

We claim that D > 0. If p > 0, since n ≥ 2, it follows immediately that
D > 0. If p = 0 we assume that D ≤ 0. Then, we have that t̃ ≥ (n− 1)k. Since
t̃ < n, we obtain that k = 1 and t̃ = n− 1. Then, system (14) becomes

−s1 + ns2 = d− 1,
0 = d− 1,

and D = 0, a contradiction. Hence the claim is proved. Finally, solving the
linear system (14) with respect to s1 and s2 it follows statement (b).

Let s be the greatest common divisor of t̃ and k. From the expression of D
given in (b), we can write D = su, and consequently d−1 = ru, s1 = r(t̃+k)/s
and s2 = rk/s. Now, if we take r = 1, we obtain statement (c).

Under the assumptions of Proposition 10 and its proof (see (14)) there are
integers p ∈ {0, 1, . . . , n − 1}, t ∈ {1, . . . , n − p} and k ∈ {1, . . . , n − t − p + 1}
satisfying the equations

e0p[0] ≡ (p− 1)s1 + (n− p)s2 + 1− d = 0,
etp[k] ≡ (p+ k − 1)s1 + (n− t− p− k)s2 + 1− d = 0.

(15)

We remark that since t > 0, it is necessary that p < n.
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For every p ∈ {0, 1, . . . , n − 1} and t ∈ {1, . . . , n − p} we define the set of
equations

Ap(t) = {etp[k] : k = 1, . . . , n− t− p+ 1}.
In what follows we fix p ∈ {0, 1, . . . , n−1} and we consider the linear system

defined by the set of equations

Ep = {e0p[0]} ∪Ap(1) ∪ . . . ∪Ap(n− p). (16)

Our goal is to obtain sets of linear equations that contains the equation e0p[0] and
at most one equation of each set of equations Ap(t) and such that the set of all
these equations define a compatible linear system being s1 and s2 the unknowns,
and satisfying that if we add some other equation the increased linear system
be incompatible. We denote such linear systems the maximal linear systems
associated to (16). Every one of these maximal linear systems will provide a
quasi–homogeneous but non–homogeneous differential system of degree n ≥ 2
with weight vector w = (s1, s2, d), s1 > s2 and d > 1.

Remark 11. The linear system (16) when p = 0 has two equations that we can
omit because never they are satisfied. From the equations A0(n) the equation
en0 [1] (i.e. −s2 = d − 1 because s2 > 0 and d > 1), and from the equations
A0(n− 1) the equation en−1

0 [1] (i.e. 0 = d− 1 because d > 1). In what follows

Ep = Ep if p > 0, and E0 = E0 \ {en0 [1], en−1
0 [1]}.

Now we shall study when Xn−t1 and Xn−t2 can be simultaneously nonzero.
Now we fix t1 and t2 with t1 6= t2, and we study the compatibility of the linear
system defined by the equation e0p[0] and the equations et1p [k1] and et2p [k2].

Proposition 12. Consider the quasi–homogeneous but non–homogeneous dif-
ferential system (1) of degree n ≥ 2 with weight vector w = (s1, s2, d), s1 > s2
and d > 1. Let p ∈ {0, 1, . . . , n− 1} and t1, t2 ∈ {1, . . . , n− 1}. Then the linear
system defined by the three equations e0p[0], e

t1
p [k1] and et2p [k2] is compatible only

if
k1t2 = k2t1. (17)

Proof. Consider the linear system

(p− 1)s1 + (n− p)s2 − (d− 1) = 0,
(p+ k1 − 1)s1 + (n− t1 − p− k1)s2 − (d− 1) = 0,
(p+ k2 − 1)s1 + (n− t2 − p− k2)s2 − (d− 1) = 0,

(18)

with unknowns s1, s2 and (d − 1). In order to obtain a solution with positive
values for s1, s2 and d it is necessary that the determinant k1t2 − k2t1 of the
matrix of system (18) be zero. So the proposition is proved.
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3.1. The algorithm

Fixed n ≥ 2 and p ∈ {0, 1, . . . , n − 1} the following algorithm allows to
determine all the compatible maximal linear systems associated to the set of
equations Ep.
(step 1). We choose the equation e0p[0] as the first equation of the future
maximal linear system.

(step 2). We fix t ∈ {1, . . . , n − p} and an equation of Ap(t) ∩ Ep, i.e. an
equation of the form etp[k] with a k ∈ {1, . . . , n− t−p+1}. From Proposition 10
the resolution of the linear system defined by e0p[0] and etp[k], allows to obtain
the values of s1 and s2, and furthermore the minimal weight vector wm.

(step 3). For each t∗ ∈ {1, . . . , n − p} with t 6= t∗ we determine the value
kt∗ ∈ {1, . . . , n − t∗ − p + 1}, if exists, of the equation et

∗
p [kt∗ ] satisfying (17)

with t1 = t, k1 = k, t2 = t∗ and k2 = kt∗ .

(step 4). We consider all the equations

Ep,t,k =
⋃

t∗∈{1,...,n−p}\{t}
{et∗p [kt∗ ] : kt∗t = kt∗} ∪ {etp[k], e0p[0]}, (19)

that we have obtained in the steps 1, 2 and 3. Each linear equation et
∗
p [kt∗ ]

contributes, using (10), to the homogeneous part Xn−t∗ of X with the term

Xt∗,kt∗
n−t∗ defined as

(ap+kt∗ ,n−t∗−p−kt∗x
p+kt∗ yn−t∗−p−kt∗ , bp+kt∗−1,n−t∗−p−kt∗+1x

p+kt∗−1yn−t∗−p−kt∗+1).

The equation etp[k] determines the homogeneous part Xn−t equals

Xt,k
n−t =

(
ap+k,n−t−p−kx

p+kyn−t−p−k, bp+k−1,n−t−p−k+1x
p+k−1yn−t−p−k+1

)
,

and the equation e0p[0] determines the homogeneous part of greatest degree

Xn =
(
ap,n−px

pyn−p, bp−1,n−p+1x
p−1yn−p+1

)
.

In short, the quasi–homogeneous but non–homogeneous differential system
(1) of degree n ≥ 2 with weight vector w = (s1, s2, d), s1 = (t + k)(d − 1)/D,
s2 = k(d − 1)/D, D = (p − 1)t + (n − 1)k > 0 and d > 1 corresponding to the
set of equations Ep,t,k is

Xp,t,k = Xn +Xt,k
n−t +

∑

t∗∈{1,...,n−p}\{t} and kt∗ t=kt∗

Xt∗,kt∗
n−t∗ , (20)

where we must consider conditions (see (10)) in the coefficients of the homoge-
neous parts such that Xn and at least other homogeneous part of X are nonzero.
We observe that if Xn is zero, the degree of the vector field is not n and if Xn

is the only nonzero homogeneous part, then system is homogeneous.

(step 5). We remove from Ep the equations Ep,t,k \ {e0p[0]}.
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(step 6). We go back to (step 1) and we repeat this process as many times it
is possible, i.e. until there are no equations to work in (step 1).

Note that all the quasi–homogeneous but non–homogeneous differential sys-
tems Xp,t,k are associated to the equation e0p[0] that we fixed in the step 0.
Finally, if we consider all the equations e0p[0] for each value of p = 0, 1, ..., n− 1
the algorithm described provides all quasi–homogeneous but non–homogeneous
polynomial differential systems of degree n and weight degree d > 1.

3.2. Quasi–homogeneous but non–homogeneous differential systems of degree 2
and 3 with d > 1

.
In this subsection we apply the algorithm described in the previous subsec-

tion for obtaining all the quasi–homogeneous polynomial differential systems
that are not homogeneous and have degree 2 and 3 with d > 1.

The case n = 3. In this case we must consider the values of p = 0, 1, 2. For
each value of p we shall construct a matrix Rn

p , that contains in the first and
second columns the values of t = 1, . . . , n− p and k = 1, . . . , n− t− p+ 1, and
in the other columns appear all the equations of Ep and their contributions to
the corresponding homogeneous parts Xn−t.

(i) p = 0. In this case the matrix R3
0 is defined as

R3
0 =




t k E0 Xn−t

− − e00[0] : −s1 + 3s2 = d− 1 X3 = (a0,3y
3, 0)

1 1 e10[1] : s2 = d− 1 X1,1
2 = (a1,1xy, b0,2y

2)

1 2 e10[2] : s1 = d− 1 X1,2
2 = (a2,0x

2, b1,1xy)

1 3 e10[3] : 2s1 − s2 = d− 1 X1,3
2 = (0, b2,0x

2)

2 2 e20[2] : s1 − s2 = d− 1 X2,2
1 = (0, b1,0x)




.

Now we apply the algorithm to the set of equations E0 given in the matrix R3
0.

Of course in (step 1) we choose the equation e00[0].

In (step 2) we choose t = 1 and k = 1, i.e. the equation e10[1]. Applying
Proposition 10 and using the notation of this theorem to the system e00[0] and
e10[1], we obtain s1 = 2(d− 1), s2 = d− 1, s = D = 1 and wm = (2, 1, 2).

In (step 3) we are forced to choose the equation et
∗
p [kt∗ ] = e20[2], which

satisfies condition (17).

Now from (step 4) we get that E0,1,1 = {e00[0], e10[1], e20[2]}, and consequently
from (20) the quasi–homogeneous but non–homogeneous vector field of degree
n = 3 with minimal weight vector w = (2, 1, 2) is

X0,1,1 = X3 +X1,1
2 +X2,2

1 .

Therefore, its corresponding quasi–homogeneous but non–homogeneous differ-
ential system is

ẋ = a0,3y
3 + a1,1xy, ẏ = b0,2y

2 + b1,0x. (21)
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Note that since this differential system must have degree 3 we have that the
coefficient a0,3 cannot be zero, and since the system is non-homogeneous we
must consider conditions in the coefficients of the homogeneous parts such that
at least other homogeneous part of X are nonzero, that is, a211 + b202 + b210 6= 0.
In the next systems we omit to comment these obvious conditions.

Doing (step 5), i.e. removing from E0 the equations E0,1,1\{e00[0]}, we obtain
the new matrix




t k E0 Xn−t

− − e00[0] : −s1 + 3s2 = d− 1 X3 = (a0,3y
3, 0)

1 2 e10[2] : s1 = d− 1 X1,2
2 = (a2,0x

2, b1,1xy)

1 3 e10[3] : 2s1 − s2 = d− 1 X1,3
2 = (0, b2,0x

2)


 .

Again in (step 1) we choose the equation e00[0].

In (step 2) we choose t = 1 and k = 2, i.e. the equation e10[2]. Applying
Proposition 10 to the system e00[0] and e10[2], we obtain s1 = d−1, s2 = 2(d−1)/3,
s = 1, D = 3 and wm = (3, 2, 4).

In (step 3) we cannot whose the equation e10[3] because it does not satisfy
condition (17).

From (step 4) we get that E0,1,2 = {e00[0], e10[2]}, and consequently from (20)
the quasi–homogeneous but non–homogeneous vector field of degree n = 3 with
minimal weight vector w = (3, 2, 4) is

X0,1,2 = X3 +X1,2
2 .

So, its corresponding quasi–homogeneous but non–homogeneous differential sys-
tem is

ẋ = a0,3y
3 + a2,0x

2, ẏ = b1,1xy. (22)

By (step 5) we remove from E0 the equations (E0,1,1 ∪ E0,1,2) \ {e00[0]} and
we obtain the new matrix




t k E0 Xn−t

− − e00[0] : −s1 + 3s2 = d− 1 X3 = (a0,3y
3, 0)

1 3 e10[3] : 2s1 − s2 = d− 1 X1,3
2 = (0, b2,0x

2)


 .

We start again with the (step 1) choosing the equation e00[0].

In (step 2) we only can choose t = 1 and k = 3, i.e. the equation e10[3].
Applying Proposition 10 to the system e00[0] and e10[3], we have s1 = 4(d− 1)/5,
s2 = 3(d− 1)/5, s = 1, D = 5 and wm = (4, 3, 6).

In (step 3) we cannot choose any additional equation.

By (step 4) we get that E0,1,3 = {e00[0], e10[3]}, and consequently from (20)
the quasi–homogeneous but non–homogeneous vector field of degree n = 3 with
minimal weight vector w = (4, 3, 6) is

X0,1,3 = X3 +X1,3
2 .
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So, its corresponding quasi–homogeneous but non–homogeneous differential sys-
tem is

ẋ = a0,3y
3, ẏ = b2,0x

2. (23)

Finally, by (step 5) we remove from E0 the equations (E0,1,1 ∪ E0,1,2 ∪ E0,1,3)\
{e00[0]} and we get {e00[0]}. Since only remains the equation e00[0] the process
has finished for p = 0.

(ii) p = 1. In this case we have the matrix

R3
1 =




t k E1 Xn−t

− − e01[0] : 2s2 = d− 1 X3 = (a1,2xy
2, b0,3y

3)

1 1 e11[1] : s1 = d− 1 X1,1
2 = (a2,0x

2, b1,1xy)

1 2 e11[2] : 2s1 − s2 = d− 1 X1,2
2 = (0, b2,0x

2)

2 1 e21[1] : s1 − s2 = d− 1 X2,1
1 = (0, b1,0x)




.

We apply the algorithm to the set of equations E1 given in the matrix R3
1.

Of course in (step 1) we choose the equation e01[0].

In (step 2) we choose t = 1 and k = 1, i.e. the equation e11[1]. Applying
Proposition 10 and using the notation of this theorem to the system e01[0] and
e11[1], we obtain s1 = d− 1, s2 = (d− 1)/2, s = 1, D = 2 and wm = (2, 1, 3).

In (step 3) we cannot choose any equation because the unique candidate is
the equation e21[1], which does not satisfy condition (17).

Now from (step 4) we get that E1,1,1 = {e01[0], e11[1]}, and consequently from
(20) the quasi–homogeneous but non–homogeneous field of degree n = 3 with
minimal weight vector w = (2, 1, 3) is

X1,1,1 = X3 +X1,1
2 .

Therefore, its corresponding quasi–homogeneous but non–homogeneous differ-
ential system is

ẋ = a1,2xy
2 + a2,0x

2, ẏ = b0,3y
3 + b1,1xy. (24)

We do (step 5) and remove from E1 the equations E1,1,1 \ {e01[0]}, we obtain
the new matrix




t k E1 Xn−t

− − e01[0] : 2s2 = d− 1 X3 = (a1,2xy
2, b0,3y

3)

1 2 e11[2] : 2s1 − s2 = d− 1 X1,2
2 = (0, b2,0x

2)

2 1 e21[1] : s1 − s2 = d− 1 X2,1
1 = (0, b1,0x)


 .

Again in (step 1) we choose the equation e01[0].

In (step 2) we choose t = 1 and k = 2, i.e. the equation e11[2]. Applying
Proposition 10 to the system e01[0] and e11[2], we obtain s1 = 3(d − 1)/4, s2 =
(d− 1)/2, s = 1, D = 4 and wm = (3, 2, 5).

In (step 3) we cannot whose the equation e21[1] because it does not satisfy
condition (17).
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From (step 4) we get that E1,1,2 = {e01[0], e12[2]}, and consequently from (20)
quasi–homogeneous but non–homogeneous vector field of degree n = 3 with
minimal weight vector w = (3, 2, 5) is

X1,1,2 = X3 +X1,2
2 .

So, its corresponding quasi–homogeneous but non–homogeneous differential sys-
tem is

ẋ = a1,2xy
2, ẏ = b0,3y

3 + b2,0x
2. (25)

By (step 5) we remove from E1 the equations (E1,1,1 ∪ E1,1,2) \ {e00[0]} and
we obtain the new matrix




t k E1 Xn−t

− − e01[0] : 2s2 = d− 1 X3 = (a1,2xy
2, b0,3y

3)

2 1 e21[1] : s1 − s2 = d− 1 X2,1
1 = (0, b1,0x)


 .

We start again with the (step 1) choosing the equation e01[0].

In (step 2) we only can choose t = 2 and k = 1, i.e. the equation e21[1].
Applying Proposition 10 to the system e01[0] and e21[1], we have s1 = 3(d− 1)/2,
s2 = (d− 1)/2, s = 1, D = 2 and wm = (3, 1, 3).

In (step 3) we cannot choose any additional equation.

By (step 4) we get that E1,2,1 = {e01[0], e21[1]}, and consequently from (20)
the quasi–homogeneous but non–homogeneous vector field of degree n = 3 with
minimal weight vector w = (3, 1, 3) is

X1,2,1 = X3 +X2,1
1 .

So, its corresponding quasi–homogeneous but non–homogeneous differential sys-
tem is

ẋ = a1,2xy
2, ẏ = b0,3y

3 + b1,0x. (26)

Finally, by (step 5) we remove from E1 the equations (E1,1,1 ∪ E1,1,2 ∪ E1,2,1)\
{e01[0]} and we get {e01[0]}. Since only remains the equation e01[0] the process
has finished for p = 1.

(iii) p = 2. In this case we have the matrix




t k E2 Xn−t

− − e02[0] : s1 + s2 = d− 1 X3 = (a2,1x
2y, b1,2xy

2)

1 1 e12[1] : 2s1 − s2 = d− 1 X1,1
2 = (0, b2,0x

2)


 .

We start with the (step 1) choosing the equation e02[0].

In (step 2) we only can choose t = 1 and k = 1, i.e. the equation e12[1].
Applying Proposition 10 to the system e02[0] and e12[1], we have s1 = (d− 1)/3,
s2 = 2(d− 1)/3, s = 1, D = 3 and wm = (2, 1, 4).

In (step 3) we cannot choose any additional equation.
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By (step 4) we get that E2,1,1 = {e02[0], e12[1]}, and consequently from (20)
the quasi–homogeneous but non–homogeneous vector field of degree n = 3 with
minimal weight vector w = (2, 1, 4) is

X2,1,1 = X3 +X1,1
2 .

So, its corresponding quasi–homogeneous but non–homogeneous differential sys-
tem is

ẋ = a2,1x
2y, ẏ = b1,2xy

2 + b2,0x
2. (27)

Finally, by (step 5) we remove from E2 the equations E2,1,1 \ {e02[0]} and we
get {e02[0]}. Since only remains the equation e02[0] the process has finished for
p = 2.

In summary, putting together the 7 forms of quasi–homogeneous but non–
homogeneous polynomial differential systems of degree 3 that we have found we
have proved the following result.

Proposition 13. All quasi–homogeneous but non–homogeneous polynomial dif-
ferential systems of degree 3, with d > 1 can be written in one of the forms (21),
(22), (23), (24), (25), (26) and (27).

The case n = 2. In this case we must consider the values of p = 0, 1.

(i) p = 0. In this case we have the matrix




t k E0 Xn−t

− − e00[0] : −s1 + 2s2 = d− 1 X2 = (a0,2y
2, 0)

1 2 e10[2] : s1 − s2 = d− 1 X1,2
1 = (0, b1,0x)


 .

We start with the (step 1) choosing the equation e00[0].

In (step 2) we only can choose t = 1 and k = 2, i.e. the equation e10[2].
Applying Proposition 10 to the system e00[0] and e10[2], we have s1 = 3(d − 1),
s2 = 2(d− 1), s = D = 1 and wm = (3, 2, 2).

In (step 3) we cannot choose any additional equation.

By (step 4) we get that E0,1,2 = {e00[0], e10[2]}, and consequently from (20)
the quasi–homogeneous but non–homogeneous vector field of degree n = 2 with
minimal weight vector w = (3, 2, 2) is

X0,1,2 = X2 +X1,2
1 .

So, its corresponding quasi–homogeneous but non–homogeneous differential sys-
tem is

ẋ = a0,2y
2, ẏ = b1,0x. (28)

Finally, by (step 5) we remove from E0 the equations E0,1,2 \ {e00[0]} and we
get {e00[0]}. Since only remains the equation e00[0] the process has finished for
p = 0.
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(ii) p = 1. In this case we have the matrix




t k E1 Xn−t

− − e01[0] : s2 = d− 1 X2 = (a1,1xy, b0,2y
2)

1 1 e11[1] : s1 − s2 = d− 1 X1,1
1 = (0, b1,0x)


 .

We start with the (step 1) choosing the equation e01[0].

In (step 2) we only can choose t = 1 and k = 1, i.e. the equation e11[1].
Applying Proposition 10 to the system e01[0] and e11[1], we have s1 = 2(d − 1),
s2 = d− 1, s = D = 1 and wm = (2, 1, 2).

In (step 3) we cannot choose any additional equation.

By (step 4) we get that E1,1,1 = {e01[0], e11[1]}, and consequently from (20)
the quasi–homogeneous but non–homogeneous vector field of degree n = 2 with
minimal weight vector w = (2, 1, 2) is

X0,1,2 = X2 +X1,1
1 .

So, its corresponding quasi–homogeneous but non–homogeneous differential sys-
tem is

ẋ = a1,1xy, ẏ = b0,2y
2 + b1,0x. (29)

Finally, by (step 5) we remove from E1 the equations E1,1,1 \ {e01[0]} and we
get {e01[0]}. Since only remains the equation e01[0] the process has finished for
p = 1.

In short, putting together the 2 forms of quasi–homogeneous but non–
homogeneous differential systems of degree 2 that we have found we have proved
the following result.

Proposition 14. All quasi–homogeneous but non–homogeneous polynomial dif-
ferential systems of degree 2, with d > 1 can be written in one of the forms (28)
and (29).

4. Liouvillian integrability of the quasi–homogeneous polynomial vec-
tor fields

All quasi–homogeneous vector fields are integrable. This fact was proba-
bly know by Liapunov, and recently some authors have proved it in different
ways. For example, Garćıa [14] gaves an inverse integrating factor for all quasi–
homogeneous polynomial vector fields. Li, Llibre, Yang and Zhang (see [21])
gave another inverse integrating factor and an explicit first integral. Yanxia Hu
[17] gaves an algorithm in order to determine an inverse integrating factor for
an m–dimensional quasi–homogeneous vector field.

First we need a generalization of the Euler formula for the quasi–homogeneous
functions.
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Lemma 15 (generalized Euler formula). If F is a quasi–homogeneous function
verifying that

F (αpx, αqy) = αp+d−1F (x, y) (30)

then
pxFx + qyFy = (p+ d− 1)F. (31)

Proof. Derivating (30) with respect to α we obtain

pαp−1xFx(α
px, αqy) + qαq−1Fy(α

px, αqy) = (p+ d− 1)αp+d−2F.

Therefore, taking α = 1 in the above equality, (31) holds.

Proposition 16. Suppose that system (1) is quasi–homogeneous of weight ex-
ponents s1 and s2 and weight degree d. Then V = s1xQ − s2yP is an inverse
of integrating factor of system (1).

Proof. We recall that V an inverse of integrating factor if and only if M =
VxP + VyQ − V (Px + Qy) ≡ 0, see for more details section 8.3 of [13]. Taking
into account the expression of V we get

M = (s1Q+s1xQx−s2yPx)P+(s1xQy−s2P−s2yPy)Q−(s1xQ−s2yP )(Px+Qy).

Now, from Lemma 15, one has that s1xPx+s2yPy = (s1+d−1)P and s1xQx+
s2yQy = (s2 + d− 1)Q. Therefore

M = ((s1 + s2 + d− 1)Q)P − (s1 + s2 + d− 1)P )Q = 0,

and proposition follows.

In fact the inverse of integrating factor of Proposition 16 can be deduce from
the results of [21] because the product of their explicit first integral with their
inverse of integrating factor is the V of the proposition, for more details see for
instance Proposition 8.1 of [13].

Roughly speaking a Liouvillian function is a function which can be expressed
by quadratures of elementary functions. If a polynomial differential system has
a Liouvillian first integral then we say that it is Liouvillian integrable, for more
details see Chapter 8 of [13] and the references quoted there. Note that since the
inverse integrating factor V of Proposition 16 is polynomial, a Liouvillian first
integral of a quasi–homogeneous polynomial differential system can be obtained
integrating a rational function.

5. Canonical forms for the quasi–homogeneous polynomial vector fields
of degree 2 and 3 without common factors

In this section we assume that the polynomials P and Q of the differential
system (1) are coprime, otherwise the system can be reduced to one of lower
degree with P and Q coprime doing a rescaling of the independent variable t of
the system.

First we provide the canonical forms for the quasi–homogeneous polynomial
differential systems without common factors of degree 2.
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Proposition 17. A quasi–homogeneous but non–homogeneous quadratic poly-
nomial differential system after a rescaling of the variables can be written in one
of the following forms:

(a) x′ = y2, y′ = x, with minimal weight vector (3, 2, 2).

(b) x′ = axy, y′ = x+ y2, with a 6= 0 and minimal weight vector (2, 1, 2).

(c) x′ = x+ y2, y′ = ay, with a 6= 0 and minimal weight vector (2, 1, 1).

Proof. By Proposition 14 the quasi–homogeneous but non–homogeneous quadratic
polynomial differential systems (1) with s1 > s2 and d > 1 are the systems (28)
and (29) with minimal weight vectors (3, 2, 2) and (2, 1, 2), respectively.

Since in (28) we have that a0,2b1,0 6= 0, doing the rescaling of the vari-

ables (X,Y, T ) = (x, a
1/3
0,2 y/b

1/3
1,0 , a

1/3
0,2 b

2/3
1,0 t) system (28) becomes the system of

statement (a) with (X,Y, T ) instead of (x, y, t).

Now, in system (29) we have that (a21,1 + b20,2)b1,0 6= 0 and since P and Q
are coprime we have that a1,1b1,0b0,2 6= 0. Doing the rescaling of the variables
(X,Y, T ) = (b1,0x/b0,2, y, bt) system (29) becomes the system of statement (b)
with (X,Y, T ) instead of (x, y, t) and a = a1,1/b0,2.

Finally, if d = 1 by Proposition 9 we obtain the quasi–homogeneous but
non–homogeneous differential system

x′ = a1,0x+ a0,2y
2, y′ = b0,1y, (32)

with minimal vector degree (2, 1, 1). Since we have that a1,0b0,1a0,2 6= 0 we
do the rescaling of the variables (X,Y, T ) = (a1,0x/a0,2, y, a1,0t), then system
(32) becomes the system of statement (c) with (X,Y, T ) instead of (x, y, t) and
a = b0,1/a1,0. This completes the proof of the proposition.

Now we shall study the quadratic homogeneous polynomial differential sys-
tems. We recall the canonical forms for these systems obtained in [11].

Proposition 18. Every quadratic homogeneous polynomial differential system
(1) after a linear transformation and a rescaling of independent variable can be
written in one of the following forms:

(a) x′ = −2xy + P2, y′ = −x2 + y2 +Q2,

(b) x′ = −2xy + P2, y′ = x2 + y2 +Q2,

(c) x′ = −x2 + P2, y′ = 2xy +Q2,

(d) x′ = P2, y′ = x2 +Q2,

Here P2 = 2x(p1x+ p2y)/3 and Q2 = 2y(p1x+ p2y)/3.

Now we provide the canonical forms for the quasi–homogeneous polynomial
differential systems without common factors of degree 3.
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Proposition 19. A quasi–homogeneous but non–homogeneous cubic differential
system (1) after a rescaling of the variables can be written in one of the following
forms:

(a) x′ = y(ax+ by2), y′ = x+ y2, with a 6= b, or x′ = y(ax± y2), y′ = x, and
both with minimal weight vector (2, 1, 2).

(b) x′ = x2 + y3, y′ = axy, with a 6= 0 and minimal weight vector (3, 2, 4).

(c) x′ = y3, y′ = x2, with minimal weight vector (4, 3, 6).

(d) x′ = x(x + ay2), y′ = y(bx + y2), with (a, b) 6= (1, 1) and minimal weight
vector (2, 1, 3).

(e) x′ = axy2, y′ = ±x2 + y3, with a 6= 0 and minimal weight vector (3, 2, 5).

(f) x′ = axy2, y′ = x+ y3, with a 6= 0 and minimal weight vector (3, 1, 3).

(g) x′ = ax+ y3, y′ = y, with a 6= 0 and minimal weight vector is (3, 1, 1).

Proof. By Proposition 13 the quasi–homogeneous but non–homogeneous cubic
polynomial differential systems (1) with s1 > s2 and d > 1 are the systems
(21), (22), (23), (24), (25), (26) and (27) with minimal weight vectors (2, 1, 2),
(3, 2, 4), (4, 3, 6), (2, 1, 3), (3, 2, 5), (3, 1, 3), and (2, 1, 4), respectively. We remove
system (27) because its polynomials P and Q are not coprime.

We note that in system (21) we have that b1,0 6= 0 and a0,3 6= 0. If b0,2 6= 0
the rescaling of the variables (X,Y, T ) = (b1,0b0,2x, b0,2y, t) writes system (21)
into the first system of statement (a) with (X,Y, T ) instead of (x, y, t). If b0,2 = 0
the rescaling of the variables (X,Y, T ) = (|a0,3b31,0|1/2x, |a0,3b1,0|1/2y, t) writes
system (21) into the second system of statement (a) with (X,Y, T ) instead of
(x, y, t).

Since in system (22) we have that a2,0a0,3b1,1 6= 0. Then the rescaling of the
variables (X,Y, T ) = (a2,0x, (a2,0a0,3)

1/3y, t) writes system (22) into the system
of statement (b) with (X,Y, T ) instead of (x, y, t) and a = b1,1/a2,0.

For system (23) we have that a0,3b2,0 6= 0. Then the rescaling of the vari-

ables (X,Y, T ) = (a
1/5
0,3 b

3/5
2,0 x, a

2/5
0,3 b

1/5
2,0 y, t) writes system (23) into the system of

statement (c) with (X,Y, T ) instead of (x, y, t).

For system (24) we have that a2,0b0,3 6= 0. Then the rescaling of the variables
(X,Y, T ) = (a2,0x, |b0,3|1/2y, t) writes system (24) into the system of statement
(d) with (X,Y, T ) instead of (x, y, t), a = a1,2/|b0,3| and b = b1,1/a2,0.

For system (25) we have that a1,2b2,0b0,3 6= 0. Then the rescaling of the
variables (X,Y, T ) = (|b0,3|1/4|b0,2|1/2x, |b0,3|1/2y, t) writes system (25) into the
system of statement (e) with (X,Y, T ) instead of (x, y, t),with the sign + if
b2,0 > 0 , and sign − if b2,0 < 0 and a = a1,2/|b0,3|.

For system (26) we have that a1,2b1,0b0,3 6= 0. Then the rescaling of the

variables (X,Y, T ) = (x, (b0,3/b1,0)
1/3y, b

2/3
1,0 b

1/3
0,3 t) writes system (26) into the

system of statement (f) with (X,Y, T ) instead of (x, y, t) and a = a1,2/b0,3.
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Finally, if d = 1 by Proposición 9 we obtain the quasi–homogeneous but
non–homogeneous differential system

x′ = a1,0x+ a0,3y
3, y′ = b0,1y, (33)

with minimal vector degree (3, 1, 1). Since we have that a1,0b0,1a0,3 6= 0, we do
the rescaling of the variables (X,Y, T ) = (b0,1x/a0,3, y, b0,1t), then system (33)
becomes the first system of statement (g) with (X,Y, T ) instead of (x, y, t) and
a = a1,0/b0,1 This completes the proof of the proposition.

Now we present the canonical forms of the cubic homogeneous vector fields,
which where obtained in [9].

Proposition 20. Every cubic homogeneous polynomial differential system (1)
after a linear transformation and a rescaling of independent variable can be
written in one of the following forms:

(a) x′ = 3(1 + µ4)x2y − 6µ2y3 + P3, y
′ = 6µ2x3 − 3(1 + µ4)xy2 + Q3, with

µ > 1.

(b) x′ = −αx2y/2 + αy3 + P3, y
′ = αxy2/2 +Q3, with α = ±1.

(c) x′ = µy3 + P3, y
′ = µx3 +Q3, with µ 6= 0.

(d) x′ = 3αx2y−6αxy2−6αy3+P3, y
′ = −3αxy2+6αy3+Q3, with α = ±1.

(e) x′ = 2xy2 − 4y3 + P3, y
′ = −2y3 +Q3.

(f) x′ = −3αx2y − 6y3 + P3, y
′ = 3αxy2 +Q3, with α = ±1.

(g) x′ = −αy3 + P3, y
′ = Q3, with α = ±1.

(h) x′ = −3αµx2y−αy3+P3, y
′ = αx3+3αµxy2+Q3, with α = ±1, µ > −1/3

and µ 6= 1/3.

(i) x′ = −αx2y − αy3 + P3, y
′ = αx3 + αxy2 +Q3, with α = ±1.

Here P3 = p1x
3 + p2x

2y + p3xy
2 and Q3 = p1x

2y + p2xy
2 + p3y

3.

6. First integrals of the quasi–homogeneous polynomial vector fields
of degree 2 and 3 without common factors

First we provide the first integrals of all quasi–homogeneous but non–homogeneous
vector fields of Propositions 17 and 19.

Proposition 21. The first integrals of Proposition 17’s systems are:

(a) H(x, y) = 3x2 − 2y3;

(b) H(x, y) =
(
(a− 2)y2 − 2x

)a
/x2 if a 6= 2, and xe−y2/x if a = 2;
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(c) H(x, y) = y
(
y2 − 2ax+ x

)−a
if a 6= 1/2, and e−x/(2y2)y if a = 1/2.

Proof. Since V = s1xQ − s2yP is an inverse integrating factor for a quasi–
homogeneous vector field, using it we get the first integrals described in the
statements (a), (b) and (c).

Proposition 22. (a) For the first system of Proposition 19(a) the first inte-
gral is

log(by4+(a−2)xy2−2x2)− 2(a+ 2)√
(a− 2)2 + 8b

arctanh

(
2by2 + (a− 2)x√
(a− 2)2 + 8b x

)

if (a− 2)2 + 8b 6= 0;

log
(
4x− (a− 2)y2

)
− 4(a+ 2)x

(a− 2)(4x− (a− 2)y2)

if b = −(a − 2)2/8 and a 6= 2; and e−y2/xx if a = 2 and b = 0. For the
second system of Proposition 19(a) the first integral is

log(y4 + axy2 − 2x2)− 2a√
a2 + 8

arctanh
2y2 + ax√
a2 + 8x

;

and for the third system of Proposition 19(a) the first integral is

log(y4 − axy2 + 2x2) +
2a√
a2 − 8

arctanh
2y2 − ax√
a2 − 8x

.

(b) For the system of Proposition 19(b) the first integral is y2
(
2y3 + (2− 3a)x2

)−a

if a 6= 2/3, and e
− x2

3y3 y if a = 2/3.

(c) For the system of Proposition 19(c) the first integral is −4x3 + 3y4.

(d) For the system of Proposition 19(d) the first integral is

((2− a)x)1−2by2−a
(
(a− 2)y2 − 2bx+ x

)ab−1

if (a, b) 6= (2, 1/2); y2/x−log(((1−2b)x)b/y) if a = 2; and x/y2+2 log((2−
a)xy−a) if a 6= 2 and b = 1/2.

(e) For the first system of Proposition 19(e) the first integral is x(3x2+(3−2a)
y3)−a/3 if a 6= 3/2; and y3/x2 − 2 log x if a = 3/2. For the second system

the first integral is x
(
3x2 − (3− 2a)y3

)−a/3
; and y3/x2 + 2 log x if a =

3/2.

(f) For the system of Proposition 19(f) the first integral is ((a−3)y3−3x)a/x3

if a 6= 3; and y3/x− log x if a = 3.
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(g) For the first system of Proposition 19(g) the first integral is y−a
(
y3 + (a− 3)x

)

if a 6= 3; and x/y3 − log y if a = 3.

Proof. The proof follows as the proof of Proposition 21.

Now we provide the first integrals of all homogeneous polynomial vector
fields of Propositions 18 and 20.

Proposition 23. A first integral of the homogeneous polynomial vector fields
of Proposition 18 statement:

(a) is x−3−2p2(3y2 − x2)p2−3 exp(−2
√
3p1arctanh(x/

√
3y));

(b) is x−3−2p2(3y2 + x2)p2−3 exp(−2
√
3p1 arctan(x/

√
3y));

(c) is x−2(3+p1)y2p1−3 exp(2p2y/x);

(d) is x exp(−y(2p1x+ p2y)/(3x
2)).

Proof. Using that V = xP − yQ is an inverse of integrating factor for the
homogeneous polynomial differential system ẋ = P (x, y) and ẏ = Q(x, y), the
first integrals are computed easily.

Proposition 24. A first integral of the homogeneous polynomial vector fields
of Proposition 20 statement:

(a) is (−µx+ y)a(µx+ y)b(−x+ µy)c(x+ µy)d,
where a = −3µ5+p3µ

2+p1+(3+p2)µ, b = −3µ5−p3µ
2−p1+(3+p2)µ,

c = −3µ5 − p3 − µ2p1 + (3− p2)µ, d = −3µ5 + p3 + µ2p1 + (3− p2)µ;

(b) is (x+ y)a(x− y)byc exp(−4p1x/y),
where a = 2(p1 − p2 + p3)− α, b = −2(p1 + p2 + p3)− α, c = 2(2p2 − α);

(c) is (−x+ y)a(x+ y)b(x2 + y2)c exp(2(p1 − p3) arctan(y/x)),
where a = −(p1 + p2 + p3 + µ), b = p1 − p2 + p3 − µ, c = p2 − µ;

(d) is (x2 − 2xy − y2)ayb exp(2p1x/y −
√
2carctanh((x + y)/(

√
2x)),

where a = 2p1 + p2 − 3α, b = −4p1 − 2p2 − 6α, c = 3p1 + p2 + p3 + 3α;

(e) is (x− y)ayb exp((p1 + p2)x/y + p1x
2/(2y2)),

where a = −2 + p1 + p2 + p3, b = −(2 + p1 + p2 + p3);

(f) is (αx2 + y2)ayb exp(−2p1x/y − c arctan(y/(
√
αx)),

where a = −p2 − 3α, b = 2p2 − 6α, c = 2(p1 − αp3)/(
√
α);

(g) is p1x
3/(3αy3) + p2x

2/(2αy2) + p3x/(αy) + log y;

(h) is (r1x
2+y2)a(r2x

2+y2)b exp(k1 arctan(y/(
√
r1x)+k2sign(x) arctan(y/(

√
r2x)),

where k =
√
9µ2 − 1, r1 = 3µ + k, r2 = 3µ − k, a = (αk + p2)/2,

b = (αk − p2)/2, k1 = (p1 − r1p3)/
√
r1, k2 = (r2p3 − p1)/

√
r2.

(i) is (x2+y2)α exp
(
(p2x+ (p3 − p1)y)x/(x

2 + y2)− (p1 + p3) arctan(y/x)
)
.

Proof. The proof follows the proof of Proposition 23.
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7. Polynomial, rational and global analytic first integrals of quasi–
homogenous polynomial vector fields of degree 2 and 3

In the previous section we have obtained first integrals of the quasi–homogeneous
quadratic and cubic vector fields without common factors. In this section we
identify between those systems the ones having a polynomial, rational or ana-
lytic first integral.

As usual we denote by Q the set of all rational numbers, and by Q+ (respec-
tively Q−) the set of all positive (respectively negative) rational numbers.

Corollary 25. A first integral of the quasi–homogeneous but non–homogeneous
vector fields of Proposition 17 statement:

(a) is polynomial;

(b) is rational if and only if a ∈ Q \ {2}, and is polynomial if and only if
a ∈ Q−;

(c) is rational if and only if a ∈ Q \ {1/2}, and is polynomial if and only if
a ∈ Q−.

Proof. It follows easily from Proposition 21.

Corollary 26. Consider the quasi–homogeneous but non–homogeneous polyno-
mial vector field of Proposition 19.

(a) For the first system of Proposition 19(a) a first integral is polynomial (and
rational) if and only if either b = 0 and a 6= 2, or a = −2. For the second
and third systems of Proposition 19(a) a first integral is polynomial (and
rational) if and only if a = 0.

(b) For the system of Proposition 19(b) a first integral is rational if and only if
a ∈ Q\{a = 2/3}, and a first integral is polynomial if and only if a ∈ Q−.

(c) For the system of Proposition 19(c) a first integral is polynomial.

(d) For the system of Proposition 19(d) a first integral is rational if and only
if a, b ∈ Q and a 6= 2 and b 6= 1/2, and a first integral is polynomial if and
only if

{
(a, b) ∈ Q2 : a < 2, b < 1/2, ab ≥ 1

}
.

(e) For the two systems of Proposition 19(e) a first integral is rational if and
only if a ∈ Q \ {a = 3/2}, and a first integral is polynomial if and only if
a ∈ Q−.

(f) For the system of Proposition 19(f) a first integral is rational if and only
if a ∈ Q\{a = 3}, and a first integral is polynomial if and only if a ∈ Q−.

(g) For the first system of Proposition 19(g) a first integral is rational if and
only if a ∈ Q \ {a = 3}, and a first integral is polynomial if and only if
a ∈ Q−. For the second system a first integral is rational if and only if
a ∈ Q, and a first integral is polynomial if and only if a ∈ Q−.
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Proof. It follows easily from Proposition 22.

Now we provide the polynomial or rational first integrals of all homogeneous
polynomial vector fields of Propositions 18 and 20.

Corollary 27. A first integral of the homogeneous polynomial vector fields of
Proposition 18 statement:

(a) is rational if and only if p1 = 0 and p2 ∈ Q, and is polynomial if and only
if additionally −3/2 < p2 < 3;

(b) is rational if and only if p1 = 0 and p2 ∈ Q, and is polynomial if and only
if additionally −3/2 < p2 < 3;

(c) is rational if and only if p2 = 0 and p1 ∈ Q, and is polynomial if and only
if additionally −3 < p1 < 3/2;

(d) is polynomial if and only if p1 = p2 = 0.

Proof. It follows easily from Proposition 23.

Corollary 28. A first integral of the homogeneous polynomial vector fields of
Proposition 20 statement:

(a) is rational if and only if the values a, b, c and d of Proposition 24(a) are
rational, and polynomial if and only if additionally a, b, c and d have the
same sign;

(b) is rational if and only if the values a, b and c of Proposition 24(b) are
rational and p1 = 0, and polynomial if and only if additionally a, b and c
have the same sign;

(c) is rational if and only if the values a, b and c of Proposition 24(c) are
rational and p1 = p3, and polynomial if and only if additionally a, b and
c have the same sign;

(d) is rational if and only if the values a, b and c of Proposition 24(d) satisfy
that a and b are rational and p1 = c = 0, and polynomial if and only if
additionally a and b have the same sign;

(e) is rational if and only if the values a and b of Proposition 24(e) are rational
and p1 = p2 = 0, and polynomial if and only if additionally a and b have
the same sign;

(f) is rational if and only if the values a, b and c of Proposition 24(f) satisfy
that a and b are rational and p1 = c = 0, and polynomial if and only if
additionally a and b have the same sign;

(g) is never rational;
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(h) is rational if and only if the values a, b, k1 and k2 of Proposition 24(h)
satisfy that a and b are rational and k1 = k2 = 0, and polynomial if and
only if additionally a and b have the same sign;

(i) is polynomial (and rational) if and only if p1 = p2 = p3 = 0.

Proof. It follows easily from Proposition 24.

In order to determine when a quasi–homogeneous polynomial differential
system has a global analytical first integral (i.e. an analytic first integral de-
fined in the whole C2), we observe that given an analytic function H we can
split it into the form H =

∑
i H

i, where Hi is a quasi–homogeneous polyno-
mial of weight degree i with respect to the weight exponents s1 and s2; i.e.
Hi(αs1x1, α

s2xn) = αiHi(x1, x2). The following result is well known, see for
instance Proposition 1 of [23].

Proposition 29. Let H be an analytic function and let H =
∑

i H
i be its de-

composition into quasi–homogeneous polynomials of weight degree i with respect
to the weight exponents s1 and s2. Then H is an analytic first integral of the
quasi–homogeneous polynomial differential system with weight exponents s1 and
s2 if and only if each quasi–homogeneous part Hi is a first integral of system
for all i.

From Proposition 29 it follows immediately the next result.

Corollary 30. A quasi–homogenous polynomial differential system has a global
analytic first integral if and only if it has a polynomial first integral.
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