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ON THE GLOBAL FLOW

OF A 3–DIMENSIONAL LOTKA–VOLTERRA SYSTEM

JUSTINO ALAVEZ–RAMÍREZ1, GAMALIEL BLÉ1,

VÍCTOR CASTELLANOS1 AND JAUME LLIBRE2

Abstract. In the study of the black holes with Higgs field appears in
a natural way the Lotka–Volterra differential system

ẋ = x(y − 1), ẏ = y(1 + y − 2x2 − z2), ż = zy,

in R3. Here we provide the qualitative analysis of the flow of this system
describing the α–limit set and the ω–limit set of all orbits of this system
in the whole Poincaré ball, i.e. we identify R3 with the interior of the
unit ball of R3 centered at the origin and we extend analytically this
flow to its boundary, i.e. to the infinity.

1. Introduction and statement of the main results

Breitenlohner et al. in their study of the black holes with Higgs field
reduced the relevant terms to the following Lotka–Volterra polynomial dif-
ferential system in R3:

(1) ẋ = x(y − 1), ẏ = y(1 + y − 2x2 − z2), ż = zy,

see for more details page 441 of [4]. They, analyzing the local motion around
the z–axis (i.e. x=y=0), which is formed by singular points, obtained infor-
mation about the growing of the mass of a black hole with Higgs field.

The Lotka–Volterra systems are the differential systems of the form

ẋk = xkfk(x1, . . . , xn), for k = 1, . . . , n.

The name of such systems is due to the fact that Lotka and Volterra were
the first in considering them in dimension 2 for studying problems coming
from the ecology, see [12, 17]. Later on Kolmogorov in [11] generalizes these
systems, and then some authors called them Kolmogorov systems. There
are many natural phenomena that can be modeled by the Lotka–Volterra
systems such as the time evolution of conflicting species in biology [14],
chemical reactions [9], plasma physics [13], hydrodynamics [5], economics
[16], etc.

In this article we want to describe the α–limit set and the ω–limit set of
all orbits of system (1) in R3. For a precise definition of the α–limit set and
of the ω–limit set of an orbit, see for instance section 1.4 of [7].

Key words and phrases. α–limit, ω–limit, phase portrait, Lotka–Volterra system, black
hole, Higgs field.
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We hope that our analysis of the α–limit sets and of the ω–limit sets of
all orbits of the differential system (1) can help to the physics working with
the black holes with Higgs field to go further in their results.

Since system (1) is defined in the open manifold R3, for studying its orbits
in a neighborhood of infinity, we shall identify R3 with the interior of the
unit ball of R3 centered at the origin, and we shall extend analytically this
flow to its boundary (the infinity). This compactification is essentially due
to Poincaré, this ball is called the Poincaré ball, and the extended differential
system on that closed ball is called the Poincaré compatification of system
(1). For precise definitions of all these notions see subsection 6.4 of the
appendix. The extended flow to the Poincaré ball leaves the boundary of
the ball invariant, i.e. if an orbit has a point in this boundary the whole
orbit is contained in the boundary. In other words the infinity is invariant.

We shall see in section 3 that due to the symmetries of system (1) it is
sufficient to study its Poincaré compactification in a quarter of the Poincaré
ball, more precisely it is sufficient to the study the flow of the Poincaré
compactification in the region

(2) R = {(x, y, z) ∈ R3 : x2 + y2 + z2 ≤ 1, x ≥ 0, z ≥ 0},
see Figure 1.

y
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Figure 1. The region R.

Clearly the interior of R \ {y = 0} has two connected components:

R1 = {(x, y, z) ∈ R : x2 + y2 + z2 < 1, x > 0, y > 0, z > 0},
R2 = {(x, y, z) ∈ R : x2 + y2 + z2 < 1, x > 0, y < 0, z > 0}.

Since the planes of coordinates and the infinity are invariant by the Poincaré
compactification of system (1), the four boundaries of R1 and R2 are invari-
ant. As usual we denote the boundary of Ri by ∂Ri. The flow on these
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boundaries is described in the next two theorems. For a definition of topo-
logically equivalent phase portraits see for instance section 1.3 of [7].

Theorem 1. The following two statements hold.

(a) The phase portrait of the Poincaré compactification of system (1)
on the boundaries x = 0, y = 0 and z = 0 of R1 is topologically
equivalent to the one described in Figure 2(a).

(b) The phase portrait of the Poincaré compactification of system (1) on
R∞

1 = ∂R1∩{x2+y2+z2 = 1} (i.e. the phase portrait at the infinity
of R1) is topologically equivalent to the one described in Figure 2(b).
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z

(a) (b)

Figure 2. The plane portraits in the boundary of R1.

Theorem 2. The following two statements hold.

(a) The phase portrait of the Poincaré compactification of system (1)
on the boundaries x = 0, y = 0 and z = 0 of R2 is topologically
equivalent to the one described in Figure 3(a).

(b) The phase portrait of the Poincaré compactification of system (1) on
R∞

2 = ∂R2∩{x2+y2+z2 = 1} (i.e. the phase portrait at the infinity
of R2) is topologically equivalent to the one described in Figure 3(b).

Theorems 1 and 2 are proved in section 4.

We say that a C1 function H(t, x, y, z) is an invariant of the differential
system (1) if H(t, x, y, z) = constant, for all values of t for which the solution
(x(t), y(t), z(t)) is defined. When an invariant function is independent of the
time, then it is called a first integral.

Proposition 3. System (1) in the open region R1 ∪ R2 has the invariant
H(t, x, y, z) = etx/z.
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Figure 3. The plane portraits in the boundary of R2.

Proposition 3 is proved in section 5.

As we shall see in section 2 system (1) has three isolated singular points
in R3, namely

(3) P1 = (0,−1, 0), P2 = (1, 1, 0), P3 = (−1, 1, 0).

Moreover P1 is a local attractor, and P2 and P3 are local repeller. Let P be
the diffeomorphism such that P (R3) is equal to the interior of the Poincaré
ball. Then we denote the three isolated finite singular points in the Poincaré
ball by pi = P (Pi) for i = 1, 2, 3.

In the next two theorems we describe the α– and the ω–limit sets of all the
orbits contained in R1 ∪R2. Let σz be the segment of the z–axis contained
in R having with endpoints the points q = P ((0, 0, 1)) and (0, 0, 1), closed
in q and open in (0, 0, 1), see Figure 2(a) or Figure 3(a). We define

σ∞ = {(x, 0, z) ∈ R : x2 + z2 = 1}.
So σ∞ are together with the two points (0,±1, 0) are the singular points at
the infinity of R, see Figures 2(b) and 3(b).

Theorem 4. Let γ be an orbit of system (1) such that P (γ) ⊂ R1.

(a) The α–limit set of P (γ) is either the finite singular point p2, or an
infinite singular point of σ∞ ∪ {(0, 1, 0)}.

(b) The ω–limit set of P (γ) is either some of the finite singular points
of σz, or some of the infinity singular points σ∞ ∪ {(0, 1, 0)}.

Theorem 5. Let γ be an orbit of system (1) such that P (γ) ⊂ R2.

(a) The α–limit set of P (γ) is an infinite singular point of σ∞∪{(0,−1, 0)}.
(b) The ω–limit set of P (γ) is either some of the finite singular points of

{p1} ∪ σz, or some of the infinity singular points σ∞ ∪ {(0,−1, 0)}.
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Theorems 4 and 5 are proved in section 5.

We remark that all the orbits of the Poincaré compactification of system
(1) contained in R1 ∪R2 are heteroclinic or homoclinic because all their α–
and ω–limit sets are a singular point.

Looking at the proofs of Theorems 4 and 5, if follows that if we can study
the local phase portraits of the Poincaré compactfication of system (1) at
the infinite singular points (i.e. at the points σ∞ ∪ {(0,±1, 0)}), then the
results of those theorems can be improved in the sense that we can show
that some of the possible α– and ω–limit sets described in Theorems 4 and
5 cannot occur. We note that two of the eigenvalues at the infinite singular
points of σ∞ are zero, and that the three eigenvalues at the singular points
{(0,±1, 0)} are zero. So these singular points are strongly degenerate.

2. Finite singular points

First we shall study the finite singular points of system (1). That is, the
solutions of the system

x(y − 1) = 0, y(y + 1− 2x2 − z2) = 0, zy = 0.

Clearly the z–axis is formed by singular points, and additionally there are
the three isolated singular points Pi for i = 1, 2, 3 described in (3).

Now we analyze the local phase portrait at these three isolated singular
points. The eigenvalues of the linear part at these singular points are

−1,−1 and − 2 for p1,
1± i

√
15

2
and 1 for p2 and p3.

Hence these three singular points are hyperbolic, see subsection 6.2. There-
fore p1 is a local attractor, and p2 and p3 are local repeller.

3. Symmetries

One of the characteristic facts of the Lotka–Volterra systems in R3 is that
the three coordinates planes are invariant by the flow of these systems, i.e. if
an orbit of the system has a point on one of such planes that the full orbit is
contained in it. Consequently the three axes are also invariant by the flow.

The differential system (1) has two symmetries.

(i) System (1) is invariant under the symmetry (x, y, z) → (−x, y,−z),
i.e. the flow of it is symmetric with respect to the y–axis. There-
fore, since the y–axis is invariant, if (x(t), y(t), z(t)) is a solution of
(1) which does not intersect the y–axis, then (−x(t), y(t),−z(t)) is
another solution of (1).

(ii) System (1) is invariant under the symmetry (x, y, z) → (−x, y, z),
i.e. the flow of it is symmetric with respect to the plane x = 0. So,
since the plane x = 0 is invariant, if (x(t), y(t), z(t)) with x(t) 6= 0 is
a solution of (1), then (−x(t), y(t), z(t)) is another solution of (1).
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Using these two symmetries it is sufficient to describe the flow of system
(1) only in a quarter of the Poincaré ball. Thus, we shall describe this flow
only in the region R defined in (2).

4. Phase portraits on the invariant planes and at infinity

In this section we first describe the phase portrait of system (1) in the
intersection of the three planes of coordinates with the region R, and after
on the boundary of R satisfying that x2 + y2 + z2 = 1, i.e. on the infinity.

4.1. Phase portrait on R ∩ {z = 0}. The flow restricted to the invariant
plane z = 0 is given by the differential system

(4) ẋ = x(y − 1) = P (x, y), ẏ = y(1 + y − 2x2) = Q(x, y).

Of course the x–axis and the y–axis are invariant. Since we are interested
on the phase portrait on R ∩ {z = 0}, we only consider the phase portrait
of system (4) in the half–plane x ≥ 0.

In the half–plane x ≥ 0 system (4) has exactly the three finite singular
points:

p0 = (0, 0), p1 = (0,−1), p2 = (1, 1).

The eigenvalues of the linear part at these singular points are

−1, 1 for p0, −2,−1 for p1,
1± i

√
15

2
for p2.

Therefore, from subsection 6.1 it follows that p0 is a saddle, p1 is an attractor
node, and p2 is an unstable focus.

Now we shall study the infinity of system (4). Thus this system in the
local chart U1 becomes

ż1 = −2z1 + 2z1z
2
2 , ż2 = −z1z

2
2 + z32 ,

see subsection 6.3 for more details. Clearly the unique infinity singular point
of this system is the (0, 0), i.e. the unique singular point on z2 = 0. Using
the results of subsection 6.1, the singular point (0, 0) is a semi–hyperbolic
saddle.

Now it only remains to study if the point (0, 0) of the local chart U2 is a
singular point. System (4) in the local chart U2 writes

(5) ż1 = 2z31 − 2z1z
2
2 , ż2 = −z22 + 2z21z2 − z32 .

So the (0, 0) is a linearly zero singular point, using the notation introduced
in subsection 6.1. In order to describe its local phase portrait we shall use
the blow–up technique, see the end of subsection 6.1. Then we do the change
of variables (z1, z2) → (z1, u) where z2 = uz1. In the new variables system
(5) becomes

(6) ż1 = 2z31 − 2z31u
2, u̇ = −z1u

2 + z21u
3.
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Rescaling the independent variable or time by z1, system (6) goes over to

(7) ż1 = 2z21 − 2z21u
2, u̇ = −u2 + z1u

3.

Now doing the blow–up (z1, u) → (z1, v) where u = vz1 system (7) writes

(8) ż1 = 2z21 − 2z41v
2, v̇ = −2z1v − z1v

2 + z31v
3.

Rescaling the independent variable by z1, system (8) becomes

(9) ż1 = 2z1 − 2z31v
2, v̇ = −2v − v2 + z21v

3.

System (9) has the two singular points (0, 0) and (0,−2) on the v–axis,
having their linear part eigenvalues −2, 2 and 2, 2 respectively. Therefore
the local phase portrait of system (9) around the v–axis is given in Figure
4(9). Then the local phase portrait of system (8) around the v–axis is given
in Figure 4(8). Going back through the blow–up u = vz1 the local phase
portrait of system (7) around the u–axis is given in Figure 4(7). So the
local phase portrait of system (6) around the v–axis is given in Figure 4(6).
Again going back through the blow–up z2 = uz1 the local phase portrait of
system (5) around the z2–axis is given in Figure 4(5).

z1

v

z1

v

z1

u

z1

u

z1

z2

(9) (8) (7)

(6) (5)

Figure 4. The blow–up development of the singular point
(0, 0) of U2.

Now we know the local phase portraits at all finite and infinite singular
points of system (4) in the half–plane x ≥ 0. Recalling that the x–axis is
invariant, that a periodic orbit must surround at least a singular point (this



8 J. ALAVEZ–RAMÍREZ, G. BLÉ, V. CASTELLANOS, J. LLIBRE

follows from the Poincaré–Bendixson Theorem) and using the Poincaré–
Bendixson Theorem (see for instance Corollary 1.30 of [7]), we get that the
phase portrait of system (4) in the half–plane x ≥ 0 of the Poincaré disc is
homeomorphic to the one given in Figure 2(a) and 3(a) restricted to z = 0,
except that perhaps there can be periodic orbits surrounding the focus p2.

Let B = B(x, y) = 1/(xy). Since system (4) in the simply connected
region x > 0 satisfies

∂(BP )

∂x
+

∂(BQ)

∂y
=

1

x
,

by the Dulac’s criterion (see Theorem 7.12 of [7]) it follows that system (4)
has no periodic orbits in x > 0. Hence the phase portrait of system (4) in
the half–plane x ≥ 0 of the Poincaré disc is homeomorphic to the one given
in Figure 2(a) and 3(a) restricted to z = 0.

4.2. Phase portrait on R ∩ {x = 0}. The flow restricted to the invariant
plane x = 0 is given by the differential system

(10) ẏ = y(1 + y − z2), ż = zy.

Of course the z–axis is formed by singular points. We remove it rescaling
the independent variable by y, then we get the system

(11) ẏ = 1 + y − z2, ż = z.

Since we are interested on the phase portrait on R ∩ {x = 0}, we only
consider the phase portrait of system (11) in the half–plane z ≥ 0.

The unique finite singular point of system (11) is p1 = (−1, 0). The
eigenvalues of the linear part of system (11) at p1 are 1 and 1. So p1 is an
unstable node.

Now we study the infinite singular points of system (11). Thus in the
local chart U1 it writes

(12) ż1 = z31 − z1z
2
2 , ż2 = −z22 + z21z2 − z32 .

This system has a unique singular point at infinity, the (0, 0) which is linearly
zero. Note that system (12) is very similar to system (5). In fact we can
study the local phase portrait of system (12) doing the same blow–ups that
we did for analyzing system (5), and we shall obtain the same local phase
portrait, i.e. the local phase portrait given in Figure 4(5).

System (11) in the local chart U2 becomes

ż1 = −1 + z22 , ż2 = −z22 .

Since the (0, 0) of U2 is not a singular point, the unique singular points of
system (11) at infinity are the endpoints of the y–axis.

We know the local phase portraits at all finite and infinite singular points
of system (11) in the half–plane z ≥ 0. Recalling that the y–axis is invariant,
by the Poincaré–Bendixson Theorem, we obtain the phase portrait of system
(11) in the half–plane z ≥ 0 of the Poincaré disc. Going back through the
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rescaling of time the phase portrait of system (11) in the half–plane z ≥ 0,
we get the phase portrait of system (10) in the half–plane z ≥ 0 of the
Poincaré disc given in Figures 2(a) and 3(a) restricted to x = 0.

Looking at Figures 2(a) and 3(a) we observe two different local behaviors
at the singular points of the positive z–axis contained in R∩{x = 0}, and one
bifurcation singular point (i.e. one singular point in which the local phase
portrait changes). The eigenvalues of the linear part of system (10) at the
singular point (0, z0) with z0 > 0 are 0 and 1 − z20 . Hence the bifurcation
singular point is (0, 1). We denote by q the point in R (i.e. after the Poincaré
compactification) corresponding to the point (0, 1) of system (10).

4.3. Phase portrait at the infinity of R. Since we know the behavior
of the flow at the infinity of R ∩ {x = 0}, for studying the infinity of R
it is sufficient to analyze the flow at the infinity of the local chart U1, see
subsection 6.4. In this local chart system (1) writes

(13) ż1 = −2z1 − z1z
2
2 + 2z1z

2
3 , ż2 = z2z

2
3 , ż3 = −z1z

2
3 + z33 .

System (13) restricted at the infinity (i.e. at z3 = 0) becomes

(14) ż1 = −2z1 − z1z
2
2 , ż2 = 0.

So the unique singular points at infinity of the local chart U1 are all the
points of axis z1 = z3 = 0. Since system (14) has the straight lines z2 =
constant invariant by the flow, ż1 < 0 if z1 > 0 and ż1 > 0 if z1 < 0, the
phase portrait of system (1) at the infinity of R is described in Figures 2(b)
and 3(b).

4.4. Phase portrait on R ∩ {y = 0}. The flow restricted to the invariant
plane y = 0 is given by the differential system

ẋ = −x, ż = 0.

So the straight lines z = constant are formed by orbits of the system, and
all the points of the z–axis are singular. The infinity of R ∩ {y = 0} follows
from subsection 4.3. So the phase portrait on the invariant set R ∩ {y = 0}
is given in the Figure 2(a) and 3(a) restricted to y = 0.

Note that putting together the results of the previous four subsections we
obtain the proofs of Theorems 1 and 2.

5. The α– and ω–limit sets of the orbits in R1 ∪R2

In this section we study the flow in the open regions R1 and R2.

Proof of Proposition 3. Since H = H(t, x, y) = etx/z, it is immediate to
check that

dH

dt
=

∂H

∂x
ẋ+

∂H

∂y
ẏ +

∂H

∂z
ż +

∂H

∂t
= 0,

where (ẋ, ẏ, ż) are given in (1). Therefore H is an invariant of system (1).
This completes the proof of the proposition. �
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Now we shall describe how we get the invariant H. The planes x =
0, y = 0 and z = 0 are invariant algebraic surfaces (see section 8.4 of
[7] for a definition). We remark that in [7] we define invariant algebraic
curves instead of invariant algebraic surfaces but the definition extends in
the natural way to higher dimension, as well as the Darboux theory of
integrability. Then, using the notations and definitions of Chapter 8 of [7],
the invariant planes x = 0, y = 0 and z = 0 have cofactors k1 = y − 1,
k2 = y + 1 − 2x2 − z2 and k3 = y, respectively. Since the solution of the
equation

λ1k1 + λ2k2 + λ3k3 + 1 = 0

is λ1 = 1, λ2 = 0 and λ3 = −1, from Theorem 8.7 of [7], we get that

H(t, x, y) = etxλ1yλ2zλ3 = etx/z,

is an invariant of system (1).

Let γ = {(x(t), y(t), z(t)) : t ∈ (a, b)} be an orbit of system (1) in the open
region R1 = {(x, y, z) ∈ R3 : x > 0, y > 0, z > 0} being the open interval
(a, b) its maximal interval of definition such that −∞ ≤ a < 0 < b ≤ +∞.
Recall that P denotes the diffeomorphism such that P (R3) is equal to the
interior of the Poincaré ball. Then P (R1) = R1.

It is well known that if −∞ < a then the α–limit set of P (γ) is contained
in R∞

1 , and if b < +∞ then the ω–limit set of P (γ) is also contained R∞
1 .

For more details see Theorem 1.2 of [7], this theorem in [7] is proved for 2–
dimensional differential systems but the proof for higher dimensions is the
same. Similar results hold if γ is an orbit of system (1) in the open region
R2.

We say that the orbit γ ⊂ Ri with i=1,2 is positively bounded if there
exists a neighborhood N of R∞

i in R such that P ({(x(t), y(t), z(t)) : t ∈
(0, b)}) ∩N = ∅. So, in particular b = +∞. Similarly we say that the orbit
γ is negatively bounded if there exists a neighborhood N of R∞

i in R such
that P ({(x(t), y(t), z(t)) : t ∈ (a, 0)}) ∩N = ∅. So, in particular a = −∞.

Lemma 6. Let γ = {(x(t), y(t), z(t)) : t ∈ (a, b)} be an orbit of system (1)
such that P (γ) ⊂ Ri for i = 1, 2 being the open interval (a, b) its maximal
interval of definition such that −∞ ≤ a < 0 < b ≤ +∞.

(a) If −∞ < a, then the α–limit set of P (γ) ⊂ R∞
i .

(b) If b < +∞, then the ω–limit set of P (γ) ⊂ R∞
i .

(c) If γ is negatively bounded, then a = −∞ and lim
t→−∞

z(t) = 0.

(d) If γ is positively bounded, then b = +∞ and lim
t→+∞

x(t) = 0.

Proof. Statements (a) and (b) follows directly from the paragraphs just be-
fore the statement of the lemma.

A negatively bounded orbit always has −∞ = a, as we have seen. From
the definition of negatively bounded orbit in Ri, it follows that there exists
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M > 0 such that 0 < x(t) < M and 0 < z(t) < M for all t < 0. Then, by
Proposition 3, H(t, x(t), y(t), z(t)) = h with h > 0. So

(15)
z(t)

x(t)
=

et

h
for all t < 0.

Now taking limit in (15) when t → −∞, we obtain that

lim
t→−∞

z(t)

x(t)
= 0.

Therefore, since the orbit (x(t), y(t), z(t)) is negatively bounded, we get that

lim
t→−∞

z(t) = 0.

So statement (c) is proved.

A positively bounded orbit always has b = +∞, as we have seen before.
From the definition of positively bounded orbit in Ri, it follows that there
exists M > 0 such that 0 < x(t) < M and 0 < z(t) < M for all t > 0. Then,
by Proposition 3, H(t, x(t), y(t), z(t)) = h with h > 0. So

(16)
z(t)

x(t)
=

et

h
for all t > 0.

Taking limit in (16) when t → +∞, we obtain that

lim
t→+∞

z(t)

x(t)
= +∞.

Therefore, since the orbit (x(t), y(t), z(t)) is positively bounded, we get that

lim
t→+∞

x(t) = 0.

Hence statement (d) is proved. �
The following result already appeared in page 441 of [4].

Lemma 7. The singular points (0, 0, z) with z ≥ 0 and z 6= 1 of system (1)
are normally hyperbolic. Moreover for every of such points there is a local
invariant surface through it such that the local phase portrait at the singular
point (0, 0, z) is a saddle if 0 ≤ z < 1, and a stable node if z > 1.

Proof. The eigenvalues at the singular point (0, 0, z) are 0, −1 and 1 − z2.
So, from the theory of the normal hyperbolic singular points (see [10]) the
lemma follows. �
Proof of Theorem 4. Let γ = {(x(t), y(t), z(t)) : t ∈ (a, b)} be an orbit of
system (1) such that P (γ) ⊂ R1 being the open interval (a, b) its maximal
interval of definition such that −∞ ≤ a < 0 < b ≤ +∞. First we study the
α–limit set of P (γ). We distinguish three cases.

Case 1: Assume that the orbit γ is negatively bounded. Then, by Lemma
6(c), we have that limt→−∞ z(t) = 0. So the points of its α–limit set must
be finite (because γ is negatively bounded) and their z coordinate is zero.
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Consequently, from Theorem 1(a), it follows that the α–limit set of P (γ)
only can be either the singular point p2, or the singular point (0, 0, 0). But,
Lemma 7 and the Figures 2(a) say that the singular point (0, 0, 0) cannot
be the α–limit set of an orbit leaving in R1.

Case 2: Suppose that −∞ < a. Therefore, by Lemma 6(a) and Figure 2(b),
we have that the α–limit set of P (γ) must be an infinite singular point of
σ∞ ∪ {(0, 1, 0)}.
Case 3: Finally, assume that γ is non negatively bounded and −∞ = a.
Therefore, P (γ) when t → −∞ is as close as we want to R∞

1 , and from the
theorem of continuous dependence of the solutions of an ordinary differential
equation respect to the initial conditions and from Figure 2(b), it follows that
the α–limit set of P (γ) must be an infinite singular point of σ∞∪{(0, 1, 0)}.
In short statement (a) of Theorem 4 is proved.

Now we study the ω–limit set of P (γ). Again we distinguish three cases.

Case 1: Assume that the orbit γ is positively bounded. Then, by Lemma
6(d), we have that limt→+∞ x(t) = 0. So the points of its ω–limit set must
be finite (because γ is positively bounded) and their x coordinate is zero.
Consequently, from the Figure 2(a), it follows that the ω–limit set of P (γ)
only can be the finite singular points of the z–axis. Now, by Lemma 7, only
the points σz of the z–axis can be the α-limit sets of the orbits leaving in
R1.

Case 2: Suppose that b < +∞. Therefore, by Lemma 6(b) and Theorem
1(b), we have that the ω–limit set of P (γ) must be an infinite singular point
of σ∞ ∪ {(0, 1, 0)}.
Case 3: Finally, assume that γ is non positively bounded and b = +∞.
Therefore P (γ) when t → +∞ is as close as we want to R∞

1 , and from the
theorem of continuous dependence of the solutions of an ordinary differential
equation respect to the initial conditions and from Figure 2(b), it follows that
the ω–limit set of P (γ) must be an infinite singular point of σ∞∪{(0, 1, 0)}.
In short statement (b) of Theorem 4 is proved. �

Proof of Theorem 5. Let γ = {(x(t), y(t), z(t)) : t ∈ (a, b)} be an orbit of
system (1) such that P (γ) ⊂ R2 being the open interval (a, b) its maximal
interval of definition such that −∞ ≤ a < 0 < b ≤ +∞. First we study the
α–limit set of P (γ). We distinguish three cases.

Case 1: Assume that the orbit γ is negatively bounded. Then, by Lemma
6(c), we have that limt→−∞ z(t) = 0. So the points of its α–limit set must
be finite (because γ is negatively bounded) and their z coordinate is zero.
Consequently, from the Figure 3(a), it follows that the α–limit set of P (γ)
only can be the singular point (0, 0, 0). But by Lemma 7 the singular point
(0, 0, 0) cannot be the α–limit of an orbit contained in R2. Hence there are
no orbits in R2 which are negatively bounded.
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Case 2: Suppose that −∞ < a. Therefore, by Lemma 6(a) and Figure 3(b),
we have that the α–limit set of P (γ) must be an infinite singular point of
σ∞ ∪ {(0,−1, 0)}.
Case 3: Finally, assume that γ is non negatively bounded and −∞ = a.
Therefore P (γ) when t → −∞ is as close as we want to R∞

2 , and from the
theorem of continuous dependence of the solutions of an ordinary differential
equation respect to the initial conditions and from Figure 3(b), it follows that
the α–limit set of P (γ) must be an infinite singular point of σ∞∪{(0,−1, 0)}.
In short statement (a) of Theorem 5 is proved.

Now we study the ω–limit set of P (γ). Again we distinguish three cases.

Case 1: Assume that the orbit γ is positively bounded. Then, by Lemma
6(d), we have that limt→+∞ x(t) = 0. So the points of its ω–limit set must
be finite (because γ is positively bounded) and their x coordinate is zero.
Consequently, from the Figure 3(a) and Lemma 7, it follows that the ω–limit
set of P (γ) only can some of the singular points of {p1} ∪ σz.

Case 2: Suppose that b < +∞. Therefore, by Lemma 6(b) and Figure 3(b),
we have that the ω–limit set of P (γ) must be an infinite singular point of
σ∞ ∪ {(0,−1, 0)}.
Case 3: Finally, assume that γ is non positively bounded and b = +∞.
Therefore P (γ) when t → +∞ is as close as we want to R∞

2 , and from the
theorem of continuous dependence of the solutions of an ordinary differential
equation respect to the initial conditions and from Figure 3(b), it follows that
the ω–limit set of P (γ) must be an infinite singular point of σ∞∪{(0,−1, 0)}.
In short statement (b) of Theorem 4 is proved. �

6. The appendix

In this appendix we summarize the basic results from the qualitative
theory of ordinary differential equations that we need for studying the global
phase portrait of the Lotka–Volterra differential system (1).

6.1. Singular points of R2. Now we shall describe briefly the tools that
we need for studying the local phase portrait at a singular point in R2.
While we have tools for studying the local phase portraits of every isolated
singular point in dimension 2 (see for instance [7]), such a tool do not exist
in dimension 3.

A point p ∈ R2 is said to be a singular point of the vector field X = (P,Q)
if P (p) = Q(p) = 0. We recall first some results which hold when P and
Q are analytic functions in a neighborhood of p. As usual Px denotes the
partial derivative of P with respect to the variable x.

If ∆ = Px(p)Qy(p)−Py(p)Qx(p) and T = Px(p)+Qy(p), then the singular
point p is said to be non–degenerate if ∆ 6= 0. Then p is an isolated singular
point. Moreover, p is a saddle if ∆ < 0, a node if T 2 ≥ 4∆ > 0 (stable if
T < 0, unstable if T > 0), a focus if 4∆ > T 2 > 0 (stable if T < 0, unstable
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if T > 0), and either a weak focus or a center if T = 0 < ∆; for more details
see [2], p. 183, or Theorem 2.15 of [7].

A singular point p is called hyperbolic if the two eigenvalues of the Jacobian
matrix DX(p) have nonzero real part. So, the hyperbolic singular points
are the non–degenerate ones except the weak focus and the centers.

A degenerate singular point p (i.e. ∆ = 0) with T 6= 0 is called semi–
hyperbolic, and p is isolated in the set of all singular points. Now we sum-
marize the results on semi–hyperbolic singular points that we shall need in
this paper, for a proof see Theorem 65 of [2], or Theorem 2.19 of [7].

Theorem 8. Let (0, 0) be an isolated point of the vector field (F (x, y), y +
G(x, y)), where F and G are analytic functions in a neighborhood of the
origin starting at least with quadratic terms in the variables x and y. Let
y = g(x) be the solution of the equation y + G(x, y) = 0 in a neighborhood
of (0, 0). Assume that the development of the function f(x) = F (x, g(x))
is of the form f(x) = µxm + HOT (Higher Order Terms), where m ≥ 2
and µ 6= 0. When m is odd, then (0, 0) is either an unstable node, or
a saddle depending if µ > 0, or µ < 0, respectively. In the case of the
saddle the stable separatrices are tangent to the x–axis. If m is even, then
(0, 0) is a saddle–node, i.e. the singular point is formed by the union of two
hyperbolic sectors with one parabolic sector. The stable separatrix is tangent
to the positive (respectively negative) x–axis at (0, 0) according to µ < 0
(respectively µ > 0). The two unstable separatrices are tangent to the y–axis
at (0, 0).

The singular points which are non–degenerate or semi–hyperbolic are
called elementary.

When ∆ = T = 0 but the Jacobian matrix at p is not the zero matrix and
p is isolated in the set of all singular points, we say that p is nilpotent. The
local phase portrait of these points has been studied in [1], or Theorems 66
and 67 and the simplified scheme of Section 22.3 of [2], or Theorem 3.5 of
[7]. But since they do not appear in the analysis of our system we do not
describe these results here.

Finally, if the Jacobian matrix at the singular point p is identically zero,
and p is isolated inside the set of all singular points, then we say that p is
linearly zero. The study of its local phase portrait needs a special treatment
(directional blow–ups), see for more details [3], or Chapter 3 of [7].

6.2. Hyperbolic singular points of Rn. A singular point p of the differ-
ential system ẋ = X(x) in Rn is called hyperbolic if all the eigenvalues of
the Jacobian matrix DX(p) have nonzero real part. The following result
reduces the study of the local phase portrait at a hyperbolic singular point
to study the phase portrait of its linear part, for a proof see for instance
[15].
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Theorem 9 (Grobman–Hartman). The local phase portrait in a sufficiently
small neighborhood of a hyperbolic singular point p of a C1 differential sys-
tem in Rn is homeomorphic to the phase portrait of the linear part of the
differential system at p.

6.3. Poincaré compactification of R2. Let X = (P,Q) be a planar poly-
nomial vector field of degree n. The Poincaré compactified vector field p(X)
corresponding to X is an analytic vector field induced on S2 as follows (see,
for instance [8], or Chapter 5 of [7]). Let S2 = {y = (y1, y2, y3) ∈ R3 :
y21 + y22 + y23 = 1} (the Poincaré sphere) and TyS2 be the tangent space to
S2 at point y. Consider the central projection f : T(0,0,1)S2 → S2. This map
defines two copies of X, one in the northern hemisphere and the other in the
southern hemisphere. Denote by X ′ the vector field Df ◦X defined on S2
except on its equator S1 = {y ∈ S2 : y3 = 0}. Clearly S1 is identified to the
infinity of R2. In order to extendX ′ to a vector field on S2 (including S1) it is
necessary that X satisfies suitable conditions. In the case that X ∈ Pn(R2),
p(X) is the only analytic extension of yn−1

3 X ′ to S2. On S2\S1 there are
two symmetric copies of X, and knowing the behavior of p(X) around S1,
we know the behavior of X at infinity. The projection of the closed north-
ern hemisphere of S2 on y3 = 0 under (y1, y2, y3) 7−→ (y1, y2) is called the
Poincaré disc, and it is denoted by D2. The Poincaré compactification has
the property that S1 is invariant under the flow of p(X).

In this paper we say that two polynomial vector fields X and Y on R2 are
topologically equivalent if there exists a homeomorphism on S2 preserving
the infinity S1 carrying orbits of the flow induced by p(X) into orbits of the
flow induced by p(Y ), preserving or reversing simultaneously the sense of all
orbits.

As S2 is a differentiable manifold, for computing the expression for p(X),
we can consider the six local charts Ui = {y ∈ S2 : yi > 0}, and Vi = {y ∈
S2 : yi < 0} where i = 1, 2, 3; and the diffeomorphisms Fi : Ui → R2 and
Gi : Vi → R2 for i = 1, 2, 3 are the inverses of the central projections from
the planes tangent at the points (1, 0, 0), (−1, 0, 0), (0, 1, 0), (0,−1, 0), (0, 0, 1)
and (0, 0,−1) respectively. If we denote by z = (z1, z2) the value of Fi(y)
or Gi(y) for any i = 1, 2, 3 (so z represents different things according to
the local charts under consideration), then some easy computations give for
p(X) the following expressions:

zn2∆(z)

(
Q

(
1

z2
,
z1
z2

)
− z1P

(
1

z2
,
z1
z2

)
,−z2P

(
1

z2
,
z1
z2

))
in U1,(17)

zn2∆(z)

(
P

(
z1
z2

,
1

z2

)
− z1Q

(
z1
z2

,
1

z2

)
,−z2Q

(
z1
z2

,
1

z2

))
in U2,(18)

∆(z) (P (z1, z2), Q(z1, z2)) in U3,

where ∆(z) = (z21 + z22 + 1)−
1
2
(n−1). The expression for Vi is the same as

that for Ui except for a multiplicative factor (−1)n−1. In these coordinates
for i = 1, 2, z2 = 0 always denotes the points of S1. We omit the factor ∆(z)
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by rescaling the vector field p(X). Thus we obtain a polynomial vector field
in each local chart.

6.4. Poincaré compactification of R3. In R3 we consider the polynomial
differential system

ẋ = P 1(x, y, z), ẏ = P 2(x, y, z), ż = P 3(x, y, z),

or equivalently its associated polynomial vector field X = (P 1, P 2, P 3). The
degree n of X is defined as n = max{deg(P i) : i = 1, 2, 3}.

Let Σ3 = {y = (y1, y2, y3, y4) ∈ R4 : ‖y‖ = 1} be the unit sphere in R4,
and

Σ+ = {y ∈ Σ3 : y4 > 0} and Σ− = {y ∈ Σ3 : y4 < 0}
be the northern and southern hemispheres, respectively. The tangent space
to Σ3 at the point y is denoted by TyΣ

3. Then, the tangent hyperplane

T(0,0,0,1)Σ
3 = {(x1, x2, x3, 1) ∈ R4 : (x1, x2, x3) ∈ R3}

is identified with R3.

We consider the central projections

f+ : R3 = T(0,0,0,1)Σ
3 → S+ and f− : R3 = T(0,0,0,1)Σ

3 → S− ,

defined by

f+(x) =
1

∆x
(x1, x2, x3, 1) and f−(x) = − 1

∆x
(x1, x2, x3, 1) ,

where ∆x =
(
1 +

∑3
i=1 x

2
i

)1/2
. Through these central projections, R3 can

be identified with the northern and the southern hemispheres, respectively.
The equator of Σ3 is Σ2 = {y ∈ Σ3 : y4 = 0}. Clearly, Σ2 can be identified
with the infinity of R3.

The maps f+ and f− define two copies of X, one Df+ ◦X in the northern
hemisphere and the other Df− ◦X in the southern one. Denote by X the
vector field on Σ3 \ Σ2 = Σ+ ∪ Σ− which restricted to Σ+ coincides with
Df+ ◦X and restricted to Σ− coincides with Df− ◦X.

In what follows we shall work with the orthogonal projection of the closed
northern hemisphere to y4 = 0. Note that this projection is a closed ball
B of radius one, whose interior is diffeomorphic to R3 and whose boundary
Σ2 corresponds to the infinity of R3. We shall extend analytically the poly-
nomial vector field X to the boundary, in such a way that the flow on the
boundary is invariant. This new vector field on B will be called the Poincaré
compactification of X, and B will be called the Poincaré ball. Poincaré in-
troduced this compactification for polynomial vector fields in R2, and its
extension to Rm can be found in [6].



ON THE GLOBAL FLOW OF A 3–DIMENSIONAL LOTKA–VOLTERRA SYSTEM 17

The expression for X(y) on Σ+ ∪ Σ− is

X(y) = y4




1− y21 −y2y1 −y3y1
−y1y2 1− y22 −y3y2
−y1y3 −y2y3 1− y23
−y1y4 −y2y4 −y3y4






P 1

P 2

P 3


 ,

where P i = P i (y1/|y4|, y2/|y4|, y3/|y4|). Written in this way X(y) is a vector
field in R4 tangent to the sphere Σ3.

Now we can extend analytically the vector field X(y) to the whole sphere
Σ3 by

p(X)(y) = yn−1
4 X(y);

this extended vector field p(X) is called the Poincaré compactification of X.

As Σ3 is a differentiable manifold, to compute the expression for p(X)
we can consider the eight local charts (Ui, Fi), (Vi, Gi) where Ui = {y ∈
Σ3 : yi > 0}, and Vi = {y ∈ Σ3 : yi < 0} for i = 1, 2, 3, 4; the diffeomor-
phisms Fi : Ui → R3 and Gi : Vi → R3 for i = 1, 2, 3, 4 are the inverses of
the central projections from the origin to the tangent planes at the points
(±1, 0, 0, 0), (0,±1, 0, 0), (0, 0,±1, 0) and (0, 0, 0,±1), respectively. We now
do the computations on U1. Suppose that the origin (0, 0, 0, 0), the point
(y1, y2, y3, y4) ∈ Σ3 and the point (1, z1, z2, z3) in the tangent plane to Σ3 at
(1, 0, 0, 0) are collinear, then we have

1

y1
=

z1
y2

=
z2
y3

=
z3
y4

,

and consequently

F1(y) =

(
y2
y1

,
y3
y1

,
y4
y1

)
= (z1, z2, z3)

defines the coordinates on U1.

As

DF1(y) =



−y2/y

2
1 1/y1 0 0

−y3/y
2
1 0 1/y1 0

−y4/y
2
1 0 0 1/y1




and yn−1
4 =

(
z3
∆z

)n−1

, the analytical field p(X) in U1 becomes

(19)
zn3

(∆z)n−1

(
−z1P

1 + P 2,−z2P
1 + P 3,−z3P

1
)
,

where P i = P i (1/z3, z1/z3, z2/z3).

In a similar way we can deduce the expressions of p(X) in U2 and U3.
These are

(20)
zn3

(∆z)n−1

(
−z1P

2 + P 1,−z2P
2 + P 3,−z3P

2
)
,
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where P i = P i (z1/z3, 1/z3, z2/z3) in U2, and

(21)
zn3

(∆z)n−1

(
−z1P

3 + P 1,−z2P
3 + P 2,−z3P

3
)
,

where P i = P i (z1/z3, z2/z3, 1/z3) in U3.

The expression for p(X) in U4 is zn+1
3

(
P 1, P 2, P 3

)
where the component

P i = P i (z1, z2, z3). The expression for p(X) in the local chart Vi is the same
as in Ui multiplied by (−1)n−1.

When we shall work with the expression of the compactified vector field
p(X) in the local charts we omit the factor 1/(∆z)n−1. We can do that
through a rescaling of the time.

We remark that all the points on the sphere at infinity in the coordinates
of any local chart have z3 = 0.
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