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Abstract. This paper aims at providing an example of a family of
polynomial Liénard equations exhibiting an alien limit cycle. This limit
cycle is perturbed from a 2-saddle cycle in the boundary of an annulus
of periodic orbits given by a Hamiltonian vector field. The Hamiltonian
represents a truncated pendulum of degree 4. In comparison to a former
polynomial example, not only the equations are simpler but a lot of
tedious calculations can be avoided, making the example also interesting
with respect to simplicity in treatment.

1. Introduction.

Periodic orbits in polynomial planar differential systems can be isolated
or belong to an annulus of periodic orbits. In the isolated case they are
called limit cycles.

For planar real polynomial vector fields, Hilbert’s 16th problem (see [9])
is involved with the question of the existence of a finite upper bound, only
depending on the degree of the vector field, of the number of limit cycles.

A way to get insight in Hilbert 16th problem is by using perturbative
methods, i.e. to ask for the maximum number of limit cycles when perturb-
ing from known situations like, for instance, from polynomial Hamiltonian
systems, i.e. those described by a polynomial Hamiltonian function. The
latter problem is known as the Infinitesimal Hilbert’s 16th problem (see
[1, 2]). It deals with differential systems of the form

ẋ = −∂H

∂y
+ εp, ẏ =

∂H

∂x
+ εq, (1.1)

where H = H(x, y) is the polynomial Hamiltonian function, p, q ∈ IR[x, y]
and ε is considered to take small positive values. From now on we will restrict
to a single Hamiltonian function, but we will permit the polynomials p and
q also to depend, in a polynomial way, on extra parameters λ ∈ Λ, with
Λ ⊂ IRs, for some s ∈ IN . We restrict our attention to a bounded period
annulus of the Hamiltonian vector field XH . We choose the Hamiltonian
to be 0 on the outer boundary and positive on the side of the annulus. As
usual, we denote by γu ⊂ {(x, y) |H(x, y) = u} the part of the level curve of
the Hamiltonian, representing one of the closed orbits in the period annulus.

The Poincaré return map, P , with respect to a regular section transverse
to the orbits of the period annulus, for the perturbed Hamiltonian vector
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field (1.1), verifies

P (u, ε) = u+ ε

∮

γu

(p dy − q dx) +O(ε2).

In perturbing from a polynomial Hamiltonian system, large part of the
cyclicity problem can be reduced to studying the zeros of the integral

I(u) =

∮

γu

(p dy − q dx) , (1.2)

called Abelian integral related to system (1.1) and calculated along the ovals
of the Hamiltonian function, see [13]. Nevertheless, this study does not finish
the investigation near the Hamiltonian systems and attention has to be paid
to the singular cycles situated at the boundary of the annuli of periodic
orbits. Such a singular cycle contains both regular orbits and singularities,
i.e. zeroes of the system. The limit cycles that can be perturbed from such
a singular cycle cannot always been detected by the Abelian integral, see
[5, 6]. Such limit cycles have been called “alien limit cycles”, see [3, 4].

The existence of alien limit cycles for concrete families of vector fields
(1.1) is far from being trivial. It is e.g. not possible to find alien limit
cycles when the boundary of the annulus is a hyperbolic loop. In [12], under
certain genericity conditions on I(u), it is proved that there is a bijective
correspondence between limit cycles of the perturbed vector field (1.1) and
the zero-set of I, for ε and u near zero.

As shown in [6] the simplest possibility to get alien limit cycles is the
hyperbolic 2-saddle cycle. In that case there is a possibility of getting alien
limit cycles merely by breaking one connection and keeping the other con-
nection unbroken. As we will recall in Section 5, the asymptotic expansion
of the equations governing the closed orbits, contains more terms than the
asymptotic development of the Abelian integral does. This can be exploited,
permitting alien limit cycles to appear and hence implying that the Abelian
integral does not give the precise cyclicity of the perturbed vector field.

In [6] the theoretical elaboration was made on how to obtain alien limit
cycles. The most generic conditions were described needed for proving the
existence of an alien limit cycle in a polynomial family of planar vector fields.
A first example was provided in [11]. Namely it was proven that the family
{

ẋ = 1− 1
4y

2 − x2 + ε[µ3xy + µ4y
2x+ y(x2 + 1

12y
2 − 1)(x−

√
3π
8 xy)],

ẏ = 2xy + εy(µ1 + µ2x).
(1.3)

contains an alien limit cycle, for small positive ε and small µi, i = 1, .., 4.
The calculations, needed to check the conditions as described in [6], revealed
to be very lengthy and complicated.

In this work we want to prove the existence of an example in the class of
polynomial Liénard equations. We consider families of Liénard equations,
written in the phase plane as

ẋ = y, ẏ = −g(x)− f(x, λ)y, (1.4)

where f and g are polynomials in x of respective degrees m and n and
λ ∈ Λ is a s-dimensional parameter. We remark that to confine Hilbert’s
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16th problem to Liénard equations is a problem of current interest, see
Problem 13 in [14] for instance. Moreover we will see that a lot of tedious
calculations can be avoided in the treatment of the example that we provide.
We specifically consider the family of Liénard equations X(ε,c,d):



ẋ = y,
ẏ = x3 − x+ εd0 + εy

(
c0 + c1x+ (−13c0 + d2)x

2 + (27c0 + d4)x
4

+(−15c0 + d6)x
6
)
,

(1.5)
where c = (c0, c1) ∈ IR2, d = (d0, d2, d4, d6) ∈ IR4, and ε ∈ IR is a small
positive value.

During the construction we will fix c0 and c1 at some non-zero values,
while we will keep d = (d0, d2, d4, d6) ∈ IR4 as parameters, close to zero. For
a precise description of the main result we refer to Theorem 1.2.

We note that equation (1.5) is an ε-perturbation of a single Hamiltonian
system XH , with Hamiltonian function

H(x, y) = −1

2
y2 +

1

4
x4 − 1

2
x2 +

1

4
. (1.6)

We observe that the flow ofX(0,c,d) = XH contains a period annulus bounded
by a hyperbolic 2-saddle cycle, that we denote by L, as in Figure 1. We re-

Figure 1. A 2-saddle cycle lying on the boundary of the
period annulus around the origin of system (1.1).

call that a period annulus is a subset of the plane filled by closed orbits.
The vector field XH has an annulus of periodic orbits γu, contained in the
level curves of {H = u}, for u ∈ (0, 1/4). The hyperbolic 2-saddle cycle L
is formed by two hyperbolic saddles, s− = (−1, 0) and s+ = (1, 0) plus their
connections Γ1 and Γ2. In this way, we have that s− = α(Γ1) = ω(Γ2) while
s+ = α(Γ2) = ω(Γ1). We choose H to be zero on L, positive on the closed
orbits and H(0, 0) = 1/4.

The existence of alien limit cycles in the unfolding X(ε,c,d), is obtained by
assuming a “generic” unfolding of the vector field XH , of codimension 4,
leaving one connection of the 2-saddle cycle unbroken (see [6]). Roughly
speaking, for an unfolding to be generic, besides a genericity condition on
the related Abelian integral, some genericity property on the second order
derivatives of the transition map along the saddle connections has to be
satisfied as well.
Verifying the genericity conditions on the second order derivatives revealed
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to be very complicated and tedious in the example (1.3). For equation (1.5)
we can avoid making such calculations by not specifying which of the two
connections we keep unbroken. It has to be proven, of course, that it is
permitted working that way in equation (1.5). It is essentially due to some
symmetries present in the Hamiltonian vector field XH .

We strongly believe that equation (1.5) is the simplest polynomial exam-
ple possible exhibiting an alien limit cycle as described in [6]. For Liénard
equations this is definitely the case.

We know from [7] and [15] that the Abelian integrals related to equation (1.5)
have at most 3 zeros, multiplicity taken into account, if we stay close to the
2-saddle cycle. Let us state this as a proposition to emphasize the contrast
with the result that we will state in Theorem 1.2.

Proposition 1.1. Consider system X(ε,c,d), representing a perturbation from
a Hamiltonian vector field with (1.6) as Hamiltonian. Then the Abelian in-
tegrals associated to equation (1.5) have, for c = (c0, c1) with c0 6= 0, d
sufficiently close to 0, and u > 0 sufficiently small, at most 3 zeros, multi-
plicity taken into account.

In Section 4 we will recall the proof of this proposition, since we will have
to rely on these calculations in the rest of the elaboration.

The principal result in this paper is the following:

Theorem 1.2. Let X(ε,c,d) be the unfolding given in (1.5), of the Hamilton-
ian vector field XH with (1.6) as Hamiltonian. Let L be the 2-saddle cycle
with saddle points s− = (−1, 0) and s+ = (1, 0), see Figure 2. Then, for
any choice c0 = c00 with c00 6= 0, there exists (at least) an interval of choices
c1 = c01, with c01 6= 0, such that the 4-parameter family X(ε,(c00,c01),d)

, with d

sufficiently close to 0, contains, for ε ∼ 0, with ε > 0, a swallowtail catastro-
phe of limit cycles. The limit cycles in this bifurcation are Hausdorff-close
to L and the swallowtail catastrophe can be obtained by only breaking one of
the connections, leaving the other unbroken. Moreover, for any value (c00, c

0
1)

with c00 6= 0 and d sufficiently close to 0, at most 4 limit cycles can perturb
from L in the family X(ε,(c00,c01),d,)

, when breaking one connection and leaving

the other unbroken.

Remarks:

(1) In order to avoid lengthy and complicated calculations, as in [11], we
provide a construction in which we cannot make precise for which
c01 the results hold. Most probably it holds for most c01 but we
restrict to proving the existence of an interval of choices for which
the result holds. For the same reason we also do not specify which of
the connections Γ1 or Γ2 gets broken and which remains unbroken.
The way of proving the existence of the swallowtail catastrophe of
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limit cycles will however require that one of the connections remains
unbroken in order to be able to rely on the theoretical results from
[6]. In Section 5 we will recall the essential ingredients from the
theory developed in [6] since we will heavily rely on it.

(2) We recall that in a swallowtail catastrophe of limit cycles there is
a limit cycle of multiplicity 4 that gets fully unfolded, inducing the
occurrence of systems exhibiting 4 limit cycles.

In Section 2 we will study some important properties of the family (1.5), in-
cluding a study of the normal form at the saddle points. In Section 3 we will
investigate the conditions under which the heteroclinic connections break or
remain unbroken. In section 4 we will calculate the Abelian integrals of
the family (1.5), stressing their behaviour near the 2-saddle connection. In
Section 5 we will recall the essential ingredients from [6], needed to prove
Theorem 1.2 and we will check some conditions that need to be fulfilled for
proving the theorem. In Section 6 we finalize the proof of Theorem 1.2. In
Section 7 we provide some extra information on the Abelian integrals of the
family (1.5), showing that no limit cycles will perturb from the interior of
the annulus under the conditions of Theorem 1.2.

2. Basic properties of family (1.5), including normal forms at
the saddles.

Important to observe is that the family of Liénard equations (1.5) is in-
variant under the change of variables and parameters

(x, y, ε, c0, c1, d0, d2, d4, d6, t) 7→ (−x, y, ε,−c0, c1,−d0,−d2,−d4,−d6,−t),
(2.1)

as well as under the change of variables and parameters

(x, y, ε, c0, c1, d0, d2, d4, d6, t) 7→ (−x,−y, ε, c0,−c1,−d0, d2, d4, d6, t). (2.2)

Also the Hamiltonian H (see (1.6)) is unchanged under the transforma-
tions (2.1) and (2.2).

As mentioned in Section 1 we are interested in a study of family (1.5),
more precisely of its limit cycles, near the 2-saddle cycle L (see Figure 1),
under the conditions expressed in Theorem 1.2.

In studying limit cycles bifurcating from L, instead of considering a first-
return map or Poincaré-map with respect to some transverse section, we
will, like in [6], consider a difference map ∆ that we will introduce now. We
therefore introduce the transverse sections Σi

0 on {x = 0}, (see Figure 2),
transverse to the according Γi. As a regular parameter on both Σ1

0 and
Σ2
0 we take u, recalling that the values u ∈ (0, 1/4), describe the periodic

orbits γu in the period annulus bounded by L. The intersection Γi ∩ Σi
0

corresponds to u = 0. From section Σ1
0 to Σ2

0 we can now consider a passage
map in forward time, that we denote by H+ and a passage map in backward
time, that we denote by H−. The difference map that we want to consider
is defined as ∆ = H+ −H−. Because of the symmetry (2.1) we see that the



6 B. COLL, F. DUMORTIER, AND R. PROHENS

Figure 2. Transverse sections and passage maps for L =
Γ1 ∪ Γ2.

passage map in backward time H−, called the passage map to the left, can
be expressed as a passage map to the right, namely:

H−(u, ε, c0, c1, d0, d2, d4, d6) = H+(u, ε,−c0, c1,−d0,−d2,−d4,−d6).

To simplify notation, we simply write d for (d0, d2, d4, d6). We see that the
difference map ∆ : Σ1

0 7→ Σ2
0 can be expressed as

∆(u, ε, c, d) = H+(u, ε, c0, c1, d) −H+(u, ε,−c0, c1,−d), (2.3)

for u > 0 sufficiently small. We remark that, for ε = 0, ∆ can be defined for
u ∈ (0, 1/4) and ∆(u, 0, c, d) = 0.

For ε 6= 0, and in the region under consideration, the limit cycles of system
(1.5) correspond to isolated solutions of ∆(u, ε, c, d) = 0 and the cyclicity of
L in the unfolding X(ε,c,d) can be expressed in terms of ∆ by

Cycl(X(ε,c,d),L) = lim sup
ε→0,u→0

{number of isolated zeroes of ∆(u, ε, c, d)}.

The cyclicity is the maximum number of limit cycles that can be generated
by L (see e.g. [13]).

In order to describe the conditions that we will need for applying [6] we
will need more information, of which some is related to the saddles s+ and
s−.

A first thing we observe is that, for ε ∼ 0, the position of the right
saddle is given by (S+(εd0), 0), with S+(0) = 1, and with S+ solution of
x3 − x + εd0 = 0. As such S+(εd0) = 1 − (1/2)εd0 + O((εd0)

2). We will
sometimes merely write s+ for (S+(εd0), 0) and S+ for S+(εd0).
The 1-jet of (1.5) at s+ is given by:

(
0 1
2 A+(ε, c, d)

)
, (2.4)

with

A+(ε, c, d) = ε(c0+c1S++(−13c0+d2)S
2
++(27c0+d4)S

4
++(−15c0+d6)S

6
+).
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The eigenvalues of (2.4) at s+ are given by λ−
+ < 0 < λ+

+, with

λ−
+(ε, c, d) = −

√
2 +

1

2

(
c1 + d2 + d4 + d6

)
ε+O(ε2),

λ+
+(ε, c, d) =

√
2 +

1

2

(
c1 + d2 + d4 + d6

)
ε+O(ε2).

So the hyperbolicity ratio of s+, defined by r+ = −λ−
+/λ

+
+ (see [13]), is given

by

r+(ε, c, d) = 1− 1√
2

(
c1 + d2 + d4 + d6

)
ε+O(ε2). (2.5)

For a similar study near (−1, 0) we recall that, when passing near s−, we
work in backward time.

There is however no need to make new calculations because of the invari-
ance of equation (1.5) under transformation (2.1).

We hence see that the left saddle of equation (1.5) is situated at s− =
(S−(εd0), 0), with S−(εd0) = −S+(−εd0). The 1-jet at s− is given by ex-
pression (2.4) changing A+ by A−, with

A−(ε, c0, c1, d0, d2, d4, d6) = A+(ε,−c0, c1,−d0,−d2,−d4,−d6).

We hence obtain eigenvalues λ−
− < 0 < λ+

−, that are, in a similar way, easily

obtained from the expressions for λ−
+ and λ+

+. We get a hyperbolicity ratio
r− given by

r−(ε, c0, c1, d) = r+(ε,−c0, c1,−d),

inducing that

r−(ε, c, d) = 1− 1√
2

(
c1 − d2 − d4 − d6

)
ε+O(ε2). (2.6)

To enable expressing all the necessary conditions we need to work with
normal forms near the saddles. Again it is only required to make calculations
near the right saddle s+, because of the symmetry (2.1).

Normal form theory induces the existence of C∞ coordinates (m,n) near
s+, depending in a C∞ way on the parameters, such that the Hamiltonian
is given by mn and the family of vector fields (1.5) can be written as

{
ṁ = m

(
λ−
+(ε, c, d) +M(mn, ε, c, d)

)
,

ṅ = n
(
λ+
+(ε, c, d) +N(mn, ε, c, d)

)
,

(2.7)

where both M and N are C∞ functions that are O(mn). Moreover, we have
that N(mn, 0, c, d) = −M(mn, 0, c, d), since XH is Hamiltonian. For more
information on this normal form we refer to [13] and to [11].

After a translation, a linear transformation and a near-identity mapping
one easily obtains that the 3-jet of the normal form is, modulo O(ǫ2), given
by





ṁ = −m+ 3
√
2

4 m2n+
√
2
4 ε
(
c1 +

3√
2
d0 + d2 + d4 + d6

)
m

− ε
32

(
256c0 + 2c1 − 51

√
2d0 + 4d2 − 4d4 − 28d6

)
m2n,

ṅ = n− 3
√
2

4 mn2 +
√
2
4 ε
(
c1 − 3√

2
d0 + d2 + d4 + d6

)
n

− ε
32

(
256c0 − 24c1 + 51

√
2d0 − 22d2 − 30d4 − 54d6

)
mn2,

Like in [6] we now consider sections Σ1
+ and Σ2

+ near s+ (see Figure 3) that
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Figure 3. Dulac maps and regular transition maps.

are defined in the coordinates (m,n) as {m = 1} and {n = 1}, respectively.
In the coordinates (m,n), the quadrant {m ≥ 0, n ≥ 0} corresponds to the
period annulus under consideration.

Let us write D+ : Σ1
+ → Σ2

+ for the so-called Dulac map, describing the
passage in forward time for the family of vector fields (2.7). We parametrize
Σ1
+ by n and Σ2

+ by m. With calculations as in [13] we get

D+(n) = n+ α1[nω + o(nω)] + α2[n
2ω + o(n2ω)] +O(n3ω), (2.8)

where ω stands for ω(n, α1) and
{

ω(n, α1) = n−α1−1
α1

, if α1 6= 0;

ω(n, 0) = − lnn;

it is the so-called compensator of the hyperbolic saddle (see [13] for more
explanation).

Near the saddle s− we obtain, in a similar way, the sections Σ1
− and Σ2

−
and the Dulac map D− : Σ1

− → Σ2
−.

To see the use that we will make of the sections Σ1
± and Σ2

± we refer
Section 5.

For ε = 0, the vector field is Hamiltonian, and since we use the value
of the Hamiltonian u as regular parameter on both the sections Σi

0 we see
that H+(u, ε, c, d) − Id, H−(u, ε, c, d) − Id and ∆(u, ε, c, d) are divisible by
ε. Hence, we can write

∆ = ε∆, (2.9)

for a C∞ map ∆, that we will call reduced difference map. The limit of ∆,
when ε → 0, is the Abelian integral that we will study in Section 4,

∆(u, 0, c, d) = I(u, c, d), u ∈ (0, 1/4).

It is known that I(u, c, d) admits, for u ∼ 0, an asymptotic expansion
in the logarithmic scale {1, u ln u, u, u2 lnu, u2, . . . , ui lnu, ui, . . . }. Hence,
there exist smooth functions: p, q, r, s and t in c and d, such that

I(u, c, d) =p(c, d) + q(c, d)u ln u+ r(c, d)u+ s(c, d)u2 lnu

+ t(c, d)u2 +O(u3 lnu), u ↓ 0.
(2.10)

The coefficients in this expansion will be obtained in Section 4 by using
Picard-Fuchs equations.
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3. Heteroclinic connections in the family (1.5).

In this section we want to study the effect that the different parameters
(c, d) have on the breaking of the heteroclinic connections Γ1 and Γ2 at first
order in ε, emphasizing the conditions under which the connections remain
unbroken.

Due to the symmetry (2.2) it is sufficient to make the study for Γ1. Anal-
ogous conclusions for Γ2 will then follow by applying (2.2).

From (1.6) we see that

Γ1 = {(x, y) |x ∈ (−1, 1), y =
1√
2
(1− x2)}. (3.1)

Γ1 is the upper connection of XH between the saddles s− = (−1, 0) and
s+ = (1, 0). From Section 2 we know that, for ε ∼ 0 the saddles are situated
at (S−(εd0), 0) and (S+(εd0), 0) with S+(εd0) = 1− 1/2εd0 +O((εd0)

2) and
S−(εd0) = −S+(−εd0).

We will now first adapt equation (1.5) in a way that saddles remain at
fixed points (−1, 0) and (1, 0) for whatever value of (ε, c, d). We therefore
change x by X in a way that

x =
1

2
(S+ − S−)X +

1

2
(S+ + S−), (3.2)

where S+ and S− stand for respectively S+(εd0) and S−(εd0). The coordi-
nates change (3.2) transforms the first equation of (1.5) into

1

2
(S+ − S−)Ẋ = y. (3.3)

The second equation is like in (1.5), just replacing x by the value expressed
in (3.2).

The expansions of S+ and S− show that

1

2
(S+ − S−)(εd0) = 1 +O((εd0)

2),

1

2
(S+ + S−)(εd0) = −1

2
εd0 +O((εd0)

2).

(3.4)

From (3.4) follows that (3.3) can be written as
(
1 +O((εd0)

2)
)
Ẋ = y.

Hence, at first order in ε (i.e. modulo terms of order ε2) we will have Ẋ = y
as the first equation of the transformed (1.5).

The second equation of (1.5), for y = 0, by the change (3.2), gets trans-
formed into

(X2 − 1)(X − 3

2
εd0 +O(ε2d20)). (3.5)

Modulo O(ε2), the rest of the second equation of (1.5) is unchanged under
(3.2), as we see in (3.4).

For the problem under consideration we can continue working with (1.5),
merely changing its second equation for y = 0 (writing x for X):




ẋ = y,
ẏ = (x2 − 1)(x− 3

2εd0) + εy
(
c0 + c1x+ (−13c0 + d2)x

2

+(27c0 + d4)x
4 + (−15c0 + d6)x

6
)
.

(3.6)
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To see, at first order in ε, the impact of the different parameters (c, d) on
the breaking of Γ1 we merely have to calculate the related Melnikov integral
(see [10, §6.4.1]), ∫ ∞

−∞
ϕ(x(t), y(t)) dt, (3.7)

where (x(t), y(t)) describes the connecting orbit and ϕ is obtained by calcu-
lating the determinant ∣∣∣∣∣∣∣

ẋ ∂ẋ
∂ε

∣∣
ε=0

ẏ ∂ẏ
∂ε

∣∣∣
ε=0

∣∣∣∣∣∣∣
(x(t), y(t)). (3.8)

From (3.8) it is clear that the integral (3.7) can be expressed as
∫ 1

−1

(
∂ẏ

∂ε

∣∣∣∣
ε=0

)
(x) dx. (3.9)

We now introduce

Ji =

∫ 1

−1
(1− x2)xi dx, (3.10)

and, based on (3.10), we write the Melnikov integral (3.9) as

(3
2
d0+

1√
2
c0
)
J0 +

1√
2
c1J1 +

1√
2

(
−13c0 + d2

)
J2 +

1√
2

(
27c0 + d4

)
J4

+
1√
2

(
−15c0 + d6

)
J6. (3.11)

We can easily calculate that

J0 = 4/3, J1 = 0, J2 = 4/15, J4 = 4/35, J6 = 4/63. (3.12)

Combining (3.11) and (3.12) and multiplying by
√
2/4, gives the Melnikov

integral written as

1√
2
d0 +

1

15
d2 +

1

35
d4 +

1

63
d6. (3.13)

A zero value of (3.13) gives the first order condition to keep the connection
Γ1 unbroken. As already has been observed, to get a similar condition for
the connection Γ2 we apply the symmetry (2.2). As a conclusion we see that
to keep the connection Γ1 unbroken, we need the relation

d0 = −
√
2

15
d2 −

√
2

35
d4 −

√
2

63
d6. (3.14)

To keep the connection Γ2 unbroken, we need the relation

d0 =

√
2

15
d2 +

√
2

35
d4 +

√
2

63
d6. (3.15)

To keep both connections unbroken we need

d0 = 0,
d2
15

+
d4
35

+
d6
63

= 0. (3.16)

Former calculations are up to first order in ε, but it is well known (due
to the Implicit Function Theorem) that, tangent to the 3-spaces defined
respectively by (3.14) and (3.15), it is possible to find manifolds of parameter
values for which the connections under consideration remain unbroken. The
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same holds for L itself if we choose appropriate parameter values in a 2-
dimensional manifold tangent to the plane defined by (3.16).

4. Abelian integrals of the family (1.5).

In this section we obtain a “closed” Picard-Fuchs equation for the Abelian
integral I associated to the family (1.5). This equation will be useful to
determine the coefficients of the expansion (2.10). The equations have been
obtained in [7], in looking for the number of zeroes of Abelian integrals for
a more general kind of quartic Hamiltonians. We repeat these calculations,
restricting to the Hamiltonian (1.6) and correcting some mistakes that have
been made in [7].

In this section we also prove Proposition 1.1 and we obtain the asymp-
totic behaviour of the Abelian integral close to L through its asymptotical
development.

For the polynomial 1-form ω = p dy − q dx associated to equation (1.1),
the Abelian integral I can be written as (1.2). Hence, in the particular case
of the family of Liénard equations (1.5), we get

I(u, c, d) =

∮

γu

(
d0 + y

(
c0 + c1x+ (−13c0 + d2)x

2 + (27c0 + d4)x
4

+(−15c0 + d6)x
6
))

dx

= c0 (I0(u)− 13I2(u) + 27I4(u)− 15I6(u))
+d2I2(u) + d4I4(u) + d6I6(u),

(4.1)

where Ii(u) =

∮

γu

xiy dx. We note that in expression (4.1), the integrals

corresponding to d0 and c1 are zero. For d0 this is clear. Based on symmetry
arguments on γu any integral I2i+1(u), for each natural number i, is zero
too.

From now we will often represent I(u, c, d) as I(u, c0, dA), with dA =
(d2, d4, d6). We sometimes will simply write I(u) if no confusion is possible.

Concerning I0(u) we remark that, by direct computation one verifies that
limu→0 I0(u) = 4

√
2/3 and that I0(u) 6= 0 for all u ∈ (0, 1/4). This last

fact follows easily from Green’s Theorem, since I0(u) =
∫∫

H(x,y)>u dx dy,

i.e. I0(u) is a nonzero area.
Let ωi be the monomial 1-form xiy dx. Then, modulo closed 1-forms and

writing the value of H as u, it is easy to prove (see [7]) that

(7 + i)ωi+4 = 2(i + 4)ωi+2 − 4(i+ 1)(1/4 − u)ωi.

Consequently, by integrating the last expression for i = 0 and 2, we get

I4(u) = 8/7I2(u)− 4/7(1/4 − u)I0(u),

I6(u) = 4/3(25/28 + u)I2(u)− 16/21(1/4 − u)I0(u).
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The Abelian integral I(u, c0, dA), can be written as:

I(u, c0, dA) =
(
4c0u− 4

7

(1
4
− u
)
d4 −

16

21

(1
4
− u
)
d6

)
I0(u)

+
(
−20c0u+ d2 +

8

7
d4 +

4

3

(25
28

+ u
)
d6

)
I2(u).

(4.2)

For dA = 0, this gives

I(u, c0, 0) = 4c0u (I0(u)− 5I2(u)) . (4.3)

To get extra information on I0(u) and I2(u), we introduce the column
vector I(u) = col (I0(u), I2(u)), having I0(u) and I2(u) as components.

Lemma 4.1 ([7]). The vector I(u) satisfies the Picard-Fuchs equation

(A (u− 1/4) +B) I′(u) = I(u), (4.4)

where

A =

(
4
3 0
4
15

4
5

)
and B =

(
0 1

3
0 4

15

)
.

From equation (4.4) we get

4u(1− 4u)I ′0(u) = −(1 + 12u)I0(u) + 5I2(u),

4u(1− 4u)I ′2(u) = −(1− 4u)I0(u) + 5(1 − 4u)I2(u).
(4.5)

Since we are only interested in the behaviour of the Abelian integral for
u ∼ 0, we will calculate its development at u = 0, using following notation:

I0(u) = 4
√
2/3 + a1u lnu+ a2u+ a3u

2 lnu+O(u2),

I2(u) = b0 + b1u lnu+ b2u+ b3u
2 lnu+O(u2).

(4.6)

If we substitute this in the equations (4.5), we find the values

a1 =
√
2, a3 =

3

8

√
2, b0 =

4

15

√
2, b1 =

√
2, b3 = −1

8

√
2,

as well as the relation b2 = 4
√
2+a2. To finish the calculations of all relevant

terms in the expansion (4.6) we will rely on following lemma:

Lemma 4.2. The coefficient a2 in the asymptotic scale expansion of func-
tion I0, as given in (4.6), is a2 = −

√
2(1 + 4 ln 2).

Proof. From the first expression in (4.6) we have

a2 = lim
u→0

(
I ′0(u)−

√
2 (lnu+ 1)

)
. (4.7)

From the definition of I0(u) we have

I0(u) = 2
√
2

∫ x+(u)

0

√
x4 − 2x2 + 1− 4u dx,

where x+(u) stands for the intersection of γu with the positive semi-axis.
Hence, if we take v2 = 4u, v ∈ (0, 1), we get

I ′0(v) = −4
√
2

∫ √
1−v

0

dx√
(1− x2)2 − v2

= − 4
√
2√

1 + v
F

(
π

2
,

√
1− v

1 + v

)
,
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where F is the elliptic integral of the first kind. See [8, §3.131.6, §8.111.2],
for instance. We observe that F (π/2, k) = K(k), where K is a complete
elliptic integral of the first kind. By using the series representation of the
K function, the result follows. �

If we substitute the expansions (4.6) in expression (4.2) then we get:

I(u, c0, dA) = α00+α11u lnu+α10u+α21u
2 lnu+α20u

2+O(u3 lnu), (4.8)

where

α00 =
4

35
d4
√
2 +

4

15
d2
√
2 +

4

63
d6
√
2,

α10 = d2

(
4
√
2−

√
2 (1 + 4 ln 2)

)
+ d4

(
16

3

√
2−

√
2 (1 + 4 ln 2)

)

+ d6

(
92

15

√
2−

√
2 (1 + 4 ln 2)

)
,

α11 = d2
√
2 + d4

√
2 + d6

√
2,

α20 = c0

(
16
√
2 (1 + 4 ln 2)− 80

√
2
)
+ d6

(
16

3

√
2− 44

21

√
2 (1 + 4 ln 2)

)

− 4

7
d4
√
2 (1 + 4 ln 2) ,

α21 = −1

8
d2
√
2 +

3

8
d4
√
2− 16c0

√
2 +

15

8
d6
√
2.

For dA = 0, this gives

I(u, c0, 0) = 4
√
2c0u

2
(
−4 lnu+ 16(ln 2− 1) +O(u lnu)

)
. (4.9)

Proof of Proposition 1.1. The asymptotic development of I(u, c0, d), for u ∼
0, is given in (2.10). From (4.9) we see that s(c0, 0) 6= 0 when c0 6= 0. It is
hence clear (see e.g. [13]) that I(u, c0, d), for c0 6= 0, d ∼ 0 and u ∼ 0, can
have at most 3 zeroes, multiplicity taken into account. �

5. Generic unfolding of codimension 4 with an unbroken
connection.

In this section we will recall the essential elements of the theory presented
in [6], permitting to precisely describe the conditions on the parameters c
and d, of system (1.5). We will not make the description as general as in
[6], but we will restrict, as much as possible, to the family (1.5) and use the
notations and properties that have been specified in Section 2.

In order to apply the results from [6] we first need to consider the hyper-
bolicity ratio at both s− and s+. Let us denote, as in [6], the hyperbolicity
ratio at s+ as

r+(ε, c, d) = 1 + α+(c, d)ε +O(ε2), (5.1)

and the hyperbolicity ratio at s− as

r−(ε, c, d) = 1 + α−(c, d)ε +O(ε2). (5.2)
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Let us call α+ as well as α− a “reduced hyperbolicity ratio”. We remark
that in [6] the indices are 1 and 2 instead of + and −, respectively. From
(2.5) and (2.6) we know that

α+(c, 0) = α−(c, 0) = − c1√
2
. (5.3)

In order to use the Theorems 11 and 12 from [6] we need the equality (5.3)
as a first condition, combined with the fact that c1 be different from zero.

We second need conditions on the Abelian integral (2.10). More precisely,
the integral I(u, c, d) needs, for a specific choice of c and for d = 0, to have
a zero at u = 0 of codimension 3, i.e.

p(c, 0) = q(c, 0) = r(c, 0) = 0,

s(c, 0) 6= 0,
(5.4)

and the mapping

(IR4, 0) 7→ (IR3, 0) : d 7→ (p(c, d), q(c, d), r(c, d)) (5.5)

needs to be a submersion at d = 0.
In (4.9) we immediately see that the condition (5.4) holds for I(u, c, 0) if

we keep c0 6= 0.
To check condition (5.5) we consider (4.8) and we calculate

det

(
∂(p, q, r)

∂(d2, d4, d6)

)∣∣∣∣
d=0

=
512

√
2

4725
6= 0. (5.6)

In third place it must be possible to break one of the connections, keeping
the other unbroken. As we have seen in Section 3 (3.14), Γ1 remains unbro-
ken if we take the parameter values d in an appropriate manifold tangent to
the 3-space

{d | d0 = −
√
2

15
d2 −

√
2

35
d4 −

√
2

63
d6}. (5.7)

From relation (3.15) follows that we keep Γ2 unbroken if we take the param-
eter values d in an appropriate manifold tangent to the 3-space

{d | d0 =

√
2

15
d2 +

√
2

35
d4 +

√
2

63
d6}. (5.8)

We keep both Γ1 and Γ2 unbroken (see (3.16)) if we choose d in an appro-
priate 2-dimensional manifold tangent to the 2-space

{d | d0 = 0,
d2
15

+
d4
35

+
d6
63

= 0}. (5.9)

Besides the three conditions stated above, there is a fourth one that we are
allowed to check under the condition (5.9), as explained in [6].

We therefore recall that in Section 2 we have introduced the normal form
coordinates (2.7) near the saddles s+ and s− and, in (2.8), we have intro-
duced the so-called Dulac maps in these normalizing coordinates. These
maps were defined as respectively D+ : Σ1

+ 7→ Σ2
+ and D− : Σ1

− 7→ Σ2
−.

Remind that we parametrized Σ1
+ (and Σ1

−) by n and Σ2
+ (and Σ2

−) by m.
In all cases this is equal to the value u of the Hamiltonian.

We now also (see Figure 3) define a map R+ : Σ2
+ 7→ Σ2

− that expresses
the regular passage in forward time between the two given sections. In a
similar way, we consider the passage map in backward time R− : Σ1

+ 7→ Σ1
−.
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If both connections Γ1 and Γ2 remain unbroken we can write

R−(u, c, d) =u+ ε
(
γ−(ε, c, d)u + η−(ε, c, d)u

2 +O(u3)
)
, and

R+(u, c, d) =u+ ε
(
γ+(ε, c, d)u + η+(ε, c, d)u

2 +O(u3)
)
.

(5.10)

It is possible to reduce either γ−(ε, c, d) or γ+(ε, c, d) to zero by a linear
change of variables in u, depending on the parameters (ε, c, d) and being the
identity for ε = 0. Such changes are explicitly used in [6]. In any case such
changes do not affect the values

η0− = η−(0, c, 0) and η0+ = η+(0, c, 0).

In working with the inverses of these mappings only the sign of the expres-
sions changes. If we want to apply Theorems 11 and 12 from [6] in a way
that we keep Γ1 unbroken while we break Γ2, then we need the condition

η0− 6= 2η0+. (5.11)

At the same time we need that

α+(0, c) > 0, (5.12)

implying a choice of c1 < 0.
On the other hand, we could also try to apply Theorems 11 and 12 from

[6] to a situation where we keep Γ2 unbroken and break Γ1.
We see that the conditions (5.4) and (5.5) remain unchanged, but (5.11)

changes into

η0+ 6= 2η0−, (5.13)

and (5.12) changes into

−α−(c, 0) > 0, (5.14)

implying a choice of c1 > 0.
We can also remark that there exist relations between some quantities

that we have just used. As it is shown in [6], and recalled in Section 2,

∆(u, ε, c, d) = I(u, c0, dA) +O(ε).

Taking into account the expressions (2.8), (2.10) and (5.10) for the respective
maps D± and R±, we see that

p(c, d) = α+(c, d) − α−(c, d)

and

t(c, 0) = η+(0, c, 0) − η−(0, c, 0) = η0+ − η0−. (5.15)

From (5.15) and (4.9) follows that

η0+ − η0− = 64
√
2(ln 2− 1)c0. (5.16)

We will sometimes also write η0+(c0, c1) and η0−(c0, c1).
Let us, for the sake of completeness, copy now the two results from [6]

on which we will heavily rely in the proof of Theorem 1.2. We will state
them, as propositions, using as much as possible the notations introduced
before, recalling that we intend to fix c = (c0, c1) keeping merely (ε, d), with
d = (d0, d2, d4, d6), as parameters.

In fact, we will formulate the propositions in terms of parameters p, q, r
and s, as in expression (2.10) but chosen independently. We write Y(ε,p,q,r)
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as an abstract family of vector fields, recalling that we recover X(ε,c,d) for
the chosen value of c = (c0, c1) by expressing (p, q, r) as functions of (ε, c, d).

Proposition 5.1. [6, Th. 11, p.156] Consider a C∞ unfolding Y(ε,p,q,r) of a
hyperbolic 2-saddle cycle L. Suppose that, in the unfolding, the connection
Γ2 gets broken while Γ1 remains unbroken. Suppose that, for the unfolding,
the related Abelian integral is of codimension 3 at the 2-saddle cycle L, i.e.
(p, q, r) ∼ (0, 0, 0) and s 6= 0. Assume that the reduced hyperbolicity ratio at
the saddle preceding Γ2 is strictly positive and that η01 6= 2η02.

Then, there exists v0 > 0 with the following property. For any u0 ∈ (0, v0),
there exists a unique parameter value, χ(u0) = (ε(u0), p(u0), q(u0), r(u0))
such that u0 is a zero of multiplicity 4 of ∆,

∆(u0) =
∂∆

∂u
(u0) =

∂2∆

∂u2
(u0) =

∂∆3

∂u3
(u0) = 0, and

∂∆4

∂u4
(u0) 6= 0.

The arc χ is smooth on (0, v0) and χ(u0) → 0 if u0 → 0.

Remarks:

(1) Theorem 11 in [6] also contains some information on the asymptotics
of χ for u0 → 0, but there is no need to repeat it here.

(2) With respect to Figure 3 the Proposition 5.1 can be applied to
(Γ1,Γ2) as used in the statement with η01 = η0−, η

0
2 = η0+ and with

a positive reduced hyperbolicity ratio taken at s+ implying that we
take c1 < 0. The proposition can however also be applied to cases
were we keep Γ2 unbroken and break Γ1. We then choose η01 = η0+,

η02 = η0− and suppose to have a positive reduced hyperbolicity ratio
at s−; it implies that we take c1 > 0.

Proposition 5.2. [6, Th. 12, p.160] Under the conditions stated in Propo-
sition 5.1 the curve χ, obtained in Proposition 5.1, is a curve of swallowtail
bifurcations of limit cycles when varying (p, q, r). As a consequence, for
every u0 ∈ (0, v0), the value (ε(u0), p(u0), q(u0), r(u0)) is a limit of values
(εn, pn, qn, rn) such that the vector field Y(εn,pn,qn,rn) has four hyperbolic limit
cycles converging, in the Hausdorff sense, towards the limit cycle of multi-
plicity four corresponding to u0.

Remark:
For u0 → 0 the limit cycles obtained in Proposition 5.2 tend, in a Hausdorff
sense, to the 2-saddle cycle L.

We do not give an idea of the proof of these propositions. The proof,
which is quite involved, can be found in [6]. It requires the introduction of
different compensators as well as the use of special asymptotic scales and
so-called simple asymptotic scale deformations.

6. Proof of Theorem 1.2.

As explained in the previous section we only need to check, on the fam-
ily (1.5), all the conditions that need to be fulfilled in order to apply the
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Propositions 5.1 and 5.2. These conditions are stated in Proposition 5.1 and
have been carefully explained and already partially checked in Section 5.

We hence continue the proof by essentially resuming the properties that
have already been checked and adding the information that is missing.

We already know that the Abelian integral, related to the family (1.5) is
of codimension 3 at the 2-saddle cycle L, when taking c0 6= 0. This is shown
in (4.9) and (5.6).

If we take c1 < 0 then (see (5.3)) the reduced hyperbolicity ratio at s+ is
positive so that we have to break Γ2 and keep Γ1 unbroken in order to apply
the Propositions 5.1 and 5.2. This is clearly possible as proven in Section 3.
We also need that η0− 6= 2η0+, i.e. we need to choose c1 < 0 in a way that
η0−(c0, c1) 6= 2η0+(c0, c1), for the chosen c0.

There hence will exist an interval of negative c1-values where all necessary
conditions hold or, for the chosen c0, the identity

η0−(c0, c1) = 2η0+(c0, c1),

holds for all c1 < 0. Together with (5.16) this implies that, for all c1 < 0

{
η0−(c0, c1) = −2Ac0,
η0+(c0, c1) = −Ac0,

(6.1)

with A = 64
√
2(ln 2− 1).

In the latter case we also consider c1 > 0. Then (see (5.3)) the restricted
hyperbolicity ratio at s− is positive (calculated in the direction of the flow
of equation (1.5)). In order to be able using the Propositions 5.1 and 5.2 we
have to break Γ1 and keep Γ2 unbroken, which is clearly possible as shown
in Section 3.

We now need to choose c1 > 0 in a way that η0+(c0, c1) 6= 2η0−(c0, c1), for
the chosen c0.

There will exist an interval of positive c1-values where all necessary con-
ditions hold or, for the chosen c0, the identity

η0+(c0, c1) = 2η0−(c0, c1)

holds for all c1 > 0. Together with (5.16) this implies that, for all c1 > 0

{
η0−(c0, c1) = Ac0,
η0+(c0, c1) = 2Ac0.

(6.2)

However since, for fixed c0, both functions η0− and η0+ are smooth in c1, for
c1 ∈ IR, we see that a simultaneous occurrence of (6.1) and (6.2) is not
possible for c0 6= 0.

This finishes the proof of Theorem 1.2 with respect to the existence of a
swallowtail catastrophe of limit cycles.

The last statement in Theorem 1.2 concerns the upperbound and the
number of limit cycles that can perturb from L if one breaks one connection
and leaves the other unbroken. This result is a direct consequence of Theo-
rem 8 from [6], since the Abelian integral, related to the family (1.5), is of
codimension 3 at L, when taking c0 6= 0 (as shown in (4.9) and (5.6)).
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7. Extra information on the Abelian integrals of the
family (1.5).

In this Section we will add a study of the Abelian integral of the fam-
ily (1.5) on the domain u ∈ (0, 1/4], when d = 0 and c0 6= 0. We will
show that this integral cannot have zeroes, implying that no limit cycles
can perturb from the interior of the period annulus, under the conditions of
Theorem 1.2.

From (4.3) we know that the Abelian integral under consideration is given
by

I(u, c0, 0) = 4c0u (I0(u)− 5I2(u)) .

Zeroes of I(u, c0, 0) are hence given by solutions of

J(u) = 1/5, (7.1)

with

J(u) =
I2(u)

I0(u)
. (7.2)

We hence merely need to study J(u), for u ∈ (0, 1/4].
Since

d

du
J(u) =

I ′2(u)
I0(u)

− J(u)
I ′0(u)
I0(u)

,

and by using equations (4.5) we have that

u(1− 4u)J ′(u) = −(
1

4
− u) + (

3

2
− 2u)J(u) − 5

4
J2(u).

This can better be written as a planar Riccati equation
{

dJ
dt = −

(
1
4 − u

)
+
(
3
2 − 2u

)
J − 5

4J
2,

du
dt = u(1− 4u),

(7.3)

for some new independent variable t.
The singularities of (7.3) are situated at (u, J) = (0, 1/5), (0, 1), (1/4, 0)

and (1/4, 4/5). The lines {u = 0} and {u = 1/4} are invariant and we only
need to consider the strip (u, J) ∈ [0, 1/4] × IR.

We know from (4.9) that limu→0 J(u) = 1/5 and it is easy to check that
limu→1/4 J(u) = 0.

Along J = 0 we see that dJ/dt < 0 for u ∈ [0, 1/4], while along J = 1/5
we get dJ/du = 3u/5 > 0 for u ∈ (0, 1/4].

The graph of J is hence contained in [0, 1/4] × [0, 1/5], as shown in Fig-
ure 4. Since (7.3) is a quadratic system the graph of J cannot have inflection
points and J is strictly monotone. For the precise asymptotics of J near
u = 1/4 it suffices to check that (1/4, 0) is a hyperbolic saddle with J as
stable manifold. Near u = 0 we can use (4.9). It shows that the graph of J
is as represented in Figure 4.

We for sure see that equation (7.1) can have no solution for u ∈ (0, 1/4],
as claimed.
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Figure 4. Graph of J .
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