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Abstract. We are interested in the coexistence of three species forming
a tritrophic food chain model. Considering a linear grow for the lowest
trophic species or prey, and a type III Holling functional response for
the middle and highest trophic species (first and second predator respec-
tively). We prove that this model exhibits two small amplitud periodic
solutions bifurcating simultaneously each one from one of the two zero-
Hopf equilibrium points that the model has for adequate values of its
parameters. As far as we know this is the first time that this phenomena
appear in the literature related with food chain models.

1. Introduction

In general, the Hopf bifurcation is a useful tool to analyse the existence
of limit cycles in predator–prey interaction models. For instance, in [27] the
authors proved the existence, uniqueness and nonexistence of limit cycles in
a predator–prey model considering a strong Allee effect in a prey. In [1] it is
considered a model of three species competing for three resources and it is
proved the existence of two limit cycles evolving the coexistence equilibrium
point, other example is [20]. In a food web the Hopf bifurcation is also the
principal tool for proving the coexistence of species that compose the food
chain. In this direction Freedman and Waltman [11] studied the persistence
of species in a three–level food chain model, they introduce a relative general
model, and criteria for the boundedness and stability are established. They
consider a Lotka–Volterra predation with a carrying capacity at the lowest
level via a logistic map and with a Holling functional response type II pre-
dation at the level of the first predator. They gave sufficient conditions for
persistence of all three species. Later on in [12] Freedman and So established
criteria for which a simple food–chain model has a globally stable positive
equilibrium and also develop criteria in order that such a food chain model
exhibits uniform persistence (see also [13]). In these articles the possibility
of existence of limit cycles is important, however it was not studied.
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Recently Françoise and Llibre analyse a model representing a tritrophic
food chain composed of a logistic prey, a Holling type II predator and a
Holling type II top–predator in [10]. Using the averaging theory (see [5, 23,
26]) they prove the existence of a stable periodic orbit contained in the region
of coexistence of the three species in a tritrophic chain. For some values of
the parameters three limit cycles born via a triple Hopf bifurcation. One
is contained in the plane where the top–predator is absent. Another one is
not contained in the domain of interest where all variables are positive and
the third one is contained where the three species coexist. In the literature
there are many paper dedicated to find these type of limit cycles which came
from a Hopf bifurcation, but in all these paper the existence of a triple Hopf
bifurcation was not proved analytically, see for instance [7, 8, 9, 18, 21, 22].

In this paper we analyse a tritrophic food chain model considering Holling
functional response of type III for middle and top trophic level and linear
grow for the lowest tropic level.

Accordingly with the previous works a general tritrophic food chain model
has the form

ẋ = xh(x)− f(x)y,

ẏ = y (−d1 + f(x))− g(y)z,

ż = z (g(y)− d2) .
Here x represents the number of lowest trophic species or prey, y is the
number of the middle trophic level species or first predator (called also as
predator), and z is the number of highest trophic level species or second
predator (super–predator). The parameters d1 and d2 are positives. The
function h(x) represents the specific growth rate of the prey and must always
satisfy

h(0) = α > 0,
∂h(x)

∂x
≤ 0 for allx ≥ 0.

The function f(x) is the functional response of predator (second consumer
or first predator) and must satisfy

f(0) = 0,
∂f(x)

∂x
≤ 0 for allx ≥ 0.

Finally, the function g(y) is the functional response of the super–predator
(tertiary consumer or second predator) and satisfy the conditions

g(0) = 0,
∂g(y)

∂y
≤ 0 for all y ≥ 0.

There are many functions that satisfy the above conditions, for example
the functional responses of predation include the usual functions found in
the literature (see, e.g., [17]). In this paper we will consider linear growth
without environmental carrying capacity for the prey and Holling functional
response type III for the predator and the super–predator. So we consider
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the functions

h(x) = ρ, f(x) =
a1x

2

x2 + b1
and g(y) =

a2y
2

y2 + b2
,

where ρ, a1, a2, b1 and b2 are positive constants. Consequently, the tritrophic
food chain model that we shall study is

(1)

ẋ = x

(
ρ− a1xy

b1 + x2

)
,

ẏ = y

(
−d1 +

a1x
2

b1 + x2
− a2yz

b2 + y2

)
,

ż = z

(
−d2 +

a2y
2

b2 + y2

)
.

For ecological restrictions the analysis is in the positive octant of R3, i.e. in
the region x > 0, y > 0 and z > 0.

We give necessary conditions on the parameters to guarantee the exis-
tence of two equilibrium points of the differential system (1) in the region
of interest. At these equilibrium points we find two families of parameters
for which these equilibrium are zero–Hopf, see Proposition 1. The main
result shows that only one of these families of parameters produce a dou-
ble simultaneously zero–Hopf bifurcation, appearing at the same time two
small amplitude periodic orbits bifurcating simultaneous of the two different
equilibria of the system, see Theorem 2.

2. Equilibrium points in the positive octant

As we mention above, the tritrophic food chain model (1) has two equi-
librium points in the positive octant of R3 when the parameters satisfy the
following three conditions:

(i) a2 − d2 6= 0,

(ii) a21b2d2 + 4b1(d2 − a2)ρ2 ≥ 0,

(iii)
a21b2d2 + 2b1(d2 − a2)ρ2 ± a1

√
b2d2

(
a21b2d2 + 4b1(d2 − a2)ρ2

)

(a2 − d2)ρ2
≥ 0.

These conditions are necessary because in the coordinates of these two equi-
librium points appear the expression

√√√√a21b2d2 + 2b1(d2 − a2)ρ2 ± a1
√
b2d2

(
a21b2d2 + 4b1(d2 − a2)ρ2

)

(a2 − d2)ρ2
.

In order that the expression of the equilibrium points become easier we
change the parameter b2 for the new parameter k > 0 defined through

a21b2d2 + 2b1(d2 − a2)ρ2 − a1
√
b2d2

(
a21b2d2 + 4b1(d2 − a2)ρ2

)

(a2 − d2)ρ2
= k2.
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Solving b2 in terms of k from the above expression we obtain

b2 =
(a2 − d2)(2b1 + k2)2ρ2

2a21d2k
2

.

Therefore we need that a2 > d2, otherwise b2 would be negative. Hence the
condition (i) becomes

(i) a2 − d2 > 0.

Now the equilibrium points in the positive octant are

p1 =

(
k√
2
,

(
2b1 + k2

)
ρ√

2a1k
,

(
(a1 − d1) k2 − 2b1d1

)
ρ√

2a1d2k

)
,

p2 =

(
2
√

2b1
k

,

(
2b1 + k2

)
ρ√

2a1k
,

(
2b1a1 − d1

(
2b1 + k2

))
ρ√

2a1d2k

)
.

Our first interest is to analyse when of these two equilibrium points are
of type zero–Hopf.

3. Zero–Hopf equilibrium points and bifurcation

We recall that an equilibrium point is a zero–Hopf equilibrium of a 3–
dimensional autonomous differential equation, if it has a zero real eigen-
value and a pair of purely imaginary eigenvalues. We know that a zero–
Hopf bifurcation is a two–parameter unfolding (or family) of a 3-dimensional
autonomous differential system with a zero–Hopf equilibrium. The unfold-
ing has an isolated equilibrium point with a zero eigenvalue and a pair of
purely imaginary eigenvalues if the two parameters take zero values, and
the unfolding has different topological type of dynamics in the small neigh-
bourhood of this isolated equilibrium as the two parameters vary in a small
neighbourhood of the origin. This theory of zero–Hopf bifurcation has been
analysed by Guckenheimer, Han, Holmes, Kuznetsov, Marsden and Scheurle
in [14, 15, 16, 19, 24]. In particular they shown that some complicated in-
variant sets of the unfolding could bifurcate from the isolated zero–Hopf
equilibrium under some conditions. Hence in some cases the zero–Hopf bi-
furcation could imply a local birth of “chaos” see for instance the articles
[2, 3, 4, 6, 25] of Baldomá and Seara, Broer and Vegter, Champneys and
Kirk, Scheurle and Marsden.

In the next result we characterize when the equilibrium points p1 or p2 of
our tritrophic system (1) are zero–Hopf equilibrium.

Proposition 1. The equilibrium points p1 and p2 are zero–Hopf equilibrium
points simultaneously if b1 = k2/2 and one of the following two conditions
holds:

(a) a2 = 2d2 and 2d1d2 − a1(d2 + ρ) < 0.
(b) a1 = 2d1.
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Proof. The proof is made computing directly the eigenvalues at each equilib-
rium point. First, the characteristic polynomial of the linear approximation
of the tritropic system (1) at the equilibrium p1 is

p(λ) = −λ3 +A2λ
2 +A1λ+A0,

where,

A0 =
2(a2 − d2)d2

(
2b1 − k2

) (
2b1d1 + (d1 − a1)k2

)
ρ

a2 (2b1 + k2)2
,

A1 =
a2B2 − 2d2B1

a2 (2b1 + k2)2
,

A2 =
(a2 − 2d2)(2b1d1 + (d1 − a1)k2) + a2(k

2 − 2b1)ρ

a2(2b1 + k2)
,

B1 =
(
2b1d1 + (d1 − a1)k2

) (
k2(d2 − ρ) + 2b1(d2 + ρ)

)
,

B2 = k4(d1 − a1)(2d2 − ρ) + 4b21d1(2d2 + ρ)− 2b1k
2(2a1d2 − 4d1d2 + 3a1ρ).

Imposing the condition that p(λ) = −λ(λ−ε+ωI)(λ−ε−ωI), we obtain
a system of three equations, that correspond to the coefficients of the terms
of degree 0, 1 and 2 in λ of the polynomial. So the solutions of this system
in terms of the variables ω, ε, b1, d2 and a1 are the next three group of
solutions:

ω = ω1, ε = −(a1 − 2d1)(a2 − 2d2)

4a2
, b1 =

k2

2
;(s1)

ω = ω2, ε =
k2(a1 − d1 + ρ)− 2b1(d1 + ρ)

2 (2b1 + k2)
, d2 = a2;(s2)

ω = ω3, ε =

(
k2 − 2b1

)
ρ

2 (2b1 + k2)
, a1 = d1 +

2b1d1
k2

.(s3)

Here each ωi for i = 1, 2, 3 is a funciton in the parameters of the system that
it is not necessary to provide explicitly. We must omit solution (s2) because
it does not satisfy condition (i).

As we want that the eigenvalues of the linear approximation at p1 are 0
and ±ωi, we need that ε = 0 to conclude that p1 is a zero–Hopf equilibrium
point.

(1) When ε is zero we have two cases for (s1).
(1.1) ε = 0 and a1 = 2d1. Then we have that the eigenvalues are 0 and

±i√d1ρ. Then p1 is a zero–Hopf equilibrium. This corresponds
to statement (b) for p1.

(1.2) ε = 0 and a2 = 2d2. In this case the eigenvalues are 0 and

±i
√

(−2d1d2 + a1(d2 + ρ)) /2. So in order to obtain purely
imaginary conjugate eigenvalues it is necessary that a1(d2 +
ρ) − 2d1d2 > 0. Then p1 is a zero–Hopf equilibrium. This
corresponds to statement (a) for p1.
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(2) In (s3) we have that ε = 0 if and only if −2b1+k2 = 0, which implies
that b1 = k2/2. So the eigenvalues at the point p1 are

0 and ± i
√
d1ρ.

Then we have two pure imaginary conjugate eigenvalues and then p1
is zero–Hopf equilibrium. Since b1 = k2/2 we again obtain statement
(b) for p1.

In a similar way we study the eigenvalues of the linear approximation at
the equilibrium point p2 to complete the proof of the proposition. Thus, the
set of solutions of the corresponding system of equations determined from
the coefficients of degree 0, 1 and 2 in λ of the equality p(λ) = −λ(λ− ε+
ωI)(λ − ε − ωI), where p(λ) is the characteristic polynomial of the linear
part at the point p2, in terms of variables ω, ε, b1, d2 and a1, are

ω = ω1, ε = −(a1 − 2d1)(a2 − 2d2)

4a2
, b1 =

k2

2
;(s4)

ω = ω2, ε = −−2a1b1 + 2b1(d1 − ρ) + k2(d1 + ρ)

2 (2b1 + k2)
, d2 = a2;(s5)

ω = ω3, ε = −
(
−2b1 + k2

)
ρ

2 (2b1 + k2)
, a1 = d1 +

d1k
2

2b1
.(s6)

Also here each ωi for i = 1, 2, 3 has an expression in function of the param-
eters that it is not necessary to write. Again we must omit the solution (s5)
because it does not satisfy condition (i).

If we made the analysis using the set of solutions (s4) and (s6), we obtain
again the statements (a) and (b) for the equilibrium point p2. This completes
the proof of the proposition. �

4. The main result

Proposition 1 guarantees the existence of three–dimensional parameter
families for which the equilibrium points p1 and p2 are of zero–Hopf type
simultaneously. Therefore it is possible to have simultaneously two zero–
Hopf bifurcations, one on each equilibria. The following theorem establishes
that one of these two families of parameters gives rise to a simultaneously
zero–Hopf bifurcation in each equilibria, in the sense that a small amplitude
periodic orbit borns simultaneously at p1 and p2. For the other family of
simultaneous zero–Hopf equilibria it is not possible, using the averaging the-
ory, to show that small amplitude periodic orbits borns from those equilibria
simultaneously.

Theorem 2. Assume that the parameters satisfy:

(c1) b1 = k2/2,
(c2) a2 = 2d2 + µ where µ is a small parameter,
(c3) a1(d2 + ρ)− 2d1d2 > 0, and
(c4) a1 − 2d1 6= 0.
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Then for µ > 0 sufficiently small two small amplitude periodic orbits born si-
multaneously one at the equilibrium point p1 and the other at the equilibrium
point p2 when µ = 0.

Proof. We prove this theorem using the averaging theory of first order, a
summary of this theory is given in the appendix. This summary facilitates
to follow the computations necessary for proving this theorem.

The hypotheses of the theorem imply that the equilibrium points p1 and
p2 are zero–Hopf when µ = 0 (see statement (a) of Proposition 1). First,
we prove that at the point p1 there is a zero–Hopf bifurcation. We translate
the equilibrium point p1 = (x1, y1, z1) to the origin of coordinates and we
substitute b1 = k2/2 and a2 = 2d2 + µ with µ a small paramete. Then the
differential system (1) becomes

(2)

ẋ = −
(√

2k + 2x
) (
a1
(√

2k + 2x
)
y − 2x2ρ

)

4
(
k2 +

√
2kx+ x2

) ,

ẏ =

(
y +

√
2kρ

a1

)(
−d1 +

a1
(√

2k + 2x
)2

4
(
k2 +

√
2kx+ x2

) − E
)
,

ż =
y(d2 + µ)

(
a1y + 2

√
2kρ
) (

2a1d2z +
√

2(a1 − 2d1)kρ
)

2a21d2y
2 + 4

√
2a1d2kyρ+ 4k2(2d2 + µ)ρ2

,

where

E =
(2d2 + µ)

(
a1y +

√
2kρ
) (

2a1d2z +
√

2(a1 − 2d1)kρ
)

2a21d2y
2 + 4

√
2a1d2kyρ+ 4k2(2d2 + µ)ρ2

.

The matrix of the linear approximation of system (2) at the origin is




0 −a1
2

0

ρ −(a1 − 2d1)µ

2(2d2 + µ)
−d2

0
(a1 − 2d1)(d2 + µ)

2d2 + µ
0



,

and the eigenvalues when µ = 0 are

0 and ± M√
2
i,

where M =
√
a1(d2 + ρ)− 2d1d2. Then the origin of coordinates is a zero–

Hopf equilibrium point of (2) when µ = 0.
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Now we apply a rescaling of the variables through the change of coordi-
nates (x, y, z)→ (µX, µY, µZ) obtaining the new differential system

(3)

Ẋ = −a1Y
2

+ µ
X(−a1Y +Xρ)√

2k
+O(µ2),

Ẏ = −d2Z +Xρ+ µ
E1

8d2kρ
+O(µ2),

Ż =
1

2
(a1 − 2d1)Y + µ

Y E2

8d2kρ
+O(µ2),

where

E1 =
√

2a21d2Y
2 + 4ρ

(
d1kY −

√
2d2X

2ρ
)
−

2a1Y
(
kρ+

√
2d2(d1Y + 2d2Z − 2Xρ)

)
,

E2 = −
√

2a1(a1 − 2d1)d2Y + 4
√

2a1d
2
2Z + 2a1kρ− 4d1kρ.

Now we shall write the linear part at the origin of the differential system
(2) when µ = 0 into its real Jordan normal form, i.e. as




0 −M√
2

0

M√
2

0 0

0 0 0


 .

To do this, we apply a change of variables (X,Y, Z)→ (u, v, w), given by

(4) X =

√
2a1d2w + a1uM√

2M2
, Y = v, Z =

√
2a1wρ+ (2d1 − a1)uM√

2M2
.

In the new variables (u, v, w) the differential system (3) writes

(5)

u̇ = −M√
2
v +

µ

kM

(
(a1d2wρ)2

M4
+

√
2a21d2uwρ

2

M3
+

(a1uρ)2

2M2

−a
2
1d2vw(d2 + ρ)

M2
+
a1uv

(
(a1 − 2d1)d

2
2 − a1ρ2

)
√

2ρM

−k(a1 − 2d1)v

2
√

2
+
a1(a1 − 2d1)d2v

2

4ρ

)
+O(µ2),

v̇ =
M√

2
u+

µ

8

(
4d1v

d2
− 2a1v

(√
2d1d2v + kρ− 2d2uM

)

d2kρ

+
a21

kρM4

(√
2v2M4 + 2ρ2

(√
2u2M2

−2
√

2d22w
2 − 4d2uwM

) ))
+O(µ2),
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ẇ =
µ

8

(
2(a1 − 2d1)v

d2
−
√

2a1(a1 − 2d1)v
2

kρ

+
8
√

2a1d1d2vw

kM2
+

4
√

2a1(a1 − 2d1)d
2
2w

2ρ

kM4

+
8a1(a1 − 2d1)d2uwρ

kM3
+

2
√

2a1(a1 − 2d1)u
2ρ

kM2

−4a1(a1 − 2d1)uv(d2 + ρ)

kρM

)
+O(µ2),

and this system has its linear part at the origin in the real Jordan normal
form.

To apply the averaging theory we need to write the differential system
(5) in cylindrical coordinates (r, θ, ω). Then we do the change of variables
defined by u = r cos θ, v = r sin θ w = w, and system (5) becomes

(6)

dr

dθ
=

µ

4
√

2d2kρM6

[ (
4a21d2r

2ρ3M2 cos3 θ

+2
√

2a1d2rM cos2 θ
(
4a1d2wρ

3 + r
(
2(a1 − 2d1)d

2
2

−3a1ρ
2
)
M2 sin θ

)
+ 2d2 cos θ(

4a21d
2
2w

2ρ3 − rρM2
(
4
√

2d21d2k − 2
√

2a1d1k(2d2 + ρ)

+a21
(√

2d2k + 4d22w +
√

2kρ+ 8d2wρ
))

sin θ
+a1r

2(3a1d2 − 6d1d2 + 2a1ρ)M4 sin2 θ
)

+M sin(θ)
(
−4
√

2a21d
3
2w

2ρ2 + (a1 − 2d1)rM
4 sin θ(

−2kρ+
√

2a1d2r sin θ
))) ]

+O(µ2)

= µF1,1(θ, r, w) +O(µ2),

dw

dθ
=

µ

4
√

2kρM5

[
4
√

2a1(a1 − 2d1)d
2
2ρw

2

+2
√

2a1(a1 − 2d1)r
2ρM2 cos2 θ

−
√

2a1(a1 − 2d1)r
2M4 sin2 θ

+
8
√

2r
(
kM2(a1 − 2d1) + 4

√
2a1d1d

2
2w
)
ρM3 sin θ

d2
−4a1(a1 − 2d1)rM cos θ

(
−2d2wρ

2

+r(d2 + ρ)M2 sin θ
) ]

+O(µ2)

= µF1,2(θ, r, w) +O(µ2).

Using the notation of the appendix we have t = θ, T = 2π, x = (r, w)T ,

F1(θ, r, w) =

(
F1,1(θ, r, w)
F1,2(θ, r, w)

)
, and f1(r, w) =

(
f1,1(r, w)
f1,2(r, w)

)
.

It is immediate to check that system (6) satisfies all the assumptions of
Theorem 3.
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Now we compute the integrals (10), i.e.

f1,1(r, w) =
1

2π

∫ 2π

0
F1,1(θ, r, w)dT

=
r
(
8a21d

2
2wρ

2 −
√

2(a1 − 2d1)kM
4
)

8kd2M5
,

f1,2(r, w) =
1

2π

∫ 2π

0
F1,2(θ, r, w)dT

=
a1(a1 − 2d1)

(
8(d2wρ)2 + (rM)2

(
2ρ2 −M2

))

8kρM5
.

The system f1,1(r, w) = f1,2(r, w) = 0 has a unique solution (r∗, w∗),
namely

r∗ =
(a1 − 2d1)kM

3

2a21d2ρ
√
M2 − 2ρ2

, w∗ =
(a1 − 2d1)kM

4

4
√

2(a1d2ρ)2
.

Finally, the Jacobian (11) at the point (r∗, w∗) takes the value

(a1 − 2d1)
3

16a1d2ρM2
,

that by assumptions it is not zero. Then by the averaging theorem (Theorem
3) we have a periodic solution (r(θ, µ), w(θ, µ)) of system (6) for µ > 0
sufficiently small such that (r(0, µ), w(0, µ))→ (r∗, w∗) when µ→ 0. Hence,
the differential system (5) has the periodic solution

(7)



u(θ, µ)
v(θ, µ)
w(θ, µ)


 =



r(θ, µ) cos θ
r(θ, µ) sin θ
w(θ, µ)


 ,

considering µ > 0 sufficiently small. Consequently, the differential system
(3) has a periodic orbit (

X(θ), Y (θ), Z(θ)
)

obtained from (7) through the change of variables (4). To finish, the differ-
ential system (2) has a periodic solution

(
x(θ), y(θ), z(θ)

)
=
(
µX(θ), µY (θ), µZ(θ)

)
,

for µ > 0 sufficiently small. Clearly, this periodic orbit tends to the origen
of coordinates when µ → 0. Therefore, it is a small amplitude periodic
solution starting at the zero–Hopf equilibrium point located at the origin
of coordinates when µ = 0 which correspond to the zero–Hopf equilibrium
point p1.

Following exactly the same computations we prove that at the equilibrium
point p2 also there exists a small amplitud periodic solution bifurcating from
the equilibrium point p2. This concludes the proof of the theorem. �
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Appendix: The averaging theory of first order

In this section we present some basic results related with the averaging
theory that we will use in the proof of our main result.

The next theorem establish the existence and stability or instability of
the periodic solutions for a periodic differential system. The proof of this
theorem can be found in Theorems 11.5 and 11.6 of Verhulst [26].

Consider the differential systems

(8) ẋ = µF1(t,x) + µ2F2(t,x, µ), x(0) = x0

with x ∈ D, where D is an open subset of Rn, t ≥ 0 and µ is a small param-
eter. Moreover we assume that both F1(t,x) and F2(t,x, µ) are T−periodic
in t. Now we also consider in D the averaged differential equation

(9) ẏ = µf1(y), y(0) = x0,

where

(10) f1(y) =
1

T

∫ T

0
F1(t,y)dt.

Under certain conditions the equilibrium solutions of the averaged equation
(9) correspond to T−periodic solutions of equation (8).

Theorem 3. Consider the two initial value problems (8) and (9) and sup-
pose:

(i) F1, its Jacobian ∂F1/∂x, its Hessian ∂2F1/∂x
2, F2 and its Jacobian

∂F2/∂x are defined, continuous and bounded by a constant indepen-
dent of µ in [0,∞)×D and µ ∈ (0, µ0].

(ii) F1 and F2 are T−periodic in t (T independent of µ).

Then the following statements hold.

(a) If p is an equilibrium point of the averaged equation (9) and

(11) det

(
∂f1
∂y

)∣∣∣∣
y=p

6= 0,

then there exists a T−periodic solution ϕ(t, µ) of the differential
equation (8) such that ϕ(0, µ)→ p as µ→ 0.

(b) The stability or instability of the periodic solution ϕ(t, µ) is given by
the stability or instability of the equilibrium point p of the averaged
system (9). In fact the singular point p has the stability behavior of
the Poincaré map associated to the limit cycle ϕ(t, µ).
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