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Abstract. In our paper [1] we are concerned with the problem of shape and period
of isolated periodic solutions of perturbed analytic radial Hamiltonian vector fields in
the plane. Actually, there is a mistake in the formula of the first order approximation
of the period given in Corollary 4. Here we give its proper drafting.

Corollary 4 of [1] provides the expression for the period function of the limit cy-
cles bifurcating from the period annulus of the class of radial Hamiltonian differential
equations in the plane given by

{
ẋ = − ∂

∂y
H(x, y) + εP (x, y, ε),

ẏ = ∂
∂x
H(x, y) + εQ(x, y, ε),

(1)

where H(x, y), P (x, y, ε) and Q(x, y, ε) are analytic functions and ε is a small param-
eter. We assume that this Hamiltonian vector field has a continuum of periodic orbits
around the origin. In (r, θ)-polar coordinates, H only depends on r, H = H(r) and the
differential system (1) is written as the one-form

dH +

∞∑

i=1

εi (Si(r, θ) dr − Ri(r, θ) dθ) = 0. (2)

The general expression for the period of the isolated periodic orbits of (2) given in [1]
is correct but there is a mistake in the first order term in its series in ε. The corrected
expression is done in the corollary below. We remark that only the general expression
for the period is used in [1]. Hence, all the expressions for the period described in the
applications are correct.

Corollary 4. Let us assume the hypotheses of Theorem 1. Then, the period of the
periodic solution, r(θ; ρ, ε), of equation (2) given in Theorem 3 satisfies

T (ε; ρ) =

∫ 2π

0

r(θ; ρ, ε)

H ′(r(θ; ρ, ε)) +
∑∞

i=1 ε
iSi(r(θ; ρ, ε), θ)

dθ. (3)

In particular,

T (ε; ρ) =
2πρ

H ′(ρ)
+ ε

(
2πF2(ρ) (ρH

′′(ρ)−H ′(ρ))

(H ′(ρ))2F ′
1(ρ)

− ρ

(H ′(ρ))2

∫ 2π

0

S1(ρ, θ) dθ

)
+O(ε2).

(4)

Proof. Assume that, in equation (1),

P (x, y, ε) =
∞∑

i=0

εiPi(x, y), Q(x, y, ε) =
∞∑

i=0

εiQi(x, y),
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where Pi, Qi are analytic functions. Hence, in polar coordinates (x, y) = (r cos θ, r sin θ),
the angle variation of equation (1) writes as

dθ

dt
=

1

r

∂H

∂r
(r, θ) +

1

r

∞∑

i=1

εiSi(r, θ), (5)

where
Si(r, θ) = cos θ Qi(r cos θ, r sin θ)− sin θ Pi(r cos θ, r sin θ).

Since equation (1) is of radial Hamiltonian type we write H ′(r) = ∂H
∂r
(r, θ) and, hence,

(5) writes as the 1-form

dt =
r dθ

H ′(r) +
∞∑
i=1

εiSi(r, θ)
. (6)

Expression (3) follows from (6) by direct integration on t and by taking into account
that r = r(θ; ρ, ε).
To obtain formula (4), first we develop the integrand of expression (3), up to first

order, in ε-power series and we get

T (ε; ρ) =
2πρ

H ′
r(ρ)

− ε

(H ′
r(ρ))

2

∫ 2π

0

(
(ρH ′′(ρ)−H ′(ρ)) r1(θ) + ρS1(ρ, θ)

)
dθ, (7)

where r1(θ) is given by the development of r(θ; ρ, ε) in its ε-power series

r(θ; ρ, ε) = r0(θ) + εr1(θ) + ε2r2(θ) + ε3r3(θ) + · · · .
Finally, by using the expression of r1(θ), given in Theorem 1, and Theorem 3.(i) of

[1], formula (4) follows.
�
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